huong dan giai bai tap_hinh hoc vi phan

Upload: mathblu

Post on 10-Apr-2018

227 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    1/50

    HNG DN GII BI TP 1

    HNG DN GII BI TP

    BI TP CHNG 1Bi tp 1.1. Ta c

    lim(x,y)0

    |f(a + x, b + y) f(a, b)(x, y)|(x, y)

    = lim(x,y)0

    | sin(a + x) sin a cos a.x|x2 + y2

    = lim(x,y)0

    |2cos 2a+x2 sin x2 cos a.x|

    x

    2

    + y

    2

    = limx0

    | cos 2a+x2 x cos a.x|x2 + y2

    .

    Ta li c

    0 | cos2a+x

    2 x cos a.x|x2 + y2

    | cos2a+x

    2 x cos a.x||x|

    Ta c nh gi

    lim

    x

    0

    | cos 2a+x2 x cos a.x|

    |x|= lim

    x0cos

    2a + x

    2 cos a = 0

    limx0

    | cos 2a+x2 x cos a.x|x2 + y2

    = 0

    Df(a, b) = 0.

    Bi tp 1.2. chng minh f kh vi ti x = 0 ta cn ch ra tn ti mt nhx tuyn tnh i t Rn vo R tha gi thit.

    Tht vy, xt nh x tuyn tnh O : Rn R. Do hm f tha:

    |f(0)| 02 = 0 f(0) = 0.

    nn ta c|f(0 + h) f(0)O(h)|

    h =|f(x)|h

    h2h = h

    nnlimh0

    |f(0 + h) f(0)O(h)|h = limh0 h = 0.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    2/50

    2 Hng dn gii bi tp chng 1

    Vy f kh vi ti x = 0 v Df(0) = 0.

    Bi tp 1.3.

    (a) D1f(x, y) = limx0

    f(x +x, y) f(x, y)x

    D1f(0, 0) = limx0

    f(0 + x, 0) f(0, 0)x = limx0

    x.0 0x = 0.

    Tng t:

    + D2f(x, y) = limy0

    f(x, y +y) f(x, y)y

    D2f(0, 0) = limy0

    f(0, 0 + y) f(0, 0)y = 0.

    (b) Gi s f kh vi ti (0, 0)

    Df(0, 0) = (0, 0).

    Ta c:

    lim(x,y)(0,0)

    |f(0 + x, 0 + y) f(0, 0) (Df(0, 0)(x,y))|(x)2 + (y)2 = 0

    lim(x,y)(0,0)

    |f(x,y)|(x)2 + (y)2 = 0

    lim(x,y)(0,0)

    x|y|

    (x)2 + (y)2 = 0. (1)

    Chn x = y > 0.Suy ra:

    lim(x,y)(0,0)

    x|y|(x)2 + (y)2 = limx0

    (x)22(x)2 =

    1

    2= 0 (>< (1)).

    Vy f khng kh vi ti (0, 0).

    Bi tp 1.4.

    (a) f(x,y,z) =

    fx

    fy

    fz

    =

    y.xy1 (lnx).xy 0

    (b) t f1 = xy, f2 = 0.

    = f(x,y,z) =

    f1x

    f1y

    f1z

    f2x

    f2y

    f2z

    =

    y.xy1 (lnx).xy 0

    0 0 0

    (c) f

    (x,y,z) =

    f

    x

    f

    y

    f

    z

    =

    sin y. cos(x. sin y) x. cos y cos(x. sin y)

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    3/50

    HNG DN GII BI TP 3

    (d) t f1 = sin(xy), f2 = sin(x sin y), f3 = xy.

    = f(x, y) =

    f1x

    f1y

    f2x

    f2y

    f3x

    f3y

    =

    y. cos(x.y) x. cos(x.y)sin y. cos(x. sin y) x. cos y cos(x. sin y)y.xy1 (lnx).xy

    Bi tp 1.5. Ta c

    f(0) = limx0

    f(x) f(0)x 0 = limx0

    x2

    + x2 sin(1/x)

    = 0

    Vi x = 0 ta cf(x) =

    1

    2+ 2x sin

    1

    x cos 1

    x

    nn f khng lin tc ti x = 0.

    By gi ta chng minh trong mi ln cn ca 0, hm f khng th c nh x

    ngc. Tht vy chn 2 dy:

    xk =1

    2kv yk =

    1

    (4k + 1)

    2

    k N.

    Ta c

    f(xk) = 12

    < 0, f(yk) =1

    2+

    4

    (4k + 1)> 0.

    Suy ra f khng n iu trong mt ln cn no ca 0, nn khng th tn ti

    hm ngc f1.

    Ni cch khc, iu kin lin tc khng th b c trong nh l hm ngc.

    Bi tp 1.6.

    (a) Ta c cng thc xc nh hm h l:

    h(t) =

    t.x.g

    x

    x

    nu t > 0

    t.x.gxx

    nu t < 0

    0 nu t = 0

    hay

    h(t) = t.x.g

    xx

    nu x = 0

    0 nu x = 0

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    4/50

    4 Hng dn gii bi tp chng 1

    Xt cc trng hp sau

    + x = 0 : Do x.g

    x

    x

    l hng s nn suy ra:

    h(t) = x.g xx

    , t = 0.

    Khi t = 0 ta c:

    limt0

    |h(t) h(0)||t| = x.g

    x

    x

    .

    Hay h kh vi trn R.

    + x = 0: Khi x = 0 nn h = 0 trn R. Suy ra h kh vi trn R.Nh vy trong mi trng hp ta c hm h kh vi trn R.

    (b) Ta c:

    D1f(0, 0) = limh0

    |f(h, 0) f(0, 0)||h| = limh0

    f(h, 0)

    h

    = limh0

    h.gh, 0

    hh =

    limh0

    h.g

    h, 0

    h

    h

    vi h > 0

    limh0

    h.g

    h, 0h

    h

    vi h < 0

    Suy ra D1f(0, 0) = 0.

    Tng t ta cng tnh c:

    D1f(0, 0) = 0 = limk0

    |f(0, k) f(0, 0)|

    |k

    |

    = 0

    By gi gi s f kh vi ti im (0, 0), ta c:

    Df(0, 0) = (0, 0).

    m

    lim(h,k)(0,0)

    |f(h, k) f(0, 0) (h, k)|

    (h, k)

    = lim

    (h,k)(0,0)

    |f(h, k)|h2 + k2

    = lim(h,k)(0,0)

    g

    h, k

    h2 + k2

    = 0

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    5/50

    HNG DN GII BI TP 5

    Nu tn ti (x0, y0) S1 sao cho g(x0, y0) = 0 th ta c th gi s x0 > 0.Khi vi h > 0, k = h

    y0x0

    ta c:

    g

    h,h. y0x0

    h2 + h2.y20x20

    = g (x0, y0)

    x20 + y20

    .x0

    = g

    1, y0x0

    x20 + y20

    .x0

    = g(x0, y0) = 0!!

    Vy f khng th kh vi ti im (0, 0).

    Bi tp 1.7. Nu vi mi (x, y) R2, ta c f(x, y) = 0 th f l hm hng nnf khng th n nh.

    By gi gi s tn ti (x0, y0) R2 sao cho: f(x0, y0) = 0. Ta c th gi s

    f

    x(x0, y0) = 0.

    Khi tn ti mt tp m A cha (x0, y0) sao cho

    D1f(x, y) = 0, (x, y) A.

    Xt hm s g : R2 R2, g(x, y) = (f(x, y), y), (x, y) R2.Ta c:

    g

    (x, y) =

    f

    x

    f

    y

    0 1

    nn

    det g

    (x, y) =f

    x

    (x, y)

    = 0,

    (x, y)

    A.

    Suy ra tn ti hm ngc g1 : g(A) A, g1(f(x, y), y) = (x, y).Ta c:

    g(x, y) = g(x

    , y

    ) y = y

    f(x, y) = f(x

    , y)

    nn nu f n nh trn R2 th g n nh kh vi trn R2. Suy ra tn ti g1 n

    nh kh vi trn R2 (mu thun vi gi thit ca hm g).

    Vy f khng th n nh.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    6/50

    6 Hng dn gii bi tp chng 1

    Bi tp 1.8. Vi mi vx = (v, x) Rnx, x Rn, ta c

    (g f)x(vx) = [D(g f)(x)(v)](gf)(x)

    = [Dg(f(x))Df(x)(v)](gf)(x)= gf(x)[Df(x)(v)]f(x)

    = g[f(vx)] = (g f)(vx)

    Suy ra (g f) = g f.

    Bi tp 1.9. Ta c |L(x) L(y)| = |L(x y)| L|x y|, t suy ra nhx L lin tc. Chng minh DL = L.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    7/50

    HNG DN GII BI TP 7

    BI TP CHNG 2

    Bi tp 2.1. Hnh 2.0.1

    Hnh 2.0.1:

    Bi tp 2.2. (t) = sin t, cos t

    Bi tp 2.3. t f(t) = 2(t). Theo gi thit th

    (t0) = min f(t)

    =f(t0) = 0=2.(t0).

    (t0) = 0 (1)

    Do khng i qua gc ta nn (t) = 0, t. Do t (1) ta c (t0) trcgiao vi

    (t0).

    Bi tp 2.4. Nu (t) = 0 (t) = c, t. Vy vt ca (t) l mt im. Nu (t) = c = 0 (t) = ct + a, t. Vy vt ca (t) l mt ng

    thng hoc mt phn ca ng thng.

    Bi tp 2.5. Theo gi thit ta c:

    (t).v = 0

    t0

    (t).v.dt =t0

    0.dt

    v.t

    0

    (t).dt = 0

    v. ((t) (0)) = 0 v.(t) v.(0) = 0 (1)

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    8/50

    8 Hng dn gii bi tp chng 2

    Do (0) trc giao vi v nn v.(0) = 0

    (1) = v.(t) = 0

    Vy (t) trc giao vi v , t I.Bi tp 2.6. Vi : I R3, (t) = 0, t I, ta c

    |(t)| = a 2(t) = a2

    =2.(t).(t) = 0=(t)(t), t I.

    Bi tp 2.7.(a) Ta c

    x2 + y2 = a2t2 cos2 t + a2t2 sin2 t

    = a2t2(cos2 t + sin2 t)

    = a2t2 = 2z.

    Vy vt ca ng tham s nm trn mt mt nn.

    (b)

    C(t) = (sin 2t, 1 cos2t, 2cos t)= (2 sin t cos t, 2sin2 t, 2cos t)

    Ta c

    x2 + y2 = (2sin t cos t)2 + (2 sin2 t)2

    = 4 sin2 t(cos2 t + sin2 t)

    = 4 sin2 t

    = 4(1 cos2 t)= 4 4cos2 t= 4 z2

    Suy ra x2 + y2 + z2 = 4.

    Vy vt ca ng tham s C(t) nm mt mt cu c tm O(0, 0, 0) v bn

    knh R = 2. Chng ta cng chng minh c vt ca C(t) nm trn mt tr

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    9/50

    HNG DN GII BI TP 9

    Hnh 2.0.2:

    (Hnh 2.0.2).

    Bi tp 2.8. Tip tuyn ng tham s (t) = (3t, 3t2, 2t3) nhn t = (t) =

    (3, 6t, 6t2) lm vector ch phng

    ng thng (d) :

    y = 0z = x c VTCP u = (1, 0, 1).

    gc ((), d) = gc(t, u)Ta c :

    cos(t, u) =t.u

    |t| . |u| =3t.6t

    2.

    9 + 36t2 + 36t4=

    3t.6t2

    (3 + 6t2).

    2=

    2

    2.

    Bi tp 2.9.

    (a)

    Theo Hnh 2.0.3, ta c

    cos =IH

    IM= IK IH = 1 cos

    MH = | cos |OK = l(KM) = IK. =

    x = OB = OK MH = sin C() = ( sin , 1 cos )

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    10/50

    10 Hng dn gii bi tp chng 2

    Hnh 2.0.3:

    Suy ra

    |C()| =

    (1 )2 + sin2 =

    1 2cos + cos2 + sin2

    = 2(1 cos ) |C()| = 0

    1 cos = 0 cos = 0

    = k2 , k Z

    Do C(k2) = (k2, 0)

    Vy nhng im (k2, 0) l nhng im k d ca C().

    (b) di mt nhp ca ng Cycloit.

    l =

    20

    2(1 cos )d =

    20

    4sin2

    2d =

    20

    2.

    sin 2 d

    = 4

    20

    sin

    2d = 4.2. cos

    2|0

    = 8.

    Bi tp 2.10.(a) Ta c c(t) = (t, t2), c

    (t) = (1, 2t), |c(t)| = 1 + 4t2

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    11/50

    HNG DN GII BI TP 11

    Vy l =BA

    |c(t)|dt =BA

    1 + 4t2dt

    t u =

    1

    4+ t2 du = t1

    4 + t2

    dt

    dv = dt v = t

    12

    l = t

    1

    4+ t2

    B

    A

    B

    A

    t1

    4+ t2

    dt

    = t

    1

    4+ t2

    B

    A

    BA

    1

    4+ t2dt +

    BA

    1

    4.

    11

    4+ t2

    dt

    t x = t +1

    4 + t2 1

    xdx =dt

    1

    4+ t2

    Vy l = (t

    1

    4+ t2 +

    1

    4ln(t +

    1

    4+ t2))|BA

    (b) c : t (t, ln t)c

    (t) = (1,1

    t) |c(t)| =

    1 +

    1

    t2

    l =

    B

    A |

    c

    (t)

    |dt =

    B

    A1 +

    1

    t2

    dt

    t u =

    1 +1

    t2 du = 2

    t3.1

    1 +1

    t2du = dt v = t l = t

    1

    t2+ 1

    B

    A

    + 2BA

    t

    t3

    1

    t2+ 1

    dt

    = t

    1t2

    + 1B

    A

    + 2BA

    1

    t2

    1

    t2+ 1

    dt

    t x =1

    t dx = 1

    t2dt

    BA

    1

    t2

    1

    t2+ 1

    dt = B

    A

    dx1 + x2

    t y = x +

    1 + x2 dyy

    =dx

    1 + x2

    Vy l =

    t

    1 +1

    t2 2 ln1

    t +

    1 +1

    t2

    B

    A(c) c : t (t, cosh t

    a)

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    12/50

    12 Hng dn gii bi tp chng 2

    c

    (t) = (1, sinh ta

    )

    l =B

    A|c(t)|dt =

    B

    A

    1 + sinh2t

    adt

    =BA

    cosh2 tadt =

    BA

    cosh ta dt=

    BA

    cosht

    adt

    = asinh ta

    B

    A(d)

    c : t (a sin t, a(1 cos t)) a > 0= C(t) = (a cos t, a sin) a > 0

    = l =B

    A

    |C(t)|dt =B

    A

    a2(cos2 t + sin2 t)dt

    =

    BA

    a.dt = a(B A)

    (e)

    c : t a(lntant

    2+ cos t), a sin t a > 0

    = C(t) =

    a(1

    sin t sin t), a cos t

    = |c(t)| = a2

    cos4

    sin2 t+ cos2 t = a| cos t|.

    cos2

    sin2 t+ 1

    =a| cos t|| sin t| = a. cot t

    =B

    A

    = |c(t)|dt =B

    A

    a cot t.dt = a.

    BA

    cos tsin t

    dt

    = a.

    BA

    d(sin t)

    sin t= a lnsin t|BA

    = a lnsin B

    sin A

    Bi tp 2.11.

    (a) c(t) giao vi mt phng y = 0 khi 1 cos t = 0 t = k2, k ZChn k = 0, 1 ta c t1 = 0, t2 = 2.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    13/50

    HNG DN GII BI TP 13

    Ta c c

    (t) =

    a(1 cos t), a sin t, 2a sin t/2 |c(t)| =

    a2(1 cos t)2 + a2 sin2 t + 4a2 sin2 t/2

    = a

    2 2cos t + 2(1 cos t)= 2a

    1 cos t

    l =20

    |c(t)|dt = 2a20

    1 cos tdt

    = 2

    2a

    20

    | sin t/2|dt = 8

    2a.

    (b) c : t (cos3 t, sin3 t, cos2t). D thy ng tham s cho c chu k 2.Ta c c

    (t) = (3cos2 t sin t, 3sin2 t cos t, 2sin2t)

    l =20

    |c(t)|dt =20

    9cos4 t sin2 t + 9 sin4 t cos2 t + 4 sin2 2tdt

    =

    20

    25 cos2 t sin2 tdt =

    5

    4

    20

    sin2 2tdt

    =5

    2

    20

    sin2tdt

    2

    sin2tdt +

    3

    2

    sin2tdt 2

    3

    2

    sin2tdt

    =

    5

    4

    cos2t|

    2

    0 + cos 2t|2

    cos2t|2 + cos 2t|232

    = 10.

    Bi tp 2.12. Ta c

    x3

    = 3a2

    y2xz = a2

    = y =

    x3

    3a2

    z =a2

    2x

    Suy ra ng cong (c) c tham s ha l

    c(t) =

    t,

    t3

    3a2,

    a2

    2t

    Khi y =

    a

    3 =t3

    3a2 =

    a

    3 = t = a.Khi y = 9a = t

    3

    3a2= 9a = t = 3a.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    14/50

    14 Hng dn gii bi tp chng 2

    Vy di phn ng cong cn tm bng

    l(c) =

    3a

    a

    |c(t)|dt =3a

    a

    1 +

    t4

    a4+

    a4

    4a4dt =

    3a

    a

    (2t4 + at)2

    4a4t4dt

    =

    3aa

    2a4 + a4

    4a2t2dt =

    3aa

    t2

    a+

    a2

    2t2

    dt

    =

    t3

    3a a

    2

    2t

    3aa

    = 9a.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    15/50

    HNG DN GII BI TP 15

    Bi tp 2.13.

    (a) Ly P nm trn ng xixoit. Ta c P 2at2

    1 + t2 ,

    2at3

    1 + t3

    Phng trnh ng thng OP : tx y = 0.Giao im B ca (OP) vi ng thng x = 2a c ta B(2a, 2at).

    Giao im C ca (OP) vi ng trn (x a)2 + y2 = a2 c ta

    C

    2a

    1 + t2,

    2at

    1 + t2

    .

    Ta c:

    OP =

    4a2t4 + 4a2t6

    (1 + t2)2BC =

    4a2t4 + 4a2t6

    (1 + t2)2.

    Vy OP = BC.

    Phng trnh tham s ca ng trn (C) :

    x = a cos t + a

    y = a sin tt [0, 2]

    C (C) : C(t) = (a cos t0 + a, sin t0).

    Phng trnh (OC) :

    x = t(a cos t0 + a)

    y = t sin t0, t R

    P (OC) = P(t1(cos t0 + a), t1 sin t)B = OC AV = B

    2a,

    2a sin t0cos t0 + 1

    .

    Suy raCB =

    a a cos t0, a sin t

    1 + cos t0(1 cos t0)

    P (OC) = P(t1(cos t0 + 1), t1 sin t0).

    Suy ra CB2 = 2a2(1 cos t0)2.1

    1 + cos t0 , OP2 = 2t2(1 + cos t0).

    Do CB2 = OP2 nn

    2a2(1 cos t0)2. 11 + cos t0

    = 2t2(1 + cos t0)

    = t21 =a2(1 cos t0)2

    (1 + cos t0)2

    = t1 = a(1 cos t0)1 + cos t

    0

    = P =

    a(1 cos t0), a sin t0.1 cos t01 + cos t0

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    16/50

    16 Hng dn gii bi tp chng 2

    t t2 =1 + cos t

    sin t0. Khi , ta c:

    2at

    2

    21 + t22

    , 2at

    3

    21 + t22

    =

    a(1 cos t0), a sin t0.1 cos t01 + cos t0 P

    (b) Ta c

    (t) = 4at

    (1 + t2)2,

    6at2 + 2at4

    (1 + t2)2

    = (t) = (0, 0).

    Vy O(0, 0) l im k d duy nht ca ng xixoit.

    (c) Chn M

    2at2

    1 + t20,

    2at3

    1 + t20

    (t)

    d(M, ) =

    2at201 + t20

    2a12 + 02 =

    2a

    1 + t20

    Suy ra

    limt0

    d(M, ) = limt0

    2a

    1 + t20= 0

    Ta c

    limt0

    (t) = limt0

    4at

    (1 + t2)2,

    6at2 + 2at4

    (1 + t2)2

    = (0, 2a).

    Vy, khi t th c(t) dn v ng thng x = 2a v (t) (2a, 0).

    Bi tp 2.14.

    (a) Ta c x(t) = sin t l hm s cp kh vi trn (0, ) v y(t) = cos t+ln(tant

    2)

    xc nh trn (0, ) v kh vi trn (0, ).

    Do (t) kh vi trn (0, ) .

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    17/50

    HNG DN GII BI TP 17

    Ta cng c (t) =

    cos t, sin t + 1sin t

    (t) = (0, 0) cos t = 0

    sin t + 1sin t

    = 0

    cos t = 0

    1 + sin2 t

    sin t= 0

    cos t = 0

    cos2 t = 0

    cos t = 0 t =

    2+ k (k Z) ()

    V t (0, ) nn ta c ti t = 2

    th (t) = 0

    Do (t) khng chnh quy ti t =

    2.

    (b) Ly M

    sin t0, cos t0 + ln(tant02

    )

    (t)

    Ta c

    t(t0) =

    || =1

    1 + 1sin2 t0

    cos t0, sin t0 + 1

    sin t0

    Tip tuyn i qua M nhn t(t0) lm vector ch phng c phng trnh l

    (d) :

    x = sin t0 + t cos t0

    y = cos t0 + ln(tant0

    2) + (

    sin t0 +

    1

    sin t0)t

    , t R

    Gi N = d Oy. Khi xN = 0 = yN = ln(tan t02

    )

    Suy ra N

    0, ln(tant02

    )

    MN =

    sin2 t0 + (ln tan

    t02

    cos t0 lntan t02

    )2 =

    sin2 t0 + cos2 t0 = 1.

    Bi tp 2.15.

    (a) Ta c

    (t) =

    3a 6at3

    (1 + t3)2, 6at 33at

    4

    (a + t3)2

    .

    Ti t = 0, ta c (0) = (0, 0).

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    18/50

    18 Hng dn gii bi tp chng 2

    (0) = (3a, 0) tip xc vi Ox.

    (b) Ta c: limt

    3at

    1 + t3= lim

    t

    3a

    t21

    t3

    + 1= 0

    limt

    3at2

    1 + t3= lim

    t

    3a

    t1

    t3+ 1

    = 0 limt

    (t) = (0, 0)

    Tng t ta cng c

    limt

    3a 6at3(1 + t3)2

    = limt

    3a

    t3 6a

    1

    t3

    2

    + t3

    2

    2 = 0

    limt

    6at 6at4(1 + t3)

    2 = limt

    6at3

    3a1

    t2+ t2

    2 = 0

    limt

    (t) = (0, 0).

    (c) Tham s ha ca ng vi nh hng ngc li l

    (t) = 3at

    1 t3 ,3at2

    1 t3

    Khong cch t (t) n ng thng

    d =

    3at(1 + t3)

    +3at2

    (1 + t3)+ a

    2

    =3at + 3at2 + at3 + a

    (1 + t3) 2

    =

    |a|(1 + t)

    3

    1 + t3

    2=

    |a| (1 + t)

    2

    1 t + t2

    2

    Do

    limt1

    d = limt1

    |a|

    (1 + t)2

    1 t + t2

    2

    = 0

    Ta c vector ch phng ca tip tuyn ti (t) l vector cng phng vi

    vector

    (t) l vector u = (3a 6at3, 6at 3at4)

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    19/50

    HNG DN GII BI TP 19

    Khi limt1

    u = limt1

    (3a 6at3, 6at 3at4) = (9a, 9a). Vector (9a, 9a)cng phng vi vector (1, 1) cng l vector ch phng ca ng thng

    (l) : x + y + a = 0.

    Vy khi t 1. ng cong v tip tuyn ca n tin ti ng thng

    x + y + a = 0

    Bi tp 2.16.

    (a) (t) = (aebt cos t, aebt sin t), t R, a > 0, b < 0Ta c

    0 < aebt cos t < aebt

    0, (t

    )

    = aebt cos t 0 khi t Tng t ta c

    aebt sin t 0 khi t Vy (t) O(0, 0) khi t

    (b) (t) = (abebt cos t

    aebt sin t,abebt sin t + aebt cos t)

    Ta c

    limt

    (abebt cos t aebt sin t) = limt

    (abebt cos t) limt

    (aebt sin t) = 0

    Tng t

    limt

    abebt sin t + aebt cos t) = 0

    Vy (t) (0, 0) khi t .Mt khc ta c

    |(t)

    |= aebt.

    b2 + 1

    = limt0

    tt0

    aebt.

    b2 + 1dt = a

    b2 + 1. limt0

    ebt

    t0

    tt0

    =a

    b2 + 1

    blimt0

    (ebt ebt0)

    = a

    b2 + 1

    b.ebt0

    Vy limt

    tt0

    |(t)|dt l hu hn.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    20/50

    20 Hng dn gii bi tp chng 2

    Bi tp 2.17. p dng nh l gi tr trung bnh cho cc hm x,y,z.

    Bi tp 2.18.

    (a) Ta c

    (q p)v = ((b) (a))v

    = (t)vba

    =

    ba

    (t)v + (t)v dt

    Do v l hng nn v = 0.

    Suy ra (q p)v = ba

    (t).v dt (1)

    p dng bt ng thc Bunhiacopki ta c

    |(t)v | |(t)|.|v | = |(t)|b

    a

    (t).v dt |b

    a

    (t).v dt| b

    a

    |(t).v |dt b

    a

    |(t)|dt (2)

    T (1), (2), suy ra

    (q p)v =b

    a

    (t).v dt b

    a

    |(t)|dt.(b) t v = (q p)|p q| , theo Cu (a) ta c

    b

    a

    |(t)|dt (q p)v = (q p).q pp

    q

    =(q p)2p q = |p q|

    =b

    a

    |(t)|dt |(b) (a)|.

    Bi tp 2.19. Gi s = (x, y) vi || = 1. Khi ta c: x

    (s) = cos (s)y

    (s) = sin (s) x

    (s) =

    (s)sin (s)y

    (s) =

    (s)cos (s)

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    21/50

    HNG DN GII BI TP 21

    Theo gi thit:

    k =

    (s)cos2 (s) +

    (s)sin2 (s) =

    (s)

    (s) = const(s) = cs + a

    x

    (s) = cos(cs + a)

    y

    (s) = sin(cs + a)

    Vy, =1

    ccos(cs + a) + c1,

    1

    csin(cs + a) + c2

    .

    Do c vt nm trn ng trn C(I, r) vi I(c1, c2), r =1

    |c|=

    1

    |k|.

    Bi tp 2.20.

    (a) c

    = (2t, 1, 3t2), c

    = (2, 0, 6t), c

    = (0, 0, 6).

    Suy ra c c = (6t, 6t2, 2),

    c2 = 4t2 + 1 + 9t4, |c| = 4t2 + 1 + 9t4

    (c c)2 = 36t2 + 36t4 + 4, (c, c, c) = 12

    t =

    2t

    4t2 + 1 + 9t4,

    14t2 + 1 + 9t4

    ,3t2

    4t2 + 1 + 9t4

    b = 3t

    9t4 + 9t2 + 1,

    3t29t4 + 9t2 + 1

    ,1

    9t4 + 9t2 + 1

    n =1

    9t4 + 9t2 + 1

    4t2 + 1 + 9t4

    9t4 1, t(2 + 9t2), 3t(1 + 2t2)k =

    2

    9t4 + 9t2 + 1

    (4t2 + 1 + 9t4)3/2

    =3

    9t4 + 9t2 + 1(b) c(t) = a cosh t, a sinh t,at)

    c

    = (a sinh t, a cosh t, a)

    c

    = (a cosh t, a sinh t, 0)

    c

    = (a sinh t, a cosh t, 0)

    c c = (a2 sinh t, a2 cosh t, a2)

    c2 = 2a2 cosh2 t

    |c| = a2 cosh t(c

    c

    )2 = 2a4 cosh2 t

    |c c| = a22 cosh t(c

    , c

    , c

    ) = a3

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    22/50

    22 Hng dn gii bi tp chng 2

    t =

    sinh t2cosh t

    ,1

    2,

    12 cosh t

    b = sinh t

    2 cosh t,

    12

    ,1

    2cosh t

    n =

    1cosh t

    , 0, sinh tcosh t

    k =

    1

    2cosh2 t

    =1

    2a cosh2 t(c) c(t) = (et, e(t),

    2t)

    c

    = (et, e(t), 2)c

    = (et, e(t), 0)

    c

    = (et, e(t), 0)c

    c = (2e(t), 2et, 2)|c| = e

    2t + 1

    et

    |c c| =

    2(e2t + 1)

    et

    (c

    , c

    , c

    ) = 22t =

    e2t

    e2t + 1,

    1e2t + 1

    ,

    2et

    e2t + 1

    b = 1

    e2t + 1,

    e2t

    e2t + 1,

    2ete2t + 1

    n =

    2et

    e2t + 1,

    2et

    e2t + 1,

    1 e2te2t + 1

    k =

    2e2t

    (e2t + 1)2

    =2e2t

    (e2t + 1)2

    (d) c(t) = (cos3

    t, sin3

    t, cos2t)c

    = (3cos2 t sin t, 3sin2 t cos t, 2sin2t)c

    = (6sin2 t cos t 3cos3 t, 6cos2 y sin t 3sin3 t, 4cos2t)c

    = (21 sin t cos2 t 6sin3 t, 21cos y sin2 t + 6 cos3 t, 8sin2t)c

    c = (12 sin2 t cos3 t, 12sin3 t cos2 t, 9sin2 t cos2 t)|c| = 5

    sin2 t cos2 t

    |c c| = 15 sin2 t cos2 t

    (c

    , c

    , c

    ) = 36 sin

    3

    t cos

    3

    tt =

    3cos2 t sin t

    sin2 t cos2 t,

    3sin2 t cos tsin2 t cos2 t

    ,2sin2tsin2 t cos2 t

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    23/50

    HNG DN GII BI TP 23

    b =

    4cos t

    5,4sin t

    5,35

    n =

    sin2 t cos tsin2 t cos2 t

    ,sin t cos2 tsin2 t cos2 t

    , 0

    k = 325

    sin2 t cos2 t

    =4

    25sin t cos t(e) c(t) = (2t, ln t, t2)

    c

    = (2,1

    t, 2t), c

    = (0,1t2

    , 0), c

    = (0,2

    t3, 0).

    c c = (4

    t, 4, 2

    t2), |c| = 1 + 2t

    2

    t.

    |c

    c

    | =2(1 + 2t2)

    t2 , (c

    , c

    , c

    ) = 8

    t3 .

    t =

    2t

    1 + 2t2,

    1

    1 + 2t2,

    2t2

    1 + 2t2

    b =

    2t

    1 + 2t2,

    2t21 + 2t2

    ,1

    1 + 2t2

    n =

    1 2t21 + 2t2

    ,2t

    1 + 2t2,

    2t

    1 + 2t2

    k =2t

    (1 + 2t2)2, =

    2t(1 + 2t2)2

    .

    Bi tp 2.21.

    (a) Ta c

    (s) =

    a

    csin

    s

    c,

    a

    ccos

    s

    c,

    b

    c

    = |(s)| =

    a2

    c2

    sin2

    s

    c+ cos2

    s

    c

    +

    b2

    c2

    =

    a2 + b2

    c2= 1.

    Vy tham s s l di cung.

    (b) Ta c

    (s) =

    a

    c2cos

    s

    c, a

    c2sin

    s

    c, 0

    Hm cong k(s) = |(s)| =a2

    c4 cos2

    s

    c +a2

    c4 sins

    c =a

    c2

    Tm hm xon

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    24/50

    24 Hng dn gii bi tp chng 2

    Ta c

    n =(s)

    |(s)| =c2

    a

    a

    c2cos

    s

    c, a

    c2sin

    s

    c, 0

    t = (s) = (s) =a

    csin s

    c, a

    ccos s

    c, b

    c

    b = t n =

    b

    csin

    s

    c,

    b

    ccos

    s

    c,

    a

    c

    = b = b

    c2cos

    s

    c, b

    c2cos

    s

    c, 0

    .

    Suy ra = bc2

    (c) Mt phng mt tip ca (s) qua im

    (s0) =

    a cos

    s0c

    , a sins0c

    , bs0c

    v nhn

    b(s0) =

    b

    csin

    s0c

    ,b

    ccos

    s0c

    ,a

    c

    lm vector php tuyn nn n c phng trnh:

    bc

    sins0c

    x a cos s0

    c

    +

    b

    ccos

    s0c

    y a sin s0

    c

    +

    a

    c

    z bs0

    c

    = 0

    bc

    sins0c

    .x +b

    ccos

    s0c

    .y +a

    c.z +

    abs0c2

    = 0.

    (d) Ta c n(t) =

    a coss

    c a cos s

    c.t, sin

    s

    c a sin s

    c.t,

    bs

    c

    t N = n(t)

    Oz, suy ra N(0, 0,bs/c).

    = cos(n(t), Oz) =0 a cos

    s

    c+ 0a sin s

    c+ 1.0

    |a| = 0.

    gc gia n(s) v Oz bng /2.(e) Ta c

    cos(t(s), Oz) =

    0 ac

    sins

    c

    + 0

    a cos

    s

    c

    + 1.

    b

    c

    |1.1|

    =b/c

    = const.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    25/50

    HNG DN GII BI TP 25

    Bi tp 2.22. Ta c:

    c(t) =

    a(1 cos t), a sin t, 2a sin t

    2

    =

    a(2 2cos2 t2), 2a sin t2 cos t2 , 2a sin t2

    c(t) =

    2a sint

    2cos

    t

    2, a(2cos2

    t

    2 1), a cos t

    2

    Khi ta c:

    c(t) c(t) =

    4a2 sin6t

    2+ 4a2 sin4

    t

    2cos2

    t

    2+ 4a4 sin4

    t

    2

    = 8a2 sin4 t

    2= 2

    2a sin2

    t

    2.

    |c(t)|3 =

    8a2 sin4t

    2

    3= 16

    2a3 sin3

    t

    2.

    Suy ra cong ca ng tham s trn l:

    k(t) =c(t) c(t)

    |c

    (t)|3

    =2

    2a sin2t

    2

    162a3 sin3t

    2

    =1

    8a sint

    2

    .

    Khi bn knh cong ca ng cho bng

    r(t) =1

    k(t)= 8a sin

    t

    2

    bn knh cong t cc tr a phng th

    r(t) = 0 cos t2

    = 0 t = + k2

    Suy ra cc im lm cho bn knh cong t cc tr a phng ng vi

    t = + k2, k Z.Bi tp 2.23. Gi s tham s l di cung v gi e l vector c nh. Theo

    gi thit ta c:

    e.t = 0, = e.t = 0, = k.(e.n) = 0

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    26/50

    26 Hng dn gii bi tp chng 2

    Do gi thit song chnh quy nn k = 0. T suy ra e.n = 0 (1), ly ohm hai v biu thc (1), ta c

    e.n

    = 0 =

    e(

    k.t + .b) = 0.

    Do e.t = 0 nn e..b = 0.

    Mt khc e.n = e.t = 0 nn e.b = 0. Suy ra = 0.Vy ng cong cho l mt ng cong phng.

    Bi tp 2.24.

    (a) Gi s c l tham s ha vi tham s di cung v gi l im c nh.

    Theo gi thuyt ta c: (c(s)

    a) = c

    (s). T y suy ra:

    c

    (s) = c

    (s) +

    c

    (s).

    iu ny c ngha l: k =c

    n

    |c|2 = 0.Do vt l mt ng thng hoc mt phn ng thng.

    (b) Do b = 0 nn = 0.

    Bi tp 2.25.

    (a) 120x 597y + 108z + 1752 = 0.(b) 61/16(x 25/8) 3(y 2) 5/4(z 9/4) = 0.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    27/50

    HNG DN GII BI TP 27

    Bi tp 2.26.

    (a) Ta c

    c(t) = (a sin t, a cos t, b)c(t) = (a cos t, a sin t, 0)

    = t = c(t)

    |c(t)| =1

    a2 + b2(a sin t, a cos t, b)

    b =c c|c c| =

    a

    a

    1 + b2(b sin t, b cos t, a)

    =

    c

    c = (ab sin t,

    ab cos t, a2)

    n = b t = a2 b2

    a2 + b2

    1 + b2(cos t, sin t, 0).

    Php tuyn n ca c(t) nhn n lm vector ch phng qua im c(t0) c

    phng trnh tham s l

    x = a cos t0 + cos t0t

    y = a sin t0 + sin t0t

    z = bt0

    , t R

    Tng t ta c phng trnh tham s ca cc ng thng sau

    Tip tuyn (t) :

    x = a cos t0 a sin t0ty = a sin t0 + a cos t0t

    z = bt0 + bt

    Trng php tuyn (v) :

    x = a cos t0 + b sin t0t

    y = a sin t0 b cos t0tz = bt0 + at

    Mt phng mt tip qua c(t) nhn b(t0) lm vector php tuyn c phng

    trnh l

    b sin t0(x a cos t0) b cos t0(y a sin t0) + a(z bt0) = 0b sin t0x b cos t0y + az abt0 = 0.

    Mt phng trc t nhn n(t0) lm vector ch phng v qua c(t) c phng

    trnh l

    cos t0x + sin t0y a2 = 0.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    28/50

    28 Hng dn gii bi tp chng 2

    (b) Gi l gc to bi tip tuyn (t) v trc Oz

    cos = |t.e3

    ||t|.|e3 | = |b

    |1 = |b|Gi s M = n Oz th ta M l nghim ca h

    a cos t0 + cos t0t = 0

    a sin t0 + sin t0t = 0

    bt0 = c

    =

    cos t0t = a cos t0

    sin t0t = a sin t0()

    H phng trnh () lun c nghim nn cc php tuyn ca c(t) lun cttrc Oz.

    Bi tp 2.27. Xt nh x :< a, b >< 0, 1 >, t (t) = t ab a . D thy

    l mt nh x vi phi. Khi ng cong = c 1 l ng cong tham stng ng cn tm.

    Bi tp 2.28.

    (a) Do f(t), g(t) l cc hm trn nn n kh vi v x(t) = t l hm s cp nnkh vi.

    T ta c: c

    (t) =

    1, f

    (t), g

    (t) = 0 nn c l ng tham s chnh qui.

    (b) Vi f(t) = sin t + t2 v g(t) = et(1 t3) th c(t) = t, sin t + t2, et(1 t3).T :

    c

    (t) = (1, cos t + 2t, et(1 t3) 3t2et)Suy ra vector tip xc cn tm l:

    c

    (t) =

    1, cost + 2t, et(1 3t2 t3).Bi tp 2.29. chng minh iu kin cn, ly o hm ca ng thc

    |(s)|2 = const 3 ln. chng minh iu kin , chng ta ly o hm

    (s) = (s) + Rn RTb

    chng ta c

    (s) = t + R (kt b) + R

    n (T R

    )

    b R

    n

    =

    R + (T R)

    b

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    29/50

    HNG DN GII BI TP 29

    Theo gi thuyt ta c R2 +

    R2

    T2 = const, ly o hm hai v ta c

    2RR + 2 (T R) (T R)

    = 0

    =2R

    R + (T R

    )

    = 0.

    Do k, = 0 nn = 0. T suy ra iu phi chng minh.

    Bi tp 2.30.

    (a) t R =1

    k, T =

    1

    . chng minh

    c a = 1k

    .n ( 1k

    ).1

    .b = Rn RTb

    ta chng minh c + Rn + RTb l hm hng.Tht vy, ta c:

    (c + Rn + RTb) = c + Rn + Rn + (RT).b + (RT).b

    = t + Rn + R(kt + b) + (RT)b + R 1

    .(n)

    = t + Rn 1k

    t + Rb + (RT)b Rn

    = Rb + (R

    T)

    b= (R + RT)b (1)

    p dng Bi tp 2.29, do vt ca c(I) nm trn mt cu nn

    R2 + (RT)2 = const. (2.0.1)

    Ly o hm hai v ng thc 2.0.1, ta c

    2RR

    + 2(R

    T)(R

    T)

    = 0

    R

    R + T(RT)

    = 0 (do = 0)

    R + 1

    (RT) = 0

    R + RT = 0 (2)

    T (1) & (2) suy ra:

    (c + Rn + RTb) = 0

    c + Rn + RTb = a (const)c a = Rn RTb.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    30/50

    30 Hng dn gii bi tp chng 2

    (b) Chng minh tng t Bi tp 2.29.

    Bi tp 2.31. Gi s c1 c2, tc l tn ti mt vi phi : (0, /2)

    (0, 1),

    sao cho c2(t) = (c1)(t), t (0, /2). Khi , ta c

    cos t = (t)

    sin t = 1 2(t)

    cos t =

    2(t)

    sin t = 1 cos t

    cos t = 2(t) (1)

    sin t + cos(t) = 1. (2)

    Do phng trnh (2) khng c nghim vi mi t (0, /2) nn c1 v c2 lkhng tng.

    Chng minh tng t cho cc trng hp cn li.

    Bi tp 2.32. Gi a l vector ch phng ca ng thng v (t) l gc gia

    hai vector a v (t).

    Gi s = const, tc l t.a = const, suy ra n.a = 0. Do

    a = t cos + b. sin .

    Ly o hm hai v ta c

    k.n. cos + n. sin = 0

    =k

    = tan = const

    Ngc li, nu k

    = const = tan th chng minh c

    a = t cos + b. sin .

    Bi tp 2.33. Gi s s = 0, xt biu din ca ca trong ln cn ca s = 0.

    Khi P phi c dng z = cy hay y = 0. Mt phng (P) : y = 0 khng tha

    mn iu kin th 2 ca bi. By gi xt trong ln cn rt nh ca s sao cho

    y(s) > 0 v z(s) cng du vi s. Theo iu kin th hai c = z/y va dng li

    va m, do P l mt phng c phng trnh z = 0.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    31/50

    HNG DN GII BI TP 31

    Bi tp 2.34.

    (a) Xem Bi tp 2.32

    (b) Theo chng minh ca Cu (a), vector a vung gc vi n nn php tuyn

    song song vi mt phng nhn vector a lm php vector.

    (c) Nu l gc gia a v tip tuyn th vector trng php tuyn b to vi

    vector a mt gc /2 .

    Bi tp 2.35. S dng c s a phng.

    Bi tp 2.36. Ma trn ca mt php bin i ng c c nh thc bng 1v cng thc i bin ca tch phn bi.

    Bi tp 2.37. Gi s l tham s ha vi tham s di cung v a R3 lim c nh.

    Theo bi ta c

    (t) a.(t) = 0

    (t) a2

    = 0

    (t) a2 = r2Suy ra vt ca () l ng trn hoc mt phn ng trn tm a bn knh r.

    Bi tp 2.38.

    (a) ng cong phng.

    (b) ng xon c.

    (c) ng thng hoc mt phn ca ng thng.Bi tp 2.39. Cc tnh cht ny tng ng vi iu kin ng xon c

    tng qut.

    Bi tp 2.40. Tng t Bi tp 2.24.

    Bi tp 2.41.

    (a) ng tractrix c phng trnh tham s l

    c(t) =

    sin t, cos t + ln tan t

    2

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    32/50

    32 Hng dn gii bi tp chng 2

    Ta c

    x(t) = sin t = x(t) = cos t; x(t) = sin t

    y(t) = cos t + ln tan

    t

    2

    = y(t) = cos2 t

    sin t; y

    (t) = cos t cos tsin2(t)

    .

    Gi (t) = (X, Y) l ng tc b ca th c phng trnh tham s l

    X = x x2 + y

    2

    xy xy .y

    Y = y +x

    2 + y2

    x

    y

    x

    y

    .x

    X =1

    sin t

    Y = ln

    tan

    t

    2

    (b) ng Hypebol c phng trnh tham s ha l:

    c(t) :

    x = a cosh t

    y = b sinh t

    x

    (t) = a sinh t; x

    (t) = a cosh t

    y

    (t) = b cosh t; y

    (t) = b sinh t

    Do c(t) c ng tc b c xc nh nh sau:

    X = x x2 + y

    2

    xy xy .y

    Y = y +x

    2 + y2

    x

    y

    x

    y

    .x

    X = a cosh t.(1 + cosh 2t)

    Y = b sinh t.

    1 a

    2

    b2cosh2t

    Nu l ng tc b ca c(t) th c(t) l ng thn khai ca (t).

    (c) ng cycloid c(t) =

    R(t sin t), R(1 cos t)x

    (t) = R(1 cos t); x(t) = R sin ty

    (t) = R sin t; y

    (t) = R cos t)

    l ng tc b ca c th c phng trnh tham s l

    X = R(t + sin t)Y = R(1 cos t)Bi tp 2.42.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    33/50

    HNG DN GII BI TP 33

    (a) Ta c

    k =xy xy

    (x2 + y2)3

    2

    =cosh t

    1 + sinh2t3

    2

    =1

    cosh2t.

    (b) Theo cng thc xc nh tham s ha ca tc b

    X = x x

    2 + y2

    xy

    xyy

    Y = y +x2 + y2

    xy xyx

    X =t

    sinh t cosh t

    Y =2 cosh t

    Bi tp 2.43. Ellipsex2

    a2+

    y2

    b2= 1 c tham s ha l

    x(t) = a cos t

    y(t) = b sin tt (0, 2).

    Cc nh n ng vi cc gi tr t = /2, , 3/2. T , chng ta xc nh

    c cc cong tng ng l b/a2, a/b2.

    Bi tp 2.44. Vi ng cong c(t) =

    (t), t(t), ta c

    c

    (t) =

    (t), (t) + t

    (t)

    c

    (t) = (t), 2(t) + t(t)ng cong c l mt cung thng khi v ch khi k = 0. iu ny tng ng

    vi ng thc sau:

    (t)(2

    (t) + t

    (t)) (t)((t) + t(t)) = 022(t) + t.(t).(t) (t).(t) t.(t).(t) = 0

    2

    2(t)

    (t).(t) = 0

    Nu tn ti t0 I sao cho (t0) = 0 th c khng chnh qui ti t0. Do o chng

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    34/50

    34 Hng dn gii bi tp chng 2

    ta c:

    1

    (t)

    =

    (t)

    2(t)

    =

    (t)2(t) + 2(t)2(t)4(t)

    =(t)(t) + 2(t)

    3(t)= 0

    1(t)

    = at + b (t) = 1at + b

    Vy vi (t) =1

    at + bth c l mt cung thng.

    Bi tp 2.45. Sinh vin t gii.

    Bi tp 2.46. Tm biu thc ta ca i vi mc tiu {(t) : t(t),n(t),b(t)}.Bi tp 2.47. Gi s ng cong cho c tham s ha t nhin. Khi

    x = cos v y = sin . S dng cng thc tnh cong i s thit lp

    phng trnh vi phn thng theo .

    Bi tp 2.48. S dng biu thc quan h gia h ta cc v h ta

    Decarter:

    x = ()cos y = ()sin

    Thay cc ng thc trn vo cng thc tnh di v cong i s.

    Bi tp 2.49. S dng bt ng thc ng cho l2 4A. Suy ra khng tnti ng cong.

    Bi tp 2.50. i xng min cho qua AB v s dng kt qu bi ton ng

    cho suy ra l chnh l na ng trn ng knh AB.

    Bi tp 2.51. Tnh ton trc tip.

    Bi tp 2.52. Do l mt ng cong n ng nn ta cl0

    k(s)ds = (l) = (0) = 2.

    Do k(s) < c, nn ta c

    2 =

    l0

    k(s)ds l0

    cds = cl

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    35/50

    HNG DN GII BI TP 35

    T suy ra l 2/c.

    Bi tp 2.53. Theo nh l Jordan v ng cong th bao mt tp hp K.

    Nu K l mt tp khng li th tn ti hai im p, q

    K sao cho on thng

    pq cha mt s im khng nm trong K. Khi on thng pq ct ti mt

    im r = p, q. Chng minh rng qp l mt tip tuyn ca ti cc im p,q,r,t dn n mt iu mu thun.

    Bi tp 2.54. Nu ng cong l lm th ly hai im p, q nm hai pha

    ca phn lm . Di chuyn hai im p, q v pha lm sao cho pq tr thnh tip

    tuyn ti p v q. Chng minh ng cong thu c gim chiu di tng din tch.

    Bi tp 2.55.(a) Gi L l ng thng qua im q (I). Nu vt ca nm mt pha

    ca L th ng thng L l mt tip tuyn. Nu vt ca n nm hai pha so vi

    L th s ct L ti im th hai.

    (b) Chng minh tng t nh chng minh hm Cauchy-Crofton.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    36/50

    36 Hng dn gii bi tp chng 3

    BI TP CHNG 3

    Bi tp 3.1. Xt f : R3 R, (x,y,z) x2 + y2. Khi , ta c

    fx

    (x,y,z) = 0

    f

    y(x,y,z) = 0

    f

    z(x,y,z) = 0

    2x = 0

    2y = 0

    0 = 0

    x = 0

    y = 0.

    Vy f c gi tr ti hn l duy nht l 0. Suy ra C l mt mt chnh qui.

    C th chn h bn

    f1 : (0, 2) R R3, (u, v) (cos u, sin u, v)f2 : (, ) R R3, (u, v) (sin u, cos u, v)

    Khi h

    (0, 2)R, f1

    ,

    (, )R, f2

    l mt h bn ph C. Lu

    h ny khng duy nht.

    Bi tp 3.2. Tp {(x,y,z) R3 : z = 0, x2 + y2 1} khng phi l mt chnhqui. Tp

    {(x,y,z)

    R

    3 : z = 0, x2 + y2 < 1}

    l mt chnh qui.

    Bi tp 3.3. D thy (0, y , z) l cc im ti hn ca f v f1(0) l mt phng

    Oyz nn n l mt chnh qui.

    Bi tp 3.4. R rng X tha mn cc iu kin: kh vi, ng phi (do x > y).

    Ta s chng minh X l n nh

    Gi s X(u1, v1) = X(u2, v2). T biu thc ca X ta thy {u1, v1} v {u2, v2}l trng nhau v cng l nghim ca phng trnh bc hai X2(u+v)X+uv = 0.Nhng u1 > v1 v u2 > v2 nn ta c u1 = u2 v v1 = v2.

    Vy X l n nh. Do X l mt tham s ha ca mt mt chnh qui.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    37/50

    HNG DN GII BI TP 37

    Bi tp 3.5.

    (a) Ta c

    f

    x= 2(x + y + z 1) = 0

    f

    y= 2(x + y + z 1) = 0

    f

    z= 2(x + y + z 1) = 0

    x + y + z 1 = 0

    Vy cc im ti hn ca f l mt phng (P)x + y + z 1 = 0.

    (b) Nu c = 0 th c l mt gi tr chnh qui ca f. Suy ra f(x,y,z) = c lmt mt chnh quy. Nu c = 0 th f(x,y,z) = c x + y + z 1 = 0.Do khi c = 0 th nhng im M(x,y,z) tha f(x,y,z) = c cng l 1 mt

    chnh quy.

    Tm li vi mi c R th f1(c) l mt mt chnh qui.(c) Ta c

    fx

    = yz2 = 0

    fy = xz2 = 0fz

    = 2xyz = 0

    z = 0

    x = y = 0

    Vy tp hp tt c cc im ti hn nm trn mt phng z = 0 v ng

    thng x = y = 0. T , suy ra f c gi ti hn duy nht l 0.

    Nu c = 0 th tp hp cc im M(x,y,z) tha f(x,y,z) = c l mt mtchnh qui.

    Nu c = 0 th tp cc imM(x,y,z) tha f(x,y,z) = 0 khng phi l mt

    mt chnh qui (do ti O(0, 0, 0) khng trn).

    Bi tp 3.6. Sinh vin t gii.

    Bi tp 3.7. Xt nh x X : V R2 R3, (u, v) (u,v, 0). Khi (V, X)l mt bn ca S. Do , tp cho l mt mt chnh qui.

    Bi tp 3.8. Xt nh x f(x,y,z) = x2 y2 z, chng minh (0, 0, 0) l mtgi tr chnh qui. T suy ra S l mt mt chnh qui.

    Xt X : R2 R3, (u, v)

    u,v,u2 v2. Khi x,y,z l cc hm khvi. Mt khc, ta c Xu = (1, 0, 2u), Xv = (0, 1,2v) c lp tuyn tnh do

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    38/50

    38 Hng dn gii bi tp chng 3

    1 00 1 = 1 = 0. Do X l mt tham s ha.

    (a) Ta thy

    limuv

    x (u, v) = , limu+v+

    x (u, v) = +lim

    uv

    y (u, v) = , limu+v+

    y (u, v) = +

    limuv0

    z (u, v) = +, limu0v+

    z (u, v) =

    (b) Tham s ny ph phn S {R3 : z > 0}.

    Bi tp 3.9. X(u, v) = (a sinh u cos v, a sinh u sin v, c cosh u).

    Bi tp 3.10. S khng phi l mt chnh qui do n c 1 ng thng k d.

    Bi tp 3.11. Chng minh trc tip. Cc ng cong X(const, v) l giao ca

    S vi mt phng z = c cos u.

    Bi tp 3.12. X(u, v) = (0, 0, bu) +

    (a,bu, 0) (0, 0, bu)v = av, buv, bu(1 v). (S) l mt mt chnh qui.

    Bi tp 3.13.

    (a) Tnh ton trc tip.

    (b) Dng php chiu t cc bc v cc nam ln mt phng R2.

    Bi tp 3.14.

    (a) Chng minh tng t nh mt chnh qui.

    (b) Tng t nh Cu (a)

    (c) Khng chnh qui ti O.

    Bi tp 3.15. D thy A2 = idS2 nn A = A1.

    Bi tp 3.16. f(x, y) = x2 + y2. Khi f bin mt phng R2 thnh parabolid.

    Bi tp 3.17. Xt f : (E) (S), (x,y,z) (x/a,y/b,z/c).

    Bi tp 3.18. Chng minh theo nh ngha.

    Bi tp 3.19. S dng tnh cht kh vi ca php i tham s.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    39/50

    HNG DN GII BI TP 39

    Bi tp 3.20. Kim tra trc tip 3 iu kin phn x, i xng, bc cu.

    Bi tp 3.21. Chng minh trc tip.

    Bi tp 3.22. Nu p = (x,y,z) th F(p) nm trn giao ca H vi ng thngt (tx,ty,z), t > 0. Do

    F(p) = 1 + z2

    x2 + y2x,

    1 + z2x2 + y2

    y, z

    Chn U l ton b tr i trc Oz. Khi hm F : U R3 xc nh nh trnl mt hm kh vi.

    Bi tp 3.23. ng cong C ch c cc im k d nm trn trc quay.

    Bi tp 3.24. Chng minh trc tip bng nh ngha.

    Bi tp 3.25. Sinh vin t gii.

    Bi tp 3.26. S dng nh ngha ca hm kh vi trn R3 v trn mt chnh

    qui chng minh.

    Nu f l thu hp ca mt nh x kh vi th f kh vi (v d). chng minh

    iu ngc li, chng ta xt X : U R3 l mt tham s ha ca S ti p.Chng ta c th m rng X thnh nh x F : U R R3. Ly W l mtln cn ca p trong R3 sao cho F1 l mt vi phi trn n. nh ngha hm

    g : W R c xc nh bi g = fX F1 trn W, vi l php chiut nhin t U R ln U. Khi , g l mt nh x kh vi v g|WS = f.

    Bi tp 3.27. Sinh vin t gii.

    Bi tp 3.28. nh x F kh vi trn S2 \ {N}, do n l hp ca cc nh xkh vi. chng minh F kh vi ti N, xt php chiu ni t cc nam v t

    Q = S F 1S . Chng minh rng N 1S () = 4/. T ta c

    Q() =n

    a0 + a1 + + ann .

    Do , Q kh vi ti 0. Suy ra F = 1S F S kh vi ti S.

    Bi tp 3.29. Vi mi v TpS, ta c v = (t) = (x(t), y(t), z(t)) vi(t) = (x(t), y(t), z(t)) l mt ng cong nm trn S v (0) = p.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    40/50

    40 Hng dn gii bi tp chng 3

    Do (t) nm trn S nn f((t)) = 0. Tc l ta c:

    f(x(t), y(t), z(t)) = 0,t I=

    fx

    (p)x(0) + fy

    (p)y(0) + fz

    (p)z(0) = 0

    =n(fx(p), fy(p), fz(p))v=(T pS) : fx(p)(x x0) + fy(p)(y y0) + fz(p)(z z0) = 0.

    Bi tp 3.30. Phng trnh mt phng tip xc ti (a,b, 0) ca mt phng

    chnh qui cho bi phng trnh f(x,y,z) = x2 + y2 z2 1 = c dng

    TpS :f

    x(p)(x a) + fy(p)(y b) + fz(p)(z 0) = 0

    2a(x a) + 2b(y b) = 02ax + 2bx 2a2 2b2 = 0.

    Php vector ca (T pS) l n = (2a, 2b, 0) vung gc vi e3. Suy ra mt phng

    (TpS) vung gc vi trc Oz.

    Bi tp 3.31.

    C th xem S l F1(0) vi F(x,y,z) = z f(x, y) hoc gii theo cch sau.

    (a) Tham s ha ca S l X(u, v) = (u,v,f (u, v)). Khi chng ta c

    Xu = (1, 0, fu), Xv = (0, 1, fv)

    Suy ra n = (fu,fv, 1).Phng trnh mt phng tip xc ca S ti p = (x0, y0, f(x0, y0)) vi c dng

    fu(p)(x x0) + fv(p)(y y0) + (z f(x0, y0)) = 0

    z = fx(x0, y0)(x

    x0) + fy(x0, y0)(y

    y0) + f(x0, y0))

    (b) Ta c F = Dfq(x, y) =f

    x(q)x +

    f

    y(q)y. Suy ra

    Gr(F) =

    x, y,f

    x(q)x +

    f

    y(q)y

    : (x, y) R2

    T suy ra iu phi chng minh.

    Bi tp 3.32. p dng Bi tp 3.31.

    Bi tp 3.33. Ta c X(u, v) = (u) + (v)

    ng ta th I: X(t, c), t I.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    41/50

    HNG DN GII BI TP 41

    t p = X(u, c). Khi ta c

    Xu = (u), Xv =

    (v)

    =N(p) =

    (u)

    (c)

    Suy ra cc mt phng tip xc ca (S) dc theo ng ta th I song

    song vi cc ng thng c vector ch phng l (c).

    Trng hp th hai chng minh tng t.

    Bi tp 3.34. t p1 = X(u0, v1); p2 = X(u0, v2)

    Ta s chng minh TP1S = TP2S. Tht vy

    Xu =

    (u) + v

    (u), Xv =

    (u)

    = Xu Xv = ((u) + v(u)) (u)= (u) (u) + v(u) (u)= v(u) (u).

    Suy ra

    Tp1S : v1.((u0)

    (u0)) ((u) + v

    (u)

    (u0)

    v1

    (u0)) = 0

    Tnh ton tng t, chng ta c

    Tp2S : v2

    (u0) (u0)

    ((u) + v(u) (u0) v2(u0)) = 0.

    Mt khc, ta c

    v1.((u0) (u0)) [(u0) + v2(u0) (u0) v1(u0)] =

    = v1.((u0)

    (u0)).(v2 v1).

    (u0)= v1.(v2 v1) [((u0) (u0)).(u0)]= v1.(v2 v1) ((u0), (u0), (u0)) = 0

    Suy ra p2 l mt im ca Tp1S. T ta c iu phi chng minh.

    Bi tp 3.35. Ly v TPS, (t) =

    x(t), y(t), z(t), (0) = p, (0) = v.

    Ta c: f (t) = ((t) p0)2.

    Do

    Dfp(v) =d

    dt[f (t)]t=0

    = 2(0)((0) p0) = 2v(p p0), v TPS.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    42/50

    42 Hng dn gii bi tp chng 3

    Bi tp 3.36. Sinh vin t gii.

    Bi tp 3.37. Tnh ton trn Maple

    with(LinearAlgebra);

    X := [v*cos(u), v*sin(u), a*u];

    XU := convert(diff(X, u), Vector);

    XV := convert(diff(X, v), Vector);

    N := simplify(&x(XU, XV));

    X := convert([x, y, z]-X, Vector);assuming([simplify(X.N)],

    [x > 0, y > 0, z > 0, 0 < u and u < 2*Pi, a > 0]);

    Mt phng tip xc cn tm c phng trnh

    a sin(u0) x + a cos(u0) y + vau vz = 0

    Bi tp 3.38. Ta c

    Xs = (s) + r(n(s)cos v + b(s)sin v)

    Xv = r(n(s)sin v + b(s)cos v)= N(s, v) = Xs Xv

    = ((s) + r(n(s)cos v + b(s)sin v) r(n(s)sin v + b(s)cos v)

    = [T + r(

    k.T+) cos v + (

    .N)sin v][r(

    n sin v + b cos v)]

    = T rNsin v + T B cos v + r(kT cos vNsin v) + r(k.TB)cos v+ r(.B cos vN. sin v) + r(.BB)cos v r(NN)sin v + r(N. sin vB. cos v)

    S dng cng thc Frenet ta suy ra iu phi chng minh.

    Bi tp 3.39. Ta c

    Xu = (f

    (u)cos v, f

    (u)sin v, g

    (u));Xv = (f(u)sin v, f(u)cos v, 0);

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    43/50

    HNG DN GII BI TP 43

    Suy ra phng trnh php tuyn ca S l

    f

    (u0)cos v0(x x0) + f(u0)sin v0(y y0) + g(u0)(z z0) = 0

    f(u0)sin v0(x x0) + f(u0)cos v0(y y0) = 0

    f

    (u0)cos v0(x x0) + f(u0)sin v0(y y0) + g(u0)(z z0) = 0(f(u0)sin v0)x + (f(u0)cos v0)y = 0

    D thy h phng trnh sau c nghim

    f

    (u0)cos v0(x x0) + f(u0)sin v0(y y0) + g(u0)(z z0) = 0

    (f(u0)sin v0)x + (f(u0)cos v0)y = 0x = 0, y = 0

    Suy ra php tuyn ca S lun ct trc Oz.

    Bi tp 3.40. Nhng im p = (x0, y0, z0) thuc giao tuyn ca hai mt S1 v

    S2 c tnh cht ax0 = by0.

    Php vector ca S1 ti im p l n1 = (2x0 a, 2y0, 2z0); cn php vector

    ca S2 ti im p l n2 = (2x0, 2y0 b, 2z0). T suy ra n1 n2.Bi tp 3.41.

    (a) Ly (t) l ng cong nm trn mt S sao cho (0) = p v (0) = v.

    Khi , ta c

    Dfp(w) =w, (t) (0)|(t) (0)| = 0

    Suy ra p l mt im ti hn ca f khi v ch khi Dfp(w) = 0. Ta suy rac iu phi chng minh.

    (b) Tng t cu (a).

    Bi tp 3.42.

    (a) S dng tnh cht lin tc ca hm f, chng minh trong mi khong

    (, c), (c, b), (b, a) cha mt nghim ca f.(b) iu kin cn v hai mt f(t1) = 1 v f(t2) = 1 trc giao vi nhau:

    fx(t1)fx(t2) + fy(t1)fy(t2) + fz(t1)fz(t2) = 0

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    44/50

    44 Hng dn gii bi tp chng 3

    S dng nh ngha ca hm f v cc ti suy ra iu phi chng minh.

    Bi tp 3.43. Chng minh rng d(X(u, v), I) = const t gi thuyt

    (X I).Xu = (X I).Xv = 0T suy ra im c nh I chnh l tm ca mt cu.

    Bi tp 3.44. Mi ln cn a phng ca mt mt chnh qui l nghch nh

    ca gi tr chnh qui ca mt hm kh vi. Do ta c th gi s S1 = f1(0)

    v S2 = g1(0), vi 0 l gi tr chnh qui ca cc hm f v g. Trong ln cn ca

    p, S1 S2 l nghich nh ca hm F : R3 R2, q (f(q), g(q)). Do S1 v S2

    c giao ngang nhau nn hai php vector (fx, fy, fz) v (gx, gy, gz) c lp tuyntnh. Do (0, 0) l gi tr chnh qui ca hm F v S1 S2 l mt ng congchnh qui.

    Bi tp 3.45. Chng minh bng nh ngha.

    Bi tp 3.46. S dng X(u, v) = X

    u(u, v), v(u, v)

    v cng thc o hm

    ca hm hp.

    Bi tp 3.47. Chng minh rng cc ng cong trn S ct mt phng (P) ti1 im hoc nm trn mt phng (P). T suy ra (P) l mt mt phng tip

    xc ca S.

    Bi tp 3.48. Phng trnh mt phng tip xc ti im (x0, y0, z0) c dng

    xx0a2

    +yy0b2

    +zz0c2

    = 1

    ng thng (d) vung gc vi mt phng tip xc ca c phng trnh

    xa2

    x0=

    yb2

    y0=

    zc2

    z0

    T biu thc trn, chng ta c

    x2a2

    xx0+

    y2b2

    yy0+

    z2c2

    zz0=

    x2a2 + y2b2 + z2c2

    xx0 + yy0 + zz0

    Tng t ta c

    xx0x20/a

    2=

    yy0y20/a

    2=

    zz0z20 /a

    2=

    xx0 + yy0 + zz01

    .

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    45/50

    HNG DN GII BI TP 45

    T suy ra iu phi chng minh.

    Bi tp 3.49. Tng t nh chng minh ca hm nhiu bin.

    Bi tp 3.50. Gi r l ng thng c nh v p l mt im nm trn S.Mt phng P1 cha im p v ng thng r, cha tt c cc php tuyn ti

    cc im S P1. Xt mt phng P2 qua im p v trc giao vi r. Do phptuyn i qua p ct r nn P2 c lp vi TpS. T suy ra P2 S = C l mtng cong phng chnh qui. Hn na P1 P2 trc giao vi ATpS P2; Do P1 P2 trc giao vi C. T suy ra cc php tuyn ca C i qua mt im cnh q = rP2. S dng tnh cht lin thng ca Ssuy ra iu phi chng minh.

    Bi tp 3.51. Sinh vin t gii.

    Bi tp 3.52. Gi v l vector tip xc ca C1 v C2 ti p, chng minh rng

    (C1) v (C2) c chung vector ch phng l(v).

    Bi tp 3.53. Chn p l gc mc tiu, Xu, Xv l trc honh v trc tung,

    N = Xu Xv l trc cao.

    Bi tp 3.54.

    (a) Cho q R, gi (U, ) l mt h ta a phng ca S ti p = 1(q).Nu q l mt gi tr chnh qui ca hm 1 th q c gi l gi tr chnhqui ca hm .

    (b) Suy ra trc tip t nh ngha gi tr chnh qui v ng cong chnh qui.

    Bi tp 3.55. Lnh tnh ton vi Maple

    [>restart;

    with(linalg);

    X := [a*sin(u)*cos(v), b*sin(u)*sin(v), c*cos(u)];

    XU := diff(X, u); 1; XV := diff(X, v);

    dk := a > 0, b > 0, c > 0, 0 < u and u < 2*Pi,

    0 < v and v < Pi;

    E = simplify((convert(XU, Vector).convert(XU, Vector)))assuming dk;

    F = simplify((convert(XU, Vector).convert(XV, Vector)))assuming dk;

    G = simplify((convert(XV, Vector).convert(XV, Vector)))assuming dk;

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    46/50

    46 Hng dn gii bi tp chng 3

    (a)

    E = a2 (cos(u))2 (cos(v))2 + b2 (cos (u))2 b2(cos(u))

    2(cos(v))

    2+ c2 c2 (cos(u))2

    F = cos(u)cos(v)sin(u)sin(v) a2 b2

    G = (sin(u))2 (cos (v))2 a2 b2 (cos(v))2 a2

    (b) E = 4 u2 + a2

    F = 0

    G = a2u2

    (c) E = a2 (cosh (v))2 + 4 u2 b2 + b2 (cosh(v))2

    F = cosh (v) u sinh(v)

    a2 + b2

    G = u2

    b2

    (cosh (v))

    2

    a2

    + a2

    (cosh (v))

    2(d) E = a2 (cosh(v))2 + 4 u2 b2 + b2 (cosh (v))2

    F = cosh (v) u sinh(v)

    a2 + b2

    G = u2

    b2 (cosh (v))2 a2 + a2 (cosh (v))2

    Bi tp 3.56. Cc h s ca dng c bn th nht

    E = 16/(u2 + v2 + 4)2

    F = 0

    G = 16/(u2 + v2 + 4)2

    Bi tp 3.57. Ly hai ng cong 1 = X(ui, v), i = 1, 2, ng cong

    = X(u, v0). Xc nh giao im v ta c di ca on chn bng

    2|u2u1|.

    Bi tp 3.58. p dng cng thc tnh din tch ca mt tham s chnh qui

    theo cc h s ca dng c bn th nht.

    Bi tp 3.59. l cc mt trn xoay c ng sinh l cc ng tham s

    ha di cung.

    Bi tp 3.60. I = d2 + 2d2.

    Bi tp 3.61.

    (a) X(u, v) = (3u sin v, 3u cos v, 3u2), u R, v (0, 2)(b) N =

    6u2 sin(v),6u2 cos(v),u

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    47/50

    HNG DN GII BI TP 47

    (c) Cc h s dng c bn th nht v th hai

    E = 36 u2 + 1, F = 0, G = u2

    e = 6/36u2

    + 1, f = 0, g = 6u2

    /36u2

    + 1.

    (d) cong Gauss v cong trung bnh

    K =36

    (36u2 + 1)2, H =

    108u2

    (36u2 + 1)(3/2).

    Bi tp 3.62. Cc im paraboloic nm trn ng trn X(/2, v) v X(3/2, v),

    cc im eliptic nm trn phn X(u, v), u (0, /2) (3/2, 2), phn cn licha cc im hyperboloic.

    Bi tp 3.63.

    (a) K =1

    (1 + 2u2)2v H =

    1 + u2(1 + 2u2)(3/2)

    .

    (b) H(0, 0) = 1 v K(0, 0) = 1. Suy ra k1 = k2.

    Bi tp 3.64.(a) Tm tham s ha ca mt trn xoay v p dng cng thc tnh din tch

    theo cc h s ca dng c bn th nht.

    (b) A = 42Ra.

    Bi tp 3.65. S dng cng thc tnh din tch.

    Bi tp 3.66. Sinh vin t gii.

    Bi tp 3.67. Chng minh trc tip.

    Bi tp 3.68. Chng minh hm N lin tc.

    Bi tp 3.69. Ly v d l Mobius.

    Bi tp 3.70. nh hng trn S1 c cm sinh t 1.

    Bi tp 3.71. Tng t bi 3.70.

    Bi tp 3.72. S dng bi 3.71.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    48/50

    48 Hng dn gii bi tp chng 3

    Bi tp 3.73. Gi S l mt mt chnh qui tip xc vi mt mt phng dc

    theo ng cong . N l php vector ca mt phng dc theo ng cong .

    Suy ra N = const. Ta c:

    = a.Xu + b.Xv

    = u(t).Xu + v(t).Xv

    = DN((t)) = (aNu + bNv).(t)= u(t)Nu + v

    (t).Nv

    = N((t)) = N(t)

    = DN((t)) = N(t) = 0,(t) S.

    Suy ra (t) ng vi gi tr ring = 0.

    T suy ra (t) l im paraboloic hoc l im phng.

    Bi tp 3.74. Xem chng minh cng thc Euler.

    Bi tp 3.75. Khng ng, v d mt cu.

    Bi tp 3.76. Chng minh trc tip.

    Bi tp 3.77. S dng nh ngha cong php dng.

    Bi tp 3.78. S dng cng thc tnh cong chnh v phng chnh theo cc

    h s c bn, cong Gauss v cong trung bnh.

    Bi tp 3.79.

    (a) Na mt cu di khng k ng xch o.

    (b) Mt cu tr i cc Bc v cc Nam.

    (c) Mt cu tr i cc Bc v cc Nam.

    Bi tp 3.80. Sinh vin t gii.

    Bi tp 3.81. Chng minh vector trng php tuyn ca C l hng.

    Bi tp 3.82. Xem ngha ca ch Dupin.

    Bi tp 3.83. Xt module

    |1N2

    2N1

    |v s dng kt qu

    |sin

    |=

    |N1

    N2

    |suy ra iu phi chng minh.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    49/50

    HNG DN GII BI TP 49

    Bi tp 3.84. Sinh vin t gii.

    Bi tp 3.85. Tm phng chnh ca ti cc im nm trn ng trn trung

    tm ca xuyn.

    Bi tp 3.86. Tnh ton trc tip.

    Bi tp 3.87. Tham s ha l X(u, v) = (u,v,auv) v dng cng thc tnh

    cc cong theo h s ca dng c bn.

    Bi tp 3.88. Tham s ha l X(u, v) = (u,v,uv) v s dng cng thc xc

    nh cc ng tim cn v ng chnh khc.

    Bi tp 3.89. ng tim cn u = const v v = const.ng chnh ln(v +

    v2 + c2) u = const.

    Bi tp 3.90. u v = const.

    Bi tp 3.91. Tnh ton trc tip

    Bi tp 3.92. Sinh vin t gii.

    Bi tp 3.93. Chng minh theo nh ngha.

    Bi tp 3.94. Cc ng sinh v ng trn trc giao vi trc quay.

    Bi tp 3.95. Ly mt mt cu cha mt mt (S) pha trong, gim bn knh

    ca mt cu mt cch lin tc, xt cc lt ct chun tc ti cc giao im ca

    mt cu v mt (S).

    Bi tp 3.96. Sinh vin t gii.

    Bi tp 3.97. Khng c im rn nu a = b = c.Bi tp 3.98. Chng minh trc tip.

    Bi tp 3.99. S dng nh ngha ca mt k, ng tht v tham s phn b.

    Bi tp 3.100. S dng nh ngha ca ng tht.

    Bi tp 3.101. S dng nh ngha ng cong chnh.

    Bi tp 3.102. Sinh vin t gii.

  • 8/8/2019 Huong Dan Giai Bai Tap_hinh Hoc Vi Phan

    50/50

    50 Hng dn gii bi tp chng 3

    Bi tp 3.103. Tnh ton trc tip.

    Bi tp 3.104. Mt phng l mt mt cc tiu nhng khng b chn. Do

    n khng compact.

    Bi tp 3.105. Tnh ton trc tip.

    Bi tp 3.106. S dng gi thuyt cong trung bnh ca S, S bng khng

    chng minh cong trung bnh ca mt cho l mt mt cc tiu.