i Ø pä h - ntnu.edu.tw

65
i ƅȫʘśɃiɐȏƂȬǯɐŸ ȏƂʈØɐä ȥhɐÁɌm ʙțğşǮǨÞeÞȝoȜȦW三a ľ ã YLJǂ IJɑƘƖYļjv pǜƅ ¯ ( p pǜƅȫ

Upload: others

Post on 05-Apr-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

i

i

h

e o 三

Y

Y jv

p (

p

ii

e o 三

%

9 5 0 7

6

7

7 15

1 7 2

7 3

7

iii

DETERMINATION OF THE EFFECT ON GAIT ASYMMETRY IN THE LONG-TIME RUNNING

2019, Jun. Student: Peng, Li-yao

Advisor: Shiang, Tzyy-Yuang

Abstract Most of previous gait asymmetry studies collected few gait cycles in a laboratory.

Besides, the research of asymmetry usually focused on patients and athletes. The

change in gait asymmetry during long-time outdoor running in general health group

needed to be further clarified. Purpose: To determine the effect of long-time outdoor

running on gait asymmetry in general health group. Method: Fifteen participants run

at 75% of maximum speed for 30-minutes outdoors. Five Inertial Measurement Unit

sensors were fixed on upper limbs, lower limbs, and trunk to calculate asymmetry index.

One way ANOVA with repeated measures was used to assess the change in gait

asymmetry during 30-minutes running. Result: The results showed that the asymmetry

index reduced with fatigue. Conclusion: The gait in general health group is more

symmetry with fatigue during 30-minutes running.

Keywords: Asymmetry index Functional gait asymmetry Outdoor track

iv

p

……………………………………………………………………………… R

R

R

d … &

……… &

r &

&

(

o (

o )

d ……………… ……………………p …………………… …

r o y …………………………………………… ………………………………………………………… …

……………………

e a &

d i &

d &

(

r )

z

v

…………………………………………………………… ………………………………………………………………

o ……………………………o o ……………………

d …………………………………………………………………………………………………………………… ……… &

………………………………………………………………………………………………… &

d ………………………………………… &

………………………………………………………… &

r ……………………………………………… &

vi

o y ………… ………………………………………… ………

………… ………………………………………… ………

e o e …………………… ………………

& e o e …………………………… …

又 e o e …… ………………………………… &

( 又 e o e …… ………… ……… ……

) p IMU i o o ……..…..&

p IMU k o o …… … &&

p IMU o o …… … &

p IMU z o o … &(

p IMU i o o …………&)

p IMU k o o ... &

p IMU o o ... &

& p IMU z o o

又 p IMU i o o …

( 又 p IMU k o o …

) 又 p IMU o o …

又 p IMU z o o … &

又 p IMU i o o

又 p IMU k o o … (

又 p IMU o o …….…… )

又 p IMU z o o

vii

15 ................................................................................15

15 ..................................................................................16

............................................................................................18

& o .........................................................................................19

…………...........................................................................20

& z人 ………………………………… ……… 21

& 下 .......................................................26

& 下 ..................................................27

& & 又 下 ...............................................................28

& 又 下 ...............................................................29

1

u V 。上 V V

i : X , g

V g ,

(Lee et al., 2017)V p V

bz 了 V

V g o V X

V o、 o o

e (Van Mechelen, 1992)V

p V X

o uV & to

V 人 V o

i o V

o Vg

(Ferber, Davis, Hamill, & Pollard, 2003; Rumpf et al., 2014; Zifchock, Davis, &

Hamill, 2006)V o V

o V 下 V

o 下 (Carpes, Mota, & Faria, 2010; Zifchock,

Davis, Higginson, McCaw, & Royer, 2008)V V o

e p X o o

V o V

o (Carpes et al., 2010)V

? V 了 pV o jV

2

X

V o ㄧ i V

iV (Kaufman, Miller, &

Sutherland, 1996; Laroche, Cook, & Mackala, 2012)X V

go V , V

g o V V

o V V , V。上

V V

(Potdevin, Gillet, Barbier, Coello, & Moretto, 2008;

Sadeghi, Allard, & Duhaime, 1997; Sadeghi, Allard, Prince, & Labelle, 2000)X u

o m 了 V z V

V (Pierotti,

Brand, Gabel, Pedersen, & Clarke, 1991; Plotnik, Bartsch, Zeev, Giladi, & Hausdorff,

2013)V i f f V

V V i 二

V g V f f

o (Radzak, Putnam, Tamura, Hetzler, & Stickley, 2017; Robadey, Schween,

Gehring, & Staudenmann, 2013; Staudenmann, Robadey, Lorenzetti, & Taube, 2013)X

V V

一 V

(Ammann, Taube, & Wyss, 2015; Ammann, Taube, & Wyss,

2017)V V o o 下V

Vo 下 -N JM PT .Nu BJ KK 5BPTIBN

X -JJ KK V y

e o o 三

X V eV o

3

三 (Ammann et al., 2015)V 2018 g

(Hanley & Tucker, 2018)X 了 e

o 三 V X

V m

fV 力 o

V X fg

Inertial Measurement Unit, IMU) 上 Vo

V i o

o (Brandes, Zijlstra,

Heikens, van Lummel, & Rosenbaum, 2006; Butte, Ekelund, & Westerterp, 2012; Chen,

Janz, Zhu, & Brychta, 2012)V i (Chan,

Estève, Fourniols, Escriba, & Campo, 2012; Reilly et al., 2008)V V

V e V

e o X

e o 三 V 了

V jV V

g (Luca, 1983; Noakes, 2000; Van Gheluwe & Madsen,

1997)X V f

X

o 了 i V

V i V

g V

i z V V

4

V e o X

d

eV o

V Y

eV V o X

r

20~30 V o

o o X

V V

V X

Y z Vz (Stance

phase) (Swing phase)V 、

V 、 (Novacheck, 1998)X

o Y 上 pV

下 V o (Gabbard, 1997)X

d Y RPE 17 f (Hanley &

Tucker, 2018)X

5

V 了 a k 10%

(Vagenas & Hoshizaki, 1991)V e k

2 yz (3.7%) (Kaufman et al., 1996)X

6

人。上 一 V o

V o U &

Vt V p 人

X

o

人 七 V g

一 V p 一 V

o V ? f V Y

。上 iV a iVi 15~20%V

3.7%V(Kaufman et al., 1996; Laroche et al., 2012)V

V p

(Clanton & Wood, 2010; Griffin, Olney, & McBride, 1995; James

& Jones, 1990; Laroche et al., 2012; Paschalis et al., 2007; Plotnik, Giladi, Balash,

Peretz, & Hausdorff, 2005)V z V f f

o V o c s

Sadeghi o V p。上

o o V V

V 了 V

p V g o V m

: (Potdevin et al., 2008; Sadeghi et al., 1997; Sadeghi et al., 2000)X

7

o

o V p V

一V

X f V i

e V f f

o (Radzak et al., 2017; Robadey et al., 2013;

Staudenmann et al., 2013)X

V o o 下V

V o 下 (Lee, Sutter, Askew, & Burkett, 2010;

Radzak et al., 2017)X Ammann V

e i y V y o 三

V V HJV o 下 三 X

o 下 o V

。上 a

-JJ KK BP I V g

y V V

下 0 KIB 9 HBN X

e o V V f

V V f o

人 V V

e o V

X

8

d

V jV 上 Y a

e f ~ ~

V(Luca, 1983; Noakes, 2000; Van

Gheluwe & Madsen, 1997)V a e

(Cowley, Dingwell, & Gates, 2014)V p

jX

V e V

aVMarchetti V o

V 十 a i

(Marchetti, Orselli, & Duarte, 2013); Seeley V

a f Vg 十 V e

V ? V eV Y

V e (Seeley, Umberger, & Shapiro, 2008)X

V 了 V m z Vo

V a 三

(Brown, Zifchock, & Hillstrom, 2014)X

p

z z f (Perry &

Burnfield, 2010)V z

V V

1990 e 了 也

(Willemsen, van Alsté, & Boom, 1990)V o

。上 kVo V

9

X (Kavanagh & Menz, 2008)V

V o o V bz V

m o o V

o g 。上f Vg

Vn 人 f X(Lee et al.,

2015)

r o y

o V y

o ik V y

V y V o y

V8 4 Vz V

ik V ik o V

了 8L K LK 0BNTL 6

) X

!" = [%&'](*+,).

× 100 y

? V zj f V o

V y V ik V

o V o ik 3 N J K A -N JM PT

.N BJ KK , 3K M H . J K 2LKB 0 NN ; K X

2!"(%) = |(%&')|(%6')

78× 100 y

Vg K I

o V y dV N I

K I 5 H BNG .L B )& X

9"(%) = :1 − %'< × 100 y d

10

L BR y P - JJBPN - V

y V8 4 X L BR 7ILPK H

7BNBPT I A 0 ALN ) X

=>(%) = :?@ %'< × 100 y

f y V y

f l V V p y

y y V Vo V

ik V y o X

o z V o m

o X e

p o V X

V V V

了 o V X

11

.

.

ASI = % |Xr − Xl|1/2(01 + 03)5 × 100

1 3

Knapik et al. (1991)

Karamanidis et al. (2003)

Zifchock et al (2006)

Błażkiewicz et al.(2014)

Gouwanda et al (2011, 2015)

SI = [R − L](< + =)

2× 100

1 3

Robinson et al. (1987)

Cuk et al. (2001)

Alex Shortera (2007)

Lee et al. (2009)

Błażkiewicz et al.(2014)

RI = >1 − 0103? × 100 1 3

2

Ganguli et al. (1974)

Seliktar et al. (1986)

Błażkiewicz et al.(2014)

12

Ga = 100 × B3C <_EF=_EFB 1 3 Yogev et al. (2007)

Plotnik et al. (2005, 2013)

Błażkiewicz et al.(2014)

13

P

15 。 □St s

; f &

k 2cm (3.7%) f k 10%

i

」 P P 「

2

P D-

( ) ( v) ( ) o

(%)

i ( /k )

23.2±2.6 175.8±5.1 71.4±10.4 4.0±2.5 16.3±1.7

_ P

) f

, &

P

f & & k 2

v (3.7%) (Kaufman et al., 1996)

14

_Pf

(S4pro, Biodex, US) f

( :&□ 60 & □ 3

5 □ 30 3 s i 5 p

i k 3

k 10% (Vagenas & Hoshizaki, 1991)

n

eP i

i g 8.5km/h 3 v上

9.7km/h & ) i 30 s 0.5km/h 「

l m f □ v

v (Scott & Houmard, 1994)

e P

P

IMU (IM, Shimmer, USA)s e

e □ 150 Hz m

o (Ahmed, Mehmood,

Nadeem, Mehmood, & Rizwan, 2017; Giggins, Kelly, & Caulfield, 2013; Guzsvinecz,

Szucs, & Sik, 2015; Lin & Kulić, 2012) v ( g Pf P二 5

g ( P f ( k p

二 ( (L3~L4) 3-1 R S &

X & □ □ X P

□ Y P 「 □ Z : & □ X Ps

15

□ Y P s □ Z □

& X □ PY s□ PZ g

□ R : & X s □ PY □ PZ □ s□

3-2

3-1PIMU (

16

3-2PIMU

_P

□ 400 了

P

) ( g Pf P二 」

□ i 75%

s (

p g

o 一fo ) 三

s

15 v上 人

30 v上

17

S □ 三 (RPE) v

30 v上s RPE 18 g

30 v上 □ 三

(Borg & Borg, 1975)

r P

���� ���

S

S

m

) v上

18

P

_

P 」

t P

□So & ( ) □

( P二 ) e &P: & P「

po p ( P ) ( i P k P

P v ) a o

3-5

「 七 10 上

Matlab 2015 y

(Butterworth low pass filter 10 Hz) Gouwanda Arosha

Senanayake (2011) y f e

&P: & po ( P ) v □S

i P k P v

v

19

y S

!"#$%(") =!(") − !%*"!%+, − !%*"

+ 1

S(n) n ; !max i ; !min

k

o S (ASI) □o fS

012(%) = |(5 − 6)|(5 + 6)

28× 100

SR ; L

o 一S v上 v□r 一 (0%P25%P50%P75%P100%)

v f

&Po 一

20

P v

SPSS for windows 22.0 v

v v o 一

Bonferroni □ α = .05 η2 i .14

□ & & (Rosenthal, Cooper, & Hedges, 1994)

21

P

f p o y

v力 o ( P「

) 2 v ( P ) 3 (g P二 Pf )

6 (A-x PA-y PA-z 「 & G-x / PG-y s

/ PG-z s/ : &) 4 ( i P k P

v ) o (ASI.) o &

&v□S0%□ P100%□ v□ 25%P50%P75%

& P v力

22

o 「 P Po g Pf P二 Pv

P P . LP. MP. NP1 LP1 MP1 N i P

k P P v o & e t

o 一s o i £ o

k ¤ 一 gf

ik *N - η2 □ partial

eta square

P「 f & o 一f

Straight Stance Swing

A-x A-y A-z A-x A-y A-z

g

Max - - - - - ¤η2.31

Min - - - - - -

Mean - - - - - ¤η2.38

Int - - - - - ¤η2.31

Straight Stance Swing

A-x A-y A-z A-x A-y A-z

f

Max - - - - - -

Min - - - - - -

Mean - - ¤η2.23 ¤η2.23 - -

Int - - ¤η2.24 - ¤η2.20 -

Straight Stance Swing

A-x A-y A-z A-x A-y A-z

Max - - - - - -

Min - - - - - -

Mean ¤η2.22 - - ¤η2.24 - -

Int - - ¤η2.39 - - ¤η2.33

£ i; ¤ k; - 一s

; η2 eta square ; Max i ; Min k ; Mean ; Int

v

23

&P「 f : & o 一f

Straight Stance Swing

G-x G-y G-z G-x G-y G-z

g

Max - - - - ¤η2.21 -

Min ¤η2.25 ¤η2.23 - - - -

Mean ¤η2.25 - - ¤η2.21 - ¤η2.23

Int - ¤η2.24 - - - -

Straight Stance Swing

G-x G-y G-z G-x G-y G-z

f

Max - - - £η2.32 ¤η2.24 -

Min ¤η2.25 - ¤η2.39 - - -

Mean - - - ¤η2.25 - -

Int - ¤η2.24 - - - -

Straight Stance Swing

G-x G-y G-z G-x G-y G-z

Max - - - - - -

Min - - - - - -

Mean - - ¤η2.29 - - ¤η2.31

Int - - ¤η2.27 - - ¤η2.20

£ i; ¤ k; - 一s

; η2 eta square ; Max i ; Min k ; Mean ; Int

v

24

P f & o 一f

Curved Stance Swing

A-x A-y A-z A-x A-y A-z

g

Max - - ¤η2.28 - ¤η2.14 -

Min - - - ¤η2.21 - -

Mean - - - - - -

Int - - - - - ¤η2.28

Curved Stance Swing

A-x A-y A-z A-x A-y A-z

f

Max - - ¤η2.28 - - -

Min - - ¤η2.23 - - -

Mean - - - - ¤η2.21 -

Int - - - - ¤η2.45 -

Curved Stance Swing

A-x A-y A-z A-x A-y A-z

Max - - - - - -

Min - - - - - -

Mean - £η2.17 - - - ¤η2.22

Int - - - - - ¤η2.31

£ i; ¤ k; - 一s

; η2 eta square ; Max i ; Min k ; Mean ; Int

v

25

(P f : & o 一f

Curved Stance Swing

G-x G-y G-z G-x G-y G-z

g

Max - - - ¤η224 - -

Min - - - - - ¤η2.21

Mean - - - ¤η2.39 - ¤η2.22

Int - - - ¤η2.36 ¤η2.24 ¤η2.20

Curved Stance Swing

G-x G-y G-z G-x G-y G-z

f

Max - - - £η2.08 - -

Min - - ¤η2.28 - £η2.11 -

Mean - - - - - -

Int - - - - - £η2.28

Curved Stance Swing

G-x G-y G-z G-x G-y G-z

Max - - ¤η2.23 - - -

Min - - - - - -

Mean - - ¤η2.29 ¤η2.05 - ¤η2.33

Int - - ¤η2.32 - - ¤η2.36

£ i; ¤ k; - 一s

; η2 eta square ; Max i ; Min k ; Mean ; Int

v

26

o v 「 4-2~4-5

p o & 0%

i 力 So &

k h o y 「 p

g G-x k i y 50% f

p 二 A-z v h 25% gz

n ) f

& P「

27

& P「

28

& &P

29

& P

30

P v□ v □ o

y _ □ o o 「 P o p

P o

o f

h .82 k o )

i

) o &

.G C IN I , 3 I , 7 ;N A I ) o

f □ o i

o p o :

P )

o )

o 6 I; D I , 8 ; I ), 8 ; I

&f o & i &

f G I , 0 D 4 G D ( l

f o & i o

f o & f

) f

) o f o f

o h

31

p o 、 □

、 □

f p 、 i

& o o 、

.CC DD I

g i h (Hanley & Tucker, 2018)

□ h f

□ 也

h o □

h o

G I h

(Fleisig, Chu, Weber, & Andrews, 2009; Hanley & Tucker, 2018)

□ □

□ n

_ P o o

「 o & :

& g Pf P二

g P 「 & o

y (Lee et al., 2015; Nigg, Vienneau, Maurer, & Nigg, 2013)

o g A-z 「 & f G-y g

PA-z 「 & f

G-y □ □ DI G = L D

; G = L D

o f . N

32

「 & □ 下 5

h o

o h i

(Donoghue,

Harrison, Laxton, & Jones, 2008; Nigg et al., 2013) 「 g二 1 N

□ g h 二 人

□ y □

□ 、 P

p 二 人

「 o v力 v p o

g g 1 L

□ ㄧ s s

□ □

一o g

! i d h

p d g

5 I

e P

f o

o f

o )

o

33

p o g Pf 二

o 力

g

34

Uncategorized References

Ahmed, M., Mehmood, N., Nadeem, A., Mehmood, A., & Rizwan, K. (2017). Fall

detection system for the elderly based on the classification of shimmer sensor

prototype data. Healthcare Informatics Research, 23(3), 147-158.

Alt, T., Heinrich, K., Funken, J., & Potthast, W. (2015). Lower extremity kinematics

of athletics curve sprinting. Journal of Sports Sciences, 33(6), 552-560.

Ammann, R., Taube, W., & Wyss, T. (2015). Gait asymmetry during a 5-km time trial in elite runners: a descriptive study. Paper presented at the International

Congress on Sports Science Research and Technology Support.

Arampatzis, A., Brüggemann, G.-P., & Metzler, V. (1999). The effect of speed on leg

stiffness and joint kinetics in human running. Journal of Biomechanics, 32(12), 1349-1353.

Borg, G., & Borg, G. (1975). Simple rating methods for estimation of perceived

exertion. Physical Work and Effort. Borg G.

Brandes, M., Zijlstra, W., Heikens, S., van Lummel, R., & Rosenbaum, D. (2006).

Accelerometry based assessment of gait parameters in children. Gait & Posture, 24(4), 482-486.

Brown, A. M., Zifchock, R. A., & Hillstrom, H. J. (2014). The effects of limb

dominance and fatigue on running biomechanics. Gait & Posture, 39(3), 915-

919.

Butte, N. F., Ekelund, U., & Westerterp, K. R. (2012). Assessing physical activity

using wearable monitors: measures of physical activity. Medicine and Science in Sports and Exercise, 44(1 Suppl 1), S5-12.

doi:10.1249/MSS.0b013e3182399c0e

Carpes, F. P., Mota, C. B., & Faria, I. E. (2010). On the bilateral asymmetry during

running and cycling–A review considering leg preference. Physical Therapy in Sport, 11(4), 136-142.

Chan, M., Estève, D., Fourniols, J.-Y., Escriba, C., & Campo, E. (2012). Smart

wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137-156.

doi:http://dx.doi.org/10.1016/j.artmed.2012.09.003

Chen, K. Y., Janz, K. F., Zhu, W., & Brychta, R. J. (2012). Redefining the roles of

sensors in objective physical activity monitoring. Medicine and Science in Sports and Exercise, 44(1 Suppl 1), S13-23.

doi:10.1249/MSS.0b013e3182399bc8

Churchill, S. M., Salo, A. I., & Trewartha, G. (2015). The effect of the bend on

technique and performance during maximal effort sprinting. Sports

35

Biomechanics, 14(1), 106-121.

Clanton, T. O., & Wood, R. M. (2010). Etiology of injury to the foot and ankle. In J.

DeLee & D. Drez (Eds.), DeLee & Drez's Orthopaedic Sports Medicine: Principles and Practice (3 ed., pp. 2224-2323). Philadelphia, PA, US:

Saunders/Elsevier.

Cowley, J., Dingwell, J., & Gates, D. (2014). Effects of local and widespread muscle

fatigue on movement timing. Experimental Brain Research, 232(12), 3939-

3948.

De Luca, C. J. (1983). Myoelectrical manifestations of localized muscular fatigue in

humans. Critical Reviews in Biomedical Engineering, 11(4), 251-279.

Dingwell, J. B., & Marin, L. C. (2006). Kinematic variability and local dynamic

stability of upper body motions when walking at different speeds. Journal of Biomechanics, 39(3), 444-452.

Donoghue, O. A., Harrison, A. J., Laxton, P., & Jones, R. K. (2008). Lower limb

kinematics of subjects with chronic achilles tendon injury during running.

Research in Sports Medicine, 16(1), 23-38.

Ferber, R., Davis, I. M., Hamill, J., & Pollard, C. D. (2003). Prospective

biomechanical investigation of iliotibial band syndrome in competitive female

runners. Medicine & Science in Sports & Exercise, 35(5), S91.

Fleisig, G., Chu, Y., Weber, A., & Andrews, J. (2009). Variability in baseball pitching

biomechanics among various levels of competition. Sports Biomechanics, 8(1), 10-21.

Gabbard, C. (1997). Coming to Terms With Laterality. The Journal of Psychology, 131(5), 561-564.

Giggins, O., Kelly, D., & Caulfield, B. (2013). Evaluating rehabilitation exercise performance using a single inertial measurement unit. Paper presented at the

Proceedings of the 7th International Conference on Pervasive Computing

Technologies for Healthcare.

Gilgen-Ammann, R., Taube, W., & Wyss, T. (2017). Gait asymmetry during 400-to

1000-m high-intensity track running in relation to injury history. International Journal of Sports Physiology and Performance, 12(Suppl 2), S2-157-S152-

160.

Griffin, M. P., Olney, S. J., & McBride, I. D. (1995). Role of symmetry in gait

performance of stroke subjects with hemiplegia. Gait & Posture, 3(3), 132-

142. doi:http://dx.doi.org/10.1016/0966-6362(95)99063-Q

Guzsvinecz, T., Szucs, V., & Sik, C. L. (2015). Developing movement recognition

application with the use of Shimmer sensor and Microsoft Kinect sensor.

Studies in Health Technology and Informatics, 217, 767-772.

36

Hanley, B., & Tucker, C. B. (2018). Gait variability and symmetry remain consistent

during high-intensity 10,000 m treadmill running. Journal of Biomechanics, 79, 129-134.

James, S. L., & Jones, D. C. (1990). Biomechanics aspects of distance running

injuries. In P. R. Cavanagh (Ed.), Biomechanics of Distance Running (pp. 249-

246). Champaig, IL, US: Human Kinetics.

Karamanidis, K., Arampatzis, A., & Bruggemann, G. P. (2003). Symmetry and

reproducibility of kinematic parameters during various running techniques.

Medicine and Science in Sports and Exercise, 35(6), 1009-1016.

Kaufman, K. R., Miller, L. S., & Sutherland, D. H. (1996). Gait asymmetry in patients

with limb-length inequality. Journal of Pediatric Orthopaedics, 16(2), 144-

150.

Kavanagh, J. J., & Menz, H. B. (2008). Accelerometry: A technique for quantifying

movement patterns during walking. Gait & Posture, 28(1), 1-15.

doi:http://dx.doi.org/10.1016/j.gaitpost.2007.10.010

Knapik, J. J., Bauman, C. L., Jones, B. H., Harris, J. M., & Vaughan, L. (1991).

Preseason strength and flexibility imbalances associated with athletic injuries

in female collegiate athletes. The American Journal of Sports Medicine, 19(1),

76-81. doi:10.1177/036354659101900113

Laroche, D. P., Cook, S. B., & Mackala, K. (2012). Strength asymmetry increases gait

asymmetry and variability in older women. Medicine and Science in Sports and Exercise, 44(11), 2172-2181. doi:10.1249/MSS.0b013e31825e1d31

Lee, Brellenthin, A. G., Thompson, P. D., Sui, X., Lee, I.-M., & Lavie, C. J. (2017).

Running as a key lifestyle medicine for longevity. Progress in Cardiovascular Diseases, 60(1), 45-55.

Lee, Sutter, K. J., Askew, C. D., & Burkett, B. J. (2010). Identifying symmetry in

running gait using a single inertial sensor. Journal of Science and Medicine in Sport, 13(5), 559-563.

Lee, Y.-S., Ho, C.-S., Shih, Y., Chang, S.-Y., Róbert, F. J., & Shiang, T.-Y. (2015).

Assessment of walking, running, and jumping movement features by using the

inertial measurement unit. Gait &Pposture, 41(4), 877-881.

Lin, J. F., & Kulić, D. (2012). Human pose recovery using wireless inertial

measurement units. Physiological measurement, 33(12), 2099.

Marchetti, P. H., Orselli, M. I., & Duarte, M. (2013). The effects of uni-and bilateral

fatigue on postural and power tasks. Journal of Applied Biomechanics, 29(1),

44-48.

Nigg, S., Vienneau, J., Maurer, C., & Nigg, B. M. (2013). Development of a

symmetry index using discrete variables. Gait & Posture, 38(1), 115-119.

37

Noakes, T. D. (2000). Physiological models to understand exercise fatigue and the

adaptations that predict or enhance athletic performance. Scandinavian Journal of Medicine & Science in Sports, 10(3), 123-145. doi:10.1034/j.1600-

0838.2000.010003123.x

Novacheck, T. F. (1998). The biomechanics of running. Gait & Posture, 7(1), 77-95.

doi:http://dx.doi.org/10.1016/S0966-6362(97)00038-6

Paschalis, V., Giakas, G., Baltzopoulos, V., Jamurtas, A. Z., Theoharis, V.,

Kotzamanidis, C., & Koutedakis, Y. (2007). The effects of muscle damage

following eccentric exercise on gait biomechanics. Gait & Posture, 25(2),

236-242. doi:http://dx.doi.org/10.1016/j.gaitpost.2006.04.002

Perry, J., & Burnfield, J. M. (2010). Gait Analysis: Normal and Pathological Function. Thorofare, NJ, US: SLACK.

Pierotti, S. E., Brand, R. A., Gabel, R. H., Pedersen, D. R., & Clarke, W. R. (1991).

Are leg electromyogram profiles symmetrical? Journal of Orthopaedic Research, 9(5), 720-729.

Plotnik, M., Bartsch, R. P., Zeev, A., Giladi, N., & Hausdorff, J. M. (2013). Effects of

walking speed on asymmetry and bilateral coordination of gait. Gait & Posture, 38(4), 864-869.

Plotnik, M., Giladi, N., Balash, Y., Peretz, C., & Hausdorff, J. M. (2005). Is freezing

of gait in Parkinson's disease related to asymmetric motor function? Annals of Neurology, 57(5), 656-663. doi:10.1002/ana.20452

Potdevin, F., Gillet, C., Barbier, F., Coello, Y., & Moretto, P. (2008). Propulsion and

braking in the study of asymmetry in able-bodied men's gaits. Perceptual and Motor Skills, 107(3), 849-861.

Radzak, K. N., Putnam, A. M., Tamura, K., Hetzler, R. K., & Stickley, C. D. (2017).

Asymmetry between lower limbs during rested and fatigued state running gait

in healthy individuals. Gait & Posture, 51, 268-274.

Reilly, J. J., Penpraze, V., Hislop, J., Davies, G., Grant, S., & Paton, J. Y. (2008).

Objective measurement of physical activity and sedentary behaviour: review

with new data. Archives of Disease in Childhood, 93(7), 614-619.

doi:10.1136/adc.2007.133272

Robadey, J., Schween, R., Gehring, D., & Staudenmann, D. (2013). Change of symmetry between overground and treadmill running with a chronic knee injury. Paper presented at the 19th Congress of the European Society of

Biomechanics, Patras, Greece.

Robinson, R. O., Herzog, W., & Nigg, B. M. (1987). Use of force platform variables

to quantify the effects of chiropractic manipulation on gait symmetry. Journal of Manipulative and Physiological Therapeutics, 10(4), 172-176.

38

Rosenthal, R., Cooper, H., & Hedges, L. (1994). Parametric measures of effect size.

The handbook of research synthesis, 621, 231-244.

Rumpf, M. C., Cronin, J. B., Mohamad, I. N., Mohamad, S., Oliver, J. L., & Hughes,

M. G. (2014). Kinetic asymmetries during running in male youth. Physical Therapy in Sport, 15(1), 53-57.

Sadeghi, H., Allard, P., & Duhaime, M. (1997). Functional gait asymmetry in able-

bodied subjects. Human Movement Science, 16(2-3), 243-258.

Sadeghi, H., Allard, P., Prince, F., & Labelle, H. (2000). Symmetry and limb

dominance in able-bodied gait: a review. Gait & Posture, 12(1), 34-45.

Scott, B. K., & Houmard, J. A. (1994). Peak running velocity is highly related to

distance running performance. International Journal of Sports Medicine, 15(8), 504-507.

Seeley, M. K., Umberger, B. R., & Shapiro, R. (2008). A test of the functional

asymmetry hypothesis in walking. Gait & Posture, 28(1), 24-28.

Staudenmann, D., Robadey, J., Lorenzetti, S., & Taube, W. (2013).

BIOMECHANICAL DIFFERENCE BETWEEN OVER GROUND AND

TREADMILL WALKING AND RUNNING. ESB Abstracts, pp-070.

Vagenas, G., & Hoshizaki, B. (1991). Functional asymmetries and lateral dominance

in the lower limbs of distance runners. International Journal of Sport Biomechanics, 7(4), 311-329.

Van Gheluwe, B., & Madsen, C. (1997). Frontal rearfoot kinematics in running prior

to volitional exhaustion. Journal of Applied Biomechanics, 13, 66-75.

Van Mechelen, W. (1992). Running injuries. Sports Medicine, 14(5), 320-335.

Willemsen, A. T. M., van Alsté, J. A., & Boom, H. B. K. (1990). Real-time gait

assessment utilizing a new way of accelerometry. Journal of Biomechanics, 23(8), 859-863. doi:http://dx.doi.org/10.1016/0021-9290(90)90033-Y

Zifchock, R. A., Davis, I., & Hamill, J. (2006). Kinetic asymmetry in female runners

with and without retrospective tibial stress fractures. Journal of Biomechanics, 39(15), 2792-2797.

Zifchock, R. A., Davis, I., Higginson, J., McCaw, S., & Royer, T. (2008). Side-to-side

differences in overuse running injury susceptibility: a retrospective study.

Human Movement Science, 27(6), 888-902.

39

S 」

� � 入 □S f o y

f o o

y

□ f S

P

_P

eP

P □

rP p wx o 「

i 又 ; g

40

_P

m 」s m

s P

f o y l i

f o y

P

_P s 」

eP 入

S999999999999999999

S99999999999999999999

i 又 ; g

41

eP

f

十 o

S9999999999999999

S999999999999999999

S9999999999 v

S9999999999

t s f P P P S

S99999999999999999999999999999999999

S

i 又 ; g

42

P 三 (RPE)

三 RPE

0

5

10

15

20

0% 25% 50% 75% 100%

RPE

Time %

�������

43

rP

(stance)

「 - i S

「 p & ASI. i 7

7P「 p IMU i o 一 o

0% 25% 50% 75% 100%

g

A-x 18.62±11.53 10.71±10.95 9.81±11.67 8.08±5.96 12.16±12.18

A-y 20.47±12.64 15.81±16.22 11.55±11.26 14.60±8.42 16.40±9.45

A-z 8.07±4.16 4.58±2.59 5.23±2.43 4.71±3.36 5.29±3.59

G-x 7.73±3.67 10.33±7.73 12.30±8.22 9.25±6.69 8.61±4.92

G-y 19.67±16.41 16.65±9.06 14.23±12.33 8.02±9.48 15.19±12.08

G-z 8.08±6.63 7.73±6.53 2.89±2.24 6.45±9.22 6.40±7.62

f

A-x 18.71±7.51 18.27±8.05 15.76±11.83 13.77±9.98 15.22±9.80

A-y 5.77±3.92 5.44±4.95 6.81±4.72 6.92±5.49 6.49±7.46

A-z 13.99±10.39 13.52±10.18 14.79±10.80 11.45±11.66 10.51±12.11

G-x 7.40±6.35 7.59±8.40 7.93±5.98 9.49±9.52 9.26±8.42

G-y 5.51±6.14 5.45±6.06 5.01±5.40 4.42±4.54 5.38±5.05

G-z 12.06±9.39 11.44±8.17 12.03±8.95 10.03±10.37 9.45±9.32

A-x 3.96±2.95 2.09±2.18 2.46±2.31 3.92±2.35 3.41±3.42

A-y 3.98±4.53 2.76±3.43 6.51±4.69 6.26±6.34 3.45±4.56

A-z 1.03±1.23 1.44±1.58 1.15±1.54 0.49±0.91 0.81±0.77

G-x 4.75±3.75 3.25±4.83 3.51±4.02 5.54±4.32 5.09±4.13

G-y 2.65±3.56 1.63±1.75 1.77±2.38 1.87±1.54 2.08±1.87

G-z 5.34±4.02 4.37±5.34 3.85±5.35 3.06±3.25 6.18±7.41

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

44

(stance)

「 - k S

「 v p & ASI. i 8 g

G-xPG-y f G-xPG-z ASI. &

(F1.7,23.2=4.255, p<.01) (F1.9,25.9=3.849, p<.01) (F1.5,19.9=3.923, p<.01)

(F1.5,20=8.103, p<.01) ASI. k

8P「 p IMU k o 一 o

0% 25% 50% 75% 100%

g

A-x 20.25±16.07 18.94±14.72 23.93±16.79 20.52±14.88 18.19±17.81

A-y 12.48±9.48 17.27±11.14 18.30±8.1 18.45±22.87 8.58±6.73

A-z 6.22±3.36 6.26±4.44 4.68±3.40 7.29±5.48 4.02±4.26

G-x 20.15±19.99d 23.34±22.56 10.54±16.10d 14.23±11.95ac 4.61±5.34

G-y 11.19±11.23 14.02±8.70e 11.79±8.72e 12.04±7.55 8.54±7.02bc

G-z 28.78±15.27 22.96±15.77 18.44±18.54 24.94±17.14 22.57±21.58

f

A-x 11.22±6.85 10.71±5.36 9.89±7.64 8.83±7.52 10.88±7.30

A-y 18.83±4.43 25.69±10.49 24.09±11.83 23.78±8.98 18.81±12.06

A-z 10.57±6.64 10.55±7.63 9.81±8.28 9.98±7.62 11.84±5.94

G-x 18.03±9.21 16.30±13.32 11.01±8.31de 10.83±8.32c 17.80±13.44c

G-y 33.29±16.04 35.29±15.66 27.35±18.19 28.64±19.54 28.90±19.85

G-z 28.95±18.59d 31.04±15.99d 22.93±17.82 18.44±16.53ab 15.32±12.04

A-x 4.24±4.72 4.17±2.30 2.72±2.74 3.29±3.06 3.67±4.06

A-y 0.74±0.63 0.37±0.34 0.34±0.32 0.30±0.29 0.44±0.33

A-z 2.61±2.86 2.11±2.12 2.82±1.78 2.73±4.35 3.84±6.68

G-x 0.48±0.35 0.70±1.20 0.21±0.18 0.56±0.54 0.23±0.20

G-y 6.15±5.54 5.54±4.45 2.83±3.56 5.21±5.18 7.55±6.12

G-z 0.57±0.63 0.24±0.28 0.57±0.48 0.89±1.25 1.29±2.12

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

45

(stance)

「 - S

「 p & ASI. 9 g

G-x Pf A-z 二 A-xPG-z ASI. &

(F4,52=5.147, p<.01) (F4,52=3.893, p<.01) (F1.8,24.1=3.622, p<.01)

(F2.6,34.9=5.181, p<.01) ASI. k

9P「 p IMU o 一 o

0% 25% 50% 75% 100%

g

A-x 19.74±15.36 18.00±14.61 18.38±15.29 15.83±12.63 16.92±15.42

A-y 14.66±7.34 15.96±13.00 15.82±7.18 14.13±6.68 9.76±8.15

A-z 5.13±3.68 1.72±1.85 3.99±3.00 4.55±4.09 3.65±4.31

G-x 10.41±6.17cde 10.78±7.39 7.80±3.12a 4.99±4.79a 6.33±2.32a

G-y 17.17±5.62 10.84±5.24 8.70±5.73 7.06±4.72 11.61±8.57

G-z 18.81±8.03 16.45±13.87 11.65±7.96 15.46±8.83 14.02±10.00

f

A-x 12.22±3.84 10.37±6.36 9.67±6.50 9.17±6.92 10.60±5.96

A-y 7.88±6.55 7.64±5.83 8.12±8.43 9.05±6.79 7.26±6.81

A-z 14.51±10.12e 13.13±10.34 13.86±8.75 12.45±10.66 10.39±10.31a

G-x 9.29±8.50 11.84±8.38 8.50±6.19 10.63±7.61 10.89±7.35

G-y 20.28±15.48 21.31±15.53 17.65±16.89 17.30±16.49 17.83±15.87

G-z 16.90±12.16 17.42±9.91 15.59±12.21 14.42±11.60 14.81±10.93

A-x 3.92±3.48 3.13±3.40c 2.77±2.79b 1.01±0.67 2.64±1.66

A-y 3.69±2.96 2.40±1.35 4.67±4.46 3.45±3.39 3.38±2.34

A-z 4.97±4.55 3.29±2.35 4.57±3.54 3.49±2.64 3.37±1.65

G-x 4.40±3.33 3.48±2.95 3.15±3.62 3.83±2.39 3.69±2.35

G-y 4.02±2.43 3.31±3.42 2.61±1.99 3.18±3.04 4.32±2.80

G-z 4.56±4.46d 4.48±2.71d 2.65±2.25 2.50±1.99ab 1.66±1.89

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

46

(stance)

「 - v S

「 p & ASI. v 10 g

G-yPf A-zPG-y 二 A-zPG-z ASI. &

(F21.6,28=4.054, p<.01) (F4,52=4.171, p<.01) (F1.9,23.8=4.144, p<.01)

(F2.3,30.3=8.139, p<.01) (F2.7,35.1=4.799, p<.01) ASI. k

10P「 p IMU v o 一 o

0% 25% 50% 75% 100%

g

A-x 22.74±19.95 21.77±18.75 22.57±16.90 19.41±13.39 16.90±17.09

A-y 15.92±9.15 15.78±12.67 15.00±8.92 13.63±6.59 12.69±9.35

A-z 7.97±5.04 6.46±5.12 7.09±6.28 7.03±9.05 5.77±4.65

G-x 7.64±8.41 9.97±8.63 7.69±4.82 7.17±5.11 7.70±6.55

G-y 18.84±12.71 13.42±7.77c 9.27±6.05b 5.69±3.68 14.63±11.18

G-z 16.59±9.45 13.33±14.37 8.31±7.12 13.07±9.69 15.15±13.26

f

A-x 13.81±7.98 11.92±6.94 11.10±7.79 11.53±8.45 10.29±6.47

A-y 9.06±5.80 10.01±5.58 8.30±6.73 8.33±6.35 8.34±6.69

A-z 11.98±8.48 10.73±7.84 11.08±5.83d 9.88±8.74c 7.86±7.87

G-x 7.58±6.98 9.35±6.89 7.22±4.23 8.90±7.25 8.41±6.98

G-y 23.12±18.77c 24.18±19.82 20.62±20.47a 19.31±20.88e 20.55±19.24d

G-z 19.95±15.06 20.42±14.03 19.16±14.69 16.81±15.92 17.33±14.10

A-x 6.48±3.68 6.09±5.94 6.45±5.27 4.22±6.08 4.56±5.13

A-y 6.54±2.56 5.73±3.46 8.29±6.04 6.30±7.24 5.83±3.90

A-z 8.51±5.33cd 7.71±3.61cd 7.33±5.42ab 4.01±3.15ab 4.69±2.59

G-x 7.36±4.01 6.40±3.46 6.03±8.64 6.73±8.25 4.23±3.04

G-y 5.42±2.53 4.34±3.23 4.96±4.94 3.55±2.50 3.27±2.47

G-z 10.05±5.86 7.60±5.93 5.33±2.55 4.03±3.60e 4.75±4.46d

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

47

(swing)

「 - i S

p & ASI. i 11 f G-x

ASI. & (F4,52=6.01, p<.01)

ASI. k

11P「 p IMU i o 一 o

0% 25% 50% 75% 100%

g

A-x 7.20±6.55 6.08±5.36 7.30±6.33 6.34±8.09 8.48±8.42

A-y 9.74±9.26 11.08±7.39 13.95±8.80 13.33±8.98 12.52±10.13

A-z 9.24±6.94 8.64±8.42 9.31±8.15 5.68±4.04 4.94±3.70

G-x 10.60±10.03 11.24±9.35 14.25±13.90 6.73±4.91 10.02±5.96

G-y 14.71±11.89 4.73±4.18 2.78±2.64 8.97±10.76 8.79±7.02

G-z 7.85±6.38 11.08±5.30 7.01±6.48 11.29±16.37 3.59±2.48

f

A-x 13.25±12.89 13.37±13.13 10.20±9.87 11.84±12.03 10.00±10.45

A-y 6.91±5.05 7.96±6.45 6.48±4.39 6.04±5.60 4.35±3.22

A-z 8.37±10.04 9.41±8.81 8.40±9.43 7.43±8.66 4.70±6.06

G-x 6.56±5.39 5.48±3.53 6.89±5.20e 9.11±6.92e 8.91±5.22cd

G-y 0.89±0.97 0.94±1.25 1.14±1.12 1.14±1.09 0.45±0.42

G-z 6.05±6.64 6.65±7.40 6.24±7.65 5.81±10.32 7.29±7.87

A-x 2.76±2.84 2.08±1.65 2.08±2.09 1.42±1.56 2.65±2.35

A-y 5.11±5.71 1.38±1.72 4.99±6.01 5.57±7.95 3.60±6.18

A-z 0.87±1.27 0.97±1.30 0.82±1.34 0.56±0.97 0.71±0.80

G-x 4.61±3.77 2.77±3.66 3.34±3.10 4.02±3.51 2.53±1.13

G-y 2.69±2.86 1.99±1.88 3.38±3.51 2.27±1.15 1.56±1.52

G-z 3.58±3.90 3.12±4.08 2.41±2.79 1.42±2.18 3.99±4.57

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

48

(swing)

「 - k S

「 p & ASI. k 12

12P「 p IMU k o 一 o

0% 25% 50% 75% 100%

g

A-x 9.24±7.91 10.46±5.74 8.66±6.18 7.63±7.78 10.40±5.83

A-y 10.71±9.34 15.56±9.64 22.47±12.68 16.97±21.73 13.29±11.19

A-z 5.18±3.38 6.02±3.19 6.61±6.04 5.67±5.43 5.68±3.56

G-x 24.56±28.56 19.52±23.29 14.67±17.03 8.91±9.39 6.64±4.26

G-y 11.25±7.16 10.49±6.37 5.02±1.57 7.41±5.28 6.65±4.82

G-z 20.82±13.82 20.82±14.22 20.53±17.49 17.28±10.10 16.24±9.76

f

A-x 6.52±4.89 8.09±6.08 6.96±14.90 7.02±5.75 6.30±4.46

A-y 18.66±8.87 19.40±10.83 17.66±12.99 16.16±12.15 14.50±7.72

A-z 6.45±4.19 8.10±6.09 7.06±4.08 9.48±5.26 9.08±4.49

G-x 14.61±8.37 15.14±12.73 11.34±11.04 13.05±7.69 15.50±9.91

G-y 15.34±16.67 16.24±11.74 15.41±16.13 15.72±19.42 21.19±19.67

G-z 13.53±11.40 12.60±8.36 10.43±7.67 8.85±7.94 8.41±5.66

A-x 2.99±3.06 3.98±1.93 1.64±1.96 3.17±3.12 2.83±3.48

A-y 0.23±0.17 0.15±0.11 0.24±0.21 0.30±0.21 0.32±0.48

A-z 0.83±1.12 1.44±1.36 2.21±1.27 1.34±1.86 1.30±1.73

G-x 0.22±0.15 0.17±0.22 0.19±0.17 0.26±0.23 0.18±0.19

G-y 3.29±5.45 2.92±2.83 3.38±3.35 5.65±4.91 3.62±4.46

G-z 0.07±0.06 0.16±0.16 0.25±0.18 0.27±0.19 0.44±0.51

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

49

(swing)

「 - S

「 p & ASI. 13 g

A-zPG-zPf G-x 二 A-xPG-z ASI. &

(F1.3,17.2=7.562, p<.01) (F1.5,19.8=3.923, p<.01) (F1.7,22.6=4.4, p<.01)

(F1.9,25.2=4.053, p<.01) (F2.7,35.5=5.782, p<.01) ASI. k

13P「 p IMU o 一 o

0% 25% 50% 75% 100%

g

A-x 9.38±8.89 8.62±8.17 10.56±4.99 10.31±4.83 9.25±5.76

A-y 7.58±8.70 11.84±4.93 16.64±10.95 15.60±11.42 11.89±10.84

A-z 4.92±3.78de 6.87±3.75d 6.92±6.83a 2.60±1.43ab 2.78±1.73

G-x 8.41±5.92 8.48±4.40 6.61±3.11 5.80±5.70 5.67±3.88

G-y 8.89±7.40 10.26±6.42 4.13±3.27 7.92±4.40 9.23±8.44

G-z 17.63±10.16b 16.61±7.21a 9.43±7.99 11.51±10.78 9.44±7.02

f

A-x 10.73±3.63 11.04±5.00 8.29±4.54 7.83±5.49 8.07±5.45

A-y 9.33±4.80 12.32±5.62 9.79±6.47 8.10±5.45 6.98±5.70

A-z 7.46±6.12 7.48±5.18 8.21±5.64 6.71±5.73 6.17±4.85

G-x 10.49±3.91e 10.72±4.98e 9.59±6.87d 8.36±6.60c 9.91±7.34ab

G-y 12.77±9.33 12.98±9.38 11.15±10.01 11.73±10.00 12.76±9.85

G-z 8.94±7.97 8.93±8.24 7.44±8.32 8.28±8.96 10.86±9.97

A-x 2.88±2.35 2.35±2.48c 2.19±1.86be 0.83±0.62 2.06±1.37c

A-y 2.56±1.98 1.49±1.03 3.43±3.18 2.58±2.72 2.84±2.42

A-z 3.69±3.29 2.36±2.22 3.53±2.76 2.97±2.42 2.63±1.23

G-x 3.22±1.40 2.40±2.09 2.26±2.15 2.88±1.11 2.75±1.64

G-y 2.57±1.38 2.04±2.05 2.01±1.64 2.19±1.91 3.20±1.81

G-z 3.10±2.99d 3.41±1.96d 1.95±1.49 1.66±1.28ab 1.24±0.94

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

50

(swing)

「 - v S

「 p & ASI. v 14 g

A-zPf A-y 二 A-z ASI. &

(F1.8,24=5.854, p<.01) (F2.2,29=3.294, p<.01) (F2.3,30.8=6.441, p<.01)

ASI. k

14P「 p IMU v o 一 o

0% 25% 50% 75% 100%

g

A-x 12.16±12.62 10.89±11.45 12.81±8.27 11.85±7.15 11.32±6.69

A-y 5.50±6.96 9.86±4.62 15.23±10.88 13.98±12.58 12.57±9.27

A-z 7.09±5.38d 8.69±5.14d 9.57±6.54 4.73±4.92ab 4.73±3.00

G-x 8.79±5.63 7.52±5.10 7.76±4.38 7.46±5.99 7.37±3.35

G-y 12.73±9.42 11.13±8.41 6.74±4.30 8.24±3.39 11.22±10.72

G-z 15.95±11.03 14.20±6.64 6.92±5.41 9.75±8.76 10.09±8.07

f

A-x 9.57±5.24 8.79±6.02 6.49±4.50 6.02±6.03 6.89±3.11

A-y 7.41±5.37d 10.01±5.91 7.92±7.98 5.70±5.35a 5.73±4.81

A-z 6.47±3.66 6.11±3.29 8.01±1.82 6.10±4.61 4.96±4.69

G-x 8.07±4.58 8.51±5.78 9.44±5.40 7.72±6.27 8.92±7.40

G-y 15.29±11.55 15.61±11.95 14.03±11.98 13.63±12.46 14.69±12.47

G-z 11.19±12.20 10.90±12.22 10.10±11.15 10.41±11.00 12.54±12.67

A-x 4.09±2.15 3.88±3.86 4.19±3.11 2.89±3.58 3.23±3.46

A-y 4.28±1.51 3.81±2.26 5.55±3.76 4.59±4.92 4.25±2.64

A-z 5.56±3.91d 5.13±2.56cd 5.19±3.67b 3.06±2.52ab 3.28±1.67

G-x 4.80±2.69 4.23±2.22 4.28±5.62 4.65±5.18 3.02±2.37

G-y 3.55±1.37 2.78±2.27 3.65±3.33 2.71±1.68 2.56±1.63

G-z 6.54±3.88 5.02±4.19 3.51±1.54 2.82±2.34 3.08±2.86

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

51

(stance)

- i S

p & ASI. i 15 g

A-zPG-y f A-z 二 G-z ASI. &

(F4,52=5.095, p<.01) (F2.3,30=4.726, p<.01) (F1.9,25=4.983, p<.01)

(F2.2,29=3.735, p<.01) ASI. k

15P p IMU i o 一 o

0% 25% 50% 75% 100% g A-x 16.32±12.86 10.53±8.63 13.11±14.08 5.91±2.11 9.00±10.58

A-y 14.83±14.12 14.85±10.01 16.21±9.37 16.93±12.67 17.78±9.13

A-z 9.37±2.88 4.80±1.79 3.57±1.81e 4.44±2.43 2.87±1.77c

G-x 9.92±4.93 11.23±7.82 7.30±4.61 10.18±11.17 6.66±4.28

G-y 16.23±14.87c 19.72±9.96c 18.11±12.41abde 8.32±7.25c 18.76±13.91c

G-z 9.36±8.45 5.84±6.26 5.12±3.47 6.17±7.27 4.30±3.70

f A-x 19.25±5.94 19.83±8.13 20.13±8.62 12.18±10.28 14.56±9.26

A-y 5.33±5.43 5.82±4.93 6.64±5.27 4.99±2.68 8.84±8.80

A-z 15.40±9.12 12.19±8.72d 15.65±9.92 11.32±11.98b 10.76±11.39

G-x 7.51±8.42 7.93±5.07 10.94±7.05 9.57±9.30 9.09±8.04

G-y 6.52±6.11 4.58±4.89 4.92±6.09 6.94±6.40 5.09±5.92

G-z 9.78±10.55 8.35±6.92 12.28±7.45 9.11±10.89 10.49±9.80

A-x 3.56±2.88 3.23±1.84 2.63±1.54 3.25±2.59 3.11±2.82

A-y 4.05±2.60 4.78±5.52 9.88±11.06 3.27±6.18 4.17±4.49

A-z 1.12±1.05 1.05±1.32 0.95±1.27 0.84±0.86 0.57±0.69

G-x 4.69±4.83 3.13±3.14 2.79±2.83 4.22±4.06 4.56±3.73

G-y 3.18±3.97 1.69±1.89 2.61±2.72 3.52±2.03 3.54±3.45

G-z 7.20±5.42 6.60±5.39 5.00±3.61e 2.13±2.95 3.29±2.69c

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

52

(stance)

- k S

p & ASI. k 16 f

A-zPG-z ASI. & (F4,52=3.962,

p<.01) (F1.3,16.6=5.025, p<.01) ASI. k

16P p IMU k o 一 o

0% 25% 50% 75% 100% g A-x 26.53±12.38 20.37±14.66 25.01±17.34 18.77±13.86 17.32±14.51

A-y 18.28±18.14 23.37±20.75 14.83±11.18 17.41±18.75 16.28±17.66

A-z 6.78±5.44 7.50±4.82 6.74±2.88 5.97±4.05 6.62±6.14

G-x 7.10±6.91 13.09±14.35 8.21±9.02 17.54±14.70 9.03±7.40

G-y 5.81±7.41 14.94±10.53 11.19±7.45 15.39±8.43 12.73±8.90

G-z 25.33±17.86 20.27±16.49 25.89±19.24 20.03±15.07 22.40±18.47

f

A-x 10.85±7.15 8.28±5.79 11.78±5.28 9.28±6.63 10.31±6.15

A-y 24.71±10.11 24.78±9.91 25.70±15.33 26.28±8.64 21.91±17.33

A-z 9.71±7.79e 5.78±8.66 9.53±5.55 9.32±5.98 8.57±4.25a

G-x 15.71±11.05 9.61±7.41 12.67±13.65 9.71±12.29 14.84±12.42

G-y 33.47±15.10 31.87±15.71 34.12±13.54 27.91±19.16 27.88±19.74

G-z 28.16±18.02e 27.23±13.29e 28.52±16.05 20.69±17.53 18.25±17.83ab

A-x 2.90±3.46 2.87±2.64 2.43±2.67 2.99±4.34 4.49±4.33

A-y 0.41±0.23 0.31±0.28 0.23±0.17 0.21±0.28 0.22±0.17

A-z 2.83±2.32 1.77±1.88 3.56±3.07 3.46±5.43 2.36±4.33

G-x 0.54±0.53 0.75±1.35 0.28±0.40 0.59±0.55 0.45±0.24

G-y 6.23±5.53 6.59±4.42 4.22±2.70 4.17±4.81 7.81±6.92

G-z 0.79±1.37 0.98±1.78 0.83±0.76 0.31±0.33 0.79±1.43

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

53

(stance)

- S

p & ASI. 17 二

A-yPG-z ASI. & (F2.5,32=3.408,

p<.01) (F1.5,19=5.273, p<.01) ASI. k

17P p IMU o 一 o

0% 25% 50% 75% 100% g A-x 24.81±12.25 16.64±13.32 22.27±16.56 14.45±14.15 17.68±13.51

A-y 14.67±10.26 18.01±12.74 13.98±9.84 15.08±12.97 15.09±10.69

A-z 4.70±3.86 2.05±1.74 2.94±2.69 3.73±2.55 3.25±2.92

G-x 6.53±5.44 10.06±9.45 5.56±6.25 6.17±2.27 6.16±5.42

G-y 11.36±8.95 11.23±8.07 11.53±7.10 5.44±1.84 13.81±11.61

G-z 19.87±7.33 14.89±12.37 14.37±9.61 19.12±14.76 12.45±6.22

f

A-x 11.92±3.24 9.83±7.37 11.77±6.49 8.00±7.46 9.76±5.85

A-y 10.86±9.13 8.72±5.42 9.88±7.69 8.45±6.79 7.44±5.80

A-z 15.73±8.12 10.97±9.10 13.16±8.05 11.68±10.07 10.53±9.14

G-x 8.88±8.63 9.01±6.82 13.55±8.35 9.79±8.10 10.68±7.32

G-y 22.63±14.67 17.46±13.24 20.00±15.36 18.22±16.89 16.95±16.50

G-z 17.05±11.81 13.42±8.60 17.37±9.17 15.00±11.68 16.22±11.63

A-x 2.90±3.80 3.58±4.45 2.58±1.94 0.91±1.08 1.42±1.12

A-y 2.89±1.95 3.64±2.40d 6.36±4.46d 2.49±2.77bc 4.04±3.44

A-z 4.33±4.90 3.78±3.07 4.65±2.86 2.93±2.51 2.87±2.06

G-x 5.58±3.61 3.78±3.20 2.23±1.50 3.25±3.79 3.13±2.60

G-y 4.10±2.46 4.33±2.61 3.59±2.45 3.19±3.63 4.62±3.24

G-z 6.09±5.52b 5.57±3.50a 2.87±1.86 3.02±2.29 2.28±1.86

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

54

(stance)

- v S

p & ASI. v 18 二

G-z ASI. & (F4,52=5.997,

p<.01) ASI. k

18P p IMU v o 一 o

0% 25% 50% 75% 100% g A-x 28.08±17.59 19.61±17.30 24.96±20.20 18.21±18.88 20.62±13.08

A-y 14.62±12.11 14.17±14.26 16.13±9.25 16.34±13.43 17.47±9.05

A-z 9.45±4.34 7.85±9.37 3.68±4.13 6.97±4.60 5.08±4.82

G-x 6.34±6.81 13.63±12.74 4.32±2.55 6.40±1.72 7.76±6.15

G-y 15.33±11.91 16.72±9.86 14.41±9.72 7.77±5.29 16.53±15.54

G-z 16.68±8.52 17.10±13.47 12.54±11.35 16.23±14.76 14.40±9.07

f

A-x 14.46±8.16 15.97±7.73 13.21±6.98 9.77±7.41 10.95±5.81

A-y 12.27±8.24 10.93±7.89 9.61±7.06 8.43±5.96 8.35±6.07

A-z 13.46±7.56 13.09±13.65 11.03±6.20 8.99±7.71 8.80±6.20

G-x 6.36±5.60 11.33±11.04 11.06±8.16 6.74±5.78 7.97±6.17

G-y 25.23±18.33 19.89±16.45 21.84±19.44 20.53±21.74 19.35±19.87

G-z 19.57±15.81 15.49±11.75 19.51±12.18 17.75±16.28 18.19±15.07

A-x 5.98±3.5 9.69±10.70 5.23±4.70 4.44±4.78 3.15±4.32

A-y 7.32±3.60 8.13±7.92 9.27±6.69 5.51±4.73 6.12±4.35

A-z 7.79±6.26 10.90±9.65 7.18±4.09 5.01±3.82 4.21±3.07

G-x 8.01±5.50 7.50±7.67 4.71±5.84 6.15±8.65 6.22±4.80

G-y 5.27±2.62 9.23±10.21 4.30±3.72 3.41±2.10 3.04±2.69

G-z 12.18±6.68 11.10±8.35 6.40±3.34 3.74±3.42 3.06±3.19

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

55

(swing)

- i S

p & ASI. i 19 g

G-xPf A-y 二 A-y ASI. &

(F4,52=4.17, p<.01) (F1.9,25.8=8.694, p<.01) (F4,52=5.15, p<.01) ASI.

k

19P p IMU i o 一 o

0% 25% 50% 75% 100% g A-x 9.59±5.48 7.42±6.24 4.99±3.49 8.30±6.29 8.69±8.23

A-y 15.32±13.82 12.66±5.29 14.64±7.19 18.16±12.47 17.36±3.88

A-z 9.12±8.76 9.40±7.03 9.80±7.25 6.57±3.70 6.51±5.01

G-x 11.51±9.76bce 14.93±12.04a 9.09±9.28a 7.94±9.26 12.10±14.45a

G-y 11.63±8.79 5.92±5.18 8.19±7.97 6.33±7.77 10.40±10.41

G-z 8.55±6.81 10.38±7.62 8.16±7.51 9.86±11.66 6.87±4.41

f A-x 12.12±11.03 11.87±12.00 11.02±9.72 10.28±10.74 12.56±10.78

A-y 6.79±6.04 9.83±7.79de 8.62±5.90e 5.64±4.74b 3.55±4.03bc

A-z 9.92±10.06 8.03±8.71 4.62±7.10 6.48±7.49 5.01±6.05

G-x 7.67±5.11 4.13±4.09 6.62±5.45 8.69±7.13 9.64±5.30

G-y 0.95±0.92 2.55±2.97 0.96±1.22 1.48±1.38 1.09±0.87

G-z 5.77±7.90 5.95±3.83 5.07±6.04 6.52±8.79 7.52±9.75

A-x 2.67±2.66 2.01±1.32 1.62±1.31 1.73±1.43 0.99±0.78

A-y 5.92±7.67 5.20±6.29c 6.71±7.88b 2.13±3.45 5.64±7.49

A-z 0.84±1.07 0.87±1.18 0.89±1.32 0.92±0.87 0.61±0.62

G-x 3.15±3.15 2.71±2.85 1.86±3.34 3.42±4.01 2.41±3.45

G-y 2.13±2.37 2.82±1.87 4.73±5.12 3.14±2.08 3.63±3.08

G-z 6.36±5.22 4.26±4.93 3.53±3.38 2.12±2.00 3.24±2.50

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

56

(swing)

- k S

p & ASI. k 20 g

A-xPG-y f G-y ASI. &

(F2.1,28.4=3.468, p<.01) (F4,52=3.258, p<.01) (F4,52=4.279, p<.01) ASI.

k

20P p IMU k o 一 o

0% 25% 50% 75% 100% g A-x 13.07±9.59 5.94±5.85c 9.75±6.28be 5.24±4.77 7.08±4.37c

A-y 22.99±27.42 23.31±21.17 18.56±12.48 17.38±12.76 22.20±18.56

A-z 4.96±2.49 6.82±3.68 6.15±3.04 4.48±3.26 5.50±4.93

G-x 24.67±23.65 8.98±5.92 7.45±10.41 17.49±9.28 14.24±20.67

G-y 8.02±4.69 12.45±9.44 8.99±5.79e 5.14±3.21 10.37±4.46c

G-z 18.62±11.37 15.75±14.99 23.12±16.31 13.94±19.53 9.58±6.30

f A-x 6.30±5.26 5.41±5.43 6.50±5.95 7.02±5.29 4.84±5.52

A-y 19.90±9.93 18.54±15.47 17.71±12.67 16.58±10.29 12.32±9.23

A-z 7.07±5.40 7.31±6.20 6.37±3.97 6.79±4.10 8.86±7.05

G-x 13.70±8.81 14.64±11.01 10.75±8.03 11.08±7.23 14.97±8.78

G-y 14.21±15.86b 15.72±10.93a 19.60±16.37 18.91±18.85 22.37±17.07

G-z 14.83±14.68 14.14±8.23 7.79±8.28 7.25±5.07 10.56±6.49

A-x 3.55±3.25 2.88±2.40 2.33±2.89 3.38±4.62 3.90±3.84

A-y 0.18±0.23 0.31±0.24 0.24±0.22 0.15±0.14 0.29±0.26

A-z 0.71±1.02 1.31±1.31 2.15±1.95 1.28±1.69 0.80±0.75

G-x 0.17±0.09 0.19±0.09 0.17±0.16 0.20±0.20 0.22±0.18

G-y 4.16±4.68 2.58±1.99 2.96±3.32 4.14±4.28 3.04±4.79

G-z 0.41±0.37 0.24±0.19 0.37±0.40 0.28±0.20 0.34±0.19

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

57

(swing)

- S

p & ASI. 21 g

G-xPG-yPG-z 二 A-yPA-zPG-z ASI. &

(F2.4,31=8.333, p<.01) (F2.5,32.8=3.261, p<.01) (F2.2,28.8=3.729,

p<.01) (F2.2,29.6=3.18, p<.01) (F2.2,29=3.68, p<.01) (F1.7,22.2=6.38, p<.01)

ASI. k

21P p IMU o 一 o

0% 25% 50% 75% 100% g A-x 12.16±8.22 6.86±9.80 9.88±9.40 8.62±5.88 11.05±4.39

A-y 11.95±12.55 12.83±10.55 15.81±10.65 16.45±13.61 17.99±11.13

A-z 5.49±5.21 6.47±6.06 4.53±3.83 4.20±0.45 4.06±2.10

G-x 11.51±7.29bde 10.60±5.20a 4.14±3.54 8.81±5.98a 3.53±3.07a

G-y 8.28±6.10c 10.27±4.24 7.85±6.69ae 6.35±4.04 9.44±9.85c

G-z 11.68±9.29e 14.75±7.28 9.29±7.53 14.56±8.87 8.77±4.61a

f

A-x 10.32±4.17 9.27±4.94 9.27±5.20 8.23±5.12 8.35±5.60

A-y 11.64±8.27 10.01±6.77 8.56±7.67 6.83±4.54 6.67±4.93

A-z 7.44±7.15 5.37±5.24 6.44±5.14 7.31±5.03 6.10±4.48

G-x 9.11±4.36 7.96±4.73 8.86±6.53 8.04±6.65 10.14±7.01

G-y 12.46±9.22 9.67±8.64 12.19±9.89 12.01±10.29 13.05±9.04

G-z 9.94±6.98 6.55±6.13 7.60±6.97 8.70±8.97 11.47±9.58

A-x 2.95±2.60 2.29±2.68 1.86±1.55 0.86±0.98 1.13±1.02

A-y 2.40±0.78 2.58±1.28cd 4.39±3.45b 2.04±2.39b 3.56±2.68

A-z 3.63±2.94 3.11±2.54e 3.25±2.89 2.39±2.33 2.32±2.49b

G-x 3.88±2.25 2.46±2.04 1.10±1.12 2.40±2.23 2.29±2.08

G-y 2.73±1.59 2.75±1.81 2.73±1.85 2.43±2.37 3.30±2.33

G-z 4.49±3.31b 3.94±2.32a 1.83±1.08 1.97±1.68 1.91±1.68

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%

58

(swing)

- v S

p & ASI. v 22 g

A-zPG-xPG-yPG-z f A-yPG-z ASI. &

(F1.7,22.6=4.976, p<.01) (F2.5,33.1=7.507, p<.01) (F2.9,37.6=4.13,

p<.01) (F2.5,32=3.36, p<.01) (F1.7,21.6=10.418, p<.01) (F1.9,25=4.912, p<.01)

ASI. k

22P p IMU v o 一 o

0% 25% 50% 75% 100% g A-x 13.23±11.98 11.94±12.08 13.47±11.65 10.49±9.18 13.13±6.47

A-y 10.64±10.05 16.09±15.66 13.08±11.06 15.96±12.89 19.04±10.70

A-z 8.43±5.08b 10.13±6.33a 6.48±5.13 5.80±4.01 6.64±3.86

G-x 12.12±6.96bde 11.50±5.92ac 5.15±6.11b 6.69±3.88a 5.33±3.18a

G-y 11.64±8.39c 10.94±7.55e 9.27±9.36ae 8.21±4.89 12.03±12.44bc

G-z 11.90±8.44b 14.45±7.43a 6.64±5.58 12.40±8.87 9.90±6.52

f

A-x 9.79±4.52 9.92±9.599 8.17±4.01 6.85±3.82 7.57±4.48

A-y 10.10±8.15de 10.96±7.03c 7.54±6.43b 5.90±5.18a 5.72±4.76a

A-z 6.46±3.83 8.47±7.43 5.98±3.10 6.32±1.22 5.06±2.86

G-x 7.06±3.85 8.00±7.16 8.69±5.87 7.83±4.67 8.95±7.69

G-y 15.12±11.40 11.72±10.51 13.37±13.10 14.55±12.66 16.37±12.02

G-z 11.69±11.18 6.81±9.20de 8.63±10.59 11.26±12.37b 13.83±13.01b

A-x 3.46±2.38 6.18±8.36 3.33±2.60 2.90±2.66 2.16±2.99

A-y 5.35±1.78 5.29±6.15 5.84±4.91 3.86±2.84 5.12±2.56

A-z 5.53±3.84 7.10±8.08 4.63±3.02 3.43±2.52 3.52±2.50

G-x 5.38±4.10 4.22±5.92 2.70±3.63 4.10±5.50 4.77±3.44

G-y 3.20±1.58 6.28±7.89 2.91±2.56 1.94±1.46 2.80±2.59

G-z 8.40±3.73 6.62±6.74 3.58±2.24 3.19±1.97 2.00±2.55

Sa 0% Pb 25% Pc 50% Pd

75% Pe 100%