impact of the financial crisis on carbon economics

14
Impact of the financial crisis on carbon economics Version 2.1 of the Global Greenhouse Gas Abatement Cost Curve

Upload: others

Post on 12-Sep-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Impact of the financial crisis on carbon economics

Impact of the financial crisis on carbon economics

Version 2.1 of the Global Greenhouse Gas Abatement Cost Curve

Page 2: Impact of the financial crisis on carbon economics

McKinsey & Company takes sole responsibility for the final content of this report, unless otherwise cited.

© Copyright 2010 McKinsey & Company.Do not reproduce or distribute to others without the prior written permission of McKinsey & Company.

Page 3: Impact of the financial crisis on carbon economics

VERSION 2.1 OF THE GLOBAL GREENHOUSE GAS ABATEMENT COST CURVE

3

Impact of the financial crisis on carbon economics: Version 2.1 of the global greenhouse gas abatement cost curve

McKinsey has updated its global greenhouse gas (GHG) abatement cost curve with a new baseline that reflects a post-crisis belief about the development of the global economy and associated emissions. The overall conclusion of this update is that the crisis has had relatively little impact on the greenhouse gas abatement challenge, and that the main messages and implications from our 2009 report ‘Pathways to a low-carbon economy’ have not changed substantially. The global business-as-usual emission projection for 2030 has dropped by only 6 percent relative to the pre-crisis estimate. The total abatement potential remains essentially the same. Emission reductions might become cheaper in relative terms as a result of higher fossil fuel price expectations by the external agencies that we rely on for the baseline forecast.

Per-Anders Enkvist, Jens Dinkel, and Charles Lin1 [email protected]

Introduction

McKinsey & Company created Version 2.0 of its global greenhouse gas abatement cost curve in 2008 – during a period of steady economic growth – and published its findings in January 2009.2 Since then, the global economic environment has undergone dramatic changes, which have lead many to wonder what implications this will have on tackling the climate change challenge.

To help answer this question and to provide more recent emissions and abatement data, we have updated our cost curve. We call this update Version 2.1. We have focused this update primarily on examining the macroeconomic effects on business-as-usual (BAU) emissions, and the resulting impact on emission reduction economics. We have not updated our technology projections but will do so -- along with new BAU projections for forestry, agriculture, and waste -- when we produce our next comprehensive update. We have performed a small number of selected model upgrades and enhancements, and determined the associated changes in abatement potential, cost, and investment requirements. Several other organizations have also recently done analyses on the impact of the economic downturn on emissions, including the International Energy Agency (IEA), the International Institute for Applied Systems Analysis (IIASA), the Organisation for Economic Co-operation and Development (OECD), and the Joint Research Centre (JRC). We will compare and relate to their findings.

In this note, the focus is on changes relative to the results of our 2009 report and we refer readers to that document for a more comprehensive study of carbon economics.

1 The authors would like to thank our colleagues Amit Bhalla, Rahul Gupta, Vasudha Gupta, and Ruchin Jain for their contributions to this research.

2 Pathways to a Low-Carbon Economy: Version 2 of the Global Greenhouse Gas Abatement Cost Curve, January 2009 (www.mckinsey.com/globalGHGcostcurve).

Page 4: Impact of the financial crisis on carbon economics

IMPACT OF THE FINANCIAL CRISIS ON CARBON ECONOMICS

4

Current emission baseline forecasts are approximately 6 percent lower than they were two years ago

As in our previous abatement studies, in this update we rely primarily on well-known and accepted external macroeconomic and BAU emissions projections. We use the IEA’s World Energy Outlook 2009 (WEO 2009) as the main reference. In a few instances, we have complemented external data selectively with McKinsey analysis.

Based on these updated inputs, projections of global 2020 and 2030 BAU emissions have fallen by around 6 percent compared with the assessment two years ago (Exhibit 1). In 2020, there is a reduction of 3.6 gigatonnes of carbon dioxide equivalent (GtCO2e) in BAU emissions due to changes in economic forecasts (from 61.2 GtCO2e to 57.6 GtCO2e). In 2030, BAU emissions drop by 4.3 GtCO2e from 69.9 GtCO2e to 65.6 GtCO2e. This decrease is equivalent to more than the 2030 BAU emissions of Africa and would contribute to reaching absolute climate stabilization targets. However, the fact remains that the difference between BAU emissions and stabilization pathways is of the same order of magnitude as two years ago. The size of the emission reduction challenge remains more or less the same.

Three factors explain why recent economic developments have only produced this 6 percent drop in BAU emissions compared with projections two years ago: (1) the long time horizon under examination (relative to a business cycle); (2) the economic resilience of some large developing countries responsible for a large share of future emissions; and, (3) the fact that activities in agriculture, forestry, and waste generation correlate more with growth in population rather than GDP. Studies by the institutions mentioned above broadly concur with our finding that the global economic downturn will only have a modest impact on long-term emissions.

Business-as-usual (BAU) comparisons between V2.0 and V2.1

Note: As a reference, 1990 total emissions were 36 GtCO2e.Source: Global GHG Abatement Cost Curve v2.0, v2.1; IEA; US EPA; Houghton; IPCC; OECD; den Elzen; Meinshausen; van Vuuren

Peak at 550 ppm, long-term stabilization 550 ppm, expected 3°C increase

Peak at 510 ppm, long-term stabilization 450 ppm, expected 2°C increase

Peak at 480 ppm, long-term stabilization 400 ppm, expected 1.8°C increase

Exhibit 1

70

0

10

20

30

40

50

60

70

252015102005

Global GHG emissionsGtCO2e per year

2030

66 V2.1 BAU

V2.0 BAU

- 6%

- 6%

- 5%

Page 5: Impact of the financial crisis on carbon economics

VERSION 2.1 OF THE GLOBAL GREENHOUSE GAS ABATEMENT COST CURVE

5

Examining the drop in BAU emissions in 2030 by region reveals that the emissions forecasts for developed countries have fallen by between 6 to 11 percent compared to the projections two years ago (Exhibit 2). Projections for the emissions of developing countries are more varied. In some regions and countries, including Africa, Latin America, India, and the Middle East, BAU emissions projections have declined by between 5 and 12 percent. In contrast, China, parts of developing Asia, and Eastern Europe now have higher BAU emissions projections due to these economies’ relative resilience in the face of the global downturn and upward revisions in their expected GDP growth. Reduced BAU emissions will help countries achieve their reduction targets; on the other hand, the credit-constrained economic environment will likely make the financing of abatement measures more challenging.

Turning to a sector-by-sector view, we find that the impact of the economic slowdown has varied according to the sectors (Exhibit 3). In the power, industry, and consumer sectors, BAU emission projections have dropped, as emissions are largely linked to GDP. But in the agriculture, waste, and forestry sectors, there has been no change in BAU projections, since emissions are primarily linked to population -- and population projections have changed very little since our 2009 report. A specifically high drop is in sea transport, as new research from IEA and the International Maritime Organization (IMO) about this relatively uncertain sector has substantially revised emissions estimates downwards.

Going into more detail, new assumptions made by the IEA for two main macroeconomic drivers – GDP growth and energy prices – explain the majority of the change in BAU emissions between Version 2.0 of the cost curve and the assessment in this note (Exhibit 4). • GDP growth. The financial crisis is expected to have a larger impact in developed countries than in

the developing countries. In developed countries growth rates fall from 2.1 to 1.8 percent annually in the period from 2005 to 2030. In developing countries, the GDP effect is very small (from a

Change in BAU emissions by region

66Total

Exhibit 2

V2.1 BAU emissionsGtCO2e per year; 2030

-4

Change from V2.0%

0

-1.5

0.1

0.2

-0.3

-0.3

-0.4

-0.5

-0.3

-0.4

-1.0

Change from V2.0GtCO2e per year; 2030

-6%

1.8

16.7

8.8

3.9

2.9

4.7

6.5

3.6

North America1

2.5

Western Europe2 5.8

China

8.2

Global Air & Sea

Rest of developing Asia

Eastern Europe3

Middle East

India

Latin America

Africa

OECD Pacific

Some developing countries are expected to grow even faster, with upward revisions in GDP growth

Many developing countries are also significantly affected

Developed countries experience the largest decline

1 United States and Canada.2 Includes EU27, Andorra, Iceland, Lichtenstein, Monaco, Norway, San Marino, and Switzerland.3 Russia and non-OECD Eastern Europe.

Source: Global GHG Abatement Cost Curve v2.1, v2.0, IEA WEO’09, IEA transport report 2009, JFK 2009, EIA 09, IMO

2

-5

-9

-12

-11

-6

-11

-44

-6

1

0

Revision of external forecasts for sea sector

Page 6: Impact of the financial crisis on carbon economics

IMPACT OF THE FINANCIAL CRISIS ON CARBON ECONOMICS

6

Drivers of change from V2.0 to V2.1

5.85.8

Developing world

+1%

1.62.3

Developed world -33%

1.82.1

Developed world-15%

WEO ’07/V2.0 WEO ’09/V2.1

1 In 2006 real prices.2 In 2008 real prices (if adjusted to 2006 real prices, 2030 would be 109 $ per barrel). Source: IEA World Energy Outlook 2007 and 2009

Exhibit 4

4.84.8

Developing world

-1%

Near term (2005–2015)

Long term (2005–2030)

WEO ’07/V2.0 WEO ’09/V2.1

1 GDP growth % per annum

2 Oil price$ per barrel, real terms

120

110

100

90

80

70

60

50

10

0

203020202010

WEO ’09/V2.12

WEO ’07/V2.01

Change in BAU direct emissions by sector

66Total

Exhibit 3

V2.1 BAU emissionsGtCO2e per year; 2030

-4

Change from V2.0%

0

0

0

0

0

-1.5

-0.1

-0.1

-0.4

-0.7

-0.7

-0.9

Change from V2.0GtCO2e per year; 2030

-6%

-1

-3

-8

-15

-5

0

0

0

-44

-2

-10

-1

Petroleum & Gas 3.2

Buildings 4.0

Road Transport 7.4

Power 17.8

Global Air and Sea 1.8

Forestry 7.2

Agriculture 7.9

Waste 1.7

Cement 3.5

Iron & Steel 4.7

Chemicals 3.6

Other Industry 2.9

Note: To obtain the total BAU emissions, only direct emissions are included. Source: Global GHG Abatement Cost Curve v2.1, v2.0, IEA WEO’09, IEA transport report 2009, JFK 2009, EIA 09, IMO

Affected by economic slowdown

Linked to population growth- unaffected by economic slowdown

Revision of external forecasts for sea sector

Page 7: Impact of the financial crisis on carbon economics

VERSION 2.1 OF THE GLOBAL GREENHOUSE GAS ABATEMENT COST CURVE

7

4.8 to 4.7 percent compound annual growth rate in the period from 2005 to 2030) as developing countries seem to have been less affected by the recent slowdown. In absolute terms, GDP estimates for developing countries fall by only about 1 percent in 2030 from the forecast two years ago. In the case of developed countries, the forecast drop is about 8 percent.

• Energy prices. The assumed trajectories of energy prices have risen significantly. The IEA’s WEO 2007, which was the basis of Version 2.0 of the cost curve, assumed real oil prices in 2030 to be $62 a barrel in 2006 prices. In its 2009 WEO, the IEA raised its assumption to $115 a barrel in 2008 prices.3 The IEA has also raised its assumptions about natural gas and coal prices considerably. Although the financial crisis has caused energy prices to fall since their 2007 spike, the IEA’s WEO 2009 anticipates tighter energy markets coming up than it did in the 2007 edition.

Despite a drop in BAU emissions, abatement potential remains stable at 38 GtCO2e in 2030, and comes at a lower incremental cost

Relative to BAU emissions of 66 GtCO2e in 2030, we have identified an abatement potential of 38 GtCO2e (58 percent) through technical measures costing below €80 per tonne of carbon dioxide equivalent (tCO2e) (Exhibit 5).4 We estimate that an additional 8 GtCO2e of abatement potential exists (similar to Version 2.0 of the cost curve) if more expensive technical measures as well as changes in behavior are included. Taking this additional abatement into account would result in a total reduction

3 In real 2006 prices, the price is $109 per barrel.

4 We raised the global threshold cost to €80 per tCO2e from €60 per tCO2e in order to include known carbon capture and storage (CCS) levers. Their abatement cost increases due to the energy consumption necessary to run CCS. At a threshold cost of €60 per tCO2e, the abatement potential is about 36.5 GtCO2e.

0

10

20

30

40

50

60

70

Global GHG emissionsGtCO2e per year

2030252015102005

Emissions abatement pathway

Note: As a reference, 1990 total emissions were 36 GtCO2e.1 Upper cost threshold kept constant at 100 EUR/tCO2e, thus additional potential lower given increase of cost curve threshold to 80 EUR/tCO2eSource: Global GHG Abatement Cost Curve v2.0, v2.1; IEA; US EPA; Houghton; IPCC; OECD; den Elzen; Meinshausen; van Vuuren

Technical measures < €80 per tCO2e

Technical measures €80–€100 per tCO2e

1

(High-level estimates)

- 4

Exhibit 5

- 4

Behavior changes(High-level estimates)

- 38

20

66 BAU

28

Peak at 550 ppm, long-term stabilization 550 ppm, expected 3°C increase

Peak at 510 ppm, long-term stabilization 450 ppm, expected 2°C increase

Peak at 480 ppm, long-term stabilization 400 ppm, expected 1.8°C increase

Page 8: Impact of the financial crisis on carbon economics

IMPACT OF THE FINANCIAL CRISIS ON CARBON ECONOMICS

8

potential of more than 70 percent from BAU emissions. In 2020, technical measures costing below €80 per tCO2e provide an abatement potential of 19 GtCO2e. It should be noted that these values represent economic abatement potential if the measures are implemented aggressively, and not a forecast of how abatement will develop.

If all the abatement potential was fully captured across regions and sectors, the resulting emissions development would be broadly consistent with an emissions pathway put forward by Intergovernmental Panel on Climate Change (IPCC) authors that would see the atmospheric concentration of GHGs peak at 480 ppm and then start decreasing to stabilization levels of 400 ppm of CO2e. According to the IPCC authors’ analysis, such a pathway would result with high likelihood in an increase of the global mean temperature of just below 2 degrees Celsius above preindustrial levels.5 Abatement studies by the other institutions mentioned have also concluded that there is sufficient potential to contain global warming using technical measures.

Increasing energy price expectations lead to more abatement technologies being net profit positive – in the “compared to BAU” cost perspective that the cost curve takes. The average abatement cost across all levers has fallen from plus €4 per tCO2e to minus €6 per tCO2e between Version 2.0 and Version 2.1. The share of net profit positive measures (excluding transaction costs) has increased from 29 to 35 percent in our new assessment, reducing the cost challenge to some extent. Another 40 percent of abatement measures costs between zero and €20 per tCO2e and the next 10 percent costs between €20 and €40 per tCO2e. Only 15 percent of the abatement potential comes at a cost of between cost between €40 and €80 per tCO2 (Exhibit 6).

5 Den Elzen, Meinshausen, van Vuuren

-80

-60

-40

-200

-20

-180

-140

-120

-100

80

60

40

20

0

Abatement potentialGtCO2e per year

Abatement cost€ per tCO2e

5

-160

30251510 20 35

Note: The curve presents an estimate of the maximum potential of all technical GHG abatement measures below €80 per tCO2e if each lever was pursued aggressively. It is not a forecast of what role different abatement measures and technologies will play.

Source: Global GHG Abatement Cost Curve v2.1

Lighting – switch incandescentto LED (residential)

Reduced slash and burn agriculture conversion

Reduced pastureland conversion

Grassland management

Pastureland afforestation

Nuclear

Degraded forest reforestation

Reduced intensive agriculture conversion

Iron and steel CCS new build

Gas plant CCS retrofit

Solar PV

Waste recycling

High penetration wind

Low penetration wind

Coal CCS new build

Solar CSP

Efficiency improvements other industry

Cars full hybrid

Exhibit 6

V2.1 Global GHG abatement cost curve beyond BAU – 2030

Appliances residential

Building efficiency new build

Organic soils restorationAppliances electronicsMotor systems efficiency

1st generation biofuels

2nd generation biofuels

Retrofit residential HVAC

Cars plug-in hybridCropland nutrient managementTillage and residue management

Insulation retrofit (residential)

Clinker substitution by fly ash

Landfill gas electricity generation

Small hydroRice management

Geothermal

Degraded land restoration

Coal CCS retrofit

38

Page 9: Impact of the financial crisis on carbon economics

VERSION 2.1 OF THE GLOBAL GREENHOUSE GAS ABATEMENT COST CURVE

9

In interpreting these numbers, readers should remember that they exclude three factors that might be important, depending on how abatement measures are implemented. First, we use a societal interest rate, similar to a long-term bond rate, of 4 percent, rather than the cost of capital to a private investor. Second, the cost excludes transaction and program costs to implement at a large scale, as these are highly dependent on policy choices for implementation. Third, the analysis does not include dynamic effects such as changes in energy prices due to the implementation of abatement measures (these dynamic effects could both increase and decrease cost).

Higher energy prices have a particularly large effect in the transport sector through higher savings on fuel costs, and in the buildings and industrial sectors through increased savings from energy efficiency measures. In the power sector, fossil-fuel-based generation technologies become more expensive and low-carbon alternatives such as renewables or nuclear become relatively cheaper.

IPCC cost estimates for adaptation to climate change under a BAU scenario lie in the range of 1 to 5 percent of GDP on average across the globe.6 Since our average abatement cost estimate across all levers has fallen to minus €6 per tCO2e (excluding transaction cost), mitigation would come a net profit to society (mainly due to the increased energy price expectations) and would represent a lower societal cost than that estimated for adaptation.

Looking at the distribution of abatement opportunities, there has not been much change between Version 2.0 and Version 2.1. The two largest sectors in terms of abatement potential remain power (26 percent of potential) and forestry (21 percent). The split of opportunities has shifted slightly more toward the developing world from 70 percent in Version 2.0 to 72 percent in this update. This is due to the fact that BAU emissions, and therefore abatement opportunities, have dropped more in the developed world than in the developing world between these two assessments (Exhibit 7). We note that the regional distribution of abatement potential does not hold any implications as to who would finance emissions reductions.

6 IPCC AR4, 2007.

Abatement potential by sector and region – V2.1GtCO2e per year; 2030

Global Air & Sea Transport 0.4

Middle East 1.4

India 2.5

China 9.0

Africa 2.7

Rest of developing Asia 6.0

Latin America 4.5

OECD Pacific 1.4

Eastern Europe3 2.1

Western Europe2 3.0

North America1 4.5

Transport 2.6

Other Industry 1.6

Chemicals 1.9

Iron and steel 2.4

Cement 1.0

Petroleum and gas 0.8

Power 9.7

Global Air & Sea Transport 0.4

Agriculture 4.6

Forestry 7.8

Waste 1.6

Buildings 3.0

Exhibit 7

1 United States and Canada.2 Includes EU27, Andorra, Iceland, Lichtenstein, Monaco, Norway, San Marino, and Switzerland.3 Russia and non-OECD Eastern Europe.

Source: Global GHG Abatement Cost Curve v2.1

38 38Total Total

By sector By region

Page 10: Impact of the financial crisis on carbon economics

IMPACT OF THE FINANCIAL CRISIS ON CARBON ECONOMICS

10

Although the average abatement cost has fallen, capturing the full abatement potential identified will still require upfront investments of as much as €860 billion annually on top of BAU investments by 2030

While higher fossil fuel prices help to reduce abatement costs, they do not change the capital expenditure necessary to finance abatement. To capture the full abatement potential in 2030, about €860 billion per year of capital expenditure (on top of BAU) will be required globally in 2030, and some €490 billion per year in 2020 (Exhibit 8). This represents an incremental 5 to 6 percent on top of BAU investments into fixed assets.

The change in investment requirements from Version 2.0 of the cost curve to this update is small. Taking a regional view, we see that China alone accounts for 32 percent of the required capital expenditure with North America and Western Europe together making up 25 percent of the total. If we then look at the capital expenditure by sector, we see that just three sectors (power, transport, and buildings) account for nearly three quarters of the investment required.

864Total 864Total

Source: Global GHG Abatement Cost Curve v2.1

Exhibit 8

€ billion per year; 2030; in addition to current projected BAU investments

Investment requirements to achieve abatement potential – V2.1

By sector By region

17

37

72

34

73

49

38

45

Global air and sea transport

Middle East

India

China 280

Africa

Rest of developing Asia

Latin America

OECD Pacific

Eastern Europe

Western Europe 100

North America 119

17

0

43

9

35

34

65

12

16

Agriculture

Global air and sea transport

Forestry

Waste

Buildings 207

Transport 245

Other Industry

Chemicals

Iron and steel

Cement

Petroleum and gas

Power 182

Page 11: Impact of the financial crisis on carbon economics

VERSION 2.1 OF THE GLOBAL GREENHOUSE GAS ABATEMENT COST CURVE

11

Delaying action for ten years would reduce the technical abatement potential in 2030 by half

Timing remains of the essence. Policy makers need to act now if they want to reduce emissions to the levels that the climate scientists believe are necessary to stabilize global warming below 2 degrees Celsius. Our model shows that a delay of 10 years, with action on abatement starting in 2020 instead of 2010, would cut the abatement potential by half from 38 GtCO2e to 19 GtCO2e. Under such a “delayed” abatement path, the emissions trajectory would exceed a 550 ppm stabilization path – as laid out by IPCC authors – in some years. This would make it challenging to limit global warming to the 3 degree Celsius threshold associated with a 550 ppm stabilization (Exhibit 9).

* * *

We hope that this analysis will serve as a useful starting point for discussions on how best to manage the transition to a low-carbon economy. In 2011, we aim to release Version 3.0 of the global GHG abatement cost curve in which we will undertake a new and more comprehensive review of greenhouse gas abatement economics.

66

47

28

0

10

20

30

40

50

60

70

2005 2010 2015 2020 2025 2030

Global GHG emissionsGtCO2e per year

Potential emission development if starting in 20101

Potential emission development if starting in 20201

-19

Effect of delaying action for 10 years

1 Technical levers < € 80/tCO2e.Source: Global GHG Abatement Cost Curve v2.0, v2.1; IEA; US EPA; Houghton; IPCC; OECD; den Elzen; Meinshausen; van Vuuren

Exhibit 9

Peak at 550 ppm, long-term stabilization 550 ppm, expected 3°C increase

Peak at 510 ppm, long-term stabilization 450 ppm, expected 2°C increase

Peak at 480 ppm, long-term stabilization 400 ppm, expected 1.8°C increase

Lost abatement opportunity

Page 12: Impact of the financial crisis on carbon economics

IMPACT OF THE FINANCIAL CRISIS ON CARBON ECONOMICS

12

Bibliography

Amann Markus, Janusz Cofala, Peter Rafaj, and Fabian Wagner, The impact of the economic crisis on GHG mitigation potentials and costs in Annex I countries, International Institute for Applied Systems Analysis, November 2009

Den Elzen, M.D.G., M. Meinshausen, and D. van Vuuren, Multi-gas emission envelopes to meet greenhouse gas concentration targets: Costs versus certainty of limiting temperature increase, May 1, 2007, Global Environmental Change 17 (2007) 260–280

Energy Information Administration (EIA), International Energy Outlook, May 2009

Global Insight, Auto-insight, 2010

IEA, Transport, Energy and CO2: Moving toward Sustainability: How the world can achieve deep CO2

reductions in transport by 2050, October 2009

IEA, World Energy Outlook 2009

Intergovernmental Panel on Climate Change (IPCC), Fourth Assessment Report (AR4), 2007

King James F., Steel production forecast 2009

McKinsey & Company, Basic Materials Practice, Steel forecast, 2010

McKinsey & Company, Oil and Gas practice, Global Gas Model 2010

McKinsey & Company, Pathways to a Low-Carbon Economy – Version 2 of the Global Greenhouse Gas Abatement Cost Curve, January 2009 (www.mckinsey.com/globalGHGcostcurve)

Meinshausen, Malte, What does a 2°C target mean for greenhouse gas concentrations? A brief analysis based on multi-gas emission pathways and several climate sensitivity uncertainty estimates, chapter 6 of “Avoiding Dangerous Climate Change,” Cambridge University Press, 2006

OECD Environmental Outlook to 2030, March 2008

OECD, The Economics of Climate Change Mitigation: Policies and Options for Global Action Beyond 2012, September 2009

Russ, Peter et al., Economic Assessment of Post-2012 Global Climate Policies: Analysis of Greenhouse Gas Emission Reduction Scenarios with the POLES and GEM-E3 models, Joint Research Centre and Institute for Prospective Technological Studies (JRC-IPTS), 2009

Page 13: Impact of the financial crisis on carbon economics

VERSION 2.1 OF THE GLOBAL GREENHOUSE GAS ABATEMENT COST CURVE

13

McKinsey & Company is a global management consulting firm which helps the world’s leading organisations address their strategic challenges. With consultants deployed in 50 countries across the globe, McKinsey advises on strategic, operational, organizational and technological issues.

McKinsey’s “Sustainability & Resource Productivity Initiative” supports clients on sustainability-related topics, and develops new thinking on the economics and business implications of the sustainability and climate change challenge.

Page 14: Impact of the financial crisis on carbon economics

Design by McKinseyCover illustration by Super© Copyright 2010 McKinsey & Company