hyponatremia in chf

Upload: orion-john

Post on 01-Jun-2018

230 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 Hyponatremia in CHF

    1/13

    T HE PRESENT AND F UT URE

    S T A T E - O F -T H E - A R T R E V I E W

    Hyponatremia in Acute Decompensated

    Heart Failure

    Depletion Versus Dilution

    Frederik H. Verbrugge, MD,*yPaul Steels, MD,zLars Grieten, PHD, MSC,*zPetra Nijst, MD,*yW.H. Wilson Tang, MD,x

    Wilfried Mullens, MD, PHD*z

    ABSTRACT

    Hyponatremia frequently poses a therapeutic challenge in acute decompensated heart failure (ADHF). Treating physicians

    should differentiate between depletional versus dilutional hyponatremia. The former is caused by diuretic agents, which

    enhance sodium excretion, often with concomitant potassium/magnesium losses. This can be treated with isotonic saline,

    whereas potassium/magnesium administration may be helpful if plasma concentrations are low. In contrast, as impaired

    water excretion, rather than sodium deciency, is the culprit in dilutional hyponatremia, isotonic saline administration

    may further depress the serum sodium concentration. Because free water excretion is achieved by continuous sodium

    reabsorption in distal nephron segments with low water permeability, diuretic agents that impair this mechanism (e.g.,

    thiazide-type diuretic agents and mineralocorticoid receptor antagonists) should be avoided, and proximally acting

    agents (e.g., acetazolamide and loop diuretic agents) are preferred. Vasopressin antagonists, which promote low water

    permeability in the collecting ducts and, hence, free water excretion, remain under investigation for dilutional hypo-

    natremia in ADHF. (J Am Coll Cardiol 2015;65:48092) 2015 by the American College of Cardiology Foundation.

    Hyponatremia, dened as a serum sodium

    (Na) concentration

  • 8/9/2019 Hyponatremia in CHF

    2/13

    available evidence, a pathophysiology-based assess-

    ment and management strategy for the important

    clinical challenge of hyponatremia in ADHF.

    P A TH O P H YS I O L OG Y O F

    H YP O N A TR E M I A I N A D H F

    Table 1provides a summary of the pathophysiology of

    hyponatremia in ADHF.

    DILUTIONAL HYPONATREMIA. It is generally assumed

    that hyponatremia in ADHF is more often a problem

    of impaired water excretion than Na depletion(6,7).

    Two key events driving increased water retention

    and progression of hyponatremia in ADHF are in-

    creased nonosmotic release of arginine vasopressin

    (AVP) and insufcient tubular ow through diluting

    (distal) segments of the nephron. In many ways, this

    is the opposite of the situation in diabetes insipidus,

    where decient AVP production and/or function

    in the presence of normal tubular ow results in

    very diluted urine, exaggerated water losses, and,

    ultimately, in hypernatremia, unless compensation

    occurs through increased water intake.

    A V P a n d r e g u l a t i o n o f p l a s m a o s m o l a l i t y . AVP, a

    cyclic octapeptide (1,099 D) with a 3-amino acid tail,

    is a key regulator of water homeostasis. AVP is syn-

    thesized in large-diameter neurons in the supraoptic

    and paraventricular nuclei of the anterior hypothal-

    amus. After axonal transport into nerve terminals

    within the posterior lobe of the pituitary, AVP is

    released into the bloodstream in response to plasma

    hypertonicity (8). In healthy, normally hydrated

    persons , c ircu lating AVP levels are very low

    (w1 pg/ml) because of its rapid degradation and

    excretion by the liver and kidneys (t1/2 15 to 20 min)

    (9) . Consequently, hepatic dysfunction and renal

    insufciency may contribute to increased plasma

    levels of AVP in ADHF. AVP exerts its water-retaining

    effects primarily through stimulation of high-afnity

    V2 receptors in the collecting ducts of the nephron

    (Figure 1) (9). V2 stimulation increases both the syn-thesis and availability of aquaporin-2 channels on the

    luminal side of these collecting ducts, which other-

    wise have low water permeability(10). The hypertonic

    environment of the renal interstitium subsequently

    provides a strong impetus for water reabsorption,

    resulting in decreased water excretion and, conse-

    quently, less diuresis. Importantly, this system is very

    sensitive to small changes in plasmaAVP levels, which

    are difcult to detect, even by modern assays (11). At

    higher concentrations, the low-afnity V1a receptor,

    which is expressed in the liver, collection ducts,

    and vasa recta of the nephron, is stimulated (Figure 1).This further enhances hypertonicity in the renal

    interstitiumhence antidiuresisthrough in-

    creased hepatic urea production, improved

    medullary urea reabsorption in the collecting

    ducts, and reduced blood ow through the

    vasa recta (Figure 1)(12,13). The vasa recta are

    straight capillaries in the renal medulla with a

    hairpin loop. They receive a lower proportion

    of blood ow compared with the renal cortex,

    especially during antidiuresis. This is impor-

    tant, as high blood ow through the vasa recta

    washes out the tonicity gradient from the

    renal cortex toward the medulla, which is

    needed to concentrate the urine. Finally,

    another effect of V1a receptor stimulation is

    promotion of prostaglandin synthesis in the collecting

    ducts. This counteracts V2 effects on aquaporin-2, thus

    stimulating water excretion (14). This latter effect may

    explainwhy some heart failure patients demonstrate a

    normal response to water loading, with production of

    adequately diluted urine, despite having elevated

    plasma AVP levels(15).

    N o no s mo t i c a r gi n i ne v a so p re s s in r e l ea s e i n

    h e a r t f a i l u r e. Several studies have demonstrated

    that AVP levels are generally elevated in heart failure

    (1618). Moreover, aquaporin-2 expression was

    markedly up-regulated in a rat model of congestive

    heart failure (19), which would be expected to in-

    crease water permeability and reabsorption in the

    collecting ducts of the nephron. It is tempting to

    speculate that both events are causally related and

    promoting excessive free water reabsorption, leading

    to hyponatremia in ADHF. Certainly, baroreceptor

    activity, sympathetic overdrive, and angiotensin II,

    all stimulated by decreased effective circulatory

    T A B L E 1 Pathophysiology of Hyponatremia in

    Acute Decompensated Heart Failure

    Mechanism of Action

    Dilutional hyponatremia

    Increased sensitivity of osmotic AVP

    release/ Lower osmo-checkpoint*

    Baroreceptor activation/angiotensin II

    Increased nonosmotic AVP release Baroreceptor activation/angiotensin II

    Impaired AVP degradation Liver and/or kidney dysfunction

    I nc reas ed t hi rs t Bar or ec ept or a ct iva ti on /angiot en si n I I

    Decreased distal nephron ow Impaired g lomerular ltration/Increased

    proximal tubular reabsorption

    Depletional hyponatremia

    Low sodium intake Salt-restricted diet

    Exaggerated nonurinary sodium losses Diarrhea, ascites

    Exaggerated natriuresis Diuretics, osmotic diuresis

    Sodium shift toward the intracellular

    compartment

    Potassium and/or magnesium

    deciency

    *This is the level of plasma osmolality that is pursued by the homeostatic mechanisms of the

    body.

    AVP arginine vasopressin.

    A B B R E V I A T I O N S

    A N D A C R O N Y M S

    ADHF= acute decompensated

    heart failure

    AVP= arginine vasopressin

    ENaC = epithelial sodium

    channel

    GFR= glomerular ltration

    rate

    MRA= m ineralocorticoid

    receptor antagonist

    Na = sodium

    TAL= thick ascending

    limb of Henles loop

    J A C C V O L . 6 5 , N O . 5 , 2 0 1 5 Verbruggeet al.

    F E B R U A R Y 1 0 , 2 0 1 5 : 4 8 09 2 Hyponatremia in Decompensated Heart Failure

    481

  • 8/9/2019 Hyponatremia in CHF

    3/13

    volume in ADHF, fuel nonosmoticAVP release, as well

    as thirst and thus free water intake (20). Importantly,

    they also increase the sensitivity of osmotic AVP

    release (Figure 2A). Indeed, compared with healthy

    volunteers, ADHF patients show a more pronounced

    increase in plasma AVP levels with osmotic loading

    (21). In contrast to this osmotic AVP release, which

    increases linearly and with very small changes in

    serum osmolality, nonosmotic AVP release is expo-

    nential (Figure 2B). Thus, isotonic plasma volume

    reductions of 5% to 10% will have little effect on AVPsecretion, whereas reductions of 20% to 30%,

    resulting in baroreceptor activation and angiotensin

    II stimulation, may cause plasma levels many times

    higher than necessary to produce maximal anti-

    diuresis (50 to 100 pg/ml) (22). Importantly, at these

    high levels, AVP has potent V1a -mediated vasocon-

    strictor effects that may contribute to hemodynamic

    deterioration in ADHF(23).

    Insufcient tubular ow through diluting segments

    o f t he d is ta l n ep hr on .Healthy kidneys are able

    to dilute urine to an osmolality as low as 30 to 60

    mOsm/l, w5- to 10-fold lower than serum osmolality

    (24). However, micropuncture studies have demon-

    strated that tubular uid osmolality is quite similar

    (w150 mOsm/l) at the level of the macula densa dur-

    ing antidiuresis versus water diuresis (25). Thus,

    urine dilution depends heavily on the tubular func-

    tion of more distal parts of the nephron (i.e., distal

    convoluted tubules and collecting ducts). Free water

    excretion is achieved by these segments through

    continued solute reabsorption, primarily through the

    thiazide-sensitive Na/chloride cotransporter and

    aldosterone-sensitive epithelial sodium channels

    (ENaCs), in the presence of low water permeability

    (24,26). Importantly, less sodium is reabsorbed by

    ENaCs in conditions of low tubular ow, irrespective

    of aldosterone levels (27). Consequently, if more so-

    dium is retained in the tubular lumen, free water

    excretion is restricted. The ability of the kidneys to

    excrete free water is, therefore, directly dependent

    on: 1) the amount of tubular uid offered to the distal

    nephron; and 2) the relatively low water permeability

    of t his s egme nt , which c an only be ove rc om e

    by inse rtio n of aqua pori n-2 chan nels thro ugh AVP

    stimulation. For instance, a healthy person with a

    glomerular l tr at io n ra te (G FR) o f 18 0 l /da y

    (125 ml/min), of which 10% reaches the distal convo-

    luted tubules and with total AVP suppression, would

    be able to drin k w18 l (10% of 180 l) over the course of

    a day without developing hyponatremia (Figure 3A).

    Yet, with the GFR lowered to 43.2 l/day (30 ml/min),

    and only 5% distal tubular ow because of increased

    proximal reabsorption in ADHF, maximal water

    intake without hyponatremia development would

    be decr ease d trem endously to 2.16 l/da y (5%

    of 43.2 l/day) (28,29). The latter is even an over-

    estimate, as it presumes that water permeability in

    the distal nephron is as low as with total AVP sup-

    pression, which is clearly not the case in ADHF

    (Figure 3B). An intriguing study by Bell et al. (30)

    further supports the concept of decreased distal

    nephron ow in AHDF. In this study, free water

    excretion was increased in ADHF patients with

    hyponatremia after infusion of 5% mannitol, an os-motic diuretic that enhances tubular ow through the

    F I G U R E 1 Effects of AVP in the Nephron

    LOW WATER PERMEABILITY

    INTERLOBARARTERY

    VASA

    RECTA

    AP2 EXPRESSION

    V2

    V1a

    :

    V1a

    V1a

    : VASOCONSTRICTION

    UREA REABSORPTION

    INCREASED HEPATIC UREAPRODUCTION

    BLOOD FLOW

    OSMOTIC GRADIENTSMOTIC GR DIENT

    INCREASED UT-A1 TRANSPORTER

    UreaUT-A1 transporter

    Aquaporine-2 (AP2)

    Stimulated

    Inhibited

    H2O

    H2O

    H2O

    H2O

    Macula densa

    Distal tubules Collecting ducts

    TAL

    V2-receptor effects: The primary effect of AVP on water homeostasis is mediated through

    stimulation of high-afnity V2receptors, already with small increases in plasma levels (9).

    V2-receptor stimulation in collecting duct cells results in increased production of AP2

    channels and facilitates recruitment of these channels on the luminal membrane, which

    otherwise has low water permeability(10). Subsequently, water reabsorption is promoted

    as the renal interstitium is hypertonic and the basolateral membrane of collecting duct

    cells is highly permeable to water. Hypertonicity in the renal interstitium is accomplished

    through solute reabsorption in parts of the nephron that have relatively low water

    permeability, that is, sodium and chloride transport in the TAL and urea reabsorption in the

    medullary part of the collecting ducts through UT-A1 transporters.

    V1a-receptor effects: At high plasma levels, AVP further stimulates hypertonicity in the

    renal interstitium, and hence water reabsorption, through activation of the low-afnity V1a

    receptor. First, this promotes both hepatic urea production and UT-A1 transport in the

    medullary part of the collecting ducts, resulting in higher urea concentrations and a

    stronger osmotic gradient in the renal interstitium. Furthermore, V1areceptor stimulation

    causes vasoconstriction in the vasa recta, preventing wash-out of solutes from the renal

    medulla (12,13). On the other hand, V1areceptor stimulation in collecting duct cells also

    promotes prostaglandin synthesis. Prostaglandins counteract the effects of V2by impeding

    AP2 recruitment in these collecting duct cells(14). This somewhat preserves the diluting

    capacity of the distal nephron, even when AVP levels are high because of neurohumoral

    activation and nonosmotic AVP release. AP2 aquaporin-2; AVP arginine vasopressin;

    TAL thick ascending limb of Henles loop.

    Verbruggeet al. J A C C V O L . 6 5 , N O . 5 , 2 0 1 5

    Hyponatremia in Decompensated Heart Failure F E B R U A R Y 1 0 , 2 0 1 5 : 4 8 09 2

    482

  • 8/9/2019 Hyponatremia in CHF

    4/13

    nephron. Mannitol exerts its diuretic effect through

    solvent drag and water retention in the tubular

    lumen, thereby also increasing distal delivery. Similar

    ndings have been demonstrated in patients with

    cirrhosis, where the effective circulatory volume and

    renal perfusion are also impaired (31). However, it

    remains possible that correction of hyponatremia

    with mannitol in ADHF and cirrhosis is partly due to

    increased intravascular volume after infusion, sup-

    pressing baroreceptor tonus and, hence, nonosmotic

    AVP release (32).

    D EPLETION A L HY PONA TREMI A. Because increasedNa avidity characterizes heart failure from the very

    begi nning and is exacerbate d by unre strained

    neurohumoral up-regulation, Na depletion is rela-

    tively rare in ADHF not treated with diuretic agents

    (33,34). Still, osmotic diuresis because of hypergly-

    cemia in the case of severe uncontrolled diabetes,

    gastrointestinal losses, and third-space losses may all

    contribute to a negative Na balance , espe cially if

    patients adhere scrupulously to the salt-restricted

    diets recommended by the guidelines (3537). One

    group called these diets into question, demonstrating

    that heart failure patients adhering to such diets

    experienced increased hospitalizations and a higher

    mortality rate (3840) . However, it should be noted

    that these patients also received a high dose of

    diuretic agents (125 to 500 mg furosemide equivalents

    twice daily), increasing the risk of a negative Na

    balance . Inde ed, the comb inat ion of very low diet ary

    sodium intake and exaggerated losses might lead

    to progressivedepletion of whole-bodysodium stores.

    L o o p d i u r e ti c - i n du c e d h y p o na t r e m i a. The use

    of powerful Na-wasting loop diuretic agents is

    nearly ubiquitous in ADHF, with 88% of patients in

    ADHERE (Acute Decompensated Heart Failure Regis-

    try) receiving them (41). Moreover, 70% continue to

    receive daily maintenance therapy with loop diuretic

    agents, although many are probably not persistently

    volume-overloaded. Loop diuretic agents block the

    Na/potassium/chloride cotransporter in the thick

    ascending limb of Henles loop (TAL). Na and chlo-

    ride transport in the TAL, which has a relatively low

    water permeability, makes a crucial contribution to

    the hypertonicity of the renal interstitium, in addition

    to the other important factor, medullary urea trans-

    port in thecollecting ducts (42,43). This hypertonicity,

    washed out by blood ow through the vasa recta with

    inhibition of TAL transport by loop diuretic agents, is

    the major driver of water reabsorption in the distal

    nephron. Because of this interference of loop diuretic

    agents with the renal capacity to concentrate urine,

    less free water is reabsorbed, resulting in production

    of hypotonic urine and, therefore, relative protection

    against hyponatremia (Figure 4A) (44). However, in

    conditions of profound volume depletion with strong

    neurohumoral activation and compromised renal

    blood ow, loop diuretic agents will fail to elicit

    meaningful water diuresis. Eventually, GFR and distal

    nephron ow will become depressed in the presence

    of strongly up-regulated AVP, creating the necessary

    environment for hyponatremia development(29).

    O t h e r d i u r e t i c a g e n t s a n d h y p o n a t r e m i a . Miner-

    alocorticoid receptor antagonists (MRAs) are a

    cornerstone in the treatment of heart failure with

    reduced ejection fraction and are promising inselected patients with preserved ejection fraction

    F I G U R E 2 Determinants of AVP Plasma Levels

    12

    8

    4

    50

    40

    30

    20

    10

    05 10 15 20

    260 270 280 290 300 310

    Plasma Osmolality (mOsm/l)

    % Plasma osmolality increase

    % Iso-osmotic plasma volume decrease

    Normal

    Osmotic Non-osmotic

    Angiotensin II

    baroreceptor activity

    Osmotic AVP Release

    Osmotic Versus Non-osmotic AVP release

    PlasmaAVP(pg/ml)

    PlasmaAVP(pg/ml)

    B

    A

    (A)Osmotic AVP release: AVP is near total suppression in normal

    circumstances, but increases linearly with plasma osmolality (9).

    Neurohumoral activation through angiotensin II and baroreceptor

    activity increases the amount of AVP release for anygiven plasma

    osmolality(20). In addition, it moves the set-point of total AVP

    suppression to a lower plasma osmolality, hence promoting hy-

    potonicity.(B) Osmotic versus nonosmotic AVP release: osmotic

    AVP release is very sensitive and increases linearly, already with

    very small changes in plasma osmolality (blue curve)(9). Non-

    osmotic AVP release makes little contribution to overall AVP

    plasma levels until a 10% to 15% decrease in isotonic plasma

    volume, after which AVP release increases markedly, resulting in

    plasma levels many times higher than needed to achieve maximal

    antidiuresis(red curve) (22).Abbreviations as in Figure 1.

    J A C C V O L . 6 5 , N O . 5 , 2 0 1 5 Verbruggeet al.

    F E B R U A R Y 1 0 , 2 0 1 5 : 4 8 09 2 Hyponatremia in Decompensated Heart Failure

    483

  • 8/9/2019 Hyponatremia in CHF

    5/13

    F I G U R E 3 Maximal Free Water Excretion in Healthy Subjects Versus Patients With Heart Failure and an Impaired GFR

    Healthy personMAXIMAL WATER DIURESIS

    Heart failure patientMAXIMAL WATER DIURESIS

    GlomerulusGFR = 125 ml/min

    = 180 l/day285 - 295 mOsm/l

    Macula Densa18 l/day

    150 mOsm/l

    Distal Tubules(low water permeability)

    Distal Tubules(low water permeability)

    Collecting ducts(low water permeability)

    Collecting ducts(low water permeability)

    AVPsuppressed:LOW WATER PERMEABILITYCONTINUED SOLUTEREABSORPTION

    MAXIMALFREE WATER EXCRETION

    ~ 18l/day

    Urine: 30-60 mOsm/l

    MAXIMALFREE WATER EXCRETION

  • 8/9/2019 Hyponatremia in CHF

    6/13

    F I G U R E 4 Effects of Diuretics on the Kidneys Concentrating and Diluting Capacity

    Effect of loop Diuretics

    on the Concentrating Capacity of the Kidneys

    MAXIMAL

    ANTIDIURESIS

    MAXIMAL WITH

    LOOP DIURETICS

    MAXIMALANTIDIURESIS

    MAXIMAL WITHTHIAZIDE-TYPE

    DIURETICS

    DISTAL CONVOLUTED TUBES& COLLECTING DUCTS

    IMPAIRED SODIUM REABSORPTION

    UNCHANGED WATER REABSORPTION

    Thiazide-type diuretics & MRA

    DISTAL CONVOLUTED TUBES& COLLECTING DUCTS

    CONTINUED SODIUM REABSORPTION

    WATER REABSORPTION

    Impaired osmotic gradientNa/Cl Co-transporter

    Na/K/2CI Co-transporter

    ENaC

    Na/Cl Co-transporter

    Na/K/2CI Co-transporterENaC

    LOOP DIURETICS

    1200 mOsm/l

    1200 mOsm/l 1200 mOsm/l

    300 mOsm/l

    300 mOsm/l 300 mOsm/l

    300 mOsm/l

    800 mOsm/l

    THIAZIDE-TYPEDIURETICS

    MRA

    Effect of THIAZIDE-TYPE Diuretics and MRAon the Concentrating Capacity of the Kidneys

    O

    SMOTIC

    O

    S

    M

    O

    T

    I

    C

    GRADI

    ENT

    G

    R

    D

    I

    E

    N

    T

    OSMOTIC

    O

    S

    M

    O

    T

    I

    C

    GRADIENT

    G

    R

    D

    I

    E

    N

    T

    OSMOTIC

    O

    S

    M

    O

    T

    I

    C

    GRADIENT

    G

    R

    D

    I

    E

    N

    T

    O

    SMOTIC

    O

    S

    M

    O

    T

    I

    C

    GRADI

    ENT

    G

    R

    D

    I

    E

    N

    T

    A

    B

    (A)Loop diuretic agents block the sodium/chloride/potassium cotransporter in the TAL, interfering with the generation of hypertonicity in the

    renal interstitium and decreasing the osmotic gradient that promotes water reabsorption. Loop diuretic agents have no effect on sodium or

    chloride transport in the distal nephron, which has low water permeability, and they therefore do not interfere with the kidneyscapacity to

    produce hypotonic urine.(B) Thiazide-type diuretic agents block the sodium/chloride symporter, whereas MRAs inhibit ENaCs in the distal

    nephron. As both make a negligible contribution to the hypertonicity achieved in the renal interstitium, thiazide-type diuretic agents and MRAs

    do not interfere with the water reabsorption gradient. However, as sodium and chloride reabsorption in the relatively water-impermeable distal

    nephron is the mechanism of urinary dilution, this process is impaired, resulting in a higher urinary tonicityand, hence, lower free water

    excretion compared with loop diuretic agents. ENaC epithelial sodium channel; MRA mineralocorticoid receptor antagonists; other

    abbreviations as in Figure 1.

    J A C C V O L . 6 5 , N O . 5 , 2 0 1 5 Verbruggeet al.

    F E B R U A R Y 1 0 , 2 0 1 5 : 4 8 09 2 Hyponatremia in Decompensated Heart Failure

    485

  • 8/9/2019 Hyponatremia in CHF

    7/13

    (45,46). Together with thiazide-type diuretic agents,

    often recommended as rst-line therapy in case of

    loop diuretic resistance, they interfere with sodium

    reabsorption by ENaCs and Na/chloride cotrans-

    porters, respectively, in the distal convoluted tubules

    and collecting ducts (Figure 4B) (47). Thus, they

    have a direct effect on the diluting tubular segments

    of the kidneys and may cause hyponatremia, even

    without pronounced hypovolemia, as they generate

    less hypotonic urine (4749) . From a pathophysio-

    logical perspective, it is, therefore, prudent to

    avoid their use in any patient with hyponatremiaat

    least temporarily, until serum sodium levels are

    correctedand t o pre fe r a proximally working

    diuretic (e.g., acetazolamide) in such cases with vol-

    ume overload and diuretic resistance (29).

    P o t a s s i u m a n d m a g n e s i u m d e p l e t i o n . Both loop-

    and thiazide-type diuretic agents are a major cause of

    potassium and magnesium wasting in ADHF. This may

    have important implications, such as a higher risk of

    arrhythmic death(50). In addition, potassium deple-

    tion shifts Na towards the intracellular compartment

    to preserve cellular volume homeostasis, which may

    contribute to development of hyponatremia (51).

    Indeed, intracellular Na concentrations are higher in

    muscle cells of ADHF patients with hypokalemia (52).

    Furthermore, magnesium is critical for functioning of

    the Na/potassium ATPase that pumps Na out of

    cells; thus, hypomagnesemia may also exacerbate

    extracellular Na depletion.

    I N I TI A L A P P R O A C H TO H YP O N A TR E M I A I N

    D E C O M P E N SA TE D H E A R T FA I L U R E

    The Central Illustrationpresents a stepwise diagnostic

    and therapeutic approach to hyponatremia in de-

    compensated heart failure.

    CONFIRM PL ASMA HYPOTONICITY. In patients with

    hyponatremia, the rst step is generally to assess

    whether plasma hypotonicity is present by measuring

    the plasma osmolality (reference value: 285 to295 mOsm/l). This may not be necessary when

    hyponatremia is mild (serum Na concentration

    130 to 134 mEq), asymptomatic, and easily corrected

    by empi ric treatmen t. Elev ated trig lyce ride or

    cholesterol levels, immunoglobulins, and monoclonal

    gammopathiesthrough laboratory artifactsmay all

    cause falsely low serum Na concentrations without

    affecting plasma osmolality (5355). Additionally,

    the presence of effective osmoles raising serum

    osmolalitymost notably glucose in uncontrolled

    diabetes and/or hyperosmolar radiocontrast media

    may result in hyponatremia with normal, or evenhigh, plasma tonicity (56,57). Indeed, the serum Na

    concentration decreases by approximately 2.4 mEq/l

    per 100 mg/dl increase in serum glucose(56). If these

    underlying causes are managed appropriately, hypo-

    natremia is probably not associated with worse

    outcome(58).

    AVOID AND TREAT DEPLETIONAL HYPONATREMIA.

    In any patient with hypotonic hyponatremia, it is best

    to avoid thiazide-type diuretic agents, MRAs, and

    ENaC blockers (e.g., amiloride), as these medications

    interfere directly with the kidneys capacity to pro-

    duce hypotonic urine. However, it should be stressed

    that this advice is purely on the basis of the patho-

    physiological rationale, as high-quality evidence is

    lacking. Further, potassium and magnesium stores

    should be replenished if serum levels are low. We

    propose aiming for serum potassium levels$

    4 mEq/land magnesium levels $1.7 mEq/l ($2 mg/dl) in ADHF

    patients presenting with hyponatremia, but this cut-

    off is arguably somewhat arbitrary.

    D IF FE R EN TI AT E B ET WE E N D EP L ET I ON AL A ND

    D I LUTION A L HY PONA TREMI A. In ADHF, clinicians

    should differentiate between depletional hypo-

    natremia, requiring the administration of saline,

    versus dilutional hyponatremia, where free water

    excretion should be promoted. Acute gastrointestinal

    or third-space losses, clinical signs of hypovolemia,

    and recent use of diuretic agentsespecially at high

    doses or in combination therapyincrease the likeli-

    hood of depletional hyponatremia. In this case, pro-

    duction of hypotonic urine is promoted by the

    administration of isotonic saline, with subsequent

    normalization of serum sodium levels. In contrast, it

    would be impossible to correct dilutional hypona-

    tremia with isotonic saline, as free water excretion is

    compromised and hypotonic urine production is

    impaired. One might consider a uid challenge with 1

    of isotonic saline over 24 h to differentiate between

    these conditions, measuring the effect on serum so-

    dium levels. However, this should be avoided in case

    of clear uid overload and/or severe hyponatremia

    (serum sodium

  • 8/9/2019 Hyponatremia in CHF

    8/13

  • 8/9/2019 Hyponatremia in CHF

    9/13

    hyponatremia. Finally, very low urinary Na and/or

    chloride concentrations (10 mEq/l in

    24 h should be avoided because of the risk of central

    pontine myelinolysis (60). Importantly,replenishment

    of potassium and magnesium stores through adminis-

    tration of supplements contributes to hyponatremia

    correction, andthisshould be taken into account when

    determining the correction rate (52,61). Although

    certainly not a substitute for frequent monitoring, the

    change in serum Na concentration with 1 l of infusate

    might be approximated by the following formula:

    Na

    INFUSATE

    K

    INFUSATE

    Na

    SERUM

    TBW 1

    with TBW a body weight (kg), and a 0.6 in chil-

    dren and nonelderly men, 0.5 in nonelderly women

    and elderly men, and 0.45 in elderly women(62). Take

    for example a female patient, 50 years of age and

    weighing 62 kg, presents with a serum Na concen-

    trationof130mEq/landaserumK of 3.5mEq/l. This is

    presumably because of depletion, as she is on a high

    maintenance dose of furosemide (120 mg twice daily)

    and has no overt signs of volume overload. Infusion of

    1 normal saline ([Na] 154 mEq/l) with addition of

    40 mEq K supplements would be expected to raisethe serum Na concentration by 2 mEq/l ([154 mEq/l

    40 mEq/l 130 mEq/l]/[(0.5 62) 1]). However,

    without K supplements, the increase would only be

    0.75 mEq/l ([154 mEq/l 130 mEq/l]/[(0.562) 1]).

    TR E A TM E N T O F H YP O TO N I C

    D I L U TI O N A L H YP O N A TR E M I A

    Acute treatment of hypotonic dilutional hypo-

    natremia is focused on promoting free water excretion

    to restore normal serum sodium levels. However, for

    long-term treatment success, it is important to subse-quently prevent a positive free water balance. This

    may be important, as the question whether hypona-

    tremia in ADHF reects a therapeutic target or is

    merely a marker of advanced disease has not been

    fully established. Indeed, studies looking at the

    prognostic effect of hyponatremia correction have

    yielded conicting results (63,64). Madan et al. (63)

    demonstrated in a cohort of 322 ADHF patients with

    hyponatremia that long-term changes in serum Na

    concentration (assessed 60 to 270 days after hospital

    discharge) are signicant predictors of mortality, with

    improving hyponatremia associated with better

    outcome. In contrast, after correction for disease

    severity markers, Lee et al. (64) found that normali-

    zation of hyponatremia at hospital discharge was not

    associated with improved survival (64). Obviously,

    confounding by different treatment strategies in both

    studies cannot be excluded, but a conservative

    interpretation is that only durable hyponatremia

    correction is potentially associated with improved

    outcome in ADHF. To achieve this, good heart failure

    management is often fundamental.

    ACUTE TREATMENT OF DILUTIONAL HYPONATREMIA.

    To promote free water excretion in a patient with

    ADHF and hypotonic dilutional hyponatremia, distal

    nephron ow should be increased, AVP levels should

    be lowered , or AVP effe cts should be anta goni zed.

    L o o p d i u r e t i c a g e n t s w i t h o r w i t h o u t h y p e r t o n i c

    s a l i n e . The powerfu l inhibit ory e ffec t of loop

    diuretic agents on Na transport in the TAL increases

    the amount of tubular uid presented to the distal

    nephron. Loop diuretic agents also reduce hyperto-

    nicity of the renal interstitium, further facilitating

    water excretion (Figure 4A) (44). Because loop

    diuretic agents are cheap and readily available, they

    remain the rst-line therapy in ADHF with dilutional

    hyponatremia and volume overload. The addition of

    hypertonic saline to improve loop diuretic efcacy in

    ADHF is a controversial issue. Although counterin-

    tuitive from a pathophysiological point of view, some

    small studies have suggested more efcient decon-

    gestion and better renal preservation when loop

    diuretic agents are combined with hypertonic saline

    (Table 2) (6570). Importantly, decreases in plasma

    renin activity, inammatory markers, and even

    natriuretic peptide levels have been demonstrated

    with hypertonic saline administration in ADHF

    patients who receive loop diuretic agents(71,72). Still,

    it remains difcult to draw any rm conclusions,

    beca use the use of high dose s of loop diur etic age nts

    that might have induced these alterations might

    have confounded these improvements with sodium

    loading. As serum Na levels are more easily cor-

    rected, patients with hyponatremia might benetmore from the addition of hypertonic saline to loop

    Verbruggeet al. J A C C V O L . 6 5 , N O . 5 , 2 0 1 5

    Hyponatremia in Decompensated Heart Failure F E B R U A R Y 1 0 , 2 0 1 5 : 4 8 09 2

    488

  • 8/9/2019 Hyponatremia in CHF

    10/13

    diuretic agents; however, this remains highly

    speculative.

    A c e t a z o l a m i d e . Alternatively, combinational diu-

    retic treatment with loop diuretic agents and acet-

    azolamide ensures minimal tubular Na reabsorption

    proximal from the macula densa and maximal ow

    through the distal nephron (29). For this reason, if

    combination therapy is needed to overcome loop

    diuretic resistance in ADHF, acetazolamide should be

    preferred over thiazide-type diuretic agents, MRAs, or

    ENaC blockers.

    A V P a n t a g o ni s t s .AVP antagonists are the only

    medication class to directly promote free water

    excretion by prevention of aquaporin-2 channel

    availability in the collecting ducts of the nephron

    (73,74). Three oral V2receptor antagonists (tolvaptan,

    satavaptan, and lixivaptan) have been tested forADHF, with the former 2 shown to be efcacious in

    restoring serum Na levels in patients with volume

    overload and hyponatremia (7578). Similar data are

    available for conivaptan, an intravenous agent that

    antagonizes both the V2 and V1a receptors(74,79,80).

    Table 3 summarizes the currently available evidence

    on AVP antagonists in patients with ADHF and hypo-

    natremia. Importantly, EVEREST (Efcacy of Vaso-

    pressin Antagonism in Heart Failure Outcome Study

    with Tolvaptan), including 4,133 patients with ADHF

    but with out hypo natremia as an incl usio n crit erio n,

    compared tolvaptan with placebo and was poweredfor clinical endpoint analysis(81). The overall trial did

    not show a signicant reduction in all-cause mortality

    or readmission rates, but, interestingly, a subanalysis

    in patients presenting with pronounced hypona-

    tremia (

  • 8/9/2019 Hyponatremia in CHF

    11/13

    I n o t r o p e s a n d v a s o d i l a t o r t h e r a p y . Increasing the

    effective circulatory volume in heart failure is ex-

    pected to result in less nonosmotic AVP release

    and better renal blood ow, which, from a patho-

    physiological perspective, might help to correct dilu-

    tional hyponatremia. Because cardiac output in ADHF

    is rather insensitive to changes in cardiac pre-loadasthe Frank-Starling mechanism is depletedimprove-

    ments can only be obtained through direct stimula-

    tion of contractility with inotropes or reducing

    afterload with vasodilator therapy. As the former

    treatment strategy is associated with increased

    mortality, afterload reduction probably remains the

    best opti on to increas e the effective circ ulat ory vol-

    ume; however, its use is limited by low arterial blood

    pressure (86,87). Observational data have demon-

    strated that nitroprusside, titrated on arterial blood

    pressure and with conversion to oral hydralazine and

    nitrates, is feasible and potentially associated with

    bet ter outc ome s in ADHF (88,89). Alternatively, ser-

    elaxin, a vasodilator agent under investigation, might

    be of particu lar inte rest beca use of its spec ic renal

    vasodilator properties (90,91). The RELAX-AHF-EU

    (Effect of Serelaxin Versus Standard of Care in Acute

    Heart Failure Patients) trial is currently enrolling

    ADHF patients and is powered for clinical endpoint

    evaluation (92). Nevertheless, the specic effects of

    bot h inot ropes and vas odilato r therapy on hypo -

    natremia remain insufciently elucidated.

    CONCLUSIONS

    The pathophysiology of hyponatremia in ADHF is

    complex, and a 1-size-ts-all approach is therefore

    likely to fail. Appropriate differentiation between

    dilutional and depletional hyponatremia is crucial

    and depends on good history taking, clinical exami-

    nation, and correct interpretation of laboratory re-

    sults. A targeted, pathophysiology-based approach

    should help to treat this challenging condition ef-

    ciently, thereby minimizing adverse events.

    REPRI N T REQUESTS A N D C ORRESPON D EN C E: Dr.

    Wilfried Mullens, Department of Cardiology, Ziekenhuis

    Oost-Limburg, Schiepse Bos 6, 3600 Genk, Belgium.

    E-mail: [email protected].

    R E F E R E N C E S

    1. Mohan S, Gu S, Parikh A, et al. Prevalence of

    hyponatremia and association with mortality:

    results from NHANES. Am J Med 2013;126:

    112737.e1.

    2. Wald R, Jaber BL, Price LL, et al. Impact of

    hospital-associated hyponatremia on selected

    outcomes. Arch Intern Med 2010;170:294302.

    3.Gheorghiade M, Abraham WT, Albert NM, et al.,

    OPTIMIZE-HF Investigators and Coordinators.

    Relationship between admission serum sodium

    concentration and clinical outcomes in patients

    hospitalized for heart failure: an analysis from the

    OPTIMIZE-HFregistry.Eur Heart J 2007;28:9808.

    4. Konishi M, Haraguchi G, Ohigashi H, et al.

    Progression of hyponatremia is associated with

    increased cardiac mortality in patients hospitalized

    for acute decompensated heart failure. J Card Fail

    2012;18:6205.

    5.Shchekochikhin DY, Schrier RW, Lindenfeld J,

    et al. Outcome differences in community- versus

    hospital-acquired hyponatremia in patients with a

    diagnosis of heart failure. Circ Heart Fail 2013;6:

    37986.

    6. Adrogue HJ, Madias NE. Hyponatremia. N Engl

    J Med 2000;342:15819.

    7. Oren RM. Hyponatremia in congestive heart

    failure. Am J Cardiol 2005;95:2B7B.

    8. Oliet SH, Bourque CW. Mechanosensitive

    channels transduce osmosensitivity in supraoptic

    neurons. Nature 1993;364:3413.

    9. Bankir L. Antidiuretic action of vasopressin:

    quantitative aspects and interaction between V1a

    and V2 receptor-mediated effects. Cardiovasc Res

    2001;51:37290.

    10. Knepper MA. Molecular physiology of urinary

    concentrating mechanism: regulation of aquaporin

    water channels by vasopressin. Am J Physiol 1997;

    272:F312.

    11. Andersen LJ, Andersen JL, Schutten HJ, et al.

    Antidiuretic effect of subnormal levels of arginine

    vasopressin in normal humans. Am J Physiol 1990;

    259 1 Pt 2:R5360.

    12.Star RA, Nonoguchi H, Balaban R, et al.

    Calcium and cyclic adenosine monophosphate assecond messengers for vasopressin in the rat inner

    medullary collecting duct. J Clin Invest 1988;81:

    187988.

    13.Park F, Mattson DL, Skelton MM, et al. Local-

    ization of the vasopressin V1a and V2 receptors

    within the renal cortical and medullary circulation.

    Am J Physiol 1997;273 1 Pt 2:R24351.

    14.Breyer MD, Ando Y. Hormonal signaling and

    regulation of salt and water transport in the col-

    lecting duct. Annu Rev Physiol 1994;56:71139.

    15.Goldsmith SR, Francis GS, Cowley AW Jr.

    Arginine vasopressin and the renal response to

    water loading in congestive heart failure. Am J

    Cardiol 1986;58:2959.

    16.Szatalowicz VL, Arnold PE, Chaimovitz C, et al.

    Radioimmunoassay of plasma arginine vasopressin

    T A B L E 3 Studies on AVP Antagonists in Patients With Acute Decompensated Heart

    Failure and Hyponatremia

    First Author (Ref. #) n/N Treatment Outcome

    Gheorghiade et al. (77) 71/254(subgroup

    analysis)

    Tolvaptan 30, 45, or60 mg vs. placebo

    Normalization of serumsodium after 24 h,

    greater decrease in body

    weight and edema,

    increased urine output

    with tolvaptan

    Gheorghiade et al. (78) 51/319

    (subgroup

    analysis)

    Tolvaptan 30, 60, or

    90 mg vs. placebo

    Normalization of serum

    sodium with tolvaptan

    Ghali et al. (79) 19/74

    (subgroup

    analysis)

    Conivaptan 40 or

    80 mg vs. placebo

    Normalization of serum

    sodium with conivaptan

    Zeltser et al.(80) 28/84

    (subgroup

    analysis)

    Conivaptan 40 or

    80 mg vs. placebo

    Increase in serum sodium

    concentration with

    conivaptan

    Konstam et al. (81) 1,157/4,133

    (subgroup

    analysis)

    Tolvaptan 30 mg vs.

    placebo

    No effect on mortality or

    rehospitalization,

    signicant increase inserum sodium with

    tolvaptan

    Aronson et al. (75) 90/118

    (subgroup

    analysis)

    Satavaptan 25 or 50 mg

    vs. placebo

    Increase in serum sodium

    concentration with

    satavaptan

    Verbruggeet al. J A C C V O L . 6 5 , N O . 5 , 2 0 1 5

    Hyponatremia in Decompensated Heart Failure F E B R U A R Y 1 0 , 2 0 1 5 : 4 8 09 2

    490

    mailto:[email protected]://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref2http://refhub.elsevier.com/S0735-1097(14)07394-X/sref2http://refhub.elsevier.com/S0735-1097(14)07394-X/sref2http://refhub.elsevier.com/S0735-1097(14)07394-X/sref2http://refhub.elsevier.com/S0735-1097(14)07394-X/sref2http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref6http://refhub.elsevier.com/S0735-1097(14)07394-X/sref6http://refhub.elsevier.com/S0735-1097(14)07394-X/sref6http://refhub.elsevier.com/S0735-1097(14)07394-X/sref6http://refhub.elsevier.com/S0735-1097(14)07394-X/sref7http://refhub.elsevier.com/S0735-1097(14)07394-X/sref7http://refhub.elsevier.com/S0735-1097(14)07394-X/sref7http://refhub.elsevier.com/S0735-1097(14)07394-X/sref7http://refhub.elsevier.com/S0735-1097(14)07394-X/sref7http://refhub.elsevier.com/S0735-1097(14)07394-X/sref8http://refhub.elsevier.com/S0735-1097(14)07394-X/sref8http://refhub.elsevier.com/S0735-1097(14)07394-X/sref8http://refhub.elsevier.com/S0735-1097(14)07394-X/sref8http://refhub.elsevier.com/S0735-1097(14)07394-X/sref8http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref14http://refhub.elsevier.com/S0735-1097(14)07394-X/sref14http://refhub.elsevier.com/S0735-1097(14)07394-X/sref14http://refhub.elsevier.com/S0735-1097(14)07394-X/sref14http://refhub.elsevier.com/S0735-1097(14)07394-X/sref14http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref15http://refhub.elsevier.com/S0735-1097(14)07394-X/sref14http://refhub.elsevier.com/S0735-1097(14)07394-X/sref14http://refhub.elsevier.com/S0735-1097(14)07394-X/sref14http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref13http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref12http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref11http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref10http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref9http://refhub.elsevier.com/S0735-1097(14)07394-X/sref8http://refhub.elsevier.com/S0735-1097(14)07394-X/sref8http://refhub.elsevier.com/S0735-1097(14)07394-X/sref8http://refhub.elsevier.com/S0735-1097(14)07394-X/sref7http://refhub.elsevier.com/S0735-1097(14)07394-X/sref7http://refhub.elsevier.com/S0735-1097(14)07394-X/sref6http://refhub.elsevier.com/S0735-1097(14)07394-X/sref6http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref5http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref4http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref3http://refhub.elsevier.com/S0735-1097(14)07394-X/sref2http://refhub.elsevier.com/S0735-1097(14)07394-X/sref2http://refhub.elsevier.com/S0735-1097(14)07394-X/sref2http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1http://refhub.elsevier.com/S0735-1097(14)07394-X/sref1mailto:[email protected]
  • 8/9/2019 Hyponatremia in CHF

    12/13

    in hyponatremic patients with congestive heart

    failure. N Engl J Med 1981;305:2636.

    17.Goldsmith SR, Francis GS, Cowley AW Jr., et al.

    Increased plasma arginine vasopressin levels in

    patients with congestive heart failure. J Am Coll

    Cardiol 1983;1:138590.

    18.Francis GS, Benedict C, Johnstone DE, et al.

    Comparison of neuroendocrine activation in

    patients with left ventricular dysfunction with and

    without congestive heart failure. A substudy of the

    Studies of Left Ventricular Dysfunction (SOLVD).

    Circulation 1990;82:17249.

    19.Xu DL, Martin PY, Ohara M, et al. Upregulation

    of aquaporin-2 water channel expression in

    chronic heart failure rat. J Clin Investigation 1997;

    99:15005.

    20. Robertson GL, Aycinena P, Zerbe RL. Neuro-

    genic disorders of osmoregulation. Am J Med

    1982;72:33953.

    21.Uretsky BF, Verbalis JG, Generalovich T, et al.Plasma vasopressin response to osmotic and

    hemodynamic stimuli in heart failure. Am J Physiol

    1985;248 3 Pt 2:H396402.

    22. Dunn FL, Brennan TJ, Nelson AE, et al. The

    role of blood osmolality and volume in regulating

    vasopressin secretion in the rat. Journal Clin Invest

    1973;52:32129.

    23. Creager MA, Faxon DP, Cutler SS, et al.

    Contribution of vasopressin to vasoconstriction in

    patients with congestive heart failure: comparison

    with the renin-angiotensin system and the sym-

    pathetic nervous system. J Am Coll Cardiol 1986;

    7:75865.

    24. Jamison RL, Oliver RE. Disorders of urinary

    concentration and dilution. Am J Med 1982;72:

    30822.

    25. Gottschalk CW. Micropuncture studies of

    tubular function in the mammalian kidney. Folia

    Med Neerl 1962;5:1130.

    26. Leviel F, Hubner CA, Houillier P, et al.

    The Na-dependent chloride-bicarbonate ex-

    changer SLC4A8 mediates an electroneutral

    Na reabsorption process in the renal cortical

    collecting ducts of mice. J Clin Invest 2010;120:

    162735.

    27. Satlin LM, Carattino MD, Liu W, et al. Regula-

    tion of cation transport in the distal nephron by

    mechanical forces. Am J Physiol Renal Physiol

    2006;291:F923

    31.

    28. Gibson DG, Marshall JC, Lockey E. Assessment

    of proximal tubular sodium reabsorption during

    water diuresis in patients with heart disease. Br

    Heart J 1970;32:399405.

    29. Verbrugge FH, Dupont M, Steels P, et al. The

    kidney in congestive heart failure: are natriuresis,

    sodium, and diuretics really the good, the bad and

    the ugly?. Eur J Heart Fail 2014;16:13342.

    30. Bell NH, Schedl HP, Bartter FC. An explanation

    for abnormal water retention and hypoosmolality

    in congestive heart failure. Am J Med 1964;36:

    35160.

    31. Schedl HP, Bartter FC. An explanation for

    and experimental correction of the abnormal

    water diuresis in cirrhosis. J Clin Invest 1960;39:

    24861.

    32. Schrier RW, Berl T, Anderson RJ. Osmotic and

    nonosmotic control of vasopressin release. Am J

    Physiol 1979;236:F32132.

    33. Schrier RW, Abraham WT. Hormones and

    hemodynamics in heart failure. N Engl J Med

    1999;341:57785.

    34. McKie PM, Schirger JA, Costello-Boerrigter LC,

    et al. Impaired natriuretic and renal endocrine

    response to acute volume expansion in pre-clinical

    systolic and diastolic dysfunction. J Am Coll Car-

    diol 2011;58:2095103.

    35. Lindenfeld J, Albert NM, Boehmer JP, et al.,

    Heart Failure Society of America. HFSA 2010

    comprehensive heart failure practice guideline.

    J Card Fail 2010;16:e1194.

    36.McMurray JJ, Adamopoulos S, Anker SD, et al.,

    ESC Committee for Practice Guidelines. ESC

    guidelines for the diagnosisand treatmentof acute

    and chronic heart failure 2012: The Task Force for

    the Diagnosis and Treatment of Acute and Chronic

    Heart Failure 2012 of the European Society of Car-

    diology. Eur J Heart Fail 2012;14:80369.

    37. Yancy CW, Jessup M, Bozkurt B, et al. 2013

    ACCF/AHA guideline for the management of heart

    failure: a report of the American College of Car-

    diology Foundation/American Heart Association

    Task Force on Practice Guidelines. J Am Coll

    Cardiol 2013;62:e147239.

    38.Paterna S, Gaspare P, Fasullo S, Sarullo FM, Di

    Pasquale P. Normal-sodium diet compared with

    low-sodium diet in compensated congestive heart

    failure: is sodium an old enemy or a new friend?

    Clin Sci (Lond) 2008;114:22130.

    39. Paterna S, Parrinello G, Cannizzaro S, et al.

    Medium term effects of different dosage ofdiuretic, sodium, and uid administration on

    neurohormonal and clinical outcome in patients

    with recently compensated heart failure. Am J

    Cardiol 2009;103:93102.

    40. Parrinello G, Di Pasquale P, Licata G, et al.

    Long-term effects of dietary sodium intake on

    cytokines and neurohormonal activation in pa-

    tients with recently compensated congestive heart

    failure. J Card Fail 2009;15:86473.

    41.Fonarow GC, Corday E, ADHERE Scientic

    Advisory Committee. Overview of acutely decom-

    pensated congestive heart failure (ADHF): a report

    from the ADHERE registry. Heart Fail Rev 2004;9:

    17985.

    42. Lassiter WE, Gottschalk CW, Mylle M. Micro-

    puncture study of net transtubular movement

    of water and urea in nondiuretic mammalian

    kidney. Am J Physiol 1961;200:113947.

    43. Gottschalk CW, Lassiter WE, Mylle M, et al.

    Micropuncture study of composition of loop

    of Henle uid in desert rodents. Am J Physiol

    1963;204:5325.

    44. Ali SS, Olinger CC, Sobotka PA, et al., Ran-

    domized Aldactone Evaluation Study In-

    vestigators. Loop diuretics can cause clinical

    natriuretic failure: a prescription for volume

    expansion. Congest Heart Fail 2009;15:14.

    45. Pitt B, Zannad F, Remme WJ, et al. The effect

    of spironolactone on morbidity and mortality in

    patients with severe heart failure. N Engl J Med

    1999;341:70917.

    46.Zannad F, McMurray JJ, Krum H, et al.,

    EMPHASIS-HF Study Group. Eplerenone in pa-

    tients with systolic heart failure and mild symp-

    toms. N Engl J Med 2011;364:1121.

    47. Jentzer JC, DeWald TA, Hernandez AF.

    Combination of loop diuretics with thiazide-type

    diuretics in heart failure. J Am Coll Cardiol 2010;

    56:152734.

    48. Bozkurt B, Agoston I, Knowlton AA. Com-

    plications of inappropriate use of spironolactone

    in heart failure: when an old medicine spirals out

    of new guidelines. J Am Coll Cardiol 2003;41:

    2114.

    49.Goland S, Naugolny V, Korbut Z, et al.

    Appropriateness and complications of the use of

    spironolactone in patients treated in a heart failure

    clinic. Eur J Intern Med 2011;22:4247.

    50. Cooper HA, Dries DL, Davis CE, et al. Diuretics

    and risk of arrhythmic death in patients with left

    ventricular dysfunction. Circulation 1999;100:

    13115.

    51. Cooke RE, Segar WE, Cheek DB, et al. The

    extrarenal correction of alkalosis associated with

    potassium deciency. J Clin Invest 1952;31:

    798805.

    52. Dyckner T, Wester PO. Effects of magnesium

    infusions in diuretic induced hyponatraemia.

    Lancet 1981;1:5856.

    53. Vaswani SK, Sprague R. Pseudohyponatremia

    in multiple myeloma. South Med J 1993;86:2512.

    54. Lawn N, Wijdicks EF, Burritt MF. Intravenous

    immune globulin and pseudohyponatremia. N Engl

    J Med 1998;339:632.

    55. Lai MY, Lin CC, Chung SL, et al. Milky plasma,

    diabetes, and severe hyponatremia. Kidney Int

    2009;75:996.

    56.Hillier TA, Abbott RD, Barrett EJ. Hypona-

    tremia: evaluating the correction factor for hy-

    perglycemia. Am J Med 1999;106:399403.

    57. Sirken G, Raja R, Garces J, et al. Contrast-

    induced translocational hyponatremia and hyper-

    kalemia in advanced kidney disease. Am J Kidney

    Dis 2004;43:e315.

    58.Milo-Cotter O, Cotter G, Weatherley BD, et al.

    Hyponatraemia in acute heart failure is a marker of

    increased mortality but not when associated with

    hyperglycaemia. Eur J Heart Fail 2008;10:

    196200.

    59.Spasovski G, Vanholder R, Allolio B, et al.Clinical practice guideline on diagnosis and treat-

    ment of hyponatraemia. Intensive Care Med 2014;

    40:32031.

    60.Pirzada NA, Ali II. Central pontine myelinol-

    ysis. Mayo Clin Proc 2001;76:55962.

    61. Kingston M, Bhuta S. Hazards of potassium

    and multiple sources of sodium in causing osmotic

    demyelination. Intern Med J 2012;42:7301.

    62.Adrogue HJ, Madias NE. Hypernatremia. N

    Engl J Med 2000;342:14939.

    63.Madan VD, Novak E, Rich MW. Impact of

    change in serum sodium concentration on mor-

    tality in patients hospitalized with heart failure

    and hyponatremia. Circ Heart Fail 2011;4:63743.

    64.Lee SE, Choi DJ, Yoon CH, et al., KorHF Reg-

    istry. Improvement of hyponatraemia during

    J A C C V O L . 6 5 , N O . 5 , 2 0 1 5 Verbruggeet al.

    F E B R U A R Y 1 0 , 2 0 1 5 : 4 8 09 2 Hyponatremia in Decompensated Heart Failure

    491

    http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref20http://refhub.elsevier.com/S0735-1097(14)07394-X/sref20http://refhub.elsevier.com/S0735-1097(14)07394-X/sref20http://refhub.elsevier.com/S0735-1097(14)07394-X/sref20http://refhub.elsevier.com/S0735-1097(14)07394-X/sref20http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref24http://refhub.elsevier.com/S0735-1097(14)07394-X/sref24http://refhub.elsevier.com/S0735-1097(14)07394-X/sref24http://refhub.elsevier.com/S0735-1097(14)07394-X/sref24http://refhub.elsevier.com/S0735-1097(14)07394-X/sref24http://refhub.elsevier.com/S0735-1097(14)07394-X/sref25http://refhub.elsevier.com/S0735-1097(14)07394-X/sref25http://refhub.elsevier.com/S0735-1097(14)07394-X/sref25http://refhub.elsevier.com/S0735-1097(14)07394-X/sref25http://refhub.elsevier.com/S0735-1097(14)07394-X/sref25http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref33http://refhub.elsevier.com/S0735-1097(14)07394-X/sref33http://refhub.elsevier.com/S0735-1097(14)07394-X/sref33http://refhub.elsevier.com/S0735-1097(14)07394-X/sref33http://refhub.elsevier.com/S0735-1097(14)07394-X/sref33http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref52http://refhub.elsevier.com/S0735-1097(14)07394-X/sref52http://refhub.elsevier.com/S0735-1097(14)07394-X/sref52http://refhub.elsevier.com/S0735-1097(14)07394-X/sref52http://refhub.elsevier.com/S0735-1097(14)07394-X/sref52http://refhub.elsevier.com/S0735-1097(14)07394-X/sref53http://refhub.elsevier.com/S0735-1097(14)07394-X/sref53http://refhub.elsevier.com/S0735-1097(14)07394-X/sref53http://refhub.elsevier.com/S0735-1097(14)07394-X/sref53http://refhub.elsevier.com/S0735-1097(14)07394-X/sref54http://refhub.elsevier.com/S0735-1097(14)07394-X/sref54http://refhub.elsevier.com/S0735-1097(14)07394-X/sref54http://refhub.elsevier.com/S0735-1097(14)07394-X/sref55http://refhub.elsevier.com/S0735-1097(14)07394-X/sref55http://refhub.elsevier.com/S0735-1097(14)07394-X/sref55http://refhub.elsevier.com/S0735-1097(14)07394-X/sref56http://refhub.elsevier.com/S0735-1097(14)07394-X/sref56http://refhub.elsevier.com/S0735-1097(14)07394-X/sref56http://refhub.elsevier.com/S0735-1097(14)07394-X/sref56http://refhub.elsevier.com/S0735-1097(14)07394-X/sref56http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref61http://refhub.elsevier.com/S0735-1097(14)07394-X/sref61http://refhub.elsevier.com/S0735-1097(14)07394-X/sref61http://refhub.elsevier.com/S0735-1097(14)07394-X/sref61http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref63http://refhub.elsevier.com/S0735-1097(14)07394-X/sref63http://refhub.elsevier.com/S0735-1097(14)07394-X/sref63http://refhub.elsevier.com/S0735-1097(14)07394-X/sref63http://refhub.elsevier.com/S0735-1097(14)07394-X/sref63http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref65http://refhub.elsevier.com/S0735-1097(14)07394-X/sref65http://refhub.elsevier.com/S0735-1097(14)07394-X/sref65http://refhub.elsevier.com/S0735-1097(14)07394-X/sref65http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref64http://refhub.elsevier.com/S0735-1097(14)07394-X/sref63http://refhub.elsevier.com/S0735-1097(14)07394-X/sref63http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref62http://refhub.elsevier.com/S0735-1097(14)07394-X/sref61http://refhub.elsevier.com/S0735-1097(14)07394-X/sref61http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref60http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref59http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref57http://refhub.elsevier.com/S0735-1097(14)07394-X/sref56http://refhub.elsevier.com/S0735-1097(14)07394-X/sref56http://refhub.elsevier.com/S0735-1097(14)07394-X/sref56http://refhub.elsevier.com/S0735-1097(14)07394-X/sref55http://refhub.elsevier.com/S0735-1097(14)07394-X/sref55http://refhub.elsevier.com/S0735-1097(14)07394-X/sref55http://refhub.elsevier.com/S0735-1097(14)07394-X/sref54http://refhub.elsevier.com/S0735-1097(14)07394-X/sref54http://refhub.elsevier.com/S0735-1097(14)07394-X/sref54http://refhub.elsevier.com/S0735-1097(14)07394-X/sref53http://refhub.elsevier.com/S0735-1097(14)07394-X/sref53http://refhub.elsevier.com/S0735-1097(14)07394-X/sref52http://refhub.elsevier.com/S0735-1097(14)07394-X/sref52http://refhub.elsevier.com/S0735-1097(14)07394-X/sref52http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref51http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref50http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref49http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref48http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref47http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref46http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref45http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref44http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref43http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref42http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref41http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref40http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref39http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref38http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref37http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref36http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref35http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref34http://refhub.elsevier.com/S0735-1097(14)07394-X/sref33http://refhub.elsevier.com/S0735-1097(14)07394-X/sref33http://refhub.elsevier.com/S0735-1097(14)07394-X/sref33http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref32http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref31http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref30http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref29http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref28http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref27http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref26http://refhub.elsevier.com/S0735-1097(14)07394-X/sref25http://refhub.elsevier.com/S0735-1097(14)07394-X/sref25http://refhub.elsevier.com/S0735-1097(14)07394-X/sref25http://refhub.elsevier.com/S0735-1097(14)07394-X/sref24http://refhub.elsevier.com/S0735-1097(14)07394-X/sref24http://refhub.elsevier.com/S0735-1097(14)07394-X/sref24http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref23http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref22http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref21http://refhub.elsevier.com/S0735-1097(14)07394-X/sref20http://refhub.elsevier.com/S0735-1097(14)07394-X/sref20http://refhub.elsevier.com/S0735-1097(14)07394-X/sref20http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref19http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref18http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref17http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16http://refhub.elsevier.com/S0735-1097(14)07394-X/sref16
  • 8/9/2019 Hyponatremia in CHF

    13/13

    hospitalisation for acute heart failure is not asso-

    ciated with improvement of prognosis: an analysis

    from the Korean Heart Failure (KorHF) registry.

    Heart 2012;98:1798804.

    65.Paterna S, Di Pasquale P, Parrinello G, et al.

    Effects of high-dose furosemide and small-volume

    hypertonic saline solution infusion in comparison

    with a high dose of furosemide as a bolus, in re-

    fractory congestive heart failure. Eur J Heart Fail

    2000;2:30513.

    66. Licata G, Di Pasquale P, Parrinello G, et al.

    Effects of high-dose furosemide and small-volume

    hypertonic saline solution infusion in comparison

    with a high dose