identifying and analyzing coastlinedigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... ·...

180

Upload: others

Post on 14-Mar-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m
Page 2: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

IDENTIFYING AND ANALYZING COASTLINE CHANGES ALONG THE CORAL COAST, SOUTH-

WEST VITI LEVU, FIJI ISLANDS, VIA MULTI-TEMPORAL IMAGE ANALYSES

by

Prerna Bharti Chand

A thesis submitted in partial fulfilment of the requirements for the degree of

Master of Science

School of Islands and Oceans Faculty of Science, Technology and Environment

The University of the South Pacific

Copyright © 2010 Prerna Bharti Chand

Page 3: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

Page 4: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

i�

ACKNOWLEDGEMENT

I would like to present my sincere acknowledgement to those who have aided and

inspired me to accomplish the goals of this research. Firstly, I would like to thank my

supervisors; Dr. Susanne Pohler, (Principal Supervisor) who has guided and

encouraged me throughout my research, Dr. Gennady Gienko, for his constant

guidance, inspiration, support and advice in achieving the appropriate methods for

the multi-temporal data analyses and Professor Patrick Nunn, for guiding me through

the initial stages of my research.

I am grateful to Mr. Shingo Takeda who taught me the mapping techniques needed

for the final presentation of the results. I would also like to thank Mr. Laisiasa

Cavakiqali, and Miss Yashika Nand for assisting me with the field work and Mr.

Laisiasa Cavakiqali for driving me to my study sites in the Coral Coast, area. My

acknowledgement to all the villages and resorts along the Coral Coast who

accommodated me for my field work, including, Beach House, Hideaway Resort,

Tabakula Resort, Outrigger Resort, Navutulevu, Namatakula, Tagaqe, Yadua and

Vatukarasa Villages and Korolevu Settlement.

I would like to show my appreciation to Mr. Rinel Ram, and Ms Shirleen Bala who

provided constant words of encouragement, advice and unfailing support and aided

me with the final formatting of the thesis. I am also grateful to my fellow post-

graduate friends, Ms. Simita Singh, Mr. Naushad Yakub, Mr. Zulfikar Begg, Mr.

Pranesh Kishore and Ms Kirti Lal, for their generosity, friendship and support.

Finally, I would like to thank my parents, who have been a constant pillar of support

throughout my life, I will always be grateful to my mother and father who are my

tower of strength, for their firm believe in me. I thank them for their consistent words

of encouragement and moral support which inspired me to complete my thesis.

Page 5: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

ii�

ABSTRACT �

This research identifies the nature of temporal coastline changes along the Coral

Coast area in Fiji Islands. Prograding, resilient and eroding coastlines were identified

by comparison of historical aerial photographs and satellite images. For this study

1967 aerial photographs and 2002 IKONOS satellite images were compared to

observe and classify the coastline changes over the 35 year period. Subsequently, a

ground truthing exercise along the Coral Coast was carried out to re-evaluate the

results obtained from the desktop study of historical aerial photographs and satellite

images.

The desktop comparison did not reveal any prominent coherent coastline change

patterns. However, a slight pattern is evident; the far west (Fijian Resort area) and

the far east (Naboutini Village area) sides of the study area generally indicate

resilient and prograding coastlines. Along the shoreline in the central region it was

found that stretches of prograding coastlines alternate with resilient and eroding

coastlines. The rates of coastline change for prograding and eroding coastlines were

quantified in terms of area (in square meters) and maximum distance (in meters) of

landward and seaward movement. For prograding coastline segments the area

advancement ranged from 1 564 ± 6 m2 to 97 285 ± 6 m2 and the maximum distance

of progradation ranged from 13 ± 3 m to 400 ± 3 m. For eroding coastline segments

the area recession ranged from 840 ± 6 m2 to 21 487 ± 6 m2 and the maximum

distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m. The area and

maximum distance values for progradation and erosion indicate that the Coral Coast

coastline change is influenced more by progradation than erosion. However, the

ground truthing exercise revealed only two sections of the study area to be naturally

prograding; the region at the head of Sovi Bay and Namatakula Village front. All

other prograding and resilient coastlines had been fortified by coastal engineering

structures; indicating artificial progradation and foreshore reclamation. Beach

erosion was prominent on most of the beaches with fortified coastlines.

Page 6: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

iii�

The wave energy along the Coral Coast, set up by the dominant southeast trade

winds is relatively high. Since this area only possesses a narrow fringing reef system,

interrupted by numerous channels, the wave energy does not dissipate significantly

upon reaching the shore. Hence, the Coral Coast coastline is a “High Energy

Coastline”. Due to fortification of the coastline by the construction of seawalls, a

large portion of the Coral Coast coastline is showing signs of artificial progradation.

Coastal processes, erosion, progradation and resilience are depended on the local

wind, wave and geomorphological characteristics of an area. Therefore, the dominant

coastal process at any given area would be specific to that area, respective to the

local characteristics.

Keywords: Temporal coastline change, coastline erosion, coastline progradation,

resilient coastline, remote sensing methods.

Page 7: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

iv�

TABLE OF CONTENTS �

ABSTRACT..............................................................................................................................ii�

TABLE OF CONTENTS.........................................................................................................iv�

LIST OF FIGURES ................................................................................................................vii�

LIST OF TABLES ....................................................................................................................x�

LIST OF APPENDICES ..........................................................................................................xi�

CHAPTER 1 – INTRODUCTION .......................................................................................... 1�

1.1 INTRODUCTION ......................................................................................................... 1�

1.2 THESIS RATIONALE .................................................................................................. 3�

1.3 THESIS OBJECTIVES ................................................................................................. 5�

1.4 STUDY AREA .............................................................................................................. 5�

1.5 THESIS FRAMEWORK ............................................................................................... 7�

CHAPTER 2 – COASTLINE CHANGE PROCESSES IN THE PACIFIC ISLANDS.......... 9�

2.1 INTRODUCTION ......................................................................................................... 9�

2.2 SHORELINE CHANGES USING THE REMOTE SENSING METHOD .................. 9�

2.2.1 Remote Sensing Methods and Shoreline Change.................................................. 10�

2.2.2 Role of GIS in Coastline Change Studies.............................................................. 11�

2.2.3 Mapping Shoreline Changes ................................................................................. 12�

2.3 COASTAL PROCESSES ............................................................................................ 15�

2.3.1 Waves, Tides and Currents ................................................................................... 17�

2.3.2 Sediment Budget and Longshore Drifting............................................................. 19�

2.3.3 Coastal Accretion Processes................................................................................. 22�

2.3.4 Coastal and Beach Erosion Processes.................................................................. 23�

2.4 CHARATERISTIC COASTAL ZONES OF THE PACIFIC ISLANDS .................... 26�

2.4.1 Coastal Geography of Pacific Islands .................................................................. 26�

Page 8: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

v�

2.4.2 Sediment Sources of the Coastal Zones ................................................................ 29�

2.5 CAUSES OF COASTAL EROSION IN THE PACIFIC ISLANDS .......................... 31�

2.5.1 Natural Causes of Coastal Erosion ...................................................................... 32�

2.5.2 Human-induced Causes of Coastal Erosion ......................................................... 42�

2.6 SUMMARY ................................................................................................................. 44�

CHAPTER 3 – METHODOLOGY ....................................................................................... 45�

3.1 INTRODUCTION ....................................................................................................... 45�

3.2 WORKFLOW IN DETERMINING THE RANGE OF COASTLINE CHANGE ...... 45�

3.2.1 Phenomenal Range of Spatial Change.................................................................. 48�

3.2.2 Identification of Source Data ................................................................................ 48�

3.2.3 Range of Coastline Change Methods .................................................................... 49�

3.2.4 The Error Budget and A-priori Accuracy Estimation........................................... 50�

3.3 THE STUDY SITE ...................................................................................................... 51�

3.4 RESEARCH METHODOLOGY................................................................................. 53�

3.3.1 Source Data used for Geographical Information Systems Analysis ..................... 54�

3.3.2 The Range of Coastline Changes .......................................................................... 54�

3.3.3 Coastline Categorization ...................................................................................... 61�

3.3.4 Quantification of Coastline Changes .................................................................... 61�

3.5 FIELD INVESTIGATION .......................................................................................... 62�

3.6 SUMMARY ................................................................................................................. 64�

CHAPTER 4 – RESULTS ..................................................................................................... 66�

4.1 INTRODUCTION ....................................................................................................... 66�

4.2 COASTLINE CATEGORIZATION ........................................................................... 66�

4.2.1 Fijian Resort, Naevuevu Village and Yadua Village ............................................ 69�

4.2.2 Yadua Village and Sigatoka Sand Dunes.............................................................. 70�

4.2.3 Sigatoka Sand Dunes and Korotongo Village....................................................... 72�

Page 9: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

vi�

4.2.4 Outrigger and Tabakula Resorts........................................................................... 73�

4.2.5 Sovi Bay, Vatukarasa Village and Namada Village.............................................. 75�

4.2.6 Tambua Sands Resort, Hideaway Resort and Tagaqe Village.............................. 79�

4.2.7 Nagasau Village, Votualailai Village and Naviti Resort ...................................... 82�

4.2.8 Votua Village, Korolevu Settlement and Warwick Resort..................................... 85�

4.2.9 Komave Village, Navola Village and Beach House Resort .................................. 88�

4.2.10 Namatakula Village, Navutulevu Village and Naboutini Villagea ..................... 90�

4.3 QUANTIFICATION OF ERODING AND PROGRADING COASTLINES ............ 92�

4.5 SUMMARY ............................................................................................................... 103�

CHAPTER 5 – DISCUSSION AND CONCLUSION ........................................................ 104�

5.1 INTRODUCTION ..................................................................................................... 104�

5.2 DISCUSSION OF THESIS FINDINGS .................................................................... 104�

5.2.1 Coastline Changes .............................................................................................. 104�

5.2.2 Quantification of Eroding and Prograding Coastlines....................................... 112�

5.2.3 Coastal Geomorphology of the Coral Coast....................................................... 118�

5.3 RECOMMENDATIONS AND IMPLICATIONS .................................................... 121�

5.3.1 Recommendations ............................................................................................... 121�

5.3.2 Implications of Thesis Research ......................................................................... 123�

5.4 CONCLUSION .......................................................................................................... 126�

REFERENCES .................................................................................................................... 128�

GLOSSARY LIST ............................................................................................................... 138�

APPENDICES ..................................................................................................................... 141�

Page 10: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

vii�

LIST OF FIGURES �

Figure 1. 1: Map of study area. Source: Media Centre, 2008, the University of the South Pacific. ........................................................................................................ 6

Figure 1. 2: Fringing reef systems associated with the study area along the Coral Coast. Source: Google Earth, 2006....................................................................... 7

Figure 1. 3: Thesis framework.Figure.......................................................................... 8 �

Figure 2. 1: A schematic coastal embayment in (a) plan form and (b) profile. Some of the key definitions based on proximity to the shore, wave characteristics, and substrate are shown. (Source: Woodroffe, 2002) ............................................... 16

Figure 2.2: Holocene sea-level changes in the Pacific. A. Sea-level changes during the Holocene in Fiji; B. Late Holocene sea-level changes in the Tuamotu Islands, French Polynesia. Source: Nunn, 2002. ................................................ 27

Figure 2.3: Monthly sea-level record from SEAFRAME at Lautoka, Fiji. Source: Gray, 2009. ......................................................................................................... 34

Figure 3. 1: An illustration of the order of processes involved in the examination of coastline changes by a comparison of historical aerial photographs and satellite images. ................................................................................................................ 47

Figure 3. 2: The study area situated along the south-west coast of Viti Levu. Source: Pacific Maps Pty Limited, 2002. ........................................................................ 52

Figure 3. 3: A representation of the processes involved in determining the range of coastline changes along the Coral Coast. ........................................................... 53

Figure 3. 4: A schematic representation of the method and technique development in the determination of the range of coastline changes; 3 trial methods leading to the ulimate method of range of coastline change analyses. (Note:AP – aerial photographs; GE – Google Earth images.) ......................................................... 55

Figure 3. 5: The study areas for the ground truthing exercise along the Coral Coast............................................................................................................................. 63

Figure 4. 1: The Coral Coast; the area in each black frame corresponds to the labelled figure which gives details of the coastline categorization of the respective area. Map background: 1967 aerial photograph mosaic.............................................. 68

Figure 4. 2: Coastline categorization along the Fijian Resort, Naevuevu Village and Yadua Village area. ............................................................................................ 69

Figure 4. 3: Coastline categorization along the Yadua Village and Sigatoka Sand Dunes. ................................................................................................................. 70

Figure 4. 4: Damaged seawall and debris along the Yadua Village beach front. ...... 71

Page 11: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

viii�

Figure 4. 5: Coastline categorization from the eastern edge of Sigatoka Sand Dunes to Korotongo Village. ......................................................................................... 72

Figure 4. 6: Coastline categorization along the Outrigger Resort and Tabakula Resort area...................................................................................................................... 73

Figure 4. 7: Seawall separating the Outrigger Resort from the beach front. ............. 74 Figure 4. 8: Coastline categorization along Sovi Bay, Vatukarasa Village and

Namada Village area........................................................................................... 75 Figure 4. 9: Wide beach at the head of Sovi Bay....................................................... 77 Figure 4. 10: Low tide on a steep beach face in front of Vatukarasa Village............ 77 Figure 4. 11: Exposed tree roots (left) and beach rocks (right) in front of Vatukarasa

Village................................................................................................................. 78 Figure 4. 12: Gabion Baskets; east of Vatukarasa Village; adjacent to the Queens

Road. ................................................................................................................... 78 Figure 4. 13: Coastline categorization of the Tambua Sands Resorts, Hideaway

Resort and the Tagaqe Village area. ................................................................... 79 Figure 4. 14: Seawall along the east of Hideaway Resort.......................................... 81 Figure 4. 15: Exposed tree roots and beach rock in front of Tagaqe Village. ........... 81 Figure 4. 16: Coastline categorization from Nagasau Village, to Votualailai Village

to Naviti Resort................................................................................................... 82 Figure 4. 17: Narrow stretch of beach in front of the Naviti Resort. ......................... 84 Figure 4. 18: Artificial Island in front of Naviti Resort; surrounded by a seawall and

connected to the mainland by a causeway. ......................................................... 84 Figure 4. 19: Coastline categorization along Vouta Village, Korolevu Settlement and

Warwick Resort area........................................................................................... 85 Figure 4. 20: Sloping embankment separating the western side of Korolevu from the

beach front. ......................................................................................................... 87 Figure 4. 21: Coastline categorization along Komave Village, Navola Village and the

Beach House area. .............................................................................................. 88 Figure 4. 22: Exposed tree roots (left) and beach scarp (right) in front of the Beach

House .................................................................................................................. 89 Figure 4. 23: Coastline categorization along Namatakula Village, Navutulevu Village

and Naboutini Village. (Note: the eastern end of Namatakula and Naboutini Villages could not be classified since these sections of historical aerial photographs were missing.) ................................................................................ 90

Figure 4. 24: River meandering through the beach front of Namatakula Village...... 91 Figure 4. 25: A comparison of the eroding and prograding coastlines in terms of the

maximum distances of change in coastlines over the years 1967 to 2002 for the Coral Coast area.................................................................................................. 93

Figure 4. 26: Maximum distance of landward movement (m) at each erosion hotspot along the Coral Coast. The erosion spots correspond to the red lines in Fig. 4.25, from west to east. ................................................................................................ 94

Page 12: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

ix�

Figure 4. 27: Average rate of erosion at each erosion hotspot along the Coral Coast. The erosion spots correspond to the red lines in Fig. 4.25, from west to east.... 94

Figure 4. 28: Maximum distance of seaward movement (m) at each progradation spot along the Coral Coast. The progradation spots correspond to the green and blue lines in Fig. 4.25, from west to east. ................................................................... 95

Figure 4. 29: Average rate of progradation at each prograding spot along the Coral Coast. The prograding spots correspond to the green and blue lines in Fig. 4.25, from west to east. ................................................................................................ 95

Figure 4. 30: Map illustrating 13 erosion hotspots identified from the comparison of historical aerial photographs (1967) and IKONOS satellite images (2002) along the Coral Coast. .................................................................................................. 97

Figure 4. 31: The area eroded at each of the 13 spots identified as erosion hotspots (Fig. 4.17) over a 35 year period, from 1967 to 2002. Each area reading has an error margin of ± 6m2 (Section 3.3.4, Chapter 3). .............................................. 98

Figure 4. 32: Average rate of erosion at each of the 13 spots identified as erosion hotspots (Fig. 4.17) over a 35 year period, from 1967 to 2002. Each rate of erosion reading has an error margin of ± 6m2 (Section 3.3.4, Chapter 3). ......... 98

Figure 4. 33: Map illustrating 21 prograding spots identified from the comparison of historical aerial photographs (1967) and IKONOS satellite images (2002) along the Coral Coast. ................................................................................................ 100

Figure 4. 34: The area prograded at each of the 21 spots identified as prograding spots (Fig. 4.20) over a 35 year period, from 1967 to 2002. Each area reading has an error margin of ± 6m2(Section 3.3.4, Chapter 3)................................... 101

Figure 4. 35: Average rate of progradation at each of the 21 spots identified as prograding spots (Fig. 4.20) over a 35 year period, from 1967 to 2002. Each rate of progradation reading has an error margin of ± 6m2(Section 3.3.4, Chapter 3)........................................................................................................................... 101

Figure 5. 1: An illustration of the level of erosion (in m2) along the coastlines of the Coral Coast with and without reef barriers; the level of erosion is related to the presence and absence of shoreline armor in each case. .................................... 107

Figure 5. 2: Headland bay beaches in dynamic and static equilibrium. Source: Hsu, 2005. ................................................................................................................. 112

Page 13: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

x�

LIST OF TABLES �

Table 2. 1: List of currents generated in various ways, and some currents of multiple origins. Source: Bird, 2008. ................................................................................ 19

Table 2 2: The Budget of Littoral Sediments............................................................. 20 Table 2 3: Indications of coastal and/or beach erosion. ............................................. 24 Table 2. 4: The causes of coastal and/or beach erosion. ............................................ 25 Table 2. 5: A list of cyclones affecting Fiji Islands between the 1969/70 to 2007/08

seasons. Source: Fiji Meteorological Services, 2008. ........................................ 37 �

Table 3. 1:Details of available source data. ............................................................... 48 Table 3. 2: A comparison of the multiple and the two ground control point methods.

............................................................................................................................ 60 �

Table 5. 1: Division of erosion hotspots into high, moderate and low level clusters. The numbers in brackets correspond to the sites in Figure 4.17. ..................... 115

Table 5. 2: Division of prograding spots into high and moderate level clusters. The numbers in brackets correspond to the sites in Figure 4.20.............................. 116

Page 14: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

xi�

LIST OF APPENDICES �

Appendix 1. 1: Map illustrating the eroding area on the east of Yadua Village...... 142 Appendix 1. 2: Map illustrating the eroding area along the Sigatoka River spit and

the east of the Sigatoka River spit. ................................................................... 143 Appendix 1. 3: Map illustrating the eroding areas on the east of Tabakula Resort. 144 Appendix 1. 4: Map illustrating eroding area in front of Vatukarasa Village and the

east of Vatukarasa Village. ............................................................................... 145 Appendix 1. 5: Map illustrating the total area eroded in the east of Tambua Sands

Resort. ............................................................................................................... 146 Appendix 1. 6: Map illustrating the total area eroded in front of Tagaqe Village... 147 Appendix 1. 7: Map illustrating the total eroding area along Korolevu Settlement and

on the west of Warwick Resort......................................................................... 148 Appendix 1. 8: Map illustrating the total eroding area in the west of Komave Village.

.......................................................................................................................... 149 Appendix 1. 9: Map illustrating the total eroding area in the Beach House area. ... 150 �

Appendix 2. 1: Map illustrating the total prograded area in the Fijian Resort area. 152 Appendix 2. 2: Map illustrating the total prograded area along the Sigatoka River

spit..................................................................................................................... 153 Appendix 2. 3: Map illustrating the total prograded area at the Korotongo bridge,

Korotongo roundabout and in front of Outrigger Resort.................................. 154 Appendix 2. 4: Map illustrating the total area prograded in the east of Tabakula

Resort. ............................................................................................................... 155 Appendix 2. 5: Map illustrating the total prograded area in the west and at the head

of Sovi Bay. ...................................................................................................... 156 Appendix 2. 6: Map illustrating the total area prograded at the east and near the

Vatukarasa Village............................................................................................ 157 Appendix 2. 7: Map illustrating the total area prograded in the east of Tambua Sands

Resort. ............................................................................................................... 158 Appendix 2. 8: Map illustrating the total area prograded at the Hideaway Resort and

the east of Tagaqe Village. ............................................................................... 159 Appendix 2. 9: Map illustrating the total area prograded in Naviti Resort area. ..... 160 Appendix 2. 10: Map illustrating the prograding area in the Votua Village area.... 161 Appendix 2. 11: Map illustrating the total area prograded in the Korolevu Settlement

area.................................................................................................................... 162 Appendix 2. 12: Map illlustrating the total area prograded in the Komave Village

area.................................................................................................................... 163 Appendix 2. 13: Map illustrating the total area prograded in the Navola Village area.

.......................................................................................................................... 164

Page 15: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

xii�

Appendix 2. 14: Map illustrating total areas prograded in the Namatakula, Navutulevu and Naboutini Village areas. ......................................................... 165

Page 16: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

1�

CHAPTER 1 – INTRODUCTION

1.1 INTRODUCTION

Generally, it is accepted that there is geographic diversity in coastal landforms. The

reason for such diversity is the differences and combined effects of coastal processes

and antecedent geology; shoreline change and coastal configuration are the

integrative result (Galgano and Leatherman, 2005). Complex physical processes

encompassing a number of natural and human-induced factors determine the changes

in shoreline and coastal configuration. The natural factors accountable for spatial and

temporal coastline changes include sea-level rise, tidal variations in wave energy,

and the episodic influence of storms. Whereas, human influences on shaping

coastlines include building structures (for example, groynes and jetties), dredging,

damming rivers, and beach nourishment (Galgano and Leatherman, 2005).

The determination of shoreline trends is one of the fundamental objectives of coastal

geomorphology (Galango and Leatherman, 2005). Monitoring techniques for coastal

geomorphology have been divided into three classes; remote sensing methods, in situ

instrument methods and sampling methods (Morang and Gorman, 2005). Although a

comprehensive study may employ data and instrument from all three classes

(Morang and Gorman, 2005), a number of coastal states use historical shoreline

change data (remote sensing methods) to project shoreline positions for application

in land use policies, which mostly concentrate on determining building set-back lines

and insurance zones (Heinz Center, 2000).

Since development along the world’s coasts has risen dramatically over the past few

decades, the ability to forecast future coastal positions has taken on increased

importance (Crowell et al., 2005). Therefore, it is essential to have a precise

Page 17: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

2�

understanding of the shoreline change using accurate shoreline change models and

geomorphic characteristics. The shoreline has been defined as the high water line or

the wet-dry boundary of a coastal zone (Galgano and Leatherman, 2005). On the

other hand, when considering coastal erosion, other coastline reference features, such

as, erosion scarp, crest of washover terrace, or the vegetation line are more

diagnostic of long-term change than the high water line. However, using these

reference features limits the temporal span of source data, as these features cannot be

easily depicted in most of the source data (Crowell et al., 2005).

The remote sensing methods use technologies such as aerial photography, satellite

imaging systems and laser bathymetry. The images produced from remote sensing

methods use tools which remotely image the seafloor or the strata below. A depiction

of the subsurface geology, a mathematical model based on varying acoustic

impedances of air, water, sediment and rock is the outcome of using remote sensing

methods to attain data (Morang and Gorman, 2005). The limitation of this way of

data acquisition is that the interpretation of the data from the model is based on

numerous assumptions, and the real earth may be very different from what is

represented in the remotely sensed image. Taking the limitation into consideration,

this method has been proven to be an extremely powerful tool in numerous coastal

applications (Morang and Gorman, 2005).

Accurately determining the long-term behavior of shorelines based on sparse data

sets can have many difficulties. In addition, if engineering changes (seawalls and

groynes) have been made to the shorelines and/ or if the shorelines are exposed to

storm surges, the complexity of shoreline analyses increases. Furthermore, complex

episodic cycles of erosion and accretion are displayed by spits which are unrelated to

storm events (Crowell et al., 2005). Hence, in order to obtain quality results for the

rate of shoreline changes, meteorological and geomorphic factors and the role they

play in shoreline evolution need to be considered.

Page 18: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

3�

1.2 THESIS RATIONALE

The Pacific Island countries, for example, Fiji, Tonga, Western Samoa, have large

portions of their populations concentrated on narrow, low-lying areas fringing the

mountain along the coast. The economic activities of these Island countries are

concentrated on the coastal regions as their capital cities are situated on the coast.

Hence, effects of inundation and flooding would be a major problem for these

Islands (Mimura, 1999). The coastal areas of small island states are the most

vulnerable to climate change problems as these countries have limited resource bases

and are not well equipped to handle existing environmental problems (Leatherman

and Beller-Simms, 1997).

When compared with the continental coasts, the population densities along most

Pacific Island coasts are low. However, many Islanders utilize coastal resources far

more than their continental counterparts. This is characteristic of predominantly

subsistence lifestyles on most inhabited islands, and the comparatively rich bounty of

near shore areas, particularly reef and mangrove ecosystems (Nunn, 2000). Also, in

the Pacific Island countries 90% of the population live along the coast.

Over the past several decades, the South Pacific Island countries have experienced an

increased rate of shoreline retreat (Mimura and Nunn, 1997). For Fiji Islands, coastal

erosion was not a prominent problem until 40 years ago (Mimura, 1999; Mimura and

Nunn, 1997). According to Mimura (1999), human activities are considerably

responsible for beach erosion in the South Pacific region. Mangroves have been

cleared off in many places in the past to be used as fuel wood and land reclamation.

The intensive use of beach sand as construction material and for decoration of tombs

as a social tradition has resulted in depletion of many beaches. On atolls, the main

sources of sand are the biological activities of the coral reefs; hence, the supply of

sand is very much limited. Recent retreat of shorelines, therefore, can be partly

attributed to such human pressure (Mimura, 1999).

Page 19: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

4�

This research is based in the Coral Coast area, in Fiji Islands (Fig. 1.1).The Coral

Coast, is located in the south-west of Viti Levu, the largest island in the Fiji

archipelago (with an area of 10,388km2) (Nunn, 1998). The coastal population in the

Coral Coast has intensified over the past few years due to increasing tourism

development and population growth. This has resulted in conflicts for coastal

managers in dealing with beach erosion. The shoreline changes of an area can be

detected by the analyses of historical aerial photographs and satellite images with

respect to coastline retreat and advancement (Crowell, et al., 2005; Morang and

Gorman, 2005). This data, together with a study of the geomorphology and climate

of an area can help to assess chronic and acute erosion. There have been numerous

studies carried out in the Coral Coast area; researches on reef health and ecology,

socio economic surveys, oceanography, geology, water quality (Aalbersberg and

Mosley, 2003; Aalbersberg and Thaman, 2003; Lomax, 2004; Tokalauvere, 2007),

and shoreline change studies (Pitman et al., 2000; Tawake, 2007). Shoreline change

issues have also be researched as student projects. However, most of these studies

were limited to selected areas. This study, on the other hand, aims at examining

coastline changes by means of historical aerial photographs and satellite images for a

continuous stretch of coastline along the Coral Coast.

Being in the windward side of the Island, the southern coast of Viti Levu experiences

the effects of the strong southeast trade winds (Mataki et al., 2006). The Coral Coast

area is fringed by a narrow fringing reef flat which is interrupted by numerous reef

passages. The following predictions have been made with respect to these factors.

i) Since breaks in the reef systems can bring in strong ocean currents and

intensive waves in times of storms and cyclones in lagoons (Wolanski and

Pickard, 1983), it is predicted that overall the Coral Coast coastal zone would

be influenced by erosion processes.

ii) Reef flats which are dissected by channels would have prominent erosion

spots opposite the channel entrance.

Page 20: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

5�

1.3 THESIS OBJECTIVES

This research examines temporal coastline changes along the Coral Coast (Fig. 1.1).

The goal of the study was to develop a technique to determine the range of coastline

change by comparison of historical aerial photographs and satellite images in the

Coral Coast area, and to determine the dominant coastal process at work in the Coral

Coast area.

The principal objectives of this study were to:

i) Identify and classify the Coral Coast coastline under the following categories:

(1) erosion hotspots (coastal erosion has threatened shoreline development

and infrastructure), (2) erosion watch spots (coastal environments will soon

be threatened if shoreline erosion trends continue), (3) resilient shorelines (no

coastal retreat or advancement observed in the time frame of the image

overlays) and (4) prograding shorelines (shoreline is advancing sea-ward).

ii) Further identify and classify the prograding coastlines after field

investigations as (a) natural progradation (coastlines advancing seaward

through sediment accretion) and (b) artificial progradation (coastlines

advancing seaward through engineered structures such as a sea wall).

iii) Quantify the range of coastline change due to erosion, (areas identified and

classified as erosion hotspots) and progradation.

iv) Observe the general coastal geomorphology along the Coral Coast.

1.4 STUDY AREA

The study area is located on the southern coast of Viti Levu, the largest island in Fiji

(Fig. 1.1). The climate in Viti Levu is more predictable than most of the other Pacific

Islands (such as Samoa, Solomon Islands and Vanuatu) due to its location within the

trade wind belt for most of the year (Nunn, 1998). Viti Levu’s location in the trade

Page 21: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

6�

wind belt sets up the dominant southeast trade winds in the Coral Coast area. The

Coral Coast area is fringed by a narrow band of fringing reef system which is

interrupted by numerous reef passages (Fig. 1.2). The primary sources of sediments

in the area are from the reef system (oceanic sediments) and the river systems

(terrestrial sediments).

A number of villages and tourist resorts are situated along the coastal zone of the

Coral Coast, which would be affected by the coastline retreat induced by short- and

long-term coastal events.

Figure 1. 1: Map of study area. Source: Media Centre, 2008, the University of the South Pacific.

Study�Area�

Page 22: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

7�

Figure 1. 2: Fringing reef systems associated with the study area along the Coral Coast. Source: Google Earth, 2006.

1.5 THESIS FRAMEWORK

This chapter gave an introduction to the thesis; outlining the goals and objectives of

the thesis and the rationale behind it. Chapter 2 discusses and reviews the literature

associated with the study topic. Chapter 3 delineates the methodological approach

and techniques used to manipulate historical aerial photographs and satellite images

to examine the coastline changes along the Coral Coast area. Chapter 4 presents the

results obtained from the desktop analyses of historical aerial photographs and

satellite images and the results obtained from the ground truthing exercises. Chapter

5 reviews and discusses the findings of Chapter 4 and finally draws conclusions from

the findings. The following flow diagram indicates the flow of chapters in this thesis

(Fig. 1.3).

Study Area

WideFringingReefs

NarrowFringingReefs

Page 23: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

8�

Figure 1. 3: Thesis framework.Figure

Chapter 1

Introduction

Chapter 2

Literature Review

Chapter 3

Methodology

Chapter 4

Results

Chapter 5

Discussion & Conclusion

Page 24: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

9�

CHAPTER 2 – COASTLINE CHANGE PROCESSES IN THE

PACIFIC ISLANDS

2.1 INTRODUCTION

Sea-level rise has been identified to be the most dominant long-term cause of

coastline changes worldwide, while severe storms has been known to cause most

rapid short-term coastline changes (Dean, 2005). In the duration of severe storms

beaches may retreat on the order of 50 m in several hours. “The global rate of sea-

level rise is approximately 12 cm per century” (Dean, 2005). There is concern that

global climate warming may increase this rate substantially in future through melting

of ice and thermal expansion (Dean, 2005). According to studies concerning past

driving forces, the present sea-level trends and possible future variability, indicates a

moderate sea-level rise of 10cm (± 10 cm) per century (Mörner, 2005).

2.2 SHORELINE CHANGES USING THE REMOTE SENSING METHOD

Large amounts of shoreline change data are required for coastal engineering and

research, management of natural resources, beach and wetland restoration and

navigation improvement purposes (Morang and Gorman, 2005). To obtain and

analyze data for these purposes three main techniques are applied. These include

remote sensing techniques, in situ instruments and sampling methods. This section

focuses on shoreline change data analyses using the remote sensing method. The

remote sensing method involves acquiring information about the land and sea from a

distance, without physical contact, such as aerial photographs and satellite images

(Morang and Gorman, 2005).

Page 25: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

10�

2.2.1 Remote Sensing Methods and Shoreline Change �

Remote sensing techniques to map coastal geomorphology, analyze shoreline

changes and coastal process interpretation require the use of both historical and

recent air photographs and/or satellite images (Gillie, 1992). This technique offers

broad area coverage, covers a large area in a short time and is suitable for analysis of

hostile environments. However, the interpretation acquired from this technique is a

model and must be verified with field data or a priori knowledge, often the

resolution is too coarse for shoreline mapping or morphology studies and

occasionally it produces challenging or conflicting interpretations; results produced

are a representation over time and need to be extrapolated to determine spatial

changes (Morang and Gorman, 2005).

It is essential to use a proper statistical approach in order to determine shoreline

changes or to do shoreline position forecasting using the remote sensing method. An

appropriate forecast model would be one which would be in reasonable agreement

with the actual physical situation. The most common method used to calculate long-

term coastline changes is the end-point-rate method (Crowell et al., 2005). This

method uses two representative shorelines (usually, the earliest and the most recent)

to calculate the amount of shoreline change. The distance of shoreline change is then

divided by the time elapsed between successive shoreline positions (Crowell et al.,

2005). This technique is simple to apply and it only requires two shorelines to obtain

a rate of change. However, this method can be misleading for determining future

shoreline positions, since one or both of the end point shorelines may be aberrant due

to acute events such as storms (Crowell et al., 2005). In addition, potentially useful

information on determining the rate of change associated with the data between the

end points is ignored.

Another technique to determine the rate of shoreline change is the linear regression

technique (Crowell and Leatherman, 1999; Fletcher et al., 2003). This method

determines a best fitting line that minimizes the sum of the squares of the lengths of

Page 26: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

11�

vertical line segments drawn from the individual data points to the fitted line

(Crowell et al., 2005). Three advantages of using this method are: (1) except for

post-storm data points, all other data points are used in the rate calculation, thus

reducing the influence of spurious data points; (2) linear regression can be performed

by with most spreadsheet programs and scientific pocket calculators and is easily

understood and (3) the quality of the straight-line fit can be tested and measured

against a summary and related statistical techniques to estimate the variance of the

data (Crowell et al., 2005; Kleinbuam and Kupper, 1978).

2.2.2 Role of GIS in Coastline Change Studies

Numerous natural resource applications have used GIS and Remote Sensing

techniques to analyze and interpret data. GIS and Remote Sensing play an important

role in coastline change studies. Features such as vegetation line, sandy coasts,

shallow sea, medium sea and deep sea can be classified by image classification

performed on satellite imageries. The different forms of classifications that can be

applied in a shoreline change study include pattern recognition, spectral

classification, textural analysis and change detection. The changes in coastal

geomorphology can clearly be brought out with the aid of GIS and Remote Sensing

techniques (Sundaravadivelu, 2005).

Using overlay analysis techniques of GIS applications a quantitative as well as

qualitative analysis with respect to the coastal geomorphology (mostly two

dimensional) can be accomplished. For instance, using historical and recent aerial

photographs and/or satellite imageries by the means of the overlay analysis

techniques of GIS applications, both long- and short-term coastline change rate can

be estimated (Koukoulas et al., 2006; Sundaravadivelu, 2005; Fletcher et al., 2003;

Pitman et al., 2000 and Gillie, 1992; 1993a). These coastline data can then be

complemented with other temporal and spatial datasets to interpret the causes and

Page 27: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

12�

implications of a particular coastal issue; for example the cause of a high erosion rate

and its implications to infrastructure development (Fletcher et al., 2003).

The Geographical Information Systems (GIS) can be used to visualize erosion

predictions and analyze the implications, including possible responses, by integrating

with other spatial datasets for impact estimation and decision support (Koukoulas et

al., 2006). When visualizing coastline predictions, the use of GIS technology

provides a powerful means to understand coastal changes and their impact in local

and regional scales (Brown et al., 2004).

2.2.3 Mapping Shoreline Changes

Understanding the relative importance of the different contributing factors, both

natural and anthropogenic, is essential for management and preservation of beaches

and coastal development. Geographical Information Systems (GIS) can be used as a

tool to effectively manage development in the coastal zone. There have not been

many studies concentrated on shoreline changes using the remote sensing method in

the Pacific Islands; however, numerous studies on coastline changes have been

carried out across the globe. Following are brief descriptions of some studies around

the globe related to evaluating modifications in coastal zones by mapping shoreline

changes using GIS.

Maui Island, Hawaii shoreline changes (Fletcher et al., 2003) – Past shoreline

positions on Maui Island, Hawaii have been documented by the means of digital,

aerial orthophotomosaics with 0.5-3.0 m horizontal accuracy, used with NOAA

topographic maps. The research focused on determining the annual erosion hazard

rate to be used by shoreline managers. Three regions of Maui Island were examined;

Kihei, West Maui and North Shore coasts. The annual erosion hazard rates, an

average end point rate, amount of beach loss and the percentage of beach narrowing

for each of these regions were calculated using a least median of squares regression.

This research indicated that overall, the mean island-wide end point rate of eroding

Page 28: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

13�

shorelines was 0.24m/yr, the average erosion hazard rate of eroding shorelines was

0.3m/yr, shoreline change rate was 0.21m/yr and beach width showed a 19 percent

decrease over the period 1949/1950 – 1997/2002.

GIS Modelling of sea-level rise (Hennecke, 2004) – A GIS-based coastal-behavior

model has been developed to formulate simple algorithms for simulating the

potential physical impacts of rising sea level on the coastal environment, focusing on

coastal re-entrants. This model has been designed based on work undertaken for the

Dutch Wadden Sea. The first estimates of potential shoreline change based on readily

available information, can be provided by this GIS model. The GIS model gives

further enhanced outputs; that is, the rate of shoreline change analyzed in greater

detail using a spreadsheet-based hazard probability model. The combination of both

the GIS model and the hazard probability model provides a rapid assessment of the

probability of shoreline changes instead of a single impact zone, as would be

provided by the GIS model alone. The spreadsheet-model returns the hazard

probability rates to the GIS to be displayed as a grading of risk instead of a single

impact zone. This model has been used to test the shoreline changes at two sites in

southeastern Australia.

GIS-based vulnerability assessment (Szlafsztein and Sterr, 2007) – In the last 25

years, there have been numerous evidences of natural impacts of flood and erosion

processes in the northeast coastal zone of the State of Para (Brazil). A GIS-based

composite coastal vulnerability index (CVI) has been used to identify, assess and

classify natural and socio-economic vulnerabilities of this coastal zone. The CVI

score used to classify, weigh and combine 16 separate natural and socio-economic

variables to create a single indicator provides a reliable measure of differences

among the regions and communities, despite the problems and shortcomings of

ESRI’s Arcview 3.2 program. The results have been portrayed in the form of maps

referred to as Natural, Socioeconomic and Total Vulnerability. Finally, there is

analyses and discussion on the confidence associated with the results, the need to

utilize another variable and to frequently update the ones used already.

Page 29: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

14�

Beach erosion along Tottori Coast – Yasumoto et al., (2007) used aerial photographs

and bathymetric survey data were used to investigate the beach erosion of the Tottori

coast, Japan, based on long-term shoreline changes. There is an indication of excess

accretion and severe erosion occurring simultaneously in the waver-shelter zone over

the years 1947 and 2003. Considering grain size changes, a predictive model for

shoreline changes was applied to the coast. The main factors which triggered beach

erosion were by construction of wave-sheltering structures and by dredging of

navigation channels and offshore disposal/land reclamation using dredged sand.

Hence, in order to reduce/control Tottori coastal erosion three policies have been

developed: 1. “No more offshore sand dumping”, 2. “No more offshore sand

dredging for land reclamation”, and 3. “Sand dredged from accretion zones must be

dumped near-shore where depth is smaller than the depth of closure”. It was also

found that local measures taken to reduce/control sand loss are not effective.

Environmental changes in Mediterranean coastal landscape – Alphan and Yilmaz,

(2005) focused on change detection analyses in Cukurova, an extensive coastal plain

in the southeast of Mediterranean coast of Turkey; a remote sensing approach has

been used to monitor temporal land use/cover changes in the area. Using digital

interpretation of remotely sensed satellite data, temporal changes in the coastal

landscape between 1984 and 2000 were evaluated. Multi-temporal Landsat TM and

ETM+ images were used to do a pair-wise comparison of methods used to quantify

changes from 1984 to 1993 and 1993 to 2000. From 1984 to 1993 the total change in

area was 2448 ha and there was an increase by two folds to 6072 ha from 1993 to

2000. Information obtained from individual change detection outputs of different

periods were used to determine the change trends. Agriculture, urban, and natural

vegetation cover were estimated to be the most prominent changes that have

occurred in the area.

Shoreline change analysis and its application to prediction – Maiti and

Bhattacharya, (2008) carried out shoreline change analysis and prediction by the

means of satellite remote sensing images and statistics. Shoreline positions have been

demarcated using multi-date satellite images from which shoreline change rates have

Page 30: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

15�

been estimated using linear regression. Based on a 113.5 km coastal stretch in the

Bay of Bengal in eastern India, this study was performed over the time interval 1973

and 2003. Two time periods of short and long terms in three modes, transect-wise,

littoral cell and regional were used to estimate the past and future shoreline positions.

Overall, the results indicate that 39% of transects have uncertainties in shoreline

change rate estimations near cell boundaries and 69% of transects lie between

estimated and satellite based shoreline positions. The cells dominated by natural

processes have lower root mean square errors (RMSE) when considered for long

term period, whereas, cells affected by anthropogenic interventions show better

agreement for short term period. There is no significant difference in RMSE values

on regional considerations. The results are corroborated by geomorphologic

evidence. This study confirms the combined use of satellite imagery and statistical

methods to be reliable when doing shoreline related studies.

Coastal processes mold and shape the coasts following certain basic natural laws.

These processes occur at a variety of time and space scales. Therefore, shoreline

changes are extremely variable from location to location and cannot be generally

predicted from single-site studies. The above cases amplify the significance of

Geographical Information Systems (GIS) tools in temporal and spatial coastal

researches. Some benefits of using GIS and remote sensing in the monitoring and

protection of coastal zones include information accessibility and dissemination,

efficient and accurate map storage and updating, monitoring terrain surface and

coastline changes, extraction of sediment movement and shift of coastlines,

computation of sediment volume change and presentation of outputs. Hence, GIS

plays a significant role in the analysis and study of coastline changes researches.

2.3 COASTAL PROCESSES

Carter (1988) describes the coastal zone as a broad transitional area in which

terrestrial environments influence marine environments and in which marine

Page 31: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

16�

environments influence terrestrial environments. The coast comprises the interface

between the land and the sea, including areas below and above the water line, such as

shoals, dunes and cliffs. The actual margin of the land and the sea is termed

‘shoreline’ (Woodroffe, 2002).

Figure 2. 1: A schematic coastal embayment in (a) plan form and (b) profile. Some of the key definitions based on proximity to the shore, wave characteristics, and substrate are shown. (Source: Woodroffe, 2002) �

Page 32: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

17�

Explaining landforms in the coastal zone by examining the form, sediments and

depositional history of a modern shoreline is known as coastal geomorphology

(Woodroffe, 2002). According to Woodroffe (2002) the geomorphology of the coast

can be examined in plan form (also called shore-parallel, or long-shore) or profile

(also called cross-section, cross-shore, shore normal or orthogonal) (Fig. 2). The

shape of coastal landforms is dependent on the materials available at the coast and

the processes acting on these materials.

Each of the numerous controlling factors that shape a particular stretch of coastline

need to be determined in order to understand its coastal processes. Winds, waves,

tides and currents are the major processes at work in coastal waters. The

combinations of all these processes provide the energy that shapes and modifies a

coastline by eroding, transporting and depositing sediments (Bird, 2008).

2.3.1 Waves, Tides and Currents

Waves are the principal source of energy in the coastal zone for erosion and

deposition (Woodroffe, 2002). In theory, provided the land area remains tectonically

stable, erosion by waves can ultimately reduce the world’s land areas to a planed-off

surface (Bird, 2008). Waves are formed as the result of the pressure contrast between

their driven (upwind) and advancing (downwind) slopes; initiated by the stress and

pressure variations on the water surface from the turbulent flow of the wind blowing

over the water (Bird, 2008). Hence, the formation of waves is due to the transfer of

wind energy to water particles; resulting in undulations on a water surface (Segar,

1998).

Tide is a giant wave which influences coastal processes worldwide. Tides can be

defined as the cyclic rising and falling of the ocean’s surface due to the gravitational

forces exerted by the sun and the moon on the ocean. The variations in water level

produced by the varying tides are important to processes acting on the beach. The

Page 33: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

18�

waves move sediments landward. As the tide comes in, the sea level rises, potentially

leading to recession of the beach profile and withdrawal of sediment seaward.

However, the effect of tidal currents may not be prominent on most coastal areas due

to other controlling factors such as effects of longshore drift, variability of wave

action and rates of sediment input and output (Bird, 2008). Tides can produce strong

currents which prevent the building up of sediments across bay and lagoon entrances.

Furthermore, tides aid in the daily flushing of coastlines, estuaries, and harbors

which aid in the purging of pollutants. In certain parts of the world, exceptional tidal

currents are capable of significant coastal erosion; for example tidal currents off the

citadel of Mont-Saint-Michel, Normandy, France and in the Bay of Fundy, Canada

(Komar, 1976).

Currents are generated in various ways and from multiple origins (Table 1). The

various types of currents relating to the coastal zone are responsible for the

deposition or erosion of sediments in the coastal zone.

Page 34: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

19�

Table 2. 1: List of currents generated in various ways, and some currents of multiple origins. Source: Bird, 2008.

Rip currents flows back into the sea through breaking waves at intervals along the shore

Wave-generatedcurrents

flow alongshore when waves arrive at an angle to the shoreline

Tidal currents are ebb and flow (flood) currents generated by falling and rising tides

Ocean currents are slow mass movements of water in response to variations in water temperature salinity, atmospheric pressure and wind stress

Wind-generated currents

flow in the direction of the wind

Fluvial currents are the discharge where a river flows into the sea

Density currents occur where water of higher specific gravity (colder or more saline) moves to displace water of lower specific gravity, but these have no direct effect on the coasts

2.3.2 Sediment Budget and Longshore Drifting

Komar (1976) explains the budget of sediments to be an application of the principle

of continuity of conservation of mass to the littoral sediments. According to Bird

(2008) coastal sediment budgets deal with the volumes of sediment supplied to a

particular sector by onshore and longshore drifting and yields from the hinterland

and the volumes of sediment lost offshore, alongshore or landward over a specific

period. Beaches which have a balanced budget, where the net influx of sediment

equals the net loss of sediment are classed as healthy beaches. The net gain or net

loss of sediments from a coast can be determined by making repeated surveys along

and across a beach, using conventional methods to measure variations in the plan and

profile of the beach. Beach profiles together with information from series of dated air

Page 35: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

20�

photographs can be used to monitor the advance or retreat of the coastline (Bird,

2008).

A coastline has various sediment sources and sinks. The table below shows some

sediment sources and sinks prominent at a coastline.

Table 2 2: The Budget of Littoral Sediments.

CREDIT DEBIT BALANCE Longshore transport into area

Longshore transport out of area

Beach deposition or erosion

River transport Wind transport out Sea cliff erosion Offshore transport Onshore transport Deposition in submarine

canyonsBiogenous deposition Solution and abrasion Hydrogenous deposition Mining Wind transport onto beach Beach nourishment �

(Source: Komar, 1976)

In the nearshore zone, there are two wave-induced current systems which dominate

the water movements in addition to the to-and-fro motions produced by the waves

directly. These include a cell circulation system of rip currents and associated

longshore currents produced by an oblique wave approach to the shoreline. The main

cause of sediment movement along the shore is the wave-induced longshore currents;

the other currents are effective only under exceptional circumstances. For instance,

the tidal currents near a river mouth of a bay could be strong enough to cause

significant sediment transport on a beach (Komar, 1976).

Page 36: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

21�

Longshore currents are accompanied by waves that arrive at an angle to the coastline

producing a transverse swash, running diagonally up the beach, followed by a

backwash that retreats directly down into the sea. The currents induced by obliquely

arriving waves result in the zigzag movement of beach material alongshore, that is

accompanied by sediment flow along the nearshore zone. The combined effect of

these processes is known as longshore drifting of sediment to beaches and spits

downdrift. There is rapid longshore drifting when wave crests approach the shore at

an angle of between 40o and 50o, where the coastline is straight or gently curved and

unbroken by headlands, inlets or estuaries, and where the nearshore sea floor profile

is smooth. Longshore drifting increases with wave energy and is aided by a small

tide range, as this gives rise to a more continuous and concentrated wave action than

where the zone of breaking waves rises and falls over a substantial tide zone (Bird,

2008).

Accretion alongside headlands, groynes, breakwaters or landslides, migration of

beach lobes, deflection of river mouths and lagoon outlets or growth spits could be

indicators of longshore drifting. However, these features could also result from other

coastal processes. For instance, patterns of beach accretion may result partly from

sediment movement in from the sea floor, rather than alongshore (Bird, 2008).

Hence, accretion at the above mentioned places is due to the combined effect of

longshore drifting and shoreward drifting of sand and gravel by waves arriving

parallel to the coastline. According to Bird (2008) natural tracers in beach sediments

can be used to determine longshore drift patterns. For example pebbles of an unusual

rock type or specific mineral sands, may act as mineral tracers indicating longshore

drifting from a source area such as cliff outcrop or river mouth.

In order to determine the net longshore movement of sediment along a beach, the

sum of the transport under all individual wave trains arriving at the shore from

various wave-generating areas needs to be taken into account. The accumulation of

sediments at jetties and breakwaters reflect the long-term net sediment transport

along a beach (Komar, 1976). Studies by Johnson (1956, 1957) indicate that the

littoral drift can produce a movement of up to nearly a million cubic meters of sand

Page 37: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

22�

along the beach in a single year. According to Komar (1976) the application of the

budget of littoral sediments has proved to be an extremely useful approach in

evaluating the relative importance of the various sediment sources and losses to the

nearshore zone and in accounting for regions of beach erosion or deposition.

2.3.3 Coastal Accretion Processes

Coastal accretion is the advancement of the coastline where the deposition of

sediment exceeds the rate of erosion, or where there is emergence due to uplift of

land or a fall of the sea-level (Bird, 2008). There are various natural sources of

sediment supplements to the coastline. These include sediment supplements from

rivers, materials derived from erosion, the seafloor, by winds blowing from the

hinterland and by longshore drifting processes (Section 2.3.2; Bird, 2008). Sand and

gravel are washed down to the coastline by rivers. The weathered sandstones and

conglomerates eroded from nearby cliff and foreshore outcrops are brought to the

coastline by wave action. Sand and gravel are washed from the seafloor by waves

and currents. For oceanic coasts, many of the coastline sediments are calcareous

derived from marine organisms (Bird, 2008; Komar, 1998).

The introduction of structures such as groynes and breakwaters intended to stabilize

features that were changing in unacceptable ways, particularly where erosion

threatened seaside towns, ports, or other coastal development have modified the

coastline (Bird 2008). Coastlines associated with land reclamation activities have

been advanced seaward by several kilometers (French 1997, cited in Bird 2008).

Seaward advancement of the coastlines have been induced in a number of places

around the world including the Netherlands, southeast Asia – Tokyo Bay, Hong

Kong and Singapore (Bird, 2008). The Southeast Asia countries have increased their

land area by 10% in the recent decade to accommodate their densely populated

coasts (Bird, 2008). Artificial progradation can also result from groyne construction.

For instance, construction of causeways between an island and mainland would

Page 38: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

23�

induce progradation in the wind ward side of the causeway due to reduced wave

energy (Goodman et al., 2008). Finally, seaward advancement of the coastline can

also be induced by artificial beach nourishment and/or replenishment by seaside

resorts (Bird, 2008; Komar, 1998).

2.3.4 Coastal and Beach Erosion Processes

Coastal erosion is prominent in areas which loose more sediment alongshore,

offshore or to the hinterland, than they receive from the various sources (Bird, 2008).

Destructive wave action in stormy periods and the depletion of beach sediments by

weathering and winnowing, as well as a reduction in inputs by rivers, cliff and shore

erosion, spilling dunes and drifting from the sea floor are some of the processes that

lead to coastal erosion (Bird, 2008; Komar, 1998).

Table 2.3 shows characteristic features of eroding coasts and beaches.

Page 39: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

24�

Table 2 3: Indications of coastal and/or beach erosion.

Characteristic features of coasts and /or beaches under the influence of erosion 1. A concave beach profile, especially with a micro cliff. 2. Cliffed backshore dunes (whereas prograding beaches are backed by beach

ridges and incipient fore dunes). 3. Truncated vegetation zones (whereas prograding beaches are backed by tree

canopies descending to beach level, or by shrub and grass zones on recently formed sandy terrain).

4. Patches of sand adhering to rock outcrops indicating the previous higher level of the beach.

5. Exposures of beach rock that formed within the former beach. 6. Exposure of rocky or muddy substrate.

(Source: Bird, 2008)

Upon assembling evidence of coastline changes around the world between 1976 and

1984 for the preceding century, the Commission on the Coastal Environment

(International Geographical Union) found that beach erosion had become

widespread. Over this period more than 70 per cent by length of beach-fringed

coastlines had retreated, less than 10 per cent having advanced (prograded), the

balance having either remained stable or shown alternations with no net gain or loss

(Bird, 1985).

Table 2.4 indicates the causes of coastal and/or beach erosion compiled by the

Commission on the Coastal Environment. The listed factors have been identified as

having initiated or accelerated beach erosion, their relative importance varying from

one coast to another. Intensification of erosion on a particular coast is usually the

result of more than one of these factors. When attempting to explain coastal and/or

beach erosion, each of the possible factors should be considered and ranked in

importance in relation to the rate of erosion.

Page 40: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

25�

Table 2. 4: The causes of coastal and/or beach erosion.

The Causes of Coastal and/or Beach Erosion As Proposed by the Commission on the Coastal Environment

1. Submergence and increased wave attack 2. Reduction of fluvial sediment supply 3. Reduction in sediment supply from cliffs 4. Reduction of sand supply from inland dunes 5. Reduction of sediment supply from the sea floor 6. Extraction of sand and shingle from the beach 7. Increased wave energy 8. Interception of sediment supply by longshore drifting 9. A change in the angle of incidence of waves 10. Intensification of obliquely incident wave attack 11. Increased losses of beach sediment to the backshore 12. Increases storminess 13. Attrition of beach material 14. Beach weathering 15. Increased scour by wave reflection from a sea wall 16. Migration of beach lobes 17. A rise in the beach water table 18. Removal of beach material by runoff 19. Diminished tide range 20. Abrasion by driftwood 21. Removal of mangroves and other coastal vegetation

(Source: Bird, 2008)

By comparing dated sequences of maps and charts, or air and ground photographs,

the rate of retreat of high tide shoreline, which is often also the seaward boundary of

terrestrial vegetation communities, can be measured (Bird, 2008).

Page 41: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

26�

2.4 CHARATERISTIC COASTAL ZONES OF THE PACIFIC ISLANDS

The combined effect of a number of variables determines the characteristics of a

coastal zone; intensity of upwash and backwash, wave steepness, sediment

characteristics and underlying substrate type (Komar, 1976).

2.4.1 Coastal Geography of Pacific Islands

Shorelines in the southwest Pacific during the Last Interglacial, which peaked about

125,000 years ago, were mostly within a few meters of the modern shorelines (Nunn,

2002). The southwest Pacific sea-level at the height of the Last Glacial was about

130 meters below its present level. Ice melt since the Last Glacial maximum, which

occupied most of the first half of the Holocene, was the principal cause of sea-level

rise in this period (Fig. 2.2). Due to the Earth’s rheological response to the melting of

the last continental ice sheets and subsequent redistribution of melt-water, a +1 to +3

meter(s) relative sea-level highstand on oceanic islands has been predicted by

Grossman, et al. (1998). The rising sea level had profound effect on the climate and

vegetation along island coastlines (Nunn, 2002). Prior to 5,000 to 7,000 years ago,

most coastlines in the Pacific compromised sheer cliffs, composed of Pleistocene

coral reef, with steeply dipping offshore and little erosional shoreline development

(Gibbons, 1984; Nunn, 2002). The sea-level in most of the Pacific region rose above

its present level and stabilized for the first time in about 12,000 to 13,000 years

during the Holocene Climate Optimum, allowing lateral erosion to commence in

earnest (Nunn, 1991, 1994, 2002; Pirazzoli, 1978). Lateral erosion lead to the

production of shore platforms at low-tide levels which became exposed subsequently

when sea-level fell in the late Holocene. Coastal plains and flats that most islands

occupy today are formed from the accumulation of alluvium, colluviums, and

marine-derived material on emerged shore platforms (Nunn, 2002).

Page 42: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

27�

Figure 2.2: Holocene sea-level changes in the Pacific. A. Sea-level changes during the Holocene in Fiji; B. Late Holocene sea-level changes in the Tuamotu Islands, French Polynesia. Source: Nunn, 2002.

The processes responsible for island formation dominate the southwest quadrant of

the Pacific Ocean and this is where most of the Pacific Islands are distributed (Nunn,

2005). Another prominent feature of most of the Pacific Islands is the occurrence of

coral reefs (Nunn, 2005). Corals and associated reef organisms of many nearshore

and shallow areas are a result of recolonization during the postglacial warming of the

ocean surface waters (Nunn, 2005). The coral reefs managed to “keep-up” with the

rising sea level, so that the reef surface remained within the photic zone (Nunn 1994;

Woodroffe 2002). This is evident in Tarawa, Kiribati and in parts of French

Polynesia (Nunn, 1994). In most parts of the tropical southwest Pacific the coral

Page 43: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

28�

grew at a slower rate and only managed to “catch-up” with the sea-level when its

postglacial rise slowed around 6,000 – 5,000 years ago (Nunn 2005; Woodroffe

2002). Some coral reefs are believed to have been established at the sea level during

the early postglacial. These were unable to grow upwards fast enough and are not

visible at the surface today, for example coral reefs to the west of the islands of

Samoa (Nunn, 2005). In nomenclature of Neumann and McIntyre (1985) these reefs

are classified as “give-up” reefs.

Coral reefs are significant in the dynamics of modern coastlines of the tropical

Pacific Islands. The beaches in the Pacific Islands are fossil beaches. The sediments

created from coral reefs form a major or the main component of many beaches and

sand islands. Beaches and sand islands can become severely eroded where the

sediment production cease due to coral degradation (Nunn, 2005).

The Pacific region is comprised of islands from various origins; including islands of

continental origin (for example islands in New Caledonia and New Zealand), of

island arc origin (for example islands in the Fiji, Solomon and Vanuatu groups), and

islands that form as a product of hotspot volcanism, occurring in lines that mark the

passage of the Pacific Plate across a fixed mantle hotspot (Nunn, 2007). Many small

Pacific Island nations are atolls (for example Kiribati and Tuvalu), where the primary

sediment source is marine derived sediment. Carbonate particles are generally

coarser with high percolation rates in comparison to continental and high volcanic

islands (Nunn and Mimura, 2007).

Smaller Pacific Island coasts are either cliffed and commonly hard rock, for instance,

those found around high limestone islands such as Vava’u in Tonga and volcanic

islands like Nuku Hiva in the Marquesas (French Polynesia) or low lying and

composed of partly unconsolidated sediments, such as atoll islands in Kiribati, the

Marshall Islands, Tokelau and Tuvalu. The older, more denuded coasts of larger

island also possess soft shorelines, especially around river mouths, as in the Rewa

Page 44: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

29�

Delta of Viti Levu Island in Fiji, or where broad fringing coral reefs exist (Nunn and

Mimura, 2007).

Low-lying coasts are vulnerable to most environmental changes. In order to

comprehend the impact of varying environmental conditions on low-lying coasts it is

essential to analyze the sub-components of low-lying coasts; onshore, shoreline and

nearshore environments. Vulnerability of onshore environments of low-lying coasts

is dependent on the elevation and land use. Extensive coastal lowland may appear to

be the most vulnerable; however, under certain conditions they may offer

considerable resilience. Low-lying shorelines exposed to high wave conditions may

have swash processes having large run-up levels, which lead to the steepening of

shorelines and creation of berms through overwash processes (Hughes and Turner,

1999). Heightened vulnerability may be exhibited by narrow strips of coastal

lowland because threats such as storm surges are focused on comparatively small

areas (Nunn and Mimura, 2007).

The amplitude and frequency of wave energy conditions are highest on the shoreface

and this is where profile changes are the greatest (Cowell et al., 1999). The width of

the upper shoreface is able to adjust its profile rapidly to a range of wave energy

forces. These forces may be operating episodically, for instance storm events or on a

regular basis, such as tidal, seasonal events (Bird, 2008). With minor adjustments to

small scale geomorphological components of the system, this adjustment process

tends to restore equilibrium of the shoreline (Komar, 1976; Bird, 2008).

2.4.2 Sediment Sources of the Coastal Zones

The sediments on a beach can be classified into primary and secondary sources. In

contrast to primary sources of sediments, secondary sources of sediments have

undergone weathering and initial sorting, prior to entering the coastal environment

Page 45: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

30�

(Carter, 1988). In the case of low-lying coasts of Pacific Islands, majority of the

primary sediment is produced on the fringing and barrier reef edge and rim as

biogenic sediment (Nunn and Mimura, 2007; Woodroffe, 2002). After main

producers some of the sources of biogenic sediments may be forminifera, faeces of

invertebrates and products of bio-erosion by borers, etchers and grazers. These

organisms generate and/ or break down coarser particles of carbonate produced by

the principal reef builders (Woodroffe, 2002). The reef crest and fore-reef slope are

the most important areas where calcareous sediment is produced. Reef systems are

important sources of both lagoonal and shoreline (beach) sediments (Nunn and

Mimura, 2007).

Throughout episodic and long-term coastal events, sediment production, which is

linked to climate and reef productivity, is essential for maintaining shoreline

stability. The reef crest and reef front are zones of high calcification and sediment

production, due to abundant coral growth and this is also where high energy waves

occur (Nunn and Mimura, 2007; Woodroffe, 2002). Initially these sediments are

poorly sorted and texturally immature with the biological components in the

sediments influencing the sediment size (Woodroffe, 2002). With the aid of waves

and bioerosion these sediments are modified and transported as calcium carbonate

sediments to the shore, reef flat, lagoon and offshore. Beach rocks are formed when

sediments are cemented by microbially mediated precipitation of carbonates (Turner,

2005). It forms by rapid cementation of sandy beach sediments over several decades

and its formation is limited to the intertidal zone (Neumeier, 1999). The cement

involved in beach rock formation consists of high magnesium calcite (HMC) or

aragonite (Bricker, 1971; Neumeier, 1999). Different cements of various habitus and

mineralogy are produced by several diagenetic phases following one another.

Usually, diagenesis begins with micritic cement and is followed by prismatic cement

(Holail and Rashed, 1992; Meyers, 1987; Neumeier, 1999; Taylor and Illing, 1969).

The rate of erosion and deposition on a shoreline depends on how much sediment is

available to allow the shoreline to remain in equilibrium. Beaches in most islands

with stream and river outlets consist of both terrigenous and carbonate sediments, for

Page 46: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

31�

instance, Tuvu and Korotogo Villages along the southern coast of Viti Levu in Fiji

Islands (Kench and Cowell, 2002). If sediment supply to the coast increases from one

or both sources, shoreline progradation may occur. However, if sediment supply

decreases coastal erosion can occur.

2.5 CAUSES OF COASTAL EROSION IN THE PACIFIC ISLANDS

According to Bird (1986) and Nunn, (2000), over the past century, most tropical

Pacific Islands have experienced shoreline erosion and lateral coastline inundation.

There are multiple causes of coastal and beach erosion; no single factor (Table 2.4)

can account for the modern prevalence of erosion of the world’s coasts, or the onset

of acceleration of erosion on any particular beach (Bird, 2008). Coastal erosion is

driven by sea level rise, wave and current impacts (2.3.1) and sediment deficiencies

(2.3.3). Other causes of eroding shorelines include sudden events such as cyclones,

storm surges and tsunamis. Building of coastal engineering structures can also

modify the coastline resulting in beach erosion. This section attempts to explain the

major causes of shoreline retreat in the Pacific Island nations.

Erosion can be described as acute and chronic erosion (Anthony, 2005). Acute

erosion occurs as a consequence of a single event while chronic erosion is a

continuous phenomenon. Chronic erosion may be evident on coastal lands due to

long-term erosion under certain conditions. On the other hand, Gillie (1997)

describes coastal erosion for the purpose of coastal management by dividing it into

two main types: natural and human-induced causes. For the purpose of this study the

causes of coastal erosion in the Pacific Island nations is discussed according to the

natural and human induced types.

Page 47: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

32�

2.5.1 Natural Causes of Coastal Erosion

In the tropics, most natural beach systems are in a state of dynamic equilibrium. The

beach adjusts to a new shape in equilibrium each time a new condition is introduced

due to a change in the wave and/or current patterns and sediment transport patterns.

In the Pacific Island nations the natural causes of coastal erosion includes, changes

and/or cycles of long-term weather patterns, natural shoreline evolution or re-

alignment, sea level rise and catastrophic geohazards in the coastal zones (Gillie,

1997).

Changes and/or Cycles in Long-term Weather Patterns

The wave direction approaching a shoreline when examined over a relatively long

period (20-30 years) may fluctuate over a certain value due to annual and inter-

annual cycles; changes in seasonal wind patterns (Gillie, 1997). According to

Gourlay (1988), over longer-time scales, the average wind direction and resultant

wave directions may vary over 10 degrees from the mean long term average

direction. This variation may be due to decadal changes in cyclone frequency,

oceanographic conditions, and/or climate change. Sand spits and cays may have a

significant impact due to this change in wave direction.

Sea level changes and wind and wave patterns associated with El Niño Southern

Oscillation (ENSO) events, which range in period from a few to eight years in

duration, have a major influence on coastal processes, especially shore erosion

(Gillie, 1997). In some South Pacific countries the cycles of beach profile changes

are associated with ENSO events; for example beaches on Tarawa Atoll, Kiribati

(Harper, 1989; Howorth, 1983; 1985; Sallenger Jr. et al., 2002).

Page 48: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

33�

Sea-Level Rise

Higher sea levels could affect the coastal zone in a variety of ways, including greater

shoreline retreat, increased coastal erosion, property destruction, and salt water

intrusion into bays, rivers, and underground water sources (Primo, 1997). Currently,

retreating shorelines and increased coastal erosion are considered to be major

problems induced by the rising sea level. The Bruun rule states that if there is a rise

in sea level, the shoreline will recede not only to the position of the water level

increase but also to the position by wave action (Brooks et al., 2006). This signifies

an increase in the rate of coastal erosion with an increase in sea level. However,

studies of sequence stratigraphy suggest that the rate of sediment supply can keep

pace with the rate of relative sea-level rise (Donovan, 2005). Hence, sea-level rise is

not necessarily the cause of coastal erosion.

Over the past two centuries the Pacific sea level has been rising at 1.0-1.5mm/year

(Pirazzoli, 1986; Hannah, 1998; Wyrtki, 1990; Nunn, 1993). According to

Intergovernmental Panel for Climate Change (IPCC), (2007), the 3.1mm increase in

eustatic seal level over the years 1993 to 2003, has been faster than the sea level rise

over the years 1967 to 2003 (1.8mm). Apart from the larger millennial scale due to

global sea level rise, there can be rapid variations in sea level. Examples of these

would be occurrences as an outcome of a significant drop in atmospheric pressure

typical of intense short-term events such as storms and tropical cyclones, at internal

timescale as with ENSO (El-Niño Southern Oscillation) events (Diaz, 2005).

The sea-level throughout the Pacific is monitored by a network of 12 high resolution

SEAFRAME (Sea Level Fine Resolution Acoustic Measuring Equipment) stations.

These are located in Cook Islands, Federated States of Micronesia, Fiji, Kiribati,

Marshall Islands, Nauru, Papua New Guinea, Samoa, Solomon Islands, Tonga,

Tuvalu and Vanuatu (Gray, 2009).

Page 49: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

34�

Installed in Lautoka, Fiji in October 1992, the SEAFRAME gauge indicates the sea-

level trend to date to be +3.5 mm/year. To provide the relative net rate of sea-level

trend, effects of vertical movement of the tide gauge platform and the inverse

barometer effect from the observed rate of relative sea-level change are removed

(Pacific Country Report, 2006). Considering the precise levelling results and inverted

barometric pressure effect, the sea-level trend for Lautoka, Fiji is estimated to be

2.9mm/year (Gray, 2009). Monthly mean sea-levels variations were affected by

moderate seasonal cycles, El Niño (in the years 1997/1998) and tropical cyclones (in

the years 1993, 1997, 2003) (Fig. 2.3).

Figure 2.3: Monthly sea-level record from SEAFRAME at Lautoka, Fiji. Source: Gray, 2009.

According to Nunn (1991), there is evidence of shoreline changes over the last

century in parts of Fiji, Tonga and Western Samoa, although largely anecdotal,

which generally points to an increase in shoreline erosion and a rise of high-tide

level. Studies along the coasts of Verata and Tailevu (eastern of Viti Levu, Fiji),

indicate the landward movement of high-tide level of 130m, representing a sea-level

Page 50: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

35�

rise of 10-30cm in the last forty years (Nunn, 1987). As indicated in Fig. 2.3 (above),

the current rate of sea-level rise, after compensating for land movement and

barometric pressure effect, recorded by SEAFRAME at Lautoka, Fiji, is 2.9 mm/year

(Gray, 2009). Gray, (2009) also states that according to Figure 2.3, there has been no

change in sea-level between 2000 and halfway through 2007. The above mentioned

+3.5mm/year “long-term trend” is influenced by the El Niño period in 1998 and

1999 and should not be used to conceal the stability of the next seven and half years.

For the coasts fringed by reef systems the coral reefs can either “keep-up” with the

sea level rise in order to remain in the photic zone, or “give-up” due to events such as

thermal expansion, coral bleaching and ocean acidification and become submerged

reefs (Nunn, 2005). The removal of the protective effects of offshore reefs, due to

submergence, would allow shoreline attack by waves of much greater amplitude than

present under a given set of environmental conditions, enhancing shoreline erosion

and the rate of landward movement of high-tide level. Furthermore, over the next

century the effects of storm surges on the shorelines may possibly increase in

severity (Nunn, 1991).

Tropical Cyclones and Storm Surges

Tropical cyclones which have wind speeds greater than 61 km/hr generate extreme

elevations of the mean sea level producing storm surges. This results in erosion,

flooding and inundation of the coastal margin (Smith and Jackson, 1990). When

compared with waves generated by the trade winds, cyclonic waves are much more

dangerous as they are characterized by higher amplitudes, longer periods, and

changing directions with cyclonic movement (Durand, 1997). The inverted

barometer effect and wind set up which produce temporary elevations in sea surface

height, with wave run-up often leading to the overtopping of berms and dunes far

above the mean sea level, are the main components of a storm surge (Aung, 1998).

Since, the maximum wave value superimposed on a high storm surge can reach the

Page 51: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

36�

coastal zone without breaking, its energy is retained. Hence, a high rate of littoral

transport, beach erosion, and overwash deposition, which results in accumulation of

storm debris on the beach backshore. During trade and cyclonic periods, waves are

the main dynamic agent of sediment transport on the insular self (Durand, 1997).

Except for a relatively narrow zone (5-10 degrees) on either side of the equator, all

parts of the tropical and subtropical Pacific Island region experience the effects of

tropical cyclones occurring with a variable seasonal frequency (Gillie 1997). In the

South Pacific, the year to year variability in tropical cyclone numbers is mostly

related to non-seasonal fluctuations in the Pacific ocean-atmosphere system (Terry

2007). A major influence is exerted by El Niño-Southern Oscillation (ENSO) events.

During strong Southern Oscillations tropical cyclone activity is 28% above average

(Basher and Zheng 1995).

In the South Pacific, majority of the tropical cyclone coincides with the hot and wet

summer season, and traditionally lasts for 6 months from November to April (Terry

2007).Tropical cyclones are most likely to form at the height of the Southern

Hemisphere summer, in January and February. A small number of cyclones develop

just before and after the traditional hot season since the beginning and end of hot and

wet conditions marking the summer season are naturally variable on an inter-annual

basis (Terry 2007).

On the low-lying coastal zones of Fiji, tropical cyclones pose a serious threat;

causing infrastructure damage, loss of land, and a threat to the health and well being

of the people. Between 1964 and 2001, 50 cyclones have transversed the Fijian

waters which amounts to approximately 15 cyclones per decade (Terry, 2002). Seven

of these tropical cyclones, (including Joni, Kina, Oli, Gavin, Dani, Ami and Paula)

and numerous storms with different intensities, have hit the Fiji Islands since 1993.

Page 52: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

37�

Table 2. 5: A list of cyclones affecting Fiji Islands between the 1969/70 to 2007/08 seasons. Adapted from: Fiji Meteorological Services, 2008.

CYCLONE NAME YEAR MONTH DAY WINDS Km/hr Knots

Nora 1970 October 29 63-87 34-47 Priscilla 1970 December 17-18 63-87 34-47

Bebe 1972 October 23-26 >117 >64 Henrietta 1973 February 1-2 88-117 48-63 Juliette 1973 April 3-4 88-117 48-63 Lottie 1973 December 9-10 >117 >64 Pam 1974 February 1 63-87 34-47 Tina 1974 April 26 63-87 34-47 Val 1975 Jan-Feb 31-2 >117 >64

Betty 1975 April 5-6 88-117 48-63 Anne 1977 December 25-26 88-117 48-63 Bob 1978 January 4-5 >117 >64

Ernie 1978 February 18-19 88-117 48-63 Fay 1978 December 28-29 88-117 48-63 Meli 1979 March 26-27 >117 >64 Peni 1980 January 2-5 63-87 34-47 Tia 1980 March 23-24 88-117 48-63

Wally 1980 April 3-5 63-87 34-47 Arthur 1981 January 12-16 >117 >64 Oscar 1983 March 1-2 >117 >64 Sarah 1983 March 25-28 >117 >64 Cyril 1984 March 17-18 63-87 34-47 Eric 1985 January 14-19 >117 >64

Nigel 1985 January 16-20 >117 >64 Gavin 1985 March 5-7 63-87 34-47 Hina 1985 March 16-18 88-117 48-63 Keli 1986 February 9-10 63-87 34-47

Martin 1986 April 11-13 88-117 48-63 Raja 1987 December 26-31 >117 >64 Bola 1988 March 3-4 63-87 34-47 Eseta 1988 December 23-24 63-87 34-47

Unnamed 1989 February 11-12 63-87 34-47 Kerry 1989 Mar-Apr 30-2 63-87 34-47 Rae 1990 March 18-24 63-87 34-47 Sina 1990 November 27-29 >117 >64 Fran 1992 March 7-9 63-87 34-47 Joni 1992 December 8-12 >117 >64 Kina 1993 January 1-4 >117 >64 Mick 1993 February 7-8 63-87 34-47 Oli 1993 February 17-18 63-87 34-47

Gavin 1997 March 6-9 >117 >64 Ian 1997 March 17-19 63-87 34-47

June 1997 May 3-5 63-87 34-47 Lusi 1997 October 10-12 63-87 34-47

Susan 1998 January 7-8 63-87 34-47 Cora 1998 December 24-25 63-87 34-47

Jo 2000 January 24-26 63-87 34-47 Neil 2000 April 14-16 63-87 34-47 Paula 2001 March 1-3 63-87 34-47 Zoe 2002 December 30-31 63-87 34-47 Ami 2003 January 12-15 >117 >64 Cliff 2007 April 4-6 63-87 34-47

Daman 2007 December 5-9 >117 >64 Gene 2008 January 27-29 88-117 48-63

Page 53: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

38�

Tropical cyclones and associated depressions in Fiji approach from a range of

directions, with the most common direction being West to North-West (Fiji

Meteorological Services, 2008). Table 2.5 indicates the tropical cyclones

experienced by Fiji Islands in the years 1969 to 2008. The Fiji Meteorological

Services places the speed of the winds given in knots and km/hr into 3 grades: Gale

(63-87 km/hr or 34-47 knots), Storm (88-117km/hr or 48-63 knots) and Hurricane

(>117 km/hr or >64 knots). The frequency of cyclones in the Fiji region varies with a

minimum interval between two cyclones of a few months to four years. In the year

1985 Fiji experienced four cyclones within the period of a few months (Table 2.5).

In 1972, Mele Bay, (in Port Vila, Vanuatu) experienced the effects of Cyclone

Carlotta which produced north to northwest winds; blowing at gale force for 34 hours

and at hurricane force for 9 hours. Cyclone Carlotta destroyed sections of the seawall

near the Hotel Rossi in Port Vila. For the Mele Bay area, cyclone data indicate that

significant damage to the coastal environment is due solely to climatic events

expected to occur every 10 years. Cyclone activity has caused two major river

mouths (Tagabe and La Colle) in Mele Bay to change their positions along a

coastline length of approximately 500m at least 3 times in the last 50 years.

(Howorth and Greene, 1991).

In 1986, the north of Guadalcanal coast (Solomon Islands) experienced extensive

economic losses from infrastructure and crop damage by cyclone Namu. Cyclone

Namu was characterized by heavy precipitation and flooding instead of strong winds,

hence, it was predicted that longer term effects of the cyclone would include an

enhanced rate of buildup of beaches from the enormous amounts of sediment which

flooding brought to the coast (Danitofea and Baines, 1991).

There was extensive foreshore erosion along 20 kilometers of the northern coastline

of Rarotonga, Cook Islands caused by Cyclone Sally in 1986. The high energy waves

induced by the strong winds of the cyclone destroyed buildings and uprooted trees

along the foreshore. Also, there was recession of the vegetation line of up to 30

Page 54: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

39�

meters. Heaps of coral boulders and rubble, visible at low tide, accumulated in an

approximately 30m x 10m area along the fringing reef on the northeast coast of

Raratonga. These materials were eroded from the beach fronts or dislodged from the

seabed and transported laterally along the lagoon by the sea (Cowan and Utanga,

1991).

The effect of storms and cyclones on atoll islands (where atolls experience

hurricanes/ typhoons and tropical cyclones) are both constructional and erosional

(Woodroffe, 2008). The atolls in the storm belt are different from those that are

unaffected or occasionally affected by storms. Storms are responsible for

transporting larger materials such as boulders which aid in the construction of

conglomerate platforms. The presence of a conglomerate platform is also depended

on the sea-level history and suitable conditions to cement the materials. The atoll

islands which are not in storm areas are predominantly sandy and conglomerate on

the islands is rare (Woodroffe, 2008). The indication of erosion on the oceanward

beaches is nearly ubiquitous on atoll islands; for example the presence of beach

scarps, undercutting of vegetation and outcrops of beach rocks from removal of

unconsolidated sediments by waves (Stoddart and Steers, 1977). However, a number

of factors indicate that the oceanward beaches of atoll islands are net sinks of

sediments. These include radio carbon chronologies indicating incremental accretion;

sediment produced on or near the reef crest is transported by the unidirectional

progression of waves across reef flats implying accumulation; and multi-temporal

image and photographic analyses indications of shoreline progradation (Biribo, 2008;

Woodroffe, 2008).

Tsunamis

Tsunamis are generated when seismic events cause a section of the seafloor to move

vertically or to slump. The sudden vertical movement either lowers the seafloor and

overlying water to form a wave trough or pushes the seafloor and the overlying water

Page 55: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

40�

to form a wave crest (Segar, 1998). These long infragravity waves cannot be detected

by a boat in the ocean or by observation from an airplane and occur through a

number of ways; a submarine landslide, earthquakes or volcanic eruptions (Aung,

1998). Tsunamis have the ability to temporarily raise the sea-level to extreme levels

very rapidly with the potential to devastate large tracts of the coastline (Segar, 1998).

There is little information on the frequency and magnitude of tsunamis (Gillie,

1997); however, it has been found that earthquakes of magnitude less than 6.5 on the

Richter scale generally do not generate tsunamis (Singh, 1991).

According to Aung (1998) the major cause of tsunamis in the Pacific are

earthquakes. In the year 1996 there were two significant earthquakes in the Pacific

Ocean which caused significant rise in sea level near Vanuatu; Richter scale readings

for these two earthquakes were 7.7 (in the vicinity of Alaska) and 6.9 (in the vicinity

of Samar, Philippines). However, Ripper and Moaina (1991), state that the most

devastating Papua New Guinea tsunami was not generated by an earthquake but by a

volcanic eruption, which occurred in the Huon Peninsula/West New Britain region.

In contrast, Cooke (1981) suggests that this 50 feet high tsunami was as a result of

submarine slumping and had no association with the volcanic eruption.

Irrespective of the causes of tsunamis, they have devastating impact potentials. In

case of the tsunami in Papua New Guinea, all villages in the northern and eastern

coasts of Umboi Island and Sakar Island were destroyed. The path of the tsunami

was marked by a sharply defined strip about 40 to 50 feet above sea level; running

parallel with the coastline of Umboi and Sakar Islands (Ripper and Moaina, 1991;

Cooke, 1981).

A total of eleven tsunamis over a 100-year period, 1877 to 1977, have been

catalogued for the Fiji Islands (Everingham, 1987). The cause of the largest three

tsunamis (with an average maximum amplitude of two meters) out of the eleven

catalogued was earthquakes off the coastlines of northern Vanua Levu (1881), and

southern Viti Levu (1953) (Singh, 1991). It is only the 1953 tsunami which caused

Page 56: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

41�

significant damage and life loss as the barrier reefs and surrounding shallow seas

protect most of Fiji from local and distant tsunamis. The 1953 tsunami, was caused

by slope failure near Suva harbor triggered by an earthquake with a Richter scale

reading of 6.7, damaged the Suva waterfront before breaking over the seawall. Coral

blocks up to three meters in diameter were dislodged; the hulk of a wrecked vessel

was thrown up on the reef about seven kilometers southwest of Suva, sunken logs

and miscellaneous debris littered the foreshore after the wave receded and sand

banks were created in various reef passages while some existing banks were scoured

out along the south coast and in Suva harbor (Houtz, 1962). Apart from this damage,

over the 100-year period; 1877 - 1977, tsunamis have not had any prominent effect

on the coastlines of Fiji Islands (Singh, 1991).

Rahiman and Pettinga (2006) reveal that the seafloor in southeast of Viti Levu

(which forms part of the Viti Levu Seismic Zone (VLSZ)), indicates a complex

network of linear submarine canyons and numerous submarine slides. Complex co-

seismic faulting through the fault mesh of the submarine canyons are due to low

occurrence of large earthquakes and a diffused pattern of seismicity currently

observed in the VLSZ. The VLSZ has abundance of submarine slides which typically

occur on the outer barrier reef edges, as well as at the head of submarine canyons and

walls, and mid slope. This implies seismic shaking to be a significant factor for

triggering slope failure. Morphometric analysis and empirical modeling of slides

indicate the largest near-field tsunami amplitude to be produced by slides triggered in

shallow water depths, within 5 Km of the coastline at the outer barrier reef edge and

submarine canyon heads (Rahiman and Pettinga, 2006). According to Rahiman and

Pettinga (2006) a significant tsuami hazard can be created by such submarine slides.

Page 57: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

42�

2.5.2 Human-induced Causes of Coastal Erosion

In the Pacific Island nations human-induced coastal erosion include beach sand

extraction, effects of sand trapping structures, and reclamation of shorefront and

construction of seawall (Gillie, 1997).

Sand Extraction

In the tropics the supply of carbonate sediments is often very low due to the limited

supply rates and rapid formation of beach rock. Sand and beach rocks are mined

from beaches and coral boulders are removed from reefs for traditional construction

activities and minor shoreline reclamation purposes prior to European contact (Gillie,

1997). These beach mining activities were minimal due to the absence of modern

equipment; hence, the supply of sand from the reef and other sources was sufficient

to compensate for the material removed. Today, modern mining equipment has

enhanced the rate of removal of beach material to such an extent that the natural

sediment supply is unable to keep up with the rate of sand removal. For instance, the

beaches provide the sand used in the construction industry on all major islands in

Tonga. Extensive sand extraction from two of the islands has led to shoreline

recession. If the rate of sand extraction on these islands continues, its beaches will be

completely destroyed (Tappin, 1993).

Sand Trapping Structures

Usually, in order to stabilize a segment of the coast, groins or other barriers are

constructed perpendicular to the shoreline to prevent sand from being moved along a

beach by longshore currents. Often there are downdrift impacts of structures that

induce sediment blockage of littoral drift. Causeway construction between sand islets

Page 58: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

43�

on the atoll rim in some Pacific island countries results in the disruption of natural

currents and sediment transport through the inter-islet channel (Maragos, 1993). Due

to this there is both erosion and re-alignment of adjacent shorelines; for instance in

the Gilbert Group, Kiribati (Gillie, 1993b).

Reclamation of Shorefront Land and the Construction of Seawalls

Backshore and beach areas have often been reclaimed and developed due to a local

shortage of land area induced by uncontrolled population growth and development

pressures as well as a lack of coastal management guidelines or legislation. The sand

that was previously part of the active beach system and was available as a buffer

against storms is fixed upon the reclamation of shorefont land as this encroaches on

the dynamic coastal zone width. Shore zones adjacent to the reclaimed area often

experience erosion as the removal of sand from the active beach system increases the

likelihood of erosion on adjacent or downdrift beaches (Gillie, 1997).

When vertical concrete, rock or wood piling walls are constructed behind a beach

there is an increased likelihood of beach erosion. Under average wave conditions,

such seawalls may not be subjected to wave action, however, the sand in front of the

wall will tend to be moved in an offshore direction during storms. The re-

establishment of sand once a seawall is exposed to waves becomes difficult, because

even mild breaking on the wall will induce turbulence that will start sand movement.

There could be complete structural failure of the seawall as a result of undermining

of the seawall foundation by toe erosion (Gillie, 1997).

Theoretically, if a coastal zone is only exposed to the effects of acute erosion, there

would be no detrimental long term effects (Maharaj, 2000). In this case, there would

be no need for any other measures except for the building of a protective structure,

for instance a heavy revetment. However, the onset or intensification of erosion on a

Page 59: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

44�

particular coastal area is often due to a combination of both acute and chronic

erosion.

2.6 SUMMARY

This chapter outlines the processes related to coastline erosion in the Pacific Islands.

To begin with, it discusses the appropriateness of the remote sensing method when

examining coastline changes. It is more appropriate to use the linear regression

method than end-point-rate method when analyzing multi-temporal data. However,

the end-point-rate method is commonly used due to its simplicity in application and

limited data requirements. Today, a number of researches on shoreline change and

coastal geomorphology are carried out using remote sensing methods due to its

suitability in examining temporal changes and ability to manipulate large data sets.

Coastal processes are dominated by the action of waves, tides and currents. It is these

factors which determine the geomorphology of a coastal setting. The stability of

coastal zones are depended on the sediment budget; sediment supply (example, from

coral reefs and rivers), sediment sinks (example, by wave and wind transport out of

an area) and sediment distribution (example, longshore drift). Most of the Pacific

Islands lie in the southwest quadrant of the Pacific Ocean and are surrounded by

various types of coral reef systems; fringing, barrier and atolls. The major sediment

supply for many of the Pacific Islands is the coral reefs, while some larger volcanic

islands have sediment supplements from river systems. The causes of erosion in the

Pacific Island countries are both natural and human-induced. The natural causes

include: changes in long-term weather patterns, natural shoreline evolution, sea-level

rise, tropical cyclones, storm surges and tsunamis. The human-induced causes

include: sand extraction, sand-trapping structures, shorefront land reclamation and

construction of shoreline protection structures such as seawalls and groynes. The

remote sensing method together with field studies (in-situ and sampling methods)

are appropriate techniques for examining coastlines for research and/or planning

coastal development purposes.

Page 60: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

45�

CHAPTER 3 – METHODOLOGY

3.1 INTRODUCTION

The methodological approach in this study has been designed to examine temporal

changes along a coastline. The research design focuses on identifying and classifying

the shorelines as prograding, resilient and eroding coastlines; identified by

comparison of historical aerial photographs and satellite images. Subsequently,

carrying out a ground truthing exercise along the study coast to re-evaluate the

results obtained from the desktop study of historical aerial photographs and satellite

images. This chapter delineates the techniques and processes involved in

investigating coastline changes by separating them under the following headings:

workflow in determining the range of coastline change – outlines a theoretical

approach to analyzing coastline changes, the study site – location, description and the

selection of the study site, research methodology – discusses the techniques involved

in the development of an appropriate method to examine coastline changes and

finally, leading to the ultimate method used to analyze coastline changes and field

investigation – ground truthing exercise to re-examine the results acquired from the

comparison of historical aerial photographs and satellite images.

3.2 WORKFLOW IN DETERMINING THE RANGE OF COASTLINE

CHANGE

This section outlines a hypothetical approach to analyze the range of coastline

changes by comparing historical aerial photographs and satellite images. In doing

so, it looks at the phenomenal range of coastline changes, the identification of source

Page 61: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

46�

data, the techniques involved in analyzing coastline changes and the various types of

error that are likely to arise from image analysis.

The following flow chart outlines the order of the processes involved in the

examination of coastline changes by comparing historical aerial photographs and

satellite images.

Page 62: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

47�

Figure 3. 1: An illustration of the order of processes involved in the examination of coastline changes by a comparison of historical aerial photographs and satellite images.

Phenomenal range of spatialchange

Identification of source data

Range of coastlinechangemethods

Error budget

Relative data referencing Geo-referencingaerialphotographs

Coastline Digitization

Online – GoogleEarth

Offline – GIS Desktop

Individualphotograph

Photographmosaic

Aerialphotographto satellite image

Satelliteimage to aerialphotographmosaic

Page 63: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

48�

3.2.1 Phenomenal Range of Spatial Change

The range of spatial change of a coastline is governed by details of the local

topography controlling incident wave forcing. Generally, each coastal zone has a

unique topographic setting and wave exposure making it necessary to assess long-

term changes on a case by case basis (Norcross et al., 2002). Conventionally,

coastline change analysis and prediction are performed by field and aerial surveys

(Maiti and Bhattacharya, 2008). The range of spatial change of coastlines can be as

little as 7-15cm/yr (with an error margin of 10cm) over a time interval of 41 years

(Moore and Griggs, 2002). A study by Fletcher et al. (2003) along the coast of Maui

and Kehei, in Hawaii, found the rate of beach loss to be 0.2 m/yr over a period of 30

years using the end point rate method (Section 2.2). Hence, it is essential to have

studies on spatial coastline changes, spread over a relatively large time interval.

3.2.2 Identification of Source Data

Since the range of spatial change of a coastline is only evident over a large time

interval, the earliest and the latest possible data were selected for the research. Three

sets of suitable data were identified for the Coral Coast area, along the south-west

coast of Viti Levu (Fig.3.2). These were aerial photographs and satellite images:

IKONOS and Google Earth images (Table 3.1).

Table 3. 1:Details of available source data.

Data Type Year Spatial Resolution Aerial photographs 1967 1.1m

IKONOS images 2002 4.0m

Google Earth images 2006 0.5m

Page 64: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

49�

3.2.3 Range of Coastline Change Methods

Since there are only two sets of data available with significant time interval (earliest:

1967 aerial photographs and the recent satellite images), the end-point-rate method is

considered to be appropriate for this research. The end-point-rate method uses two

representative shorelines (often the earliest and the most recent) to calculate the rate

of shoreline change (Crowell, et al., 2005) (Section 2.2).

While doing quantitative analysis of changes, unless absolute geographic location is

required, the changes are usually relative. Absolute geo-referencing is usually

desired for mapping purposes, however, it is not required. For the purpose of this

research, relative referencing techniques are used to geo-reference the source data.

Two possible approaches to do relative geo-referencing of the source data are (a)

aerial photographs to satellite images and (b) satellite images to aerial photograph

mosaic. In order to geo-reference the aerial photographs two probable techniques can

be applied: (a) each aerial photograph can be mapped onto the satellite image

individually or (b) an aerial photograph mosaic can be created and then the mosaic

can be mapped onto the satellite image. The advantage of the aerial photograph

mosaic technique is that fewer ground control points (GCP) will need to be identified

in both the satellite image and the aerial photograph. On the other hand, employing

this technique would introduce errors, which would accumulate from the creation of

mosaics and geo-referencing.

The final process, after geo-referencing the aerial photographs and the satellite

image, involves coastline digitization. Coastline digitization can be carried out online

via Google Earth or offline, by the means of Desktop Geographical Information

Systems (GIS) software. Using an online system such as Google Earth provides the

benefit of using high resolution geo-referenced satellite images. While, using an

offline system such as ArcGIS software, would make it possible to import the aerial

photographs into the GIS software rather than digitizing and importing only the

coastline, as in the online system.

Page 65: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

50�

3.2.4 The Error Budget and A-priori Accuracy Estimation

A number of possible errors need to be considered while undertaking this type of

research. These include phenomenal error, data error, image error, human error,

image distortion and image displacement. Phenomenal errors are the error margins

calculated by analysts involved in prior researches associated with the rate of

coastline change. Data error is initiated by spatial resolution of the image. Image

error is associated with identification of the location of a GCP in relation to pixel

distribution across the GCP. It is difficult for the human eye to identify the exact

pixel designated to a GCP; hence, usually an approximate instead of the precise

position of the GCP is selected. Human error is related to incorrect identification of

objects while locating GCPs and errors due to image distortion and displacement.

Image distortion is the physical distortion of an image due to atmospheric conditions,

for instance humidity. Finally, image displacement is the geometrical displacement

of objects in an image due to relief. In this case there is zero geometrical

displacement since this research concentrates on geo-referencing the coastal zone. At

sea level there is no relief; therefore the geometrical displacement is zero meters. The

estimated error budget (below) has been calculated taking into consideration the

above mentioned errors.

Error Budget Estimation =

= =

[Phenomenal Error] + [Data Error] + [Image Error] + [Human Error] + [Image Distortion Error] + [Image Displacement Error] 0.1m + 4.0m + 1.1m + 0.5m + 1.0m 6.7m

Page 66: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

51�

3.3 THE STUDY SITE

The only readily available data to study coastline changes along the coast of Fiji

Islands was found to be for the southern part of the island of Viti Levu. Hence, the

Coral Coast area, was chosen as the study site (Fig. 3.2).

Located in the south-west coast of Viti Levu, Fiji Islands, the Coral Coast covers a

stretch of approximately 50-60 kilometres of coastline. It is situated within the

following coordinates 18o04’59.97” S, 177o 18’14.90” E and 18o17’28.81” S,

177o57’42.34” E and encompasses developed areas including villages, hotels and

resorts and a great many coastal ecosystems including reef ecosystems, mangrove

ecosystems and sea-grass beds.

Impacts in the coastal zone becomes a hazard when it threatens the human well being

(Mimura, 1999). Apart from hosting numerous resorts and hotels, the Coral Coast is

also a home to many local village settlements. The Coral Coast is a low-lying area

exposed to the impacts of wave action generated by normal wind conditions as well

as those generated by storms and cyclones. Hence, the results of a research on the

patterns of coastline change for this area would be an essential tool for integrated

coastal zone management.

Page 67: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

52�

1 15’ 2 30’� 3 45’ 4 178o 5 15’ 6 30’

15’

H

30’

I

45’

J

18o

S

K

15’

10km

Figure 3. 2: The study area situated along the south-west coast of Viti Levu. Source: Pacific Maps Pty Limited, 2002.

Study Area

Page 68: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

53�

3.4 RESEARCH METHODOLOGY

This section discusses the techniques involved in the examination of the range of

coastline change along the Coral Coast (Fig. 3.2). The order of processes as

represented by the flow chart below (Fig. 3.3), are as follows: identification of source

data, determination of the range of coastline changes, coastline categorization and

finally, the quantification of coastline changes.

While determining the range of coastline change, the reference line used to digitize

the coastline was the vegetation line. It is difficult to differentiate the low and high

tide marks from aerial photographs and/or satellite images. However, the line of

vegetation along the coast can easily be differentiated from other features such as

sand and water. Furthermore, the vegetation line often reflects coastal erosion

processes, thus can be used as an indicator of coastal erosion. Therefore, in this study

the vegetation line is used as a reference line for the coastline.

Figure 3. 3: A representation of the processes involved in determining the range of coastline changes along the Coral Coast.

Source Data

Range of Coastline Changes (Figure 3.4)

Coastline Categorization

Quantification of Coastline Change

Page 69: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

54�

3.3.1 Source Data used for Geographical Information Systems Analysis

The two sets of raw data used for the Geographical Information Systems (GIS)

analysis in this study were historical aerial photographs (year: 1967), and satellite

images (2002, IKONOS and 2006, Google Earth) of the study area (Fig. 3.2). A set

of ten historical aerial photographs in paper form, for the year 1967 were originally

obtained from the Fiji Lands and Survey Department. The IKONOS satellite source

images for the year 2002 were acquired from Pacific Islands Applied Geoscience

Commission (SOPAC). The IKONOS satellite image had a spatial resolution of 4

meters for multi-spectral channels and the historical aerial photographs have a scale

of 1:24 000, scanned at 600dpi, producing 1.1m spatial resolution.

3.3.2 The Range of Coastline Changes

This section discusses three trial methods leading to the development of an

appropriate method to examine coastline changes along the Coral Coast.

The flow chart represents the order of the processes and techniques involved in each

trial method leading up to the final method. Each set of trial is associated with the

following processes: type of source data used, historical aerial photograph geo-

referencing techniques, coastline digitization techniques and the predicament

produced after each trial.

Page 70: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

55�

Figure 3. 4: A schematic representation of the method and technique development in the determination of the range of coastline changes; 3 trial methods leading to the ulimate method of range of coastline change analyses. (Note:AP – aerial photographs; GE – Google Earth images.)

Method Development

Trial 1 Trial 2 Trial 3 Final Method

1967 A.P. to 2006 G.E. image

Multiple GCPs from G.E. plotted onto A.P. using

ArcGIS

1967 coastline digitized in

ArcGIS; viewed/ compared online

(G.E)

Improper coastline

alignment, limited GCPs

1967 A.P. mosaic to 2006

G.E. image

Multiple GCPs from G.E. plotted onto A.P. mosaic using ArcGIS

1967 coastline digitized using ArcGIS;

viewed/compared online (G.E)

Improper coastline alignment; image error in mosaic formation,

limited GCPs

1967 A.P. mosaic to 2002 IKONOS image

Image to image warping using multiple GCPs in

HyperCube

1967/ 2002 coastlines digitized in ArcGIS; viewed/ compared

online (G.E)

Improper coastline aligment; uneven

distribution of GCPs

1967 A.P. mosaic to 2002 IKONOS image

Image to image warping using two/ multiple GCPs in HyperCube

1967/ 2002 coastlines digitized/ viewed offline in ArcGIS

Reasonably proper coastline alignment achieved using two

GCPSs

Page 71: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

56�

Trial Method 1

The source data used for the first trial method were the 1967 aerial photographs and

Google Earth images; the software used were ArcGIS and Google Earth.

Geo-referencing – The 1967 aerial photographs were geo-referenced with respect to

Google Earth. A total of three and/ or more ground control points (GCPs) similar to

both Google Earth and the 1967 aerial photographs were identified. The coordinates

for the GCPs were identified using Google Earth. These coordinates were then

plotted onto the 1967 aerial photographs using the Geo-referencing tools in ArcGIS.

Coastline Digitization – Once the 1967 aerial photographs were geo-referenced, the

coastline was digitized using ArcGIS tools. The shapefile containing information on

the digitized coastline was converted to a kml file and imported in Google Earth. The

changes in the coastlines between the years 2006 (Google Earth image) and 1967

(geo-referenced aerial photograph) was compared by overlying the 1967 coastline

onto the Google Earth image.

Predicament – The 1967 digitized coastline overlaid on the 2006 Google Earth

image indicated improper alignment of the coastlines. There was lack of similar

ground control points (GCPs) on the 1967 aerial photographs and the Google Earth

image. Insufficient similar ground control points (GCPs) lead to uneven distribution

of the GCPs. Hence, there was greater Root Mean Square Error (RMSE), indicating

inappropriate geo-referencing and finally, misalignment of the two images.

Trial Method 2

The source data used for the second trial method were the 1967 aerial photographs

and Google Earth images. The software used to process the raw data were

HyperCube, ArcGIS and Google Earth.

Page 72: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

57�

To overcome the problem of evenly distributed ground control points (GCPs) in Trial

Method 1, photo mosaics of the 1967 aerial images were created using the

HyperCube software. To generate photo mosaics, ground control points (GCPs) on

overlapping portions of the images were matched. Three aerial photographs were

used to create photo mosaics in order to get greater number of evenly distributed

similar ground control points (GCPs).

Geo-referencing – The generated 1967 aerial photo mosaic was geo-referenced with

respect to the Google Earth image. The method of geo-referencing was the same as

that used in Trial Method 1.

Coastline Digitization – The coastline for the geo-referenced 1967 aerial photo

mosaic was digitized using ArcGIS tools; as in Trial Method 1. The shapefile for the

digitized coastline was converted to a kml file and imported in Google Earth. The

1967 and 2006 coastlines were compared by overlying the 1967 coastline shapefile

over the 2006 Google Earth image.

Predicament – As in Trial Method 1, when the 1967 kml coastline shapefile was

overlaid on the 2006 Google Earth image, the coastlines were not properly aligned.

The 1967 aerial photographs for the Coral Coast region was not a complete set. A

number of aerial photographs were missing from the 1967 the Coral Coast aerial

photograph sequence. Adjacent aerial photographs only had 10–20% overlapping

areas, instead of the 60–80% common in historical aerial photographs. Therefore,

there were insufficient overlapping areas to form the mosaic. Furthermore, the

mosaic itself had the same problem as in Trial Method 1; uneven distribution of

ground control points (GCPs) on the far right and left of the mosaic image.

Page 73: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

58�

Trial Method 3

The source data used for this method were the 1967 aerial photographs, the 2002

IKONOS image and Google Earth image. The software used for analyzing these

images were HyperCube and Google Earth.

To avoid the problems encountered in Trial Methods 1 and 2, a different method of

geo-referencing was used in this trial. The HyperCube software was used to geo-

reference the 1967 aerial photographs.

Geo-referencing – By the means of the HyperCube software, the image to image

warping technique was used to geo-reference the 1967 aerial photographs. The 1967

aerial photographs were geo-referenced with respect to the 2002 IKONOS images by

warping multiple similar ground control points (GCPs) identified on the 1967 aerial

photographs and the 2002 IKONOS image.

Coastline Digitization – Once the 1967 aerial photographs were geo-referenced, the

coastline for both the 1967 and 2002 images were digitized in ArcGIS using the

same method as in Trial Methods 1 and 2. The 1967 and 2002 coastline shapefiles

were overlaid onto the IKONOS image in order to gauge the accuracy of coastline

digitization and geo-referencing. After this the coastline shapefiles for both years

were converted to kml files and imported in Google Earth.

Predicament – When overlaid on the Google Earth image, the digitized coastlines for

1967 and 2002 showed a shift of approximately 15 meters to the east. The

coordinates of the IKONOS image were changed such that the whole image shifted

15m to the west. After this, a second set of coastline was digitized using the

IKONOS image with the changed coordinates. The coastline shapefile was converted

to a kml file and imported in Google Earth which indicated a relatively better

alignment of the coastlines then the previous methods. However, this coastal

alignment was not adequate for the purpose of studying coastline changes. The

difference in the alignment was due to uneven distribution of the ground control

Page 74: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

59�

points (GCPs) with respect to the whole image, since, the GCPs were concentrated

along the coastline.

Final Method

Ultimately, the following method was decided to be the most appropriate for this

study. The raw data used in this analysis were the 1967 aerial photographs and the

2002 IKONOS image.

Geo-referencing – The 1967 aerial photographs were geo-referenced with respect to

the 2002 IKONOS image by image to image warping using the HyperCube software.

Similar ground control points (GCPs) were identified in both corresponding set of

images. Then the images were warped using the orthogonal transformation at a

warping scale of 4; to preserve spatial resolution of the aerial photograph. The

images were warped using two methods: using multiple ground control points

(GCPs) along the coastline and using two ground control points (GCPs) along the

coastline. Although the multiple GCPs method produced low Root Mean Square

Error (RMSE) values, the coastline alignment for the two images (1967 and 2002)

using the two GCPs method was more precise than the coastline alignment generated

using the multiple GCPs method (Table 3.1). With only 2 GCPs, the image is geo-

referenced with respect to the linear line created by the two points. More than 2

GCPs introduce greater differences among a greater number of points which

accumulates to a larger RMSE value. While, the two ground control points method

uses only 2 GCPs for geo-referencing, thus the RMSE value is 0. Hence, the two

GCPs method was favoured over the multiple GCPs method.

Page 75: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

60�

Table 3. 2: A comparison of the multiple and the two ground control point methods. �

Image�#� Multiple�GCPs�Method� Two�GCPs�Method�A� B� C� D� E� F� G�

�RMSE�Value�

Coastline�Difference�(meters)�

Number�of�GCPs�

RMSE�Value�

Coastline�Difference�(meters)�

Number�of�GCPs�

1� 2.91� 25�26� 6� 0.00� 10� 2�

2� 3.06� 10�15� 6� 0.00� 2.6�9� 2�

3� 3.03� 48�50� 7� 0.00� 4�10� 2�

4� 3.85� 8�10� 9� 0.00� 5�10� 2�

5� 3.02� 25�60� 7� 0.00� 2.6�20� 2�

6� 2.23� 33�35� 11� 0.00� 0� 2�

7A� 2.73� 28�30� 9� 0.00� 1.2�2� 2�

7B� 2.77� 15�30� 8� 0.00� 2�15� 2�

8� 3.91� 150� 7� 0.00� 2.7�20� 2�

9� 3.67� 35�50� 5� 0.00� 4�15� 2�

10� 3.08� 5�10� 8� 0.00� 2.6�3� 2��

The coastline difference in meters (columns C and F) have been determined by the

average minimum and maximum distance separating the 1967 and 2002 digitized

coastlines for each image.

The multiple GCPs method (column B) have root mean square error (RMSE) values

between 2 to 4 while, the two GCPs method has an RMSE value of 0, since only 2

points were used as GCPs. The total error budget of 3m (Section 3.3.4) calculated

from the digitized coastline was lower than the estimated error budget of 6.7m

(Section 3.2.4).

Page 76: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

61�

Coastline Digitization – After geo-referencing the 1967 aerial photographs using the

two ground control points (GCPs) method the coastline for the 1967 and 2002

images were digitized by the means of ArcGIS tools. For the 2002 IKONOS images;

infrared images were generated using the infrared, blue and red channels. This

separated the vegetation from all other features by giving it a distinct red colour,

hence, making it easier to digitize the vegetation line as the coastline.

3.3.3 Coastline Categorization

Once the 1967 and 2002 coastlines were digitized they were overlaid on the 2002

IKONOS image. The coastline was categorized under the following categories after a

comparison between the 1967 and 2002 coastlines. Erosion hotspots (Sea Grant,

1997), erosion watch spots (Sea Grant, 1997), resilient coastlines and prograding

coastlines. The prograding coastline were categorized further into artificial

progradation and natural progradation after a ground truthing exercise (Section 1.3).

For the classification of erosion hotspots and erosion watch spots; the eroding areas

covering an area greater than 20 m2 were categorized as erosion hotspots and those

covering an area less than 20 m2 were categorized as erosion watch spots.

3.3.4 Quantification of Coastline Changes

Using the Hawths Tools in ArcGIS the level of the erosion and progradation were

calculated in meters (maximum distance of erosion and progradation) and meters

squared (m2). An average per year of erosion and progradation was worked out for

each segment of the coastline which was eroding and/or prograding. The total error

budget of 3m (and/or 6m2) for the eroding and prograding areas, was calculated by

averaging the areas of the polygons introduced while digitizing the coastline along

resilient coastlines. The coastline categorization and the eroding and the prograding

areas were finally presented using maps (Figs. 4.2 – 4.11 and Appendix 1 and 2).

Page 77: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

62�

3.5 FIELD INVESTIGATION

After the desktop (GIS) analyses phase of the research a ground truthing exercise

was carried out along the Coral Coast. Selected study areas based on the output of

the first (GIS) phase, were visited over a two-week period. Combinations of all

coastline categories were included in the field study; eroding, prograding and

resilient. Out of the thirteen areas chosen for the ground truthing exercise there were

seven resort and six village settlement areas (Fig. 3.5).

The general coastal geomorphologies at each study site were observed. Particular

emphasis was placed on the sediment characteristics (beach sediment material

composition and origin, grain size), natural beach features (coastline type, beach

width, beach steepness, channels, freshwater systems), coastal structures, the state of

erosion and wind and current directions. The prograding coastlines were further

categorized as shoreline that is advancing towards the sea due to sediment accretion

(naturally prograding) and engineered structures such as seawall (artificially

prograding).

After the ground truthing exercise the documented results were recorded, tabulated

and finally presented as maps indicating coastal erosion, beach erosion, progradation

due to sediment accretion and engineering structures and resilient coastlines. The

general geomorphology along the Coral Coast was documented.

Page 78: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

63�

Figure 3. 5: The study areas for the ground truthing exercise along the Coral Coast.

Yadu

a Villa

ge

Outri

gger

Reso

rtTa

baku

laRe

sort

Vatu

kara

sa

Villa

ge

Tam

bua

Sand

sHi

deaw

ay

Reso

rtTa

gaqe

Villa

ge

Navit

i Res

ort

Koro

levu

Settl

emen

t

War

wick

Reso

rt

Beac

h Ho

use

Nam

atak

ula V

illage

Navu

tulev

u Vi

llage

Page 79: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

64�

3.6 SUMMARY

An a-priori analysis of errors was conducted to estimate the accuracy of an

appropriate method to examine coastline changes using historical aerial photographs

and satellite images. The details considered during this hypothetical analysis were

the phenomenal range of spatial change, identification of source data, the techniques

involved in analyzing the range of coastline change and the estimated error budget.

Since, the only readily available data for studying coastline change in Fiji Islands,

was found to be for the southern coast of Viti Levu, the Coral Coast (Fig. 3.2) was

chosen as the study site.

An appropriate methodology to examine temporal coastline changes was developed

based on historical aerial photographs, high resolution proprietary satellite images

and online geo-spatial resources. Since the root mean square error (RMSE) values

obtained from geo-referencing the 1967 aerial photographs and the 2002 satellite

images were lower than the estimated error budget of 6.7m, this technique of geo-

referencing was concluded to be appropriate for this research.

Subsequently, the Coral Coast coastline was categorized as eroding, prograding and

resilient coastlines. The eroding and prograding areas were quantified by the means

of the Hawths Tools in ArcGIS. The error margin for the amount of erosion and

progradation was calculated by averaging the areas of the polygons created from

resilient coastlines.

The second part of the research involved a ground truthing exercise along the Coral

Coast over a period of two weeks. The study sites for the ground truthing work were

selected based on the output of the coastal change identificaiton analyses in the first

part. At each study site the general coastal geomorphologies were observed. The sites

categorized as prograding coastlines were further categorized as progradation due to

(a) sediment accretion and (b) engineered structures such as seawall. Finally, the

Page 80: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

65�

analyzed data were presented in the form of maps, illustrating categorized coastlines

and eroding and prograding areas and the observed geomorphology of the Coral

Coast were documented.

Page 81: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

66�

CHAPTER 4 – RESULTS

4.1 INTRODUCTION

The techniques and processes described in methodology (Chapter 3) have been

utilized to produce maps indicating the range of coastline changes along the Coral

Coast. Temporal coastline changes, (areas of coastal retreat, progradation and

stability) have been illustrated as maps over an interval of 35 years (1967 to 2002) by

the comparison of historical aerial photographs and satellite images. In addition, the

maps also illustrate beach erosion and the subdivision of prograding coastlines into

natural and artificial progradation, after a ground truthing exercise. The outcomes of

these analyses have been presented in the form of maps under the following

headings: coastline categorization – illustrates observed beach erosion, the various

coastline categories and presents a general description of the observed coastal

geomorphology at selected study sites along the Coral Coast; quantification of

eroding and prograding costlines – indicates the rate of change of the coastlines as

the maximum distance and total area of coastline change.

4.2 COASTLINE CATEGORIZATION

An overview of the Coral Coast area indicates the areas presented by the figures,

following Figure 4.1 (Fig. 4.1). Each map figure illustrates the various categories of

coastlines in specific areas along the Coral Coast. The coastline areas have been

ranked as (1) erosion hotspots (coastal erosion has threatened shoreline development

and infrastructure), (2) erosion watch spots (coastal settlements will soon be

threatened if shoreline erosion trends continue), (3) resilient shorelines (no coastal

retreat or advancement observed in the time frame of the image overlays) and (4)

prograding shorelines (shoreline is advancing sea-ward); with areas investigated in

Page 82: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

67�

the groung truthing exercise subdivided into (a) natural progradation (due to

sediment accretion) and (b) artificial progradation (due to engineered structures).

The subdivision of prograding coastlines into artificial and natural progradation has

been determined by a ground truthing exercise of selected areas along the Coral

Coast. Areas with a combination of coastline segments (resilient, eroding and

prograding) were selected from the desktop study for the ground truthing exercise

(Fig. 4.1). The structures responsible for artificial progradation along the Coral Coast

were identified to be seawalls and groynes. The areas influenced by resilient

coastlines also have seawalls and/ or groynes along its shoreline. Most areas

investigated during the field study had exposed tree roots, beach scarps, narrow

beaches and exposed beach rocks, indicating beach erosion.

The general coastal geomorphology of the various study sites along the Coral Coast,

(Fig. 3.5) have been described under each area heading. The different study areas for

the ground truthing exercise are being referred to as per their location on the

respective area maps. The various features described under each area heading include

the sediment characteristics, natural beach features, coastal structures, and the state

of erosion. The Coral Coast area is fringed by a narrow band of fringing reef system

which is interrupted by numerous passages. These passages give entrance to waves

induced by the dominant southeast trade winds which are a prominent factor in

determining the coastal geomorphology of the Coral Coast. The current direction of

the coastal waters along the Coral Coast is in accordance to the southeast trade

winds; towards the northwest direction.

Page 83: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

68�

Figure 4. 1: The Coral Coast; the area in each black frame corresponds to the labelled figure which gives details of the coastline categorization of the respective area. Map background: 1967 aerial photograph mosaic.

Fig 4.2

Fig 4.3

Fig 4.5

Fig 4.4

Fig 4.11

Fig 4.6

Fig 4.7

Fig 4.8

Fig 4.9Fig 4.10

Page 84: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

69�

4.2.1 Fijian Resort, Naevuevu Village and Yadua Village �

Figure 4. 2: Coastline categorization along the Fijian Resort, Naevuevu Village and Yadua Village area.

The map indicates that most of the coastline along the Fijian Resort to Yadua Village

is resilient. Some portions of the western side of the area show prograding coastlines

and there is an erosion watch spot on the west of Yadua Village. The western side of

the area is fringed by a relatively wider reef flat when compared with the eastern side

of the area. A river system and a narrow reef passage are prominent on the east of

Naevuevu Village.

Page 85: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

70�

4.2.2 Yadua Village and Sigatoka Sand Dunes �

Figure 4. 3: Coastline categorization along the Yadua Village and Sigatoka Sand Dunes.

Except for the stretch of coastline on the east of the Yadua Village indicating an

erosion hotspot and beach erosion, this area shows the dominance of a resilient

coastline system. A wide fringing reef flat is evident in front of Yadua Village, in

contrast with no reef systems in front of the Sigatoka Sand Dunes. There are two

prominent reef passages in the area, one opposite the small creek mouth on the east

of Yadua Village and the other on the western edge of the Sigatoka Sand Dunes. A

tributary of the bigger Sigatoka River system is evident on the far eastern side.

Page 86: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

71�

Observed Coastal Geomorphology in the Yadua Village Area

Two sections of Yadua area were examined; the Yadua Village front and the

Sigatoka Sand Dunes front, located on the east of Yadua Village. The study areas are

separated by a narrow creek which merges into the shallow fringing reef lagoon. The

fringing reef system is interrupted by two channels. Gently sloping and narrow

beaches are characteristics of both Yadua Village and Sigatoka Sand Dune fronts.

Sections of a damaged seawall (Fig. 4.23) and exposed tree roots are evident in front

of Yadua Village. Majority of the beach material on Yadua Village front are coarse

sized rocks and rubble. The beach sediments comprise of sea wall debris and oceanic

sediments. Majority of the beach material on Sigatoka Sand Dune front are fine

grained terrestrial sediments.

Figure 4. 4: Damaged seawall and debris along the Yadua Village beach front.�

Page 87: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

72�

4.2.3 Sigatoka Sand Dunes and Korotongo Village �

Figure 4. 5: Coastline categorization from the eastern edge of Sigatoka Sand Dunes to Korotongo Village.

The western side of the Sigatoka River system illustrates the dominance of a resilient

coastline in front of the Sigatoka Sand Dunes. The eastern edge of the Sigatoka Sand

Dunes indicates a prograding coastline. A spit is evident on the east of Sigatoka

River; the western side of the spit is prograding while the eastern side is eroding. The

stretch of coastline from the spit to Korotongo Village indicates a combination of

erosion hotspot, erosion watch spots, artificially prograding coastlines and resilient

coastlines. A wide fringing reef flat interrupted by a narrow channel is evident in

front of the Korotongo area in contrast with no reef systems in front of the Sigatoka

Sand Dunes.

Page 88: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

73�

4.2.4 Outrigger and Tabakula Resorts �

Figure 4. 6: Coastline categorization along the Outrigger Resort and Tabakula Resort area.

This area indicates a combination of erosion watch spots, artificially prograding

coastlines and resilient coastlines with two erosion hotspots on the east of Tabakula

Resort. The coastline along the Outrigger Resort and Tabakula Resort is mostly

resilient except for a segment of artificially prograding coastline in front of Outrigger

Resort. Beach erosion is prominent in front of Outrigger and Tabakula resorts. The

eastern side of the map illustrates alternating segments of erosion watch spots,

resilient coastlines and artificially prograding coastlines. The area is fringed by a

narrow reef flat interrupted by a wide passage situated opposite the river system on

the east of the resorts.

Page 89: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

74�

Observed Coastal Geomorphology of the Outrigger and Tabakula Resort Areas

The beach fronts of Outrigger and Tabakula Resorts were observed. The continuous

stretch of beach in front of Outrigger and Tabakula Resorts is interrupted by a small

creek flowing through the buildings of Outrigger Resort. Both resorts have gently

sloping and relatively narrow beaches; however, the stretch of beach in front of

Outrigger Resort is narrower than that in front of Tabakula Resort. The fringing reef

system enclosing a shallow lagoon is interrupted by two channels, one opposite each

resort. Outrigger Resort is separated from the beach area by a stretch of 2 – 5 meters

high seawall (Fig. 4.24). Exposed tree roots and rocky outcrops are prominent along

the Outrigger Resort beach front. Majority of the beach sediments in Outrigger

Resort area is composed of rubble, pebbles and coarse sand while the Tabakula

Resort front mainly comprises of coarse sand. The origins of beach materials in both

areas are oceanic and terrestrial.

Figure 4. 7: Seawall separating the Outrigger Resort from the beach front.

Page 90: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

75�

4.2.5 Sovi Bay, Vatukarasa Village and Namada Village �

Figure 4. 8: Coastline categorization along Sovi Bay, Vatukarasa Village and Namada Village area.�

Naturally prograding coastlines are dominant in the Sovi Bay area, with alternating

segments of resilient coastlines and an erosion watch spot on the west of the Bay and

erosion watch spot segments on the east of the Bay. Vatukarasa Village has a

segment of resilient coastline on the village front with a short segment of naturally

prograding coastline on the eastern end of the village with relatively long segments

of erosion hotspots on either side of this prograding spot. Beach erosion is prominent

in the Vatukarasa Village area. An artificially prograding coastline segment is

prominent on the far east of Vatukarasa Village whereas, the west of the village

indicates alternating segments of erosion hotspot, erosion watch spots and resilient

coastline. Namada Village front shows a prominent stretch of erosion watch spot

Page 91: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

76�

with segments of resilient coastlines on either side of this erosion watch spot. The

area is fringed by narrow reef flats interrupted by two wide channels opposite river

systems at the head of Sovi Bay and on the eastern side of Vatukarasa Village.

Observed Coastal Geomorphology of Vatukarasa Area

Three sections of Vatukarasa area were examined; Sovi Bay, Vatukarasa Village

front and the east of Vatukarasa Village. A large river system is evident at the head

of Sovi Bay, while Vatukarasa Village and the eastern section of Vatukarasa Village

are separated by a smaller river system. The fringing reef system in front of the study

sites are interrupted by two wide channels, one of which forms the Sovi Bay, while

the other forms the Vatukarasa Bay. The stretch of beach from Sovi Bay to the east

of Vatukarasa Village is relatively wide (Fig. 4.25 and 4.26). Vatukarasa Village has

a steep beach with massive beachrocks dipping seaward at the water line (Fig. 4.27)

while, the Sovi Bay area and the east of Vatukarasa Village have gently sloping

beaches. Gabion Baskets have been fixed on the east of Vatukarasa Village adjacent

to Queens Road (the major highway of Viti Levu) (Fig. 4.28). Exposed tree roots and

rocky outcrops (Fig. 4.27) are prominent on all beaches of the study areas except for

the head of Sovi Bay. The major beach materials of Vatukarasa Village front and the

eastern end of the village are coarse sand, pebbles and rubbles with both terrestrial

and oceanic origins. On the other hand, the major beach material of the Sovi Bay

area is fine sand of a terrestrial origin.

Page 92: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

77�

Figure 4. 9: Wide beach at the head of Sovi Bay.�

Figure 4. 10: Low tide on a steep beach face in front of Vatukarasa Village.

Page 93: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

78�

Figure 4. 11: Exposed tree roots (left) and beach rocks (right) in front of Vatukarasa Village.

Figure 4. 12: Gabion Baskets; east of Vatukarasa Village; adjacent to the Queens Road.

Page 94: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

79�

4.2.6 Tambua Sands Resort, Hideaway Resort and Tagaqe Village �

Figure 4. 13: Coastline categorization of the Tambua Sands Resorts, Hideaway Resort and the Tagaqe Village area.

The area indicates alternating segments of erosion watch spots, erosion hotspots,

resilient coastlines and artificially prograding coastlines. The Tambua Sands Resort

front is mostly resilient except for alternating short segments of artificially

prograding coastlines. Adjacent to Tambua Sands Resort (eastern end) is an erosion

hotspot with alternating short segments of resilient coastline and erosion watch spot.

The stretch between Tambua Sands Resort and Hideaway Resort comprises a

segment of artificially prograding coastline, an erosion hotspot and a segment of

resilient coastline, from west to east, respectively. The Hideaway Resort front is

mostly resilient, except for a short segment of artificially prograding coastline on the

western end of the resort and two erosion watch spots on both the western and

eastern ends of the resort. Tagaqe Village front has an erosion hotspot with a stretch

of artificially prograding coastline on the eastern side of the village. Beach erosion is

Page 95: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

80�

prominent along the entire coastline irrespective of the coastline type. The area is

fringed by a narrow reef flat interrupted by 3 channels. The two wider channels are

situated in between the Tambua Sands and Hideaway stretch and opposite the river

on the eastern end of Tagaqe Village, and a much smaller channel is situated

opposite the Hideaway Resort.

Observed Coastal Geomorphology in the Tambua Sands Resort, Hideaway Resort

and Tagaqe Village Areas

All three study areas, Tambua Sands, Hideaway Resort and Tagaqe Village have

small creek mouths merging into the shallow lagoon formed by a fringing reef

system. The fringing reef system in front of Tambua Sands and Taqage Village are

interrupted by channels; one in front of each site. The channel in front of Tagage

Village is relatively wide, while Tambua Sands has a narrow channel. There is a

continuous fringing reef system with a narrow reef flat in front of Hideaway Resort.

In addition, all three study areas have gently sloping and narrow beaches. Hideaway

Resort is separated from its beach front by a seawall (Fig. 4.29). Exposed tree roots

and beachrocks are prominent along the beaches of Tambua Sands and Tagaqe

Villge (Fig. 4.30). Majority of the beach materials in front of Tambua Sands and

Tagaqe Village are coarse sand, rubbles and pebbles with an oceanic origin.

Hideaway Resort front mostly has fine to coarse sand, with few rubble pieces; the

sediments are of oceanic origin.

Page 96: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

81�

Figure 4. 14: Seawall along the east of Hideaway Resort.

Figure 4. 15: Exposed tree roots and beach rock in front of Tagaqe Village.

Page 97: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

82�

4.2.7 Nagasau Village, Votualailai Village and Naviti Resort

Figure 4. 16: Coastline categorization from Nagasau Village, to Votualailai Village to Naviti Resort.

The stretch of coastline between Nagasau Village and Votualailai Village is mostly

resilient. The Votualailai Village and Naviti Resort fronts illustrate artificially

prograding coastlines. Despite the prograding coastlines, the Votualailai Village and

Naviti Resort area are subjected to beach erosion. This area is fringed by a narrow

reef flat which is interrupted by 3 channels. The two wider channels are located

opposite river systems on the eastern ends of Tagaqe Village and Naviti Resort,

while the narrower channel is located on the eastern side of Nagasau Village.

Page 98: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

83�

Observed Coastal Geomorphology of Naviti Resort Area

Naviti Resort has a gently sloping and narrow beach (Fig. 4.31), with a narrow creek

mouth on the eastern end of the resort. The fringing reef system in front of the resort

is interrupted by a wide channel. This channel opens in front of an artificial island in

front of the resort. The artificial island is surrounded by a circular stretch of seawall

and connected to the mainland by a causeway (Fig. 4.32). Another artificial island is

under construction. The resort is separated from the beach front by a continuous

stretch of sea wall. Majority of the beach material is composed of fine to coarse

sands of oceanic origin.

Page 99: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

84�

Figure 4. 17: Narrow stretch of beach in front of the Naviti Resort.

�Figure 4. 18: Artificial Island in front of Naviti Resort; surrounded by a seawall and connected to the mainland by a causeway.

Page 100: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

85�

4.2.8 Votua Village, Korolevu Settlement and Warwick Resort �

Figure 4. 19: Coastline categorization along Vouta Village, Korolevu Settlement and Warwick Resort area.

The stretch of coastline in the Votua Village area is artificially prograding. The

eastern side of Votua Village indicates alternating stretches of artificially prograding

and resilient coastlines. The coastline in front of Korolevu Settlement indicates a

long stretch of artificially prograding coastline with shorter stretches of erosion

hotspot and resilient coastline. The western side of Warwick Resort illustrates an

erosion hotspot and an erosion watch spot. The Warwick Resort front is mostly

resilient; however, there are 3 small land masses in front of the resort indicating an

artificially prograding coastline. The eastern end of Warwick shows resilient

coastlines. All areas indicate beach erosion irrespective of the coastline processes.

The area is fringed by a narrow reef flat interrupted by 3 channels; two wider ones

located opposite Naviti Resort and opposite the river system on the eastern side of

Page 101: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

86�

Korolevu Settlement, and a narrower one located on the eastern side of Votua

Village. Another river system is situated on the western end of Votua Village.

Observed Coastal Geomorphology of the Korolevu Settlement and Warwick Resort

Areas

Both the Korolevu Settlement and Warwick Resort area have gently sloping and

narrow beaches with two small creeks. The fringing reef system in front of Korolevu

Settlement is interrupted by a wide channel. A sloping embankment (sea wall)

separates the western side of Korolevu Village from the beach front (Fig. 4.33).

Similarly, a continuous stretch of seawall separates the Warwick Resort from the

beach front. There are three artificial islands constructed in the shallow lagoon

formed by the fringing reef in front of Warwick Resort. These islands are connected

to the mainland by three causeways. Exposed tree roots and beach rocks are

prominent on the eastern side of Korolevu and the western side of Warwick Resort.

Majority of the beach materials in both study areas are coarse sand, pebbles and

rubbles from both terrestrial and oceanic origin.

Page 102: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

87�

Figure 4. 20: Sloping embankment separating the western side of Korolevu from the beach front.

Page 103: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

88�

4.2.9 Komave Village, Navola Village and Beach House Resort �

Figure 4. 21: Coastline categorization along Komave Village, Navola Village and the Beach House area.

The western side of Komave Village is mostly resilient except for two erosion

hotspots located close to the village. The Komave Village area is dominated by

artificially prograding coastlines, with the eastern side of the village indicating a

resilient coastline. Navola Village front illustrates artificially prograding coastlines.

The Beach House front shows a long stretch of erosion hotspot, with stretches of

resilient coastlines on either side of the eroding spot. Beach erosion is prominent in

the Beach House area. The area is fringed by a narrow reef flat interrupted by 3

narrow channels; located on the west and front of Komave Village and in front of

Navola Village. The map indicates 3 river systems situated on the eastern ends of

Korolevu Settlement and Navola Village, and on the western end of Komave Village.

Page 104: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

89�

Observed Coastal Geomorphology of the Beach House Resort Area

The Beach House area has a gently sloping and narrow beach with one creek mouth

emptying into the shallow lagoon created by the fringing reef system, at the eastern

end of the resort. The fringing reef system is interrupted by two channels, located on

either ends of the resort. A small jetty (constructed in the year 2006) sits on the

western end of Beach House. Exposed tree roots and scarps along the vegetation line

are prominent in front of the resort (Fig. 4.34).

Figure 4. 22: Exposed tree roots (left) and beach scarp (right) in front of the Beach House

Page 105: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

90�

4.2.10 Namatakula Village, Navutulevu Village and Naboutini Villagea �

Figure 4. 23: Coastline categorization along Namatakula Village, Navutulevu Village and Naboutini Village. (Note: the eastern end of Namatakula and Naboutini Villages could not be classified since these sections of historical aerial photographs were missing.) �

The Namatakula Village area indicates naturally prograding coastlines and beach

erosion. The Navutulevu Village shows artificially prograding coastlines with two

short stretches of resilient coastlines between Namatakula and Navutulevu villages.

Prograding coastline is prominent on the western side of Naboutini Village. This area

is fringed by a narrow reef flat interrupted by two channels located opposite river

systems situated on the eastern end of Namatakula Village and on the western end of

Navutulevu Village.

Page 106: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

91�

Observed Coastal Geomorphology of the Namatakula and Navutulevu Village Areas

Namatakula Village has a gently sloping and wide beach with a river on the eastern

end of the village. The river meanders through the beach area, flowing towards the

western end of the village, dividing the beach into two sections, before finally

merging into the sea (Fig. 4.35). Exposed tree roots are evident along the river

meandering through the beach. The fringing reef system in front of the village is

interrupted by a channel situated on the eastern side of the village. Majority of the

beach sediments in both study areas are from fine sand to coarse sand and pebbles

with both terrestrial and oceanic origins.

�Figure 4. 24: River meandering through the beach front of Namatakula Village.

Navutulevu Village has a gently sloping and wide beach with a river system on its

western end. The fringing reef system along the front of the village is interrupted by

a wide channel. Navutulevu Village is separated from the beach front by a stretch of

seawall. Majority of the sediments is from fine to coarse sand with both terrestrial

and oceanic origins.

Page 107: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

92�

4.3 QUANTIFICATION OF ERODING AND PROGRADING COASTLINES

Two approaches have been used to quantify the eroding hotspots and prograding

coastlines along the Coral Coast. Firstly, the eroding and prograding coastlines have

been compared in terms of maximum distance (in meters) eroded and prograded over

the years 1967 to 2002. The rate of erosion and progradation (in meters per year) at

each site has been illustrated by means of line graphs. Secondly, the total areas (in

square meters) eroded and prograded at each site over the years 1967 to 2002 have

been presented using line graphs. The rate of erosion and progradation (in square

meters per year) at each site has been illustrated by means of line graphs.

A Comparison of Eroding and Prograding Coastlines

The maximum distances (in meters) eroded and prograded along the Coral Coast,

have been illustrated by the means of vertical colour coded lines (Fig. 4.25). For the

purpose of a visible comparison of the eroding and prograding distances, each line

has been magnified one hundred times.

Figure 4.25 shows the distribution of eroding and naturally and artificially

prograding coastlines along the Coral Coast. Overall, when compared to eroding

spots, the prograding spots are greater in number and distance (in meters) of change.

Out of the 21 prograding spots, only 2 spots are naturally prograding; at the head of

Sovi Bay (130 ± 3 m) and at Namatakula Village front (30 ± 3 m). The range of

artificially prograding coastlines is from 13 ± 3 m (round about on the east of

Korotongo Village) to 100 ± 3 m (Naviti Resort area) and that of eroding coastlines

is from 14 ± 3 m (west of Vatukarasa River) to 40 ± 3 m (west of Hideaway Resort).

Page 108: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

93�

Figure 4. 25: A comparison of the eroding and prograding coastlines in terms of the maximum distances of change in coastlines over the years 1967 to 2002 for the Coral Coast area.

20�meters

Fig.

4.2

Fig.

4.3

Fig.

4.2

Fig.

4.5

Fig.

4.5

Fig.

4.5

Fig.

4.5

Fig.

4.6

Fig.

4.6

Fig.

4.6

Fig.

4.6

Fig.

4.6

Fig.

4.8

Fig.

4.8

Fig.

4.8

Fig.

4.8

Fig.

4.8

Fig.

4.13

Fi

g. 4.

13

Fig.

4.13

Fig.

4.13

Fi

g. 4.

13

Fig.

4.13

Fig.

4.16

Fig.

4.19

Fig.

4.19

Fi

g. 4.

19

Fig.

4.19

Fig.

4.21

Fi

g. 4.

21

Fig.

4.21

Fi

g. 4.

23

Fig.

4.23

Page 109: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

94�

�Figure 4. 26: Maximum distance of landward movement (m) at each erosion hotspot along the Coral Coast. The erosion spots correspond to the red lines in Fig. 4.25, from west to east.

�Figure 4. 27: Average rate of erosion at each erosion hotspot along the Coral Coast. The erosion spots correspond to the red lines in Fig. 4.25, from west to east.

Page 110: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

95�

�Figure 4. 28: Maximum distance of seaward movement (m) at each progradation spot along the Coral Coast. The progradation spots correspond to the green and blue lines in Fig. 4.25, from west to east.

�Figure 4. 29: Average rate of progradation at each prograding spot along the Coral Coast. The prograding spots correspond to the green and blue lines in Fig. 4.25, from west to east.

Page 111: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

96�

Overall the Coral Coast graphs show more progradation than erosion (Fig. 4.25). For

prograding coastline segments the maximum distance of progradation ranged from

13 ± 3 m (0.37m/yr) to 400 ± 3 m (11.43 m/yr) (Figs. 4.28 and 4.29), while for

eroding coastline segments the maximum distance of erosion ranged from 14 ± 3 m

(0.40 m/yr) to 40 ± 3m (1.14 m/yr) (Fig. 4.26 and 4.27). The upper limits of the

range of coastline change for maximum distance for progradation and erosion, 400 ±

3 m and 40 ± 3m, respectively, indicate that the Coral Coast area is influenced ten

times more by progradation than by erosion.�

Eroding Coastlines

A total of 13 spots along the Coral Coast were identified to be erosion hotspots.

Figure 4.30 illustrates the location of these spots along the Coral Coast. Line graphs

have been used to indicate the rate of erosion over the 35 year period, from 1967 to

2002, at each site. The graphs show the total area eroded in square meters, (Fig. 4.31)

and the rate of erosion in square meters eroded per year, (Fig. 4.32), at each of the 13

sites. The eroding hotspots (13 spots; from west to east) indicated in Figure 4.30

correspond to the erosion quantities in Figures 4.31 and 4.32. For detailed maps of

erosion hotspots at each site refer to Appendix 1.

Page 112: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

97�

Figure 4. 30: Map illustrating 13 erosion hotspots identified from the comparison of historical aerial photographs (1967) and IKONOS satellite images (2002) along the Coral Coast.

Appendix 1.1

Appendix 1.2

Appendix 1.3

Appendix 1.4

Appendix 1.5

Appendix 1.6Appendix 1.7

Appendix 1.8

Appendix 1.9

Page 113: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

98�

Figure 4. 31: The area eroded at each of the 13 spots identified as erosion hotspots (Fig. 4.17) over a 35 year period, from 1967 to 2002. Each area reading has an error margin of ± 6m2 (Section 3.3.4, Chapter 3).

Figure 4. 32: Average rate of erosion at each of the 13 spots identified as erosion hotspots (Fig. 4.17) over a 35 year period, from 1967 to 2002. Each rate of erosion reading has an error margin of ± 6m2 (Section 3.3.4, Chapter 3).

Page 114: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

99�

The line graphs (Figs. 4.31 and 4.32) illustrate relatively high erosion levels in spots

1 (Yadua Village area), 2 (Sigatoka River area) and 6 (Vatukarasa Village area).

Over a period of 35 years (1967 to 2002), these spots indicate erosion levels of more

than 11 000m2 (314m2/yr); with the maximum level of erosion to be 21 487 m2 (614

m2/yr), in the Yadua Village area. Spots 8 (Tambua Sands area), 9 (Tagaqe Village

area) and 13 (Beach House area) with eroding area values between 5 214m2 (149

m2/yr) and 6 086m2 (174 m2/yr), indicate moderate erosion levels over the years

1967 to 2002. The erosion levels, over the 35 year period, in all other eroding spots

are low; falling between the interval 840m2 (24 m2/yr) – 2 116 m2 (60 m2/yr).�

Prograding Coastlines

Altogether, there were 21 spots identified to be prograding coastlines. Figure 4.33

indicates the location of these spots along the Coral Coast. The prograding coastline

data has been analyzed in a similar manner as the erosion hotspots data. Line graphs

have been used to indicate the rate of progradation over the 35 year period, from

1967 to 2002, at each site. The graphs below show the total area prograded in square

meters, (Fig. 4.34) and the rate of progradation in square meters prograded per year,

(Fig. 4.35), at each of the 21 sites. The prograding area (21 spots; from west to east)

indicated in Figure 4.33 corresponds to the progradation quantities in Figures 4.34

and 4.35. For detailed maps of prograding coastlines at each site refer to Appendix 2.

Page 115: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

100�

Figure 4. 33: Map illustrating 21 prograding spots identified from the comparison of historical aerial photographs (1967) and IKONOS satellite images (2002) along the Coral Coast.�

Appendix 2.1 Appendix 2.2

Appendix 2.3

Appendix 2.4

Appendix 2.5

Appendix 2.6

Appendix 2.7

Appendix 2.8

Appendix 2.9

Appendix 2.10

Appendix 2.11

Appendix 2.12

Appendix 2.13

Appendix 2.14

Page 116: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

101�

�Figure 4. 34: The area prograded at each of the 21 spots identified as prograding spots (Fig. 4.20) over a 35 year period, from 1967 to 2002. Each area reading has an error margin of ± 6m2(Section 3.3.4, Chapter 3).

�Figure 4. 35: Average rate of progradation at each of the 21 spots identified as prograding spots (Fig. 4.20) over a 35 year period, from 1967 to 2002. Each rate of progradation reading has an error margin of ± 6m2(Section 3.3.4, Chapter 3).

Page 117: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

102�

Significantly high progradation levels are evident in spots 1 (Fijian Resort area), 3

(Sigatoka River area), 10 (Sovi Bay area), 16 (Naviti Resort area) and 21

(Navutulevu and Naboutini Village areas) (Figs. 4.34 and 4.35). The line graphs

indicate that over the years 1967 to 2002, the progradation levels in these areas are

greater than 24 000m2 (686m2/yr). The highest progradation level is apparent in spot

1 (Fijian Resort area); with a progradation area of 97 285m2 (Fig. 4.34) and a

progradation rate of 2 780m2/yr (Fig. 4.35). All other areas indicate lower

progradation levels; with all the progradation values lying between 1 564m2

(45m2/yr) and 18 349m2 (524m2/yr).

Page 118: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

103�

4.5 SUMMARY

This chapter was aimed at presenting the outcomes of the comparison of historical

aerial photographs and satellite images to analyze temporal coastline changes along

the Coral Coast. The coastline categorization from field investigation and the desktop

study of 1967 aerial photographs and 2002 IKONOS satellite images revealed there

to be no coherent coastline change patterns. However, a slight pattern is evident; the

far west (Fijian Resort area) and the far east (Naboutini Village area) sides of the

study area generally indicate resilient and prograding coastlines. Along the coastline

in the central region it was found that stretches of prograding coastlines alternate

with resilient and eroding coastlines. There were only two areas with naturally

prograding coastlines; the head of Sovi Bay and Namatakula Village areas and most

of the regions along the Coral Coast were found to be subjected to beach erosion.

Attempts were made to quantify the erosion and progradation levels in three different

ways; calculation of the maximum distance of erosion and progradation in meters,

the total area eroded in square meters and the rate of coastline change in square meter

per year. The maximum distance of erosion at the various sites along the Coral Coast

ranged from 14 ± 3m (0.40 m/yr) to 40 ± 3m (1.14 m/yr), while the maximum

distance of progradation ranged from 13 ± 3m (0.37 m/yr) to 400 ± 3m (11.43 m/yr).

The total area of erosion ranged from 840 ± 6m2 to 21 487 ±6 m2 and the total area of

progradation ranged from 1 564 ± 6m2 to 97 285 ±6 m2. The rate of erosion ranged

from 24 ± 6m2/yr to 614 ± 6 m2/yr and the rate of progradation ranged from 45 ±

6m2/yr to 2 780 ± 6m2/yr.

The Coral Coast area is fringed by a narrow stretch of fringing reef system which is

interrupted by numerous reef passages. The Coral Coast waters are subjected to

northwest currents which are set up by the dominant southeast trade winds. Overall,

progradation is the dominant process in most of the areas along the Coral Coast.

However, site specific observations reveal that the dominant coastal process at any

given area is seen to be specific to that area, with respect to the local characteristics.

Page 119: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

104�

CHAPTER 5 – DISCUSSION AND CONCLUSION

5.1 INTRODUCTION

The findings from the previous chapter (Chapter 5) are discussed in this chapter. This

chapter restates the principal objectives outlined in Chapter 1, discussing the range of

coastline changes along the Coral Coast, coastline. It evaluates the various coastal

processes evident along the Coral Coast, determined from the comparison of the

1967 aerial photographs and the 2002 IKONOS satellite images. The state of the

Coral Coast coastline is further discussed by assessing the results from field

investigations. The chapter moves on to reflect on the implications and

recommendations of the study and finally draws conclusions on the findings of the

research.

5.2 DISCUSSION OF THESIS FINDINGS

5.2.1 Coastline Changes

The objectives of section 5.2.1 are to identify and classify the coastline along the

Coral Coast, under the categories erosion hotspot, erosion watch spot, resilient

coastline and prograding coastline; artificial and natural progradation and to quantify

the range of change for coastline segments identified as eroding and prograding

coastlines. This was achieved by evaluating the temporal coastline change along the

Coral Coast by comparison of 1967 aerial photographs and 2002 IKONOS satellite

images and field investigation.

Page 120: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

105�

5.2.1.1 Overall Coastline Changes

Based on the digitized coastline of the Coral Coast, the total distance of the coastline

studied was 57.7 km; out of which 28.1 km was resilient, 12.7 km was artificially

prograding, 7.8 km was naturally prograding, 5.1 km was identified as erosion

hotspot and 4.0 km was identified as erosion watchspot. Visual inspections during

field investigations and historical aerial photographs and satellite image analyses

revealed long stretches of resilient and artificially prograding coastlines to be caused

by coastal engineered structures (seawalls and groynes). Seawalls and groynes halt

the retreat of the coastal areas; usually the area placed behind these structures (Bird,

2005, Charlier, 2005 and Gillie, 1997).

All coastal regions investigated with artificially prograding and resilient coastlines

showed signs of beach erosion (Figs. 4.2–4.3, 4.6, 4.13, 4.15–4.16, 4.19, 4.21, 4.22,

and 4.23). The artificially prograding and most of the resilient coastlines possess

vertical seawalls, built parallel to the beach. The seawalls do not have any armor

protection or wave dissipation blocks near and in front of their toes (Figs. 4.4, 4.7,

4.11, 4.14, 4.17–4.18 and 4.20). Hence, the incoming high energy waves are not

dissipated and cause scouring to the bottom at the toe of the seawall (Hsu, 2005). In

addition, the increased water turbulence at the seawall prevents sediment deposition

along the beach during swell conditions (Dingler, 2005). Furthermore, the seawall

may have reduced or completely blocked the upcoast sediment supply sources (Bird,

2005). This caused the land behind the seawall structures to prograde, while the

beaches in front of it eroded, (other causes of beach erosion are presented in Table

2.4). Continuous beach erosion along the Coral Coast has resulted in loss of high and

wide beaches. Over time, continuous direct impact of waves on seawalls would

damage the seawalls as well (Dingler, 2005).

Contrary to the prediction that the Coral Coast coastal zone would have overall

eroding coastlines, results from the desktop analyses and the ground truthing exercise

indicate the Coral Coast coastlines to be mostly influenced by prograding processes.

Page 121: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

106�

In total, there were 21 prograding stretches of coastline (Figs. 4.25, 4.33) and 13

eroding stretches of coastline (Figs. 4.25, 4.30) along the Coral Coast shoreline. The

slight pattern that the far west (Fijian Resort area) and the far east (Naboutini Village

area) sides of the study areas are resilient and prograding, while the central region

has stretches of prograding coastlines alternating with resilient and eroding coastlines

(Fig. 4.25), may be due to the different wave environments influencing these areas

The resilient and prograding coastlines at the far west and east of the study site may

be a result of sediment supplements from the various sources in these areas. The

sediments may have been transported to the coastlines by rivers, materials derived

from nearby cliff and outcrop erosion, washed from the sea floor and/or from

artificial beach nourishment by seaside resorts (Bird, 2008). Furthermore, the

fringing reef system is a source of oceanic sediments for the beaches in this area

(Nunn, 2005). There is also terrestrial sediment supplement by the Naevuevu River

in the far west of the region. Consequently, the coastlines in the far west and east of

the study area are mostly resilient and/ or prograding.

The prediction that erosion spots would be prominent opposite the channel entrance,

for reef flats which were dissected by channels, appears to be incorrect. There are a

number of spots along the Coral Coast situated opposite channels influenced by

erosion processes; including Yadua (Fig. 4.3), Korotongo (Fig. 4.6), Tagaqe (Fig.

4.16) and Vatukarasa (Fig. 4.8) Villages, Korolevu Settlement (Fig. 4.19), east of

Tambua Sands (Fig. 4.13) and Tabakula (Fig. 4.6) Resorts and Beach House (Fig.

4.21). However, there are numerous spots along the Coral Coast situated opposite

channels with no apparent signs of erosion processes; including Naevuevu (Fig. 4.2),

Votua (Fig. 4.19), Komave (Fig. 4.21), Navola (Fig. 4.21), Namatakula (fig. 4.23)

and Navutulevu (Fig. 4.23) Villages, Naviti Resort (Fig. 4.16) and Sovi Bay area

(Fig. 4.8). It is impossible to conclude that these areas are naturally not affected by

erosion since most of these areas, except for Sovi Bay and Namatakula Village, are

armoured by sea walls.

Page 122: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

107�

�Figure 5. 1: An illustration of the level of erosion (in m2) along the coastlines of the Coral Coast with and without reef barriers; the level of erosion is related to the presence and absence of shoreline armor in each case.

Page 123: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

108�

Out of the 13 spots identified as coastal erosion hotspots only 3 lie within regions

with reef barriers. The number of erosion hotspots for both armored and unarmored

coastlines are approximately the same. For regions with no reef barriers there are 5

erosion hotspots along armored coastlines and 5 along unarmored coastlines. For

regions with reef barriers there is 1 erosion hotspot along armored coastlines and 2

along unarmored coastlines. However, the level of erosion is higher along unarmored

coastlines for both regions with reef barriers and without reef barriers (Fig. 5.1).

The above graph (Fig. 5.1) indicates that the coastline stretches with no reef barriers

are subjected to more erosion processes than the coastline stretches with reef barriers.

High erosion levels are prominent along areas with no reef barriers and no shoreline

armors. High energy waves can cause erosion and deposition well above the highest

tides (Bird, 2008). It appears that in this case coastline stretches with no reef barriers

are exposed to high energy waves which cause erosion. In addition, there are no

artificial barriers to sustain the wave actions in areas without shoreline armor, hence,

these places are subjected to high erosion levels. The increased momentum in the

waves may be caused by the dominant southeast tradewinds, storms and cyclones

during the cyclone season, and fluctuations in wind patterns due to ENSO (El Niño

Southern Oscillation) events (Sallenger Jr. et al. 2002; Smith and Jackson 1990;

Terry 2007).

5.2.1.2 Coastline Categorization

The coastlines along the Coral Coast area were either straight over a large length or

curved in plan separated by headlands, natural and/ or man-made. However, except

for the prominent headland-bay coasts in the Sovi Bay and Vatukarasa area (Fig.

4.8), the Coral Coast area mostly had straight coastlines over large lengths.

Compared with their straight counterparts, curved beaches are more stable (Hsu,

2005).

Page 124: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

109�

Eroding Coastlines

A number of areas along the Coral Coast are subjected to erosion processes. A total

of 13 spots along the Coral Coast have been identified as coastal erosion hotspots

including Yadua Village (Fig. 4.3), Sigatoka River (Fig. 4.5), East of Vatukarasa

Village (Fig. 4.8), West of Vatukarasa Village (Fig. 4.8), adjacent to Tambua Sands

Resort (Fig. 4.13), East of Tambua Sands Resort (Fig. 4.13), Tagaqe Village (Fig.

4.13), Beach House Resort (Fig. 4.21), Korotongo Village (Fig. 4.5), Tabakula

Resort (Fig. 4.6), , Korolevu Settlement (Fig. 4.19), Warwick Resort (Fig. 4.19) and

Komave Village (Fig. 4.21). There are numerous other regions along the Coral Coast

which have been identified as erosion watch spots. These areas have lost less than 20

m2 of land area over a 35 year period (1967 to 2002).

The eroding regions along the Coral Coast loose more sediment alongshore and

offshore than they receive from the various sources (Table. 2.2; Bird, 2008). There

may be a number of natural and human-induced causes of coastline erosion along the

Coral Coast area (Section 2.5.1 and 2.5.2). The natural causes may include

fluctuations in wave directions due to changes and/or cycles in long-term weather

patterns (Gillie, 1997), sea level rise (Primo, 1997), tropical cyclones and storm

surges (Smith and Jackson, 1990), and tsunamis (Segar, 1998). Beach profile

changes in the South Pacific countries have a significant association with wave

directions related with ENSO (El Niño Southern Oscillation) events (Sallenger Jr. et

al., 2002). According to the SEAFRAME (Sea Level Fine Resolution Acoustic

Measuring Equipment) gauge, the sea-level in Fiji is calculated to be rising at a rate

of 2.9mm/year (Gray, 2009). Fiji experiences tropical cyclones and associated

depressions that approach from a range of directions between the months November

to April (Fiji Meteorological Services, 2008). The common human-induced causes of

coastal erosion in the South Pacific include sand extraction from beaches for

construction and shoreline reclamation purposes (Gillie, 1997), sand trapping

structures such as groynes and other barriers constructed perpendicular to the

shorelines (Maragos, 1993), and reclamation of shorefront land and the construction

of seawalls (Gillie, 1997). Out of these causes the two prominent human-induced

Page 125: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

110�

causes of coastal erosion along the Coral Coast are groyne (causeways connecting

artificial islands to the mainland (Fig. 4.18)) and reclamation of shorefront land and

sea wall construction (Fig. 4.7, 4.14, 4.17 and 4.20). The causeways linking the

Warwick Resort’s artificial islands to the mainland act as groynes which may be

disrupting the longshore sediment transport along the coast (Dingler, 2005 and Hsu,

2005). The disruption of the longshore drift causes the shoreline downdrift of the

groynes (coastline stretch between Warwick Resort and Korolevu Settlement) to lose

its sand and retreats (Figs. 4.18 and 4.19).

Artificially Prograding Coastlines

Out of the 21 prograding spots identified along the Coral Coast area, 19 are

artificially prograding. These areas include the West of Fijian Resort (Fig. 4.2), the

East of Fijian Resort (Fig. 4.2),Sigatoka River (Fig. 4.5), Naviti Resort (Fig. 4.16),

Navutulevu – Naboutini (Fig. 4.23), West of Korotongo Village (Fig. 4.5), East of

Korotongo Village (Fig. 4.5), Outrigger Resort (Fig. 4.6), West of Tabakula Resort

(Fig. 4.6), East of Tabakula Resort (Fig. 4.6), Vatukarasa area (Fig. 4.8), Tambua

Sands Resort (Fig. 4.13), Hideaway (Fig. 4.13), Tagaqe Village (Fig. 4.13), Votua

Village (Fig. 4.19), Korolevu Settlement (Fig. 4.19), Komave Village (Fig. 4.21),

Navola Village (Fig. 21).

Progradation is prominent in coastal areas which receive more sediments from

upcoast, alongshore and offshore areas than they lose to the various sediment sinks

(Table 2.3; Komar, 1998; Bird, 2008). A common feature along all artificially

prograding areas is the presence of shoreline armor (Figs. 4.7, 4.12, 4.14, 4.17, 4.18

and 4.20). Shoreline protection structures may have stopped and/or minimized the

retreat of coastal areas behind the armor (Bird, 2005; Charlier, 2005; Goodman et al.,

2008). These structures may have also stopped the upcoast sediment transport from

dispersing into sediment sink zones (Komar, 1998). All of the above mentioned areas

have been fortified by sea walls. The Warwick and Naviti Resorts have causeways,

linking the artificial islands in front of the resorts to the mainland, which act as

Page 126: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

111�

groynes (Fig. 4.18). Groynes may induce progradation in the wind ward side of the

causeway due to reduced wave energy (Goodman et al., 2008). Most of the shoreline

armor, including sea walls and gabion baskets (Figs. 4.7, 4.12, 4.14, 4.17 and 4.20)

and shorefront reclamation along the Coral Coast were constructed in association

with the building of the main highway (Queens Road) which runs along the coastline

along the Coral Coast.

Naturally Prograding Coastlines

Two naturally prograding coastlines were identified along the Coral Coast; in the

Sovi Bay and Namatakula Village areas. The Namatakula Village area has an

upcoast source of sediment supply. The river on the east of the village transports

sediment to the Namatakula area (Komar, 1998).

The head of Sovi Bay was dominated by prograding coastlines (Fig. 4.8). The Sovi

Bay area has a curved planform which is produced by the persistent swell waves

diffracted from the tip of the eastern headland, combined with wave refraction and

nearshore current circulation system in the lee of the headland (logarithmic spiral

beach – Fig. 5.1) (Hsu, 2005 and Moreno, 2005). Since the littoral drift of the

logarithmic spiral beach is being supplied from a river system (upcoast source), this

coastal area is rendered stable but in a dynamic equilibrium (Hsu, 2005).

Page 127: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

112�

Figure 5. 2: Headland bay beaches in dynamic and static equilibrium. Source: Hsu, 2005.

Usually the general retreat of coastlines associated with erosion processes are not

uniform because of variations in rock resistance. The resistant rocks recede slowly

and remain as headlands, stacks and offshore islands. Coastal features associated

with depositional coastlines include spits, bays, lagoons, cuspate foreland, tombolo

formations, and barrier islands (Komar, 1998). Rocky cliffs and headlands are

evident along the southern coast of Viti Levu, while spits, bays, lagoons and barrier

islands are evident along the northern coast of Viti Levu (Google Earth 2006).

Therefore, it can be deduced that the southern coast of Viti Levu is an erosional

coastline while the northern coast of Viti Levu is a depositional coastline.

5.2.2 Quantification of Eroding and Prograding Coastlines

The erosion and progradation levels along the Coral Coast have been quantified by

the comparison of the 1967 aerial photographs and the 2002 IKONOS satellite

images. The level of erosion and progradation over the 35 year interval (1967 to

2002) were quantified using two approaches; (i) the maximum distance eroded and

prograded in meters and (ii) the total area eroded and prograded in square meters.

Page 128: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

113�

The average rates of erosion and progradation for both techniques were calculated

and discussed. Finally, the results obtained from the two approaches were compared.

(i) Maximum Distances Eroded and Prograded in Meters

The comparison of the maximum distance eroded and the maximum distance

prograded revealed the Coral Coast area to be influence more by prograding than by

eroding processes (Fig. 4.25). As mentioned in section 4.2.2, the upper limits for the

maximum distance eroded (40 ± 3 m/ 1.14 m/yr) and prograded (400 ± 3 m/ 11.43

m/yr) indicate the Coral Coast area to be influenced ten times more by progradation

than by erosion (Figs. 4.26 and 4.27).

The maximum eroded distances at specific sites, ranged from 14 ± 3 m (0.4 m/yr) (at

Vatukarasa) to 40 ± 3 m (1.14 m/yr) (at Tagaqe Village), (Figs. 4.25, 4.26 and 4.27).

The lowest erosion rate of 0.4 m/yr along the Coral Coast coastline is higher than the

significantly high erosion rate of 0.3 m/yr along the Maui, Hawaii shorelines

(Fletcher, et al., 2003). Hence, over an interval of 35 years (1967 to 2002), the Coral

Coast shorelines were subjected to high erosion rates.

The maximum prograded distances ranged from 13 ± 3 m (0.37m/yr) (front of

Outrigger Resort) to 400 ± 3m (11.43 m/yr) (west of Fijian Resort), (Figs. 4.25, 4.28

and 4.29). The only prominent pattern in the maximum prograding distances is that

the spit in the east of the Fijian Resort (Appendix 2.1) indicates a much higher

prograded distance (400 ± 3m) than the other spots. However, the maximum

prograding distances in all other sites lie in a shorter distance bracket of 13 ± 3 m to

130 ± 3 m and do not show any coherent prograding patterns (Fig. 4.28). The

absence of any prograding patterns in these areas may be because; except for the

Sovi Bay and Namatakula Village areas, all other areas are subjected to artificial

progradation associated with shoreline armors.

Page 129: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

114�

(ii) Total Areas Eroded and Prograded in Square Meters

Most studies related to shoreline change quantify the rate of coastline change in

meters per year. For instance an average rate of shoreline change of 0.3 m/yr along

the Maui, Hawaii, shoreline (Fletcher, et al., 2003), shoreline change rate of 4.75

m/yr along the Bay of Bengal in eastern India (Maiti and Bhattacharya, 2008), and

0.07 – 0.15 m/yr coastline change along the central shores of the Monterey Bay

(Moore and Griggs, 2002). However, in addition to representing the rate of coastline

changes in meters per year, this research attempts to quantify the coastline rate of

change in square meter per year. This technique of erosion and progradation

quantification was applied to gauge entire areas influenced by erosion and

progradation processes instead of only considering the maximum distance of

landward and seaward movement of the coastlines.

As with the maximum distances eroded and prograded, there are no coherent patterns

observed among the various eroded and prograded areas along the Coral Coast. The

total areas eroded ranged from 840 ± 6 m2 (Komave Village area) to 21 487 ± 6 m2

(Yadua Village area), (Figs. 4.30 and 4.31). The 13 erosion hotspots and the 21

prograding spots identified along the Coral Coast were divided into high, moderate

and low levels for eroding spots, (Table 5.1) and high and moderate levels for

prograding spots (Table 5.2).

Page 130: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

115�

Table 5. 1: Division of erosion hotspots into high, moderate and low level clusters. The numbers in brackets correspond to the sites in Figure 4.30.

Levels Erosion Clusters (m2)

Erosion Spots and Areas

High > 11 000 Yadua Village (1), Sigatoka River (2), Vatukarasa Village (6)

Moderate 5 214 – 6 086 Tambua Sands Resort (8), Tagaqe Village (9), Beach House Resort (13)

Low 840 – 2 116 Korotongo Village (3), Tabakula Resort (4), Vatukarasa Village (5), Tambua Sands Resort (7), Korolevu Settlement (10), Warwick Resort (11), Komave Village (12)

Table 5.1 indicates the division of erosion hotspots into high, moderate and low

levels. The different levels have been determined from the rough erosion clusters

evident in Figure 4.31. The erosion clusters for the three different levels of erosion

have been calculated for an interval of 35 years, over the years 1967 and 2002 and

have an error margin of ± 6m2 (Section 3.3.4). Although the total eroding areas per

site have been classed as high, moderate and low levels, these erosion levels are

relatively high. The erosion quantities determined by this research indicate the Coral

Coast area to be influenced by relatively high erosion processes.

Page 131: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

116�

Table 5. 2: Division of prograding spots into high and moderate level clusters. The numbers in brackets correspond to the sites in Figure 4.33.

ProgradationClusters (m2)

Progradation Spots

High > 24 000 Fijian Resort (1), Sigatoka River (3), Sovi Bay (10), Naviti Resort (16), Namatakula – Naboutini (21)

Moderate 1 564 – 18 349 Fijian Resort (2), Korotongo Village (4,5), Outrigger Resort (6), Tabakula Resort (7,8), Vatukarasa (9,11,12), Tambua Sands Resort (13), Hideaway (14), Tagaqe Village (15), Votua Village (17), Korolevu Settlement (18), Komave Village (19), Navola Village (20)

Table 5.2 indicates the division of prograding spots into high and moderate levels.

The different levels have been determined from the rough progradation clusters

evident in Figure 4.34. The progradation clusters for the two progradation levels

have been calculated for an interval of 35 years, over the years 1967 and 2002 and

have an error margin of ± 6m2 (Section 3.3.4). Except for Namatakula Village and

Sovi Bay area, all other areas have artificially prograding coastlines. Although the

total prograding areas per site have been classed as high and moderate, these

progradation levels are relatively higher than the erosion levels (Table 5.1). Overall,

the total prograding area was 363 300 m2 out of which 297 712 m2 was artificial

progradation and 65 588 m2 was natural progradation, while, the total eroding area

was 76 673 m2. Therefore, the artificial progradation quantity determined by this

research indicate the Coral Coast area is more influenced by artificial progradation

than by natural progradation and erosion.

Page 132: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

117�

Rates of Erosion and Progradation

The rate of erosion and progradation values (Figs. 4.27, 4.29, 4.32 and 4.35) at each

site (Figs. 4.30 and 4.33) indicate the same properties as shown by the corresponding

maximum eroding and prograding distances in (i) and the total areas eroded and

prograded in (ii) above. In order to calculate the rate of erosion per year, the

maximum distance and total area at each site has been divided by the same constant,

that is, 35; the interval from 1967 to 2002. The rate of erosion and progradation

(m2/yr and m/yr) can be used to gauge the average distance and area eroded and

prograded per year over the years 1967 to 2002. However, these rates have been

determined using the end-point-rate method (Sections 2.2 and 3.2.3), where two

representative shorelines, the earliest (1967) and the most recent (2002), have been

used to calculate the amount of shoreline movement. Hence, it does not take into

consideration erosion and progradation caused by acute events such as cyclones and

storms (Crowell et al., 2005). In order to obtain more accurate data which could be

used in future coastline prediction, it would be appropriate to use the linear

regression method of determining the rate of change (Section 2.2). This method

considers shorelines from shorter time intervals, leaving out the post-storm shoreline

data. Thus, the rate of coastline change attained from this method would be in

reasonable agreement with the actual physical situation of long-term coastline

change; excluding short term coastline change episodes such as erosion due to storms

followed by extended periods of recovery (Crowell et al., 2005).

Page 133: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

118�

The Maximum Distances and Total Areas of Erosion and Progradation

Both the maximum distance and total areas of erosion and progradation indicate

higher levels and more numbers of prograding spots along the Coral Coast

shorelines. Although the artificial progradation levels are much higher than the

erosion levels, both the maximum eroding distance and total eroding area indicated

that the Coral Coast area was influenced by significantly high erosion rates. The

quantification of eroding and prograding coastlines indicates the Coral Coast area to

be more influenced by prograding coastlines than by eroding coastlines.

Neither of the quantification techniques show any coherent patterns of erosion and/

or progradation. Hence, the dominant coastal process, whether erosion or

progradation, is site specific and depended on local factors.

5.2.3 Coastal Geomorphology of the Coral Coast

The objective of this section was to observe the general coastal geomorphology

along the Coral Coast. Since the field study of all sites along the Coral Coast was not

feasible, the objective was achieved by field investigation of selected sites (a

combination of resilient, prograding and eroding coastlines) along the Coral Coast

(Fig. 3.5).

The Coral Coast area is fringed by a narrow length of fringing reef system which is

interrupted by numerous reef channels. These channels give entry to waves induced

by the dominant southeast tradewinds (Terry 2007); the major factor manipulating

the various coastal processes and geomorphology of the Coral Coast area. For most

of the year the southeast tradewinds are persistent, however, they tend to be weaker

in the summer season (from November to April), and stronger in the winter (May to

October) (Terry 2007). The dominant current set up by the southeast tradewinds is in

a northwest direction. In addition, the Coral Coast area is influenced by tidal currents

Page 134: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

119�

set up by the semidiurnal-micro tidal system; two highs and two lows per day,

(Segar, 1998).

Most of the study sites had beach sediments from both, terrestrial and oceanic

origins, with majority of the sediments in the coarse sand to rubble range. Finer

sediments were observed close to the vegetation line (Figs. 4.4, 4.17 and 4.18).

Coarse sediments are a characteristic of coastal environments influenced by high

energy waves (Inman and Jenkins, 2005). The channels along the Coral Coast area

are inlets to high energy waves that do not dissipate before reaching the shorelines.

The high energy waves are able to transport coarse sediments to the beaches. The

Hideaway (Fig. 4.12) and Naviti (Fig. 4.15) resorts had fine to coarse grade

sediments along the beaches. Since, the fringing reef system in front of these resort

areas are relatively narrow and there are channels providing an entrance to high

energy waves, these areas were expected to have coarse sediments. However, both

the resorts provide beach nourishments to the beach area, hence, the prominent finer

grade sediments. The Sovi Bay (Fig. 4.9) and Namatakula Village (Fig.4.22) areas

have fine beach sediments. The Sovi Bay area has fine sediment supplements from

an upcoast river source which are distributed in the bay area (section 5.2.1.2). The

Namatakula area has a river meandering through the beach in front of Namatakula

Village (Fig. 4.24). The river deposits fine sediments from an upcoast source on the

Namatakula beach.

A number of regions along the Coral Coast have coastline protection structures;

mainly seawalls. Seawalls are a common structure along the coastlines of majority of

the resorts along the Coral Coast area. Resorts with seawall as coastline protection

structures include; Outrigger (Fig. 4.27), Hideaway (Fig. 4.12), Naviti (Fig. 4.15 and

4.17) and Warwick. The Naviti and Warwick resorts also have artificial islands (with

coastline protection structures around the islands) in the fringing reef flat area. The

artificial islands are connected to the mainland by causeways which act as groynes.

In the case of Warwick Resort, the groynes act as sediment traps and disrupt the

longshore drift (Hsu, 2005). As a result coastal erosion is evident on the west of the

Page 135: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

120�

resort (Fig. 4.19). Gabion baskets and rip rap (Davis, 2005) structures have been

placed at random coastal stretches along the Coral Coast area to prevent the main

highway (Queens Road) from eroding (Fig. 4.11).

In many countries around the world, human intervention in and interception of

sediment supply have been considered two of the most detrimental factors causing

beach erosion (Hsu, 2005). The interference in sediment supply to the Coral Coast

beaches by seawalls was one of the major causes of beach erosion in this area.

Almost all beaches affected by erosion (Figs. 4.3, 4.6, 4.8, 4.13, 4.14, 4.16, 4.19,

4.20, and 4.21) have two major erosion indicators; exposed tree roots and beach

rocks. All beach erosion sites had exposed tree roots which are considered to be one

to the major indication of severe beach erosion (Anthony, 2005). Numerous beach

rocks were exhumed at various sites along the Coral Coast as indications of beach

erosion (Turner, 2005). The Tagaqe (Fig. 4.14) and Vatukarasa areas had

significantly high areas of exposed beachrock, while the Tambua Sands and

Korolevu areas had lower areas of exposed beachrocks. However, the beach rocks

may be fossils exposed by the late Holocene sea level fall (Pirazzoli, 2005).

All the study sites had gently sloping narrow beaches except for the Vatukarasa (Fig.

4.10) and Namatakula areas. Despite showing a high number of beach erosion

indicators, the Vatukarasa area had a significantly wide and steep beach (Fig. 4.10).

This may be because the length of rocky outcrops dipping seaward in front of the

Vatukarasa area act as wave breakers. The steepness of the beach also helps to break

the waves (Hsu, 2005), hence, the resilient coastline in front of the Vatukarasa

Village (Fig. 4.8). The Namatakula area has a gently sloping and wide beach. The

wide beach is as a result of low wave energy environment due to a wider fringing

reef flat and the sheltering effect by the wide fringing reef flats in the eastern side of

the village (Fig. 5.2).

Page 136: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

121�

5.3 RECOMMENDATIONS AND IMPLICATIONS

5.3.1 Recommendations

Generally, there are three monitoring techniques which can be applied to coastline

change studies; remote sensing methods, in situ instruments and sampling methods

(Morang and Gorman, 2005). For the purpose of this research, the first type of

monitoring technique (remote sensing methods) was used to examine coastline

changes along the Coral Coast. In relation to this technique, it may be relevant to

base future studies on both short-term and long-term coastline changes. Examination

of shorter yearly intervals would take into account the effect of sudden acute events,

such as storms and cyclones, on coastlines. Refined coastline data may be achieved if

this research technique is coupled with in situ instruments and sampling methods

techniques.

In addition, this research has been conducted along a narrow fringing reef flat. Future

studies can be concentrated on both coastlines with wide and narrow reef flats. It

may be useful to look at the coastlines adjacent to both the west and east ends of the

study site (Fig. 1.2). In future it may be useful to investigate the orientation of the

reef systems and the island (Viti Levu) in relation to the dominant southeast

tradewinds and the sheltering effect of the Beqa lagoon on the east end of the study

site.

This research indicates the Coral Coast coastlines to be affected by high rates of

erosion processes (Figs. 4.25 – 4.27, 4.30 – 4.32). Considering the identified erosion

hotspots along the Coral Coast, the villages which require urgent attention in terms

of coastal protection include Yadua, Vatukarasa, and Tagaqe villages and the east

end of Korolevu Settlement. Korotongo and Namada villages may require coastal

protection structures later. The significance of coastal erosion has only been

identified at places where it has threatened populations, infrastructure and

development. In addition, there is limited knowledge on prograding coastlines.

Page 137: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

122�

Hence, in future, it may be useful to locate and assess coastlines associated with

progradation together with eroding coastlines.

In comparison to eroding coastlines, there are a lot more areas affected with high

rates of progradation (Figs. 4.25, 4.28 – 4.29, 4.33, 4.34 – 4.35). Most of the

progradation is caused by coastline protection structures and associated land

reclamation. Hence, hard defense structures, such as seawalls and groynes, can be

used as a response to erosion processes affecting the coastlines along the Coral

Coast. In order to compensate for the beach loss caused by the construction of

coastline protection structures (Dingler, 2005), artificial beach nourishment could be

provided (Charlier, 2005). This approach to sustain beaches around the globe has

been used since the 1920s. However, it is not an inexpensive operation to undertake

since beaches would require regular additions of sand. In addition, storm events

could transport major parts of the artificial deposit back to the sea (Charlier, 2005).

Another approach that can be taken to overcome land loss due to coastline retreat is

the headland-control concept of shore protection (Moreno, 2005). First proposed by

Silvester (1976), the headland control concept of shoreline protection was described

as “a combination of groynes and breakwaters at along-shore and seaward spacing

such to create long lengths of equilibrium-bay beaches” (Fig. 5.1) (Silvester and Hsu,

1993). Best applied in sediment deficient areas, headland beaches compartmentalize

the coastline and reorient it in the local compartments to be parallel to the wave

crests of the predominant wave direction. Headland beaches would become unstable

or be destroyed if there is substantial change in annual wave directions and if there is

no tombolo formation behind the anchoring headland (this would result in sediment

movement to adjacent compartments). The major characteristic of headland beaches

is the creation of pocket beaches, where there is no communication of sand

alongshore (Moreno, 2005). Thus, headland beaches create complete barriers to the

longshore drift, and can only be considered a means of coastline protection if the

adjacent beaches are not threatened by sediment deficiency problems. The headland-

control concept is considered to be appropriate if the design goal is to stabilize a

regional extent by multiple pocket beaches (Moreno, 2005). Hence, in future it may

Page 138: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

123�

be useful to compare differently oriented coastlines; straight coastlines and pocket

beaches.

Finally, the results from this research could be used as a baseline for future studies

involving historical shoreline examinations for shoreline forecasts; which would aid

in coastal land-use plans. Usually, the average annual erosion rate (AAER)

multiplied by a specific number of years (commonly 30 and 60 years) are used to

decide building setbacks of an area (Crowell et al. 2005).

5.3.2 Implications of Thesis Research

The findings from the comparison of historical and modern data can be

communicated to and/ or used by engineers, coastal managers, and policy-makers.

Morang and Gorman (2005) outlined a list of phenomena which can be examined by

the study of historical charts, modern maps, aerial photographs, and LIDAR or

topographic data. These include:

� “Long- and short-term advance or retreat of the shore. Shoreline change data

are critical for coastal managers tasked with establishing setback lines and

guiding growth in the coastal zone, especially in low areas subject to

flooding.

� The impact of storms, including barrier island breaches, overwash, and

changes in inlets, vegetation, and dunes.

� Human impacts caused by coastal construction, dune destruction, or

dredging.

� Compliance with permits, illegal filling, and dumping.

� Biological conditions of wetlands, estuaries, and barrier islands.

� Susceptibility of urban areas to storm flooding and catastrophic events (e.g.,

hurricanes) by means of storm surge models.”

According to Morang and Gorman (2005), quantitative information can be provided

by volumetric comparisons between the old and modern surveys if historical 3D

Page 139: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

124�

(bathymetric and topographic) data are available. The quantitative information that

can be computed includes:

� “Longshore sediment movement.

� Shoaling or siltation associated with tidal inlets, river mouths, estuaries, and

harbours.

� Sediment changes on ebb and flood shoals and in inlet channels.

� Nearshore bathymetry changes over time.

� Migrations of channel thalwegs.”

Volumetric comparisons are often carried out by coastal engineers to compute

amounts of sediment trapped by structures, examine the growth of shoals in

navigation channels, determine dredging contract payment, and evaluate post-

dredging channel conditions and to monitor the performance of beach nourishment

projects (Morang and Gorman, 2005).

Land-use planning is the primary reason for calculating long-term coastline change

rates. The purpose could range from providing information to property owners to

establishing regulatory setback lines for coastal construction (Crowell, et al., 2005).

Most Pacific Island countries have significant development in the coastal regions; for

example, village settlements and tourist hotels/resorts. Studies such as this can aid

people in making important decisions on coastal development by incorporating

environmental, economical and social factors.

A significant amount of land of many small island countries may be lost due to high

levels of erosion while there may be others who may have an extension of their coast

lines due to accretion. This loss and gain of coastal land plays a significant role in the

coastal ecosystems as well. Coral reefs are one of the major ecosystems affected by

sedimentation problems. Eroded sediments contribute to sediment stress on corals

which has been known to cause drastic decreases in coral species diversity and coral

species percentages (Acevedo et al., 1989).

Most small island countries are developing countries and cannot commit the

necessary resources to prevent coastal land loss in the face of rising sea level

Page 140: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

125�

(Leatherman and Beller-Simms, 1997). Therefore, student oriented researches such

as this, would be a means of complimenting the country’s coastline data sets. One of

the major accomplishments of this research was the deduction that remote sensing

techniques alone can only be useful in identifying general progradation processes.

However, other methods (Section 5.3.1) would need to be incorporated with the

remote sensing technique in order to gauge whether the progradation is natural or

artificial. Moreover, this research identified the naturally prograding areas (Sovi Bay

and Namatakula) along the Coral Coast. Areas of natural progradation are significant

to development strategies.

Page 141: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

126�

5.4 CONCLUSION

Majority of the coastline along the Coral Coast was found to be resilient; straight-line

distance of 28.1 Km. Similar to the artificially prograding coastlines (12.7 Km), field

investigations revealed this resilience to be caused by shoreline protection structures

(seawall and groynes) and associated processes. A stretch of 7.8 Km was identified

to be naturally prograding as a result of upcoast sediment supply. The total erosion

hotspot stretch was 5.1 Km, while the erosion watch spots were distributed over 4.0

km of the coastline. The erosion processes were manipulated by wave actions, which

in turn were induced by the dominant southeast tradewinds.

The level of erosion and progradation along the Coral Coast were quantified in terms

of maximum distance (meters) and area (in square meters) of landward and seaward

movement, respectively. The maximum distance of landward and seaward movement

revealed the Coral Coast area to be affected ten times more by artificial progradation

than by erosion. The total prograding and eroding area technique of quantification

was used to gauge the entire area influenced by progradation and erosion processes

instead of only considering the maximum linear distance of coastline change. Upon

examination of the erosion and progradation area graphs, the level of erosion and

progradation were categorized as high (> 11 000 m2), moderate (5 216 – 6 086 m2),

and low (840 – 2 116 m2), and high (> 24 000 m2), and moderate (1 564 – 18 349

m2), respectively.

The coastline categorization and quantification by comparison of the 1967 aerial

photographs and the 2002 IKONOS satellite images indicate that the Coral Coast

coastline is influenced more by progradation than erosion. However, field

investigation revealed only two areas along the Coral Coast to be naturally

prograding; the head of Sovi Bay and the Namatakula area. The head of Sovi Bay

was in a state of dynamic equilibrium, and supplemented by a continuous supply of

sediment from an upcoast river; hence, the dominance of prograding processes.

Namatakula area on the other hand, has an upcoast river sediment source; therefore a

Page 142: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

127�

prograding coastline. All other prograding and resilient coastlines were influenced by

artificial progradation processes due to fortification by coastline protection

structures; indicating artificial progradation and reclamation. Beach erosion was a

prominent occurrence along the artificially prograding and resilient coastline. It may

have been induced by seawalls interrupting terrestrial sediment supply coupled with

the increased water turbulence at the seawall that may prevent sediment deposition

along the beach during swell conditions.

Most of the eroding hotspots occur along coastlines which do not have any reef

barriers. The number of eroding hotspots is not related to the presence or absence of

shoreline armor. However, the erosion levels are higher in the absence of shoreline

armor and no reef barriers. The high erosion levels may be caused by high energy

waves which impact the coastlines with no reef barriers and shoreline armor. The

presence of seawalls in most places along the Coral Coast indicates that this area is

experiencing high levels of erosion. The only exception may be seaside resorts,

which may have shoreline armors to extend their land area.

Finally, the method of coastline change analyses used in this research was the end-

point-rate method which does not take into consideration the effect of acute events

such as storms, on the state of the coastlines. Hence, it would be appropriate to base

future studies on other methods of shoreline change analyses such as the linear

regression method which takes into account both short- and long-term coastline

changes. The impact of acute events (such as storms and cyclones) can be taken into

consideration if remote sensing monitoring methods are used to examine shorter

yearly interval data sets. For detailed studies of particular areas it may be useful to

couple the remote sensing method with the in situ instruments and sampling methods

techniques.

Page 143: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

128�

REFERENCES

Aalbersberg, B., and Mosley, L. 2003. ‘Nutrient levels in sea and river water along

the ‘Coral Coast’ of Viti Levu, Fiji’, South Pacific Journal of National Science 21:

35-40.

Aalbersberg, B., and Thaman, B. 2003. ‘Progress and lessons learned towards

Integrated Coastal Management (ICM) in Fiji’, Progress Report, Institute of

Applied Science, University of the South Pacific, Suva, Fiji.

Acevedo, R., Morelock, J. and Olivieri, R.A. 1989 ‘Modification of coral reef

zonation by terrigenous sediment stress’, Palaios, 4: 92-100.

Alphan, H., and Yilmaz, K. 2005. ‘Monitoring environmental changes in the

Mediterranean coastal landscape: the case of Cukurova, Turkey’, Springer Science

and Business Media, Environmental Management, 35, 5: 607-619.

Anthony, E. J. 2005. ‘Beach erosion’, In: M. L. Schwartz (ed): Encyclopedia of

Coastal Science, Encyclopedia of Earth Sciences Series, Springer, 140 – 144.

Aung, T. H. 1998. ‘Early results from the South Pacific sea level and climate

monitoring project’, In: J. Terry (ed): Climate and Environmental Change in the

Pacific, The School of Social and Economic Development, University of the South

Pacific, Suva, Fiji.

Basher, R.E. and Zheng, X. 1995. ‘Tropical cyclones in the southwest Pacific: spatial

patterns and relationships to Southern Oscillation and sea surface temperature’,

Journal of Climate, 8, 5: 1249:1260.

Bird, E.C.F. 1985. Coastline changes, Wiley, Chichester.

Bird, E.C.F. 1986. Coastline changes: a global review, Wiley, Chichester.

Bird, E. 2005. ‘Coastline changes’, In: M. L. Schwartz (ed): Encyclopedia of Coastal

Science, Encyclopedia of Earth Sciences Series, Springer, 319 – 323.

Bird, E. 2008 ‘Coastal geomorphology an introduction. Second Edition. Chichester,

John Wiley & Sons Ltd.

Biribo, N. 2008 ‘Analyses of spatial and multi-temporal coastal changes of selected

sites in Tarawa, Kiribati’, The University of the South Pacific, Fiji, Unpublished

Thesis.

Page 144: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

129�

Bricker, O.P. 1971. ‘Beachrock and intertidal cement’, In: O.P. Bricker (ed):

Carbonate Cements, Johns Hopkins Press, Baltimore, MD, 1-3.

Brooks, N., Nicholls, R., and Hall, J. 2006 ‘Sea level rise: coastal impacts and

responses’ Wissenchaftlicher Beirat der Bundesregierung Globale

Umweltueranderungen (WBCN), materialien, Norwich, Berlin.

Brown, I., Jude, S., Koukoulas, S., Nicholls, R., Dickson, M., Walkden, M., and

Jones, A. 2004. ‘Dynamic simulation and visualisation of coastal erosion: past,

present and future’, University of East Anglia, Norwich.

Carter, R.W.G. 1988. ‘Coastal environments – an introduction to the physical,

ecological and cultural systems of coastlines’, Academic Press, London.

Cazenave, A., and Nerem, R.S. 2004. ‘Present-day sea level change: observations

and causes, Review of Geophysics 42.

Charlier, R.H. 2005. ‘History, coastal protection’, In: M. L. Schwartz (ed):

Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, Springer,

526 – 527.

Chrzastowski, M.J. 2005. ‘Beach features’, In: M. L. Schwartz (ed): Encyclopedia of

Coastal Science, Encyclopedia of Earth Sciences Series, Springer, 145 – 147.

Cooke, R.J.S. 1981. ‘Eruptive history of the volcano at Ritter Island’, In: R.W.

Johnson (ed): Cooke-Ravian Volume of Volcanological Papers, Geological Survey

of Papua New Guinea Memoir 10: 115-123.

Cowan, G., and Utanga, A. 1991. ‘The effects of cyclone Sally on Rarotonga, Cook

Islands’, In: Workshop on Coastal Processes in the South Pacific Island Nations,

Lae, Papua New Guinea, SOPAC Technical Report 7.

Cowell, P.J., and Hanslow, D.J. 1999. ‘The shoreface – Handbook of beach and

shoreface morphodynamics’, A.D. Short, New York, John Wiley and Sons Ltd.

Crowell, M. and Leatherman, S.P. 1999. ‘Coastal erosion mapping and

management’, Journal of Coastal Research, Special Issue 28: 196.

Crowell, M., Leatherman, S.P., and Douglas.B. 2005. ‘Erosion: historical analysis

and forecasting’, In: M. L. Schwartz (ed): Encyclopedia of Coastal Science,

Encyclopedia of Earth Sciences Series, Springer, 428 – 432.

Page 145: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

130�

Danitofea, S., and Baines, G. 1991. ‘Cyclone Namu and the north Guadalcanal coast,

Solomon Islands: implications for economic development’, In: Workshop on

Coastal Processes in the South Pacific Island Nations, Lae, Papua New Guinea,

SOPAC Technical Report 7.

Davis, R.A. 2005. ‘Human impact on coasts’, In: M. L. Schwartz (ed): Encyclopedia

of Coastal Science, Encyclopedia of Earth Sciences Series, Springer, 530 – 535.

Dean, R. G. 2005. ‘ Dynamic equilibrium of beaches’, In: M. L. Schwartz (ed):

Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, Springer,

399 – 400.

Diaz, H.F. 2005. ‘El Niño-Southern Oscillation (ENSO)’, In: M. L. Schwartz (ed):

Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, Springer,

403 – 406.

Dingler, J.R. 2005. ‘Beach Processes’, In: M. L. Schwartz (ed): Encyclopedia of

Coastal Science, Encyclopedia of Earth Sciences Series, Springer, 161 – 168.

Donovan, A.D. 2005. ‘Sequence stratigraphy’, In: M. L. Schwartz (ed):

Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, Springer,

860-863.

Durand, F. 1997. ‘Cyclonic risk in Martinique and response to Hurricane Allen’, In:

S. P. Leatherman (ed): Island States at Risk: Global Climate Change, Development

and Population, Journal of Coastal Research, Special Issue: 24, The Coastal

Education and Research Foundation, Inc.

Everingham, I.B. 1987. ‘Tsunamis in Fiji’, Fiji Mineral Resources Department

Report 62: 20.

Fiji Meteorological Services, 2008. ‘List of tropical cyclones affecting the Fiji

Islands between the 1969/70 to 2007/08 seasons’, Information Sheet No. 123.

Fletcher, C., Rooney, J., Mathew, B., Lim, S., and Richmond, B. 2003. ‘Mapping

shoreline change using digital orthophotogrammetry on Maui, Hawaii’, Journal of

Coastal Research, West Palm Beach, Florida, 38: 106-124.

French, P.W. 1997. ‘Coastal and estuarine management’, Routledge, London.

Galgano, F.A., and Leatherman, S.P. 2005. ‘Modes and patterns of shoreline

change’, In: M. L. Schwartz (ed): Encyclopedia of Coastal Science, Encyclopedia

of Earth Sciences Series, Springer, 651 – 655.

Page 146: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

131�

Gibbions, J. 1984. ‘A brief environment history of Fiji I: The situation before human

habitation’, Domodomo (Fiji Museum Quarterly) 2: 23-33.

Gillie, R.D. 1992. ‘Air photo survey South Tarawa, Kiribati’, Coastal and Nearshore

Program, Kiribati Project: Kl.4, SOPAC Technical Secretariat, SOPAC

Miscellaneous Report 136.

Gillie, R. 1993a. ‘Ranadi beach coastal erosion study, Honiara, Guadalcanal,

Solomon Islands’, SOPAC Technical Report 151.

Gillie, R. 1993b. ‘Coastal erosion problems in the Gilbert Islands Group, Republic of

Kiribati: Phase II’, SOPAC Technical Report 167.

Gillie, R. 1997. ‘Causes of coastal erosion in Pacific island nations’, Island states at

risk: global climate change, development and population, Journal of Coastal

Research, Special issue 24.

Goodman, B., Reinharat, E., Dey, H., Boyce, J., Schwarcz, H., Sahoglu, V., Erkanal,

H., and Artzy, M. 2008. ‘Evidence of Holocene marine transgression and shoreline

progradation due to barrier development in Iskele, Bay of Izmir, Turkey’, Journal

of Coastal Research, 24, 5: 1269-1280.

Gourlay, M.R. 1988. ‘Coral cays: products of wave action and geological processes

in a biogenic environment’, In: Proceedings of the Sixth International Coral Reef

Symposium, Townsville, 1988, 491-496.

Gray, V. 2009. ‘South Pacific sea level: a reassessment’, Climate Consultant Report,

Wellington, New Zealand.

Grossman, E.E., Fletcher, C.H., and Richmond, B.M. 1998. ‘The Holocene sea-level

highstand in the equatorial Pacific: analysis of the insular paleosea-level database’,

Coral Reefs, 17: 309-327.

Hannah, J. 1998. ‘Analysis of mean sea level trends in New Zealand from historical

tide data’, Report of the Department of Survey & Land Information 2, Government

of New Zealand, Wellington.

Harper, J.R. 1989. ‘Reconnaissance survey of coastal erosion sites on Abaiang Atoll,

Republic of Kiribati’, SOPAC Technical Report 92.

Heinz Center, 2000. ‘Evaluation of erosion hazards’, Washington, D.C: The H. John

Heinz III Center for Science, Economics, and the Environment.

Page 147: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

132�

Hennecke, W.G. 2004. ‘GIS modelling of sea-level rise induced shoreline changes

inside coastal re-rntrants – two examples from southeastern Australia’, Kluwer

Academic Publishers, Natural Hazards 31: 253 – 276.

Holail, H. and Rashed, M. 1992. ‘Stable isotopic composition of carbonate-cemented

recent beachrock along the Mediterranean and the Red Sea coasts of Egypt’,

Marine Geology, 106: 141-148.

Howorth, R. 1983. ‘Coastal erosion in Kiribati: visit to South Tarawa’, SOPAC

Technical Report 31.

Howorth, R. 1985. ‘Atlas of beach profiles monitored on Betio-Bairiki, Tarawa

Atoll, Kiribati: January 1982 to July 1985’, SOPAC Technical Report 50.

Howorth, R., and Greene, G. 1991. ‘Effects of cyclone Ursula, Carlotta and Uma in

the Port Vila – Mele Bay area, Vanuatu’, In: Workshop on Coastal Processes in

the South Pacific Island Nations, Lae, Papua New Guinea, SOPAC Technical

Report 7.

Hsu, J.R.C. 2005. ‘Engineering application of coastal geomorphology’, In: M. L.

Schwartz (ed): Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences

Series, Springer, 415 – 419.

Hughes, M., and Turner, I. 1999. ‘The beachface – Handbook of beach and shoreface

morphodynamics’, A.D. Short. New York, John Wiley and Sons Ltd.

Inman, D.L., and Jenkins, S.A. 2005. ‘Energy and sediment budgets of the global

coastal zone’, In: M. L. Schwartz (ed): Encyclopedia of Coastal Science,

Encyclopedia of Earth Sciences Series, Springer, 408 – 414.

International Panel for Climate Change, 2007. ‘Climate change 2007: The physical

science basis, Summary for Policymakers, IPCC WGI Fourth Assessment Report.

Johnson, J.W. 1956. ‘Dynamics of nearshore sediment movement’, Bulletin of the

American Society of Petroleum Geologists, 40: 2211-2232.

Johnson, J.W. 1957. ‘The littoral problem at shoreline harbors’, Journal of

Waterways and Harbors Division, American Society of Civil Engineers, 83: 1-37.

Kench, P.S., and Cowell, P.J. 2002. ‘The impacts of sea-level rise on Pacific Islands

– Part 2: A case study of High Island, Viti Levu’, Asia Pacific Journal on

Environment and Development 9(1 & 2): 69-85.

Kleinbuam, D.G. and Kupper, L.L. 1978. ‘Applied regression analysis and other

multivariate methods’, Pacific Grove: Duxbury Press.

Page 148: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

133�

Komar, P.D. 1998. ‘Beach processes and sedimentation’, Second Edition, Prentice

Hall, Inc., Englewood Cliffs, New Jersey.

Koukoulas, S., Nicholls, R.J., Dickson, M.E., Walkden, M., Hall, J.W., Pearson,

S.G., Mokrech, M., and Richard, J. 2006. ‘A GIS tool for analysis and

interpretation of coastal erosion model outputs (SCAPEGIS)’, In: Coastal

Dynamics 2005, Barcelona, Spain, 4-8 Apr 2005. Virginia, USA, American

Society of Civil Engineers.

Leatherman, S.P., and Beller-Simms. N. 1997. ‘Sea-level rise and Small Island

States: an overview’, In: S. P. Leatherman (ed): Island states at risk: global climate

change, development and population, Journal of coastal research, 24: 1-16.

Lomax, A. 2004 ‘A coupled shoreline change and flood modelling approach for

coastal impact assessment Tagaqe; Viti Levu, Fiji’, The University of Auckland,

New Zealand, Unpublished Thesis.

Maharaj, R. J. 2000. ‘Guide for monitoring and evaluating beach erosion and

shoreline dynamics’, Report of a Training Workshop Tarawa, Kiribati, SOPAC

Training Report 84.

Maiti, S., and Bhattacharya, A. 2008. ‘Shoreline change analysis and its application

to prediction: a remote sensing and statistics based approach’, Elsevier B.V.,

Marine Geology, 257: 11-23.

Maragos, J.E. 1993. ‘Impact of coastal construction on coral reefs in the U.S –

Affiliated Pacific Islands’, Coastal Management, 21: 235-269.

Mataki, M., Koshy, K.C., and Lal, M. 2006. ‘Baseline climatology of Viti Levu (Fiji)

and current climatic trends’, Pacific Science, 60: 46-68.

Meyers, J.H. 1987. ‘Marine vadose beachrock cementation by cryptocrystalline

magnesium calcite, Maui, Hawaii, Journal of Sedimentary Petrology, 57: 558-570.

Mimura, N. 1999. ‘Vulnerability of island countries in the South Pacific to sea level

rise and climate change’, Climate Research, 12: 137-143.

Mimura, N., and Nunn, P.D. 1997. ‘Trends of beach erosion and shoreline protection

in rural Fiji’, Journal of Coastal Research, 14: 37-46.

Moore, L.J., and Griggs, 2002. ‘Long-term cliff retreat and erosion hotspots along

the central shores of the Monterey Bay National Marine Sanctuary’, Marine

Geology, 181: 265-283.

Page 149: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

134�

Morang, A., and Gorman, L.T. 2005. ‘Monitoring coastal geomorphology’, In: M. L.

Schwartz (ed): Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences

Series, Springer, 663 – 674.

Mörner, N. 2005. ‘Changing sea levels’, In: M. L. Schwartz (ed): Encyclopedia of

Coastal Science, Encyclopedia of Earth Sciences Series, Springer, 229 – 232.

Moreno, L.J. 2005. ‘Headland-bay beach’, In: M. L. Schwartz (ed): Encyclopedia of

Coastal Science, Encyclopedia of Earth Sciences Series, Springer, 508 – 511.

Neumann, A.C. and McIntyre, I. 1985. ‘Reef response to sea-level rise: keep-up,

catch up or give up’, In: Proceedings of the 5th International Coral Reef Congress,

3: 105-110.

Neumeier, U. 1999. ‘Experimental modelling of beachrock cementation under

microbial influence’, Sedimentary Geology, 126: 35-46.

Norcross, Z.M., Fletcher, C.H., and Merrifield, M. 2002. ‘Annual and interannual

changes on reef-fringed pocket beach: Kailua Bay, Hawaii’, Marine Geology, 190:

553-580.

Nunn, P.D. 1987. ‘Fiji’, In: H. J Walker, (ed): Artificial Structures and Shorelines.

Dordrecht, Kluwer Academic Publishers for International Geographical Union,

Commission on Coastal Environments: 435-442.

Nunn, P.D. 1991. ‘Sea-level changes during the last 6000 years in Fiji, Tonga and

Western Samoa: implications for future coastline development’, In: Workshop on

Coastal Processes in the South Pacific Island Nations, Lae, Papua New Guinea, 1-

8 October 1987, SOPAC Technical Bulletin 7: 79-90.

Nunn, P.D. 1993. ‘Recent sea-level changes in the Pacific with emphasis on the

evidence for recent sea-level rise in Fiji’, In: W. Aalbersberg, P. D. Nunn, and A.

D. Ravuvu, (eds): Climate and agriculture in the Pacific Islands: future

perspectives, Institute of Pacific Studies, The University of the South Pacific,

Suva, 53-57.

Nunn, P.D. 1994. ‘Oceanic Islands’, Oxford: Blackwell.

Nunn, P.D. 1998. ‘Pacific Island landscapes’, Pacific Island Landscapes: landscape

and geological development of southwest Pacific Islands especially Fiji, Samoa

and Tonga – Suva, Fiji: Institute of Pacific Studies, The University of the South

Pacific.

Page 150: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

135�

Nunn, P.D. 2000. ‘Coastal changes over the past 200 years around Ovalau and

Moturiki Islands, Fiji: implications for coastal zone management’, Australian

Geographer, 31: 21-39.

Nunn, P.D. 2002. ‘Human and nonhuman impacts on Pacific Island environments’,

Third Edition, School of Social and Economic Development, The University of the

South Pacific.

Nunn, P.D. 2005. ‘Pacific Ocean Islands, coastal geomorphology’, In: M. L.

Schwartz (ed): Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences

Series, Springer, 754 – 757.

Nunn, P.D. 2007. ‘Holocene sea-level change and human response in Pacific

Islands’, Earth and Environmental Science Transactions of the Royal Society of

Edinburgh, 98: 117-125.

Nunn, P.D., and Mimura, N. 2007. ‘Promoting sustainability on vulnerable island

coasts: a case study smaller Pacific Islands’, Chapter 12: Managing Coastal

Vulnerability, Elsevier Ltd.

Pacific Country Report. 2006. ‘Sea level and climate: their present state, Fiji’,

Australian Agency for International Development (AusAID).

Pirazzoli, P.A. 1978. ‘High stands of Holocene sea levels in the northwest Pacific’,

Quaternary Research 10: 1-29.

Pirazzoli, P.A. 1986. ‘Secular trends of relative sea level (RSL) changes indicated by

tide-gauge records’, Journal of Coastal Research 1: 1-26.

Pirazzoli, P.A. 2005. ‘Sea-level indicators, geomorphic’, In: M. L. Schwartz (ed):

Encyclopedia of Coastal Science, Encyclopedia of Earth Sciences Series, Springer,

836 – 838.

Pitman, C., Ghung, Q., and Smith, R. 2000. ‘Coastal processes and erosion at Tagaqe

Village, Coral Coast, Fiji Islands’, SOPAC (Pacific Islands Applied Geoscience

Commission), Secretariat, Suva, Unpublished report: 1-59.

Primo, L. H. 1997. ‘Sea-level rise vulnerability of Kosrae, Federated States of

Micronesia and strategies for adaptation’, In: S. P. Leatherman (ed): Island states

at risk: global climate change, development and population, Journal of coastal

research, 24: 107-115.

Page 151: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

136�

Rahiman, T.I.H. and Pettinga, J.R. 2006. ‘The offshore morpho-structure and

tsunami sources of the Viti Levu Seismic Zone, southeast, Viti Levu, Fiji, Marine

Geology, 232, 3-4: 203-225.

Ripper, I., and Moaina, R. 1991. ‘Tsunamis and related effects in the Madang-lae

waters of Papua New Guinea’, In: Workshop on coastal processes in the South

Pacific nations, Lae, Papua New Guinea, SOPAC Technical Secretariat Bulletin 7:

101-105.

Sallenger Jr., A.H., Krabill, W., Brock, J., Swift, R., Manizade, S., and Stockdon, H.

2002. ‘Sea-cliff erosion as a function of beach changes and extreme wave rump

during the 1997-1998 El-Niño’, Marine Geology, 187: 279-297.

Schubert, R., Schellnhuber, H.-J., Buchmann, N., Epiney, A., GrieBhammer, R.,

Kulessa, M., Messner, D., Rahmstorg, S., and Schmid, J. 2006. ‘The future oceans

– warming up, rising high, turning sour’, German Advisory Council on Global

Change (WBGU), Berlin, Special Report.

Sea Grant. 1997. ‘Beach management plan for Maui’, University of Hawaii Sea

Grant Extension Service and County of Maui Planning Department, Sea Grant

Hawaii Publication.

Segar, D.A. 1998. ‘Introduction to ocean sciences’. Wadsworth Publishing

Company, United States of America.

Sheppard, C., Dixon, D.J., Gourlay, M., Sheppard, A. and Payet, R. 2005. ‘Coral

mortality increases wave energy reaching shores protected by reef-flats: examples

from the Seychelles’, Elsevier, Estuarine, Coastal and Shelf Science, 64: 223-234.

Silvester, R., 1976. ‘Headland defense of coasts’, In: Proceedings of the 15th

International Conference on Coastal Engineering, American Society of Civil

Engineers, 2: 1394 – 1406.

Silvester, R., and Hsu, J.R.C. 1993. ‘Coastal stabilization: innovative concepts’,

Englewood Cliffs: Prentice-Hall.

Singh, R. 1991. ‘Tsunamis in Fiji and their effects’, In: Workshop on coastal

processes in the South Pacific nations, Lae, Papua New Guinea, SOPAC Technical

Secretariat, Bulletin 7: 107-120.

Smith, A.W. and Jackson, L.A. 1990. ‘Assessment of the past extent of cyclone

beach erosion’, Journal of Coastal Research, 6, 1: 73-86.

Page 152: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

137�

Stoddart, D.R. and Steers, J.A. 1977. ‘The nature and origin of coral reef islands’, In:

O. A. Jones., R. Endean., (eds), Biology and Geology of Coral Reefs IV, Geology

II, Academic Press: 59-105.

Sundaravadivelu, R., Sivasankaravel, M., RajeshwaraRao, N., and Nagabhushan, N.

2005. ;Coastal erosion studies in Ponicherry using GIS and remote sensing,

American Society of Civil Engineers, 297-305.

Szlafsztein, C., and Sterr, H. 2007. ‘A GIS-based vulnerability assessment of coastal

natural hazards, state of Para, Barzil’, Springer Science and Business Media B.V.,

Journal of Coastal Conservation, 11: 53-66.

Tappin, D.R. 1993. ‘Beach sand resources of Tonga’, British Geological Survey,

Technical Report 93: 31-39.

Tawake, L. 2007. ‘Coastal processes causing beach erosion: a case study of Votua

village on the Coral Coast, Sigatoka, Fiji Islands’, The University of the South

Pacific, Unpublished Thesis.

Taylor, J.C.M. and Illing, L.V. 1969. ‘Holocene intertidal calcium carbonate

cementation, Qatar, Persian Gulf’, Sedimentology, 12: 69-107.

Terry, J.P. 2007. ‘Tropical cyclones – climatology and impacts in the South Pacific’,

Springer Science + Business Media, LLC.

Tokalauvere, L.A. 2007. ‘The application of remote sensing and geographical

information systems to change detection for integrated coastal management’, The

University of the South Pacific, Unpublished Thesis.

Turner, R.J. 2005. ‘Beachrock’, In: M. L. Schwartz (ed): Encyclopedia of Coastal

Science, Encyclopedia of Earth Sciences Series, Springer, 183 – 185.

Wolanski, E. and Pickard, G.L. 1983. ‘Currents and flushing of Britomart reef

lagoon, Great Barrier Reef’, Coral Reefs, 2: 1-8.

Woodroffe, C.D. 2002. ‘Coasts – form, process and evolution’. Cambridge

University Press, United Kingdom.

Woodroffe, C.D. 2008. ‘Reef-island topography and vulnerability of atolls to sea-

level rise’, Global and Planetary Change , 62: 77-96.

Wyrtki, K. 1990. ‘Sea level rise: the facts and the future’, Pacific Science 44: 1-16.

Yasumoto, Y., Uda, T., Matsubara, Y., and Hirano, G. 2007. ‘Beach erosion along

Tottori Coast and comprehensive sediment management’, Special Issue, Journal of

Coastal Research 50: 82-87.

Page 153: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

138�

GLOSSARY LIST

Backwash – downward flow of water on beach face (Dingler, 2005).

Coastline – the vegetation line along the coastal area.

Desktop study – offline coastline analyses using the Geographical Information

Systems (GIS) by means of the ArcGIS software.

Dynamic equilibrium of bay beaches – when the littoral drift is still being supplied

from upcoast and/ or from sources within the bay (Hsu, 2005).

Erosion hotspots – coastal erosion has threatened shoreline development and

infrastructure (Sea Grant, 1997).

Erosion watch spots – coastal environments will soon be threatened if shoreline

erosion trends continue (Sea Grant, 1997).

In situ instruments – monitoring technique whereby instruments are placed in the

media being studied, such as current meters moored in the ocean (Morang and

Gorman, 2005).

Logarithmic spiral beach – a curved or embayed beach developed in the direction

under which it is sheltered by a headland. Its planform is a characteristic of persistent

swell waves diffracted from the tip of a headland, combined with wave refraction

and a nearshore current circulation system in the lee of the headland (Hsu, 2005).

Also known as zeta curved bays, half-heart shaped bays, crenulate shaped beaches,

headland-bay beaches, pocket beaches, and offset coasts (Silvester and Hsu, 1993).

Page 154: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

139�

Prograding shorelines – shoreline is advancing sea-ward; either by sediment

accretion (natural progradation) or by engineered structures such as seawalls

(artificial progradation (Bird, 2005)).

Remote sensing methods – monitoring technique whereby the instruments provide

information about the land and the sea from a distance without being in physical

contact (for instance, aerial photography, laser imaging) (Morang and Gorman,

2005).

Resilient shorelines – no coastal retreat or advancement observed in the time frame

of the image overlays.

Run-up – upward flow of water on beach face (Dingler, 2005).

Sampling methods – monitoring technique whereby devices retrieve a sample of the

material being examined (i.e., water, ice, sediment, biological material) so that the

scientist can conduct more detailed examination in a laboratory ((Morang and

Gorman, 2005).

Static equilibrium of bay beaches – the littoral drift on a bay beach is negligible or

supply from upcoast is nonexistent (Hsu, 2005).

Swash zone – the area on the beach face exposed to the upward (run-up) and

downward (backflow) flow of water (Dingler, 2005).

Temporal coastline changes – changes along a coastline over a time interval.

Tombolo – deposit of unconsolidated material that connects an island to another

island or to the mainland (Sverdrup, 2005).

Page 155: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

140�

Unstable bay beaches – implies potential retreat due to imbalance of sediment input

and output (Hsu, 2005).

Page 156: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

141�

APPENDICES

APPENDIX 1 – Eroding Coastlines

This section represents the details of eroding coastlines areas, analyzed over the

period 1967 to 2002, along the Coral Coast in the form of maps (Appendices. 1.1 –

1.2). The overall map of the Coral Coast area indicating the location of the eroding

sites along the Coral Coast is presented in Figure 4.17. Detailed maps of each

marked area are illustrated in the corresponding appendices shown by arrows.

Each figure indicates the erosion levels as the total area eroded and the maximum

linear distance of erosion over the years 1967 to 2002. The total area eroded at each

site has an error of ± 6 m2 (Section 3.3.4). For more details on each area refer to Figs.

4.17 – 4.19. For details on the maximum linear distance of erosion at particular sites

refer to Figs 4.12 – 4.14.

Page 157: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

142�

Appendix 1. 1: Eroding area on the east of Yadua Village.

Maximum linear distance eroded 30 ± 3 m (0.86 m/yr).

(614m2/yr)21487 m2

Page 158: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

143�

Appendix 1. 2: Eroding area along the Sigatoka River spit and the east of the Sigatoka River spit.

Maximum linear distance eroded along the spit:33 ± 3 m (0.94 m/yr)

Maximum linear distance eroded on east of spit:21 ± 3 m (0.60 m/yr)

(498m2/yr)17446 m2

(29m2/yr)1007 m2

Page 159: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

144�

Appendix 1. 3: Eroding areas on the east of Tabakula Resort.

Maximum linear distance eroded: 20 ± 3 m (0.57 m/yr).

(29m2/yr)1024 m2

Page 160: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

145�

Appendix 1. 4: Eroding area in front of Vatukarasa Village and the east of Vatukarasa Village.

Maximum linear distance eroded in Vatukarasa Village front: 14 ± 3 m (0.40 m/yr)

Maximum linear distance eroded in east of Vatukarasa Village: 38 ± 3 m (1.08 m/yr)

(40m2/yr)1417 m2

(317m2/yr)11081 m2

Page 161: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

146�

Appendix 1. 5: The total area eroded in the east of Tambua Sands Resort.

Maximum linear distance eroded adjacent to Tambua Sands: 40 ± 3 m (1.14 m/yr)

Maximum linear distance eroded in the east of Tambua Sands: 26 ± 3 m (0.74 m/yr)

(53m2/yr)1871 m2 (174m2/yr)

6086 m2

Page 162: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

147�

Appendix 1. 6: The total area eroded in front of Tagaqe Village.

Maximum linear distance eroded in Tagaqe Village front: 32 ± 3 m (0.91 m/yr)

(168m2/yr)5865 m2

Page 163: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

148�

Appendix 1. 7: The total area eroded along Korolevu Settlement and on the west of Warwick Resort.

Maximum linear distance eroded along Korolevu Settlement: 23 ± 3 m (0.66 m/yr)

Maximum linear distance eroded in west of Warwick Resort: 32 ± 3 m (0.91 m/yr)

(35m2/yr)1219 m2

(60m2/yr)2116 m2

Page 164: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

149�

Appendix 1. 8: The total area eroded in the west of Komave Village.

Maximum linear distance eroded in west of Komave Village: 19 ± 3 m (0.54 m/yr)

(24m2/yr)840 m2

Page 165: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

150�

Appendix 1. 9: The total area eroded in the Beach House area.

Maximum linear distance eroded in the Beach House area: 27 ± 3 m (0.77 m/yr)

(149m2/yr)5214 m2

Page 166: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

151�

APPENDIX 2 – Prograding Coastlines

This section represents the details of prograding coastlines areas along the Coral

Coast in the form of maps (Appendices. 2.1 – 2.14). The overall map of the Coral

Coast area indicating the location of the prograding sites along the Coral Coast is

presented in Appendix 2.1. Detailed maps of each marked area are illustrated in the

corresponding appendices shown by arrows.

Each figure indicates the progradation levels as the total area prograded and the

maximum linear distance of progradation over the years 1967 to 2002. The total area

prograded at each site has an error of ± 6 m2 (Section 3.3.4). For further details on

each area refer to Figs. 4.20 – 4.22. For details on the maximum linear distance of

erosion at particular sites refer to Figs 4.12, 4.15 – 4.16.

Page 167: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

152�

�Appendix 2. 1: The total area prograded in the Fijian Resort area.

Maximum linear distance prograded west of Fijian Resort: 400 ± 3 m (11.43 m/yr)

Maximum linear distance prograded east of Fijian Resort: 22 ± 3 m (0.63 m/yr)

(969m2/yr)33921 m2

(325m2/yr)11368 m2

Page 168: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

153�

Appendix 2. 2: The total area prograded along the Sigatoka River spit.

Maximum linear distance prograded at the Sigatoka River spit: 50 ± 3 m (1.43 m/yr)

(702m2/yr)24565 m2

Page 169: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

154�

�Appendix 2. 3: The total area prograded at the Korotongo bridge, Korotongo roundabout and in front of Outrigger Resort.

Maximum linear distance prograded at Korotongo Bridge: 26 ± 3 m (0.74 m/yr)

Maximum linear distance prograded at Korotongo roundabout: 36 ± 3 m (1.03 m/yr

Maximum linear distance prograded at Outrigger Resort: 13 ± 3 m (0.37 m/yr)

(289m2/yr)10112 m2

(116m2/yr)4074 m2

(69m2/yr)2416 m2

Page 170: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

155�

�Appendix 2. 4: The total area prograded in the east of Tabakula Resort.

Maximum linear distance prograded east of Tabakula Resort: 21 ± 3 m (0.6 m/yr)

Maximum linear distance prograded east of the river: 16 ± 3 m (0.46 m/yr)

(118m2/yr)4122 m2

(156m2/yr)5471 m2

Page 171: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

156�

�Appendix 2. 5: The total area prograded in the west and at the head of Sovi Bay.

Maximum linear distance prograded west of Sovi Bay: 22 ± 3 m (0.63 m/yr)

Maximum linear distance prograded; head of Sovi Bay: 130 ± 3 m (3.71 m/yr)

(132m2/yr)4611 m2

(1540m2/yr)53884 m2

Page 172: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

157�

Appendix 2. 6: The total area prograded at the east and near the Vatukarasa Village.

Maximum linear distance prograded at Vatukarasa Village: 67± 3 m (1.91 m/yr)

Maximum linear distance prograded east of Vatukarasa Village: 20 ± 3 m (0.57

m/yr)

(125m2/yr)4372 m2 (143m2/yr)

4994 m2

Page 173: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

158�

�Appendix 2. 7: The total area prograded in the east of Tambua Sands Resort.

Maximum linear distance prograded east of Tambua Sands Resort: 20± 3 m (0.57

m/yr)

(143m2/yr)4989 m2

Page 174: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

159�

�Appendix 2. 8: The total area prograded at the Hideaway Resort and the east of Tagaqe Village.

Maximum linear distance prograded at Hideaway Resort: 23 ± 3 m (0.66 m/yr)

Maximum linear distance prograded east of Tagaqe Village: 17 ± 3 m (0.49 m/yr)

(157m2/yr)5482 m2(45m2/yr)

1564 m2

Page 175: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

160�

�Appendix 2. 9: The total area prograded in Naviti Resort area.

Maximum linear distance prograded at Naviti Resort: 100 ± 3 m (2.86 m/yr)

(157m2/yr)44318 m2

Page 176: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

161�

�Appendix 2. 10: The prograding area in the Votua Village area.

Maximum linear distance prograded Votua Village: 25 ± 3 m (0.71 m/yr)

(306m2/yr)10707 m2

Page 177: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

162�

�Appendix 2. 11: The total area prograded in the Korolevu Settlement area.

Maximum linear distance prograded at Korolevu Settlement: 28 ± 3 m (0.8 m/yr)

(524m2/yr)18349 m2

Page 178: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

163�

�Appendix 2. 12: The total area prograded in the Komave Village area.

Maximum linear distance prograded Komave Village: 18 ± 3 m (0.51 m/yr)

(232m2/yr)8112 m2

Page 179: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

164�

�Appendix 2. 13: The total area prograded in the Navola Village area.

Maximum linear distance prograded east of Vatukarasa Village: 30 ± 3 m (0.86

m/yr)

(245m2/yr)8584 m2

Page 180: IDENTIFYING AND ANALYZING COASTLINEdigilib.library.usp.ac.fj/gsdl/collect/usplibr1/index/... · 2014-06-30 · distance of coastline recession ranged from 14 ± 3 m to 40 ± 3 m

165�

�Appendix 2. 14: The total areas prograded in the Namatakula, Navutulevu and Naboutini Village areas.

Maximum linear distance prograded at Namatakula, Navutulevu and Naboutini

Villages: 40 ± 3 m (1.14 m/yr)

(2780m2/yr)97285 m2