hydrogen effects in materials - hysafe · hydrogen effects in materials brian somerday sandia...

49
Hydrogen Effects in Materials Brian Somerday Sandia National Laboratories Livermore, CA, USA 3 rd European Summer School on Hydrogen Safety University of Ulster, Belfast, UK July 28, 2008

Upload: others

Post on 22-Oct-2020

4 views

Category:

Documents


0 download

TRANSCRIPT

  • Hydrogen Effects in Materials

    Brian SomerdaySandia National Laboratories

    Livermore, CA, USA

    3rd European Summer School on Hydrogen SafetyUniversity of Ulster, Belfast, UK

    July 28, 2008

  • Outline

    •Introduction–H2 interactions with metal components– Safety concern: hydrogen embrittlement (HE)

    •Methods to assess material performance

    •Variables affecting HE– Material– Environmental– Mechanical

  • Outline

    •Considerations for materials selection

    •Component design–Design approach–Material property measurement– Example design analysis

    •Recommendations

  • H2 containment components

    On-board fuel tanks Manifold components

  • H2 containment components

    PipelinesTransport and stationary tanks

  • H2 interactions with metal components

    •H2 gas

    1) H2 gas2) H2 adsorption3) H2 dissociation to H

    4) H absorption5) H diffusion

  • Two principal safety concerns

    • H2 permeation through wall of structure– Effectively results in H2 leak

    • Hydrogen embrittlement (HE) of structural metal– Crack propagation through wall of structure

    – HE mechanisms involve H in solution• Temperatures < 200 oC• Other H-related degradation mechanisms

    operate >200 oC

  • H2H2

    H2

    H2

    H2

    H2 H2

    stress

    stress

    defect

    component surface

    H2H2

    H2H2

    H2

    HH

    H HH2 H2 H2H2

    H absorbsinto surface

    H2

    H2

    H2H

    H

    H HH2 H2 H2H2

    H concentratesat defect

    H

    HHHH

    H2H2

    H2H2 H2H2 H2 H2H2 HH H

    H H HH

    H

    H causes embrittlementand crack propagation

    HE enables crack propagation

  • Hydrogen embrittlement mechanisms

    Hydrides

    Hydrogen-EnhancedLocalized Plasticity(H.E.L.P.)

    Hydrogen-EnhancedDecohesion

    H

    H

    HH

    HH

    σ

    σ σ

    σ

    H

    σ

    σ

    τ1 τ2

    HHHHH

    HHH

    HH

    HH

    H

    H

    H

    τ1 > τ2

    σ

    σ

    HHH

    H

    HH

    HH

    HH

    H HH

    σ

    σ

    void

    particle

    hydrides

    C. Beachem, H. Birnbaum, I. Robertson, P. Sofronis

    A. Troiano, R. Oriani

    D. Westlake, H. Birnbaum

  • HE due to hydrogen-enhanced decohesion

    “Intergranular” HE can be devastating

    Barthélémy, 1st ESSHS, 2006

  • Material performance: test methods

    strength of materials:σu, σy, εf, RAS-N

    fracture mechanics:KIH, KTHda/dN vs ΔK

    dl/dt > 0

    H2H2

    H2

    H2H2

    H2

    H

    HHH

    HH

    HH

    dl/dt > 0

    l

    HHH

    H H

    H H

    H

    HH

    dδ/dt ≥ 0

    H

    H

    H

    HH H

    H

    H

    H

    H

    HH H

    H

    δ HHHH2 H2H2H2H2

    H2

    H2H2

    dδ/dt ≥ 0

  • Material performance: test methods

    HE manifested by reduced fracture toughness

    H2 gas pressure (kpsi)0 5 10 15 20 25

    Stre

    ss in

    tens

    ity fa

    ctor

    , K (

    ksi-i

    n1/2)

    0

    50

    100

    150

    200

    250

    300

    H2 gas pressure (MPa)0 25 50 75 100 125 150

    Stre

    ss in

    tens

    ity fa

    ctor

    , K (

    MP

    a-m

    1/2 )

    0

    50

    100

    150

    200

    250

    300KJIcKTH

    X100 ferritic steelWOL specimensC-L orientation25 oC

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

  • Material performance: test methods

    HE manifested by increased fatigue crack growth rate

    Stress intensity factor range, ΔK (ksi⋅in1/2)1 10 100

    Fatig

    ue c

    rack

    gro

    wth

    rate

    , da/

    dN (

    in/c

    ycle

    )

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2X42 ferritic steelfrequency = 1 Hz

    1000 psi H2, R=0.11000 psi N2, R=0.1

    HHH

    dδ/dt > 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt > 0

    H2H2H2H2

    H2

    H2

    H2H2

    Cialone and Holbrook, Met Trans A, 1985

  • •Fuel tanks– Aluminum or polymer lined composite

    – H2 pressure < 70 MPa

    •Manifold components– Austenitic stainless steel

    – H2 pressure < 138 MPa– Low material strength– No welds

    Material performance: service experience

  • Material performance: service experience

    •Storage tanks– Low-alloy ferriticsteel

    – H2 pressure < 42 MPa– Limited material strength

    – No welds

    •Pipelines– C-Mn ferritic steel– H2 pressure < 14 MPa– Low material strength– No pressure cycling

  • H2 compatibility guidelines for metals

    •Materials favored for H2 service– austenitic stainless steels, aluminum alloys, low-alloy ferritic steels, C-Mn ferritic steels, copper alloys

    •Materials commonly avoided in H2 service–high-alloy ferritic steels, nickel alloys, titanium alloys

    HE susceptibility can be sensitive to many variables

  • Variables affecting HE

    •All metals can be susceptible to HE depending on–Material variables– Environmental variables–Mechanical variables

    •Trends demonstrated from laboratory test methods–Emphasize fracture mechanics data– Emphasize ferritic steels, austenitic stainless steels, aluminum

  • Material variable: strength (hardness)

    Yield strength (MPa)600 700 800 900 1000 1100

    KTH

    (M

    Pa-

    m1/

    2 )

    0

    20

    40

    60

    80

    100

    120

    Yield strength (ksi)90 105 120 135 150

    K TH (

    ksi-i

    n1/2)

    0

    20

    40

    60

    80

    100Pressure Vessel SteelsH2 gas pressure = 41 MPa4130 steel4145 steel4147 steel

    Loginow and Phelps, Corrosion, 1975

    •Strength promotes HE in all materials•Technologically important trend

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

  • Material variable: alloy composition

    Alloy composition affects intergranularHE in ferritic steels

    [Mn + 0.5Si + S + P] (wt%)0.0 0.2 0.4 0.6 0.8 1.0

    KTH

    (M

    Pa-

    m1/

    2 )

    0

    20

    40

    60

    80

    100Ni-Cr-Mo ferritic steelσYS = 1450 MPa110 kPa H2 gas296 K

    B7Mn=0.007Si=0.002P=0.003S=0.003Mn=0.02

    Si=0.01P=0.014S=0.003

    Mn=0.09Si=0.01P=0.012S=0.005

    Mn=0.02Si=0.27P=0.0036S=0.005

    Mn=0.23Si=0.01P=0.009S=0.005

    B2Mn=0.68Si=0.08P=0.009S=0.016

    Mn=0.72Si=0.01P=0.008S=0.005

    B6Mn=0.72Si=0.32P=0.003S=0.005

    Mn=0.75Si=0.20P=0.006S=0.004

    Bandyopadhyay et al., Met Trans A, 1983

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

  • Material variable: alloy composition

    Nickel affects deformation and/or martensite formation in stainless steels

    San Marchi et al., IJHE, 2008

    H-precharged

    non-charged 316 stainless steels

    HH

    HH

    HH

    dl/dt > 0

  • Material variable: welding

    •Weld microstructure can promote HE•Hardness, residual stress also affect HE

    δγ

    Stainless steel weld Weld tested after H2 exposure

    δγ

    base metal weld

  • Environmental variable: H2 pressure

    HE more severe at higher H2 pressure for all materials

    H2 gas pressure (MPa)0 30 60 90 120 150

    K TH (

    MP

    a-m

    1/2 )

    0

    30

    60

    90

    120

    150

    180

    H2 gas pressure (ksi)0 5 10 15 20

    KTH

    (ks

    i-in1

    /2)

    0

    20

    40

    60

    80

    100

    120

    140

    160Pressure Vessel Steels

    4130 steel (σYS=634 MPa)4145 steel (σYS=669 MPa)4147 steel (σYS=724 MPa)

    Loginow and Phelps, Corrosion, 1975

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

  • HE can be maximum at ambient temperature

    HH

    HH

    HH

    dl/dt > 0

    Caskey, Hydrogen Compatibility Handbook for Stainless Steels, 1983

    Environmental variable: temperature

  • Gas impurities can inhibit or intensify HE in ferritic steels

    Environmental variable: H2 purity(d

    a/dN

    ) H2+

    addi

    tive /

    (da/

    dN) H

    2

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    4.0

    O20.10%

    2.25 Cr-1 Mo ferritic steelσYS = 430 MPa1.1 MPa H2 gasΔK = 24 MPa√mfrequency = 5 HzR = 0.1293 K

    CO0.99%

    SO21.10%

    H2O0.03%

    CH40.98%

    CO21.01%

    CH3SH1.04%

    H2S0.10%

    Fukuyama et al., Pressure Vessel Technology, 1992

    HHH

    dδ/dt > 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt > 0

    H2H2H2H2

    H2

    H2

    H2H2

  • Water vapor promotes HE in aluminum alloys

    Environmental variable: H2 purity

    Speidel, Hydrogen Embrittlementand Stress Corrosion Cracking, 1984

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

  • Mechanical variable: loading rate

    HE more severe at lower loading rates in all materials

    Loading rate, dK/dt (MPa-m1/2/min)0.1 1 10 100

    KIH

    (M

    Pa-

    m1/

    2 )

    0

    20

    40

    60

    80

    1004340 ferritic steelσYS = 1235 MPa550 kPa H2 gas297 K

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt ≥ 0

    H2H2H2H2

    H2

    H2

    H2H2

    Clark and Landes, ASTM STP 610, 1976

  • HE more severe at lower load cycle frequency in all materials

    Mechanical variable: load cycle frequency

    ΔK (MPa-m1/2)0 15 30 45 60

    da/d

    N (μ m

    /cyc

    le)

    0.1

    1

    10

    100SA 105 ferritic steel103 MPa H2 gasload ratio = 0.1

    1.0 Hz35 MPa He gas

    1.0 Hz

    0.1 Hz

    0.01 Hz

    0.001 Hz

    HHH

    dδ/dt > 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt > 0

    H2H2H2H2

    H2

    H2

    H2H2

    Walter and Chandler, Effect of Hydrogen on Behavior of Materials, 1976

  • Considerations for materials selection

    1) HE data or service experience should not be extrapolated

    H2 gas pressure (MPa)0 30 60 90 120 150

    KTH

    (M

    Pa-

    m1/

    2 )

    0

    30

    60

    90

    120

    150

    180

    H2 gas pressure (ksi)0 5 10 15 20

    KTH

    (ks

    i-in1

    /2)

    0

    20

    40

    60

    80

    100

    120

    140

    160Pressure Vessel Steels

    4130 steel (σYS=634 MPa)4145 steel (σYS=669 MPa)4147 steel (σYS=724 MPa)

    Yield strength (MPa)600 700 800 900 1000 1100

    KTH

    (M

    Pa-

    m1/

    2 )

    0

    20

    40

    60

    80

    100

    120

    Yield strength (ksi)90 105 120 135 150

    KTH

    (ks

    i-in1

    /2)

    0

    20

    40

    60

    80

    100Pressure Vessel SteelsH2 gas pressure = 41 MPa4130 steel4145 steel4147 steel

    •H2 compatibility must be established for specific conditions

  • Considerations for materials selection

    2) HE can be severe in alloys considered compatible with H2

    HH

    HH

    HH

    dl/dt > 0

    316 stainless steels

    •Intersections of variables important

  • Considerations for materials selection

    3) Materials selection may balance H2compatibility with other constraints

    highcryogenic to lowintermediate

    to highintermediatealuminum

    low to intermediate

    ambient to highlow to highlow

    C-Mn/low-alloy steels

    highcryogenic to highlow to highhighaustenitic SS

    HE resistanceTemperature rangeSpecific strengthCostMaterial

  • Considerations for materials selection

    4) Materials must be qualified for H2 service based on– Material property measurements under

    relevant conditions• Material variables• Environmental variables• Mechanical variables

    – Design approach for component

  • Design based on fracture mechanics

    Local stress drives crack extension

    σlocalH2H2

    H2

    H2

    H2

    H2 H2

    stress (σ)

    defect

    component surface

    H2H2

    H2H2

    H2H2 H2H2 H2 H2H2

    σlocal = σc

    stress (σ)

  • )(2

    θπ

    σ ijij frK

    =

    •Local stress described by stress-intensity factor, K

    •Crack extension governed by critical K values

    Design based on fracture mechanics

  • Component design: sustained-load cracking

    H2 induces time-dependent crack propagation under static loading

    pa

    pa

    H2H2H2

    N2N2

    N2

    time

    a

    p

    crack in H2

    crack in N2

  • Sustained-load cracking proceeds when K > KTH

    paH2H2

    K = p * f(a/t,Ri,Ro)

    RiRo

    t

    time

    a

    K

    KTH

    measured in laboratory

    Component design: sustained-load cracking

  • Crack growth under cyclic loading accelerated by H2

    Δpa

    Δpa

    H2H2H2

    N2N2

    N2

    a

    Number of pressure cycles, N (time = N/f)

    p

    crack in H2

    crack in N2

    Δp

    Component design: fatigue crack growth

  • Fatigue crack growth rates (da/dN) are a function of ΔK

    ΔpaH2H2

    ΔK = Δp * f(a/t,Ri,Ro)

    RiRo

    t

    da/dN

    ΔK

    measured in laboratory H2 gas

    measured in laboratory N2 gas

    da/dN = C[ΔK]m

    Component design: fatigue crack growth

  • Component design analysis

    •Objective: calculate number of pressure cycles, Nc, to grow crack to critical length, ac

    Calculation requires material property measurements: KTH and da/dN vs ΔK

    a t

    ac

    Number of pressure cycles, N Nc

    critical crack depth forsustained-load cracking cycles tocritical crack depth

    K = p * f(a/t,Ri,Ro)

    ΔpaH2H2

    RiRo

    t

    a

  • Measurement: fatigue crack growth

    HHH

    dδ/dt > 0

    H2H2H2H2

    H2

    H2

    H2H2

    HHH

    dδ/dt > 0

    H2H2H2H2

    H2

    H2

    H2H2

  • Measurement gives crack length vsnumber of cycles in design analysis

    Δa = C[Δp * f(a/t,Ro,Ri)]m

    Number of pressure cycles, N

    a

    ΔK (MPa-m1/2)0 15 30 45 60

    da/d

    N (μ m

    /cyc

    le)

    0.1

    1

    10

    100SA 105 ferritic steel103 MPa H2 gasload ratio = 0.1

    1.0 Hz35 MPa He gas

    1.0 Hz

    0.1 Hz

    0.01 Hz

    0.001 Hz

    Measurement: fatigue crack growth

    da/dN = C[ΔK]m

  • Measurement: cracking threshold

    Load

    (P)

    Time in H2

    Po ∝ Ko

    Loading bolt

    Load cell

    13 mm

    PTH ∝ KTH

    Wedge Opening Load (WOL) specimen

  • Measurement gives critical crack depth (ac) in design analysis

    ac/t = g(KTH,p,Ro,Ri)ac

    Number of pressure cycles, N Nc

    a

    H2 gas pressure (MPa)0 30 60 90 120 150

    KTH

    (M

    Pa-

    m1/

    2 )

    0

    30

    60

    90

    120

    150

    180

    H2 gas pressure (ksi)0 5 10 15 20

    K TH (

    ksi-i

    n1/2)

    0

    20

    40

    60

    80

    100

    120

    140

    160Pressure Vessel Steels

    4130 steel (σYS=634 MPa)4145 steel (σYS=669 MPa)4147 steel (σYS=724 MPa)

    Measurement: cracking threshold

  • Example design analysis for H2 pipeline

    •Parameters for H2 pipeline(ASME, Hydrogen Standardization Interim Report, 2005)

    – X42 ferritic steel– Inner radius, Ri = 15 cm– Wall thickness, t, from 0.5 to 1.3 cm

    •Maximum pressure, p = 10 MPa

    •Existing defect with depth aoand length parallel to pipe axis

    p

    RiRo

    aot

  • • Case 1: t=0.8 cm (σh=65% SMYS) and ao/t=0.10

    • Case 2: t=1.3 cm (σh=43% SMYS) and ao/t=0.10

    • Case 3: t=1.3 cm (σh=43% SMYS) and ao/t=0.05

    p

    10 MPa

    N

    1 MPa

    cycle 1ΔK1=f(ao,Δp,Ro,Ri,t)Δa=(2.51x10-12)ΔK16.56a1=ao+Δa

    cycle 2ΔK2=f(a1,Δp,Ro,Ri,t)Δa=(2.51x10-12)ΔK26.56a2=a1+Δa

    ao a1 a2

    Example design analysis for H2 pipeline

    p

    RiRo

    aot

    σh

  • Material/component performance can be quantified with design analysis

    number of pressure cycles0 50000 100000 150000 200000 250000

    crac

    k de

    pth

    / wal

    l thi

    ckne

    ss, a

    /t

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    hydrogent=1.3 cmσh=43% SMYS

    nitrogent=1.3 cmσh=43% SMYS

    X42 Pipelinepressure cycle = 1 - 10 MPainner diameter = 30 cm

    X

    X

    critical crack depthcalculated from KIc

    critical crack depthcalculated from KTH

    Stress intensity factor range, ΔK (ksi⋅in1/2)1 10 100

    Fatig

    ue c

    rack

    gro

    wth

    rate

    , da/

    dN (

    in/c

    ycle

    )

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2X42 ferritic steelfrequency = 1 Hz

    da/dN=(3.55x10-11)ΔK3.83

    da/dN=(2.51x10-12)ΔK6.56

    1000 psi H2, R=0.11000 psi N2, R=0.1

    Example design analysis for H2 pipeline

  • Performance depends on both material properties and component design

    number of pressure cycles0 5000 10000 15000 20000 25000 30000 35000 40000 45000

    crac

    k de

    pth

    / wal

    l thi

    ckne

    ss, a

    /t

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    case 1t=0.8 cmσh=65% SMYS

    case 2t=1.3 cmσh=43% SMYS

    case 3t=1.3 cmσh=43% SMYS

    X42 PipelineH2 gaspressure cycle = 1 - 10 MPainner diameter = 30 cm

    X

    X X

    critical crack depthscalculated from KTH

    Stress intensity factor range, ΔK (ksi⋅in1/2)1 10 100

    Fatig

    ue c

    rack

    gro

    wth

    rate

    , da/

    dN (

    in/c

    ycle

    )

    10-8

    10-7

    10-6

    10-5

    10-4

    10-3

    10-2X42 ferritic steelfrequency = 1 Hz

    da/dN=(2.51x10-12)ΔK6.56

    1000 psi H2, R=0.1

    case 1 initial ΔK

    case 2 initial ΔK

    case 3 initial ΔK

    Example design analysis for H2 pipeline

  • 1) Austenitic stainless steels, aluminum alloys best candidates for H2 service– Based on service experience and testing– Do not extrapolate performance or test data

    • Define temperature, alloy composition for austenitic stainless steels

    • Define water vapor content of gas for aluminum alloys

    – Design analysis can quantify safety margins

    Recommendations

  • 2) Ferritic steels are susceptible to HE under wide range of conditions– Service experience may be adequate but

    design analysis required in many cases– Measure properties under specific conditions

    • Material: strength, alloy composition, fabrication (e.g., welding)

    • Environment: H2 pressure, H2 composition, temperature

    Recommendations

  • 3) Nickel alloys, titanium alloys are generally not recommended for H2 service– Design analysis required– May require other measures such as H2

    permeation barrier

    Recommendations