hydro-abrasion study of rotating elements - - tu … · hydro-abrasion study of rotating elements...

1
http://www.uni-kl.de/tvt/ Hydro-abrasion study of rotating elements Jahrestreffen der Fachgruppen Fluidverfahrenstechnik und Wärme- und Stoffübertragung, 20. 21. März 2013, Baden Baden Motivation CFD simulation of slurry erosion Mehdi Azimian and Hans-Jörg Bart TU Kaiserslautern, Lehrstuhl für Thermische Verfahrenstechnik, 67653 Kaiserslautern, Germany E-Mail: [email protected] Erosion: Exp. analysis & CFD simulations Erosion influencing parameters determination Material loss and surface deformation analysis Modeling details: 4 erosion models from literature E=k∙f m ∙w θ ∙g V ∙h d ∙j Hv f(m): Solid particle concentration w(θ): Flow angle g(V): Flow velocity h(d): Solid particle size j(Hv): Hardness of target surface Water-sand; 2 way-coupling Fig. 1: Slurry tank experimental setup Conclusions Flow properties: Impact velocity & angle, solid phase concentration, apparatus geometry Solid particles properties: Size, shape, hardness & density Interface: Target material properties & particle impact Liquid-solid flow: Water & Sand particles Specimens material: Stainless steel 1.4301 Hardness: 235 HV30 Good agreement of CFD with exp. Results Transient simulation results more precise than steady state Maximum erosion near edges Erosion progress towards the middle of surface Outlook Influence of particle breakup effects on the erosion rate Geometry deformation effects on the erosion rate Acknowledgement: The authors would like to thank ‘‘Stiftung Rheinland-Pfalz für Innovation‘‘ for the financial support. Fig. 3: Computational grid of the slurry tank Fig. 4: Erosion progress towards the middle of surface with a) 5%, b) 8%, c) 10% sand concentration Fig. 10: Comparison of fluid & solid max. velocities Fig. 11: Comparison of fluid & solid avg. velocities PIV measurements Fig. 9: PIV measurement fields in the tank Fig. 5: Material loss of eroded sample versus sand concentration Fig. 6: Material loss of eroded sample versus flow velocity Fig. 2: Erosion sample holder & the mesh Fig. 7: Erosion of stainless steel versus sand concentration Fig. 8: Erosion of stainless steel versus rotational velocity Application of periodic GGI Momentum transfer: Schiller- Naumann drag force model Multiple reference of frames (MRF) Multiple & replaceable mesh files Steady state & transient simulations

Upload: dinhanh

Post on 02-May-2018

230 views

Category:

Documents


8 download

TRANSCRIPT

Page 1: Hydro-abrasion study of rotating elements - - TU … · Hydro-abrasion study of rotating elements Jahrestreffen der Fachgruppen Fluidverfahrenstechnik und Wärme- und Stoffübertragung,

http://www.uni-kl.de/tvt/

Hydro-abrasion study of rotating elements

Jahrestreffen der Fachgruppen Fluidverfahrenstechnik und Wärme- und Stoffübertragung, 20. – 21. März 2013, Baden Baden

Motivation

CFD simulation of slurry erosion

Mehdi Azimian and Hans-Jörg Bart TU Kaiserslautern, Lehrstuhl für Thermische Verfahrenstechnik,

67653 Kaiserslautern, Germany

E-Mail: [email protected]

Erosion: Exp. analysis & CFD simulations

Erosion influencing parameters determination

Material loss and surface deformation analysis

Modeling details:

4 erosion models from literature

E = k ∙ f m ∙ w θ ∙ g V ∙ h d ∙ j Hv

f(m): Solid particle concentration w(θ): Flow angle

g(V): Flow velocity h(d): Solid particle size j(Hv): Hardness of target surface

Water-sand; 2 way-coupling

Fig. 1: Slurry tank experimental setup

Conclusions

• Flow properties:

Impact velocity & angle, solid phase

concentration, apparatus geometry

• Solid particles properties:

Size, shape, hardness & density

• Interface:

Target material properties & particle impact

• Liquid-solid flow:

Water & Sand particles

• Specimens material:

Stainless steel 1.4301 Hardness: 235 HV30

• Good agreement of CFD with exp. Results

• Transient simulation results more precise than steady state

• Maximum erosion near edges • Erosion progress towards the

middle of surface

Outlook • Influence of particle breakup

effects on the erosion rate

• Geometry deformation effects on the erosion rate

Acknowledgement: The authors would like to thank ‘‘Stiftung Rheinland-Pfalz für Innovation‘‘ for the financial support.

Fig. 3: Computational grid of the slurry tank

Fig. 4: Erosion progress towards the middle of surface with a) 5%, b) 8%, c) 10% sand concentration

Fig. 10: Comparison of fluid & solid max. velocities Fig. 11: Comparison of fluid & solid avg. velocities

PIV measurements

Fig. 9: PIV measurement fields in the tank

Fig. 5: Material loss of eroded sample versus sand concentration Fig. 6: Material loss of eroded sample versus flow velocity

Fig. 2: Erosion sample holder & the mesh

Fig. 7: Erosion of stainless steel versus sand concentration Fig. 8: Erosion of stainless steel versus rotational velocity

Application of periodic GGI

Momentum transfer: Schiller-Naumann drag force model

Multiple reference of frames (MRF)

Multiple & replaceable mesh files

Steady state & transient simulations