hplc method development - agilent develop… · systematic approach vs random walk improving the...

111
Page 1 HPLC Method Development Systematic Approach vs Random Walk Improving the Efficiency of Method Development and Optimization William Champion Agilent Technologies, Inc. 1-800-227-9770, opt 3, opt 3, opt 2 [email protected] 26-March-2014 Improving HPLC Separations Agilent Restricted

Upload: others

Post on 21-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Page 1

    HPLC Method Development Systematic Approach vs Random Walk

    Improving the Efficiency of Method Development and

    Optimization

    William Champion

    Agilent Technologies, Inc.

    1-800-227-9770, opt 3, opt 3, opt 2

    [email protected]

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 2

    OBJECTIVE

    • Demonstrate a systematic approach to method development

    • Improve understanding of separation process

    • Development of more robust methods

    • More efficient than “random walk”

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • OUTLINE

    Page 3

    • Definitions - column parameters

    • Systematic Approach

    - Comments

    - Experimental Designs

    - Example

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Some Basic Chromatography

    Parameters

    Page 4

    • Resolution (Rs)

    • Retention Factor (k)

    • Selectivity or Separation Factor (α)

    • Column Efficiency as Theoretical Plates (N)

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 5

    Definition of Resolution

    Rs = tR-2 - tR-1

    (w2 + w1)/2 =

    ∆tR

    w

    Resolution is a measure of the ability to separate

    two components

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Improving HPLC Separations

    Agilent Restricted

    26-March-2014

    N = Column Efficiency – Column length and particle size

    a = Selectivity – Mobile phase and stationary phase

    k = Retention Factor – Mobile phase strength

    Resolution … Determined by 3 Key Parameters –

    Efficiency, Selectivity and Retention

    The Fundamental Resolution Equation

    Page 6

    w

    ∆tR =

  • k

    N

    a

    Improving HPLC Separations

    Agilent Restricted

    26-March-2014 Page 7

    k

    α

    N

    Factors that Improve Resolution

    Increase

    retention

    Change relative

    peak position

    Reduce peak

    width

    .

    .

    w

    ∆tR =

  • k

    N

    a

    Improving HPLC Separations

    Agilent Restricted

    26-March-2014 Page 8

    k

    α

    N

    Factors that Improve Resolution

    Increase

    retention

    Change relative

    peak position

    Reduce peak

    width

    .

    .

    w

    ∆tR =

    k = (tR – t0) / t0

    k = ts / tm

    α = k2 / k1

    α = ts2/ ts1

    N = 16 (tR / w)2

  • k

    N

    a

    Improving HPLC Separations

    Agilent Restricted

    26-March-2014 Page 9

    k

    α

    N

    Factors that Improve Resolution

    Increase

    retention

    Change relative

    peak position

    Reduce peak

    width

    .

    .

    w

    ∆tR =

    k = (tR – t0) / t0

    k = ts / tm

    N = 16 (tR / w)2

    α = k2 / k1

    α = ts2/ ts1

  • k

    N

    a

    Improving HPLC Separations

    Agilent Restricted

    26-March-2014 Page 10

    k

    α

    N

    Factors that Improve Resolution

    Increase

    retention

    Change relative

    peak position

    Reduce peak

    width

    .

    .

    w

    ∆tR =

    k = (tR – t0) / t0

    k = ts / tm

    α = k2 / k1

    α = tS2 / tS1

    N = 16 (tR / w)2

  • OUTLINE

    Page 11

    • Definitions - column parameters

    • Systematic Approach

    - Comments

    - Experimental Designs

    - Example

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 12

    Experiments Are “Front-end Loaded”

    Experiments Provide Easier to Interpret

    Results

    Insight into how to adjust conditions to

    affect separation

    Pre-validation

    SYSTEMATIC APROACH

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 13

    “Front-end Loaded” Experiments:

    - Know what experiments to perform

    - Often can be run in groups or block (e.g.

    overnight)

    - Can be intimidating because it looks

    like a lot of work

    - More complicated designs looks like

    statistics

    SYSTEMATIC APROACH

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 14

    Results Easier to Interpret:

    - Indicate where optimum is/is not

    - Provides insight into trade-offs

    - Tells about Sensitivity/Robustness to small

    parameter changes

    - What conditions are important/what are not

    important (e.g., buffer)

    - Easier to follow confusing interactions

    (“connect the dots”)

    SYSTEMATIC APROACH

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 15

    - Uncoordinated series of experiments

    - Poor understanding of the interaction of

    parameters

    - Can achieve acceptable separation - but not

    understand “why”

    - Do not know if complicated conditions are

    necessary

    - Does not provide insight into sensitivity of

    modifications to the conditions

    (i.e., robustness)

    “RANDOM WALK”

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 16

    Algorithm driven or search techniques

    Models based upon fundamental

    understanding of the chromatographic

    process

    Experimental design

    SYSTEMATIC APROACHES

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 17

    Gradient screening

    Isocratic separation – vary mobile phase

    strength

    Simple screening design

    Factorial design

    Experimental Designs

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • OUTLINE

    Page 18

    • Definitions - column parameters

    • Systematic Approach

    - Comments

    - Experimental Designs

    - Example

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 19

    - Well understood

    - Efficient, information rich

    - Provides insight into fundamental behavior

    - Experiments can be run in blocks

    - Data easy to present and interpret

    - Easy to compare effects of individual

    components

    - Possible to determine if there is interaction

    EXPERIMENTAL DESIGN

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Main Effects – “One Factor at a Time”

    X1

    X2

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 20

  • Main Effects

    %ACN

    Temp 45ºC

    25ºC

    40% 20%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 21

  • Main Effects

    %ACN

    Temp 45ºC

    25ºC

    40% 20%

    Number of Exp’s = 2 x n = 4

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 22

  • Main Effects

    %ACN

    Temp 45ºC

    25ºC

    40% 20%

    Number of Exp’s = 2 x n = 6

    %Acid 0%

    1%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 23

  • Page 24

    - Few experiments

    - Adding a factors only adds two experiments

    - Isolate the effect of each factor

    - Data easy to present and interpret

    - Good screening design

    - Unfortunately, does not provide information

    on interaction of factors

    Single Factor Design

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Factorial Design for Two Factors

    %ACN

    Temp

    30ºC

    40ºC

    25% 35%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 25

  • Factorial Design for Two Factors

    %ACN

    Temp

    30ºC

    40ºC

    25% 35%

    Provides information at Different Levels

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 26

  • Factorial Design for Two Factors

    %ACN

    Temp

    30ºC

    40ºC

    25% 35%

    Looking for Interaction of Factors

    Effect of Temperature at 25% and 35% ACN

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 27

  • Factorial Design for Two Factors

    %ACN

    Temp

    30ºC

    40ºC

    25% 35%

    … And Effect of ACN at 30º and 40ºC

    Looking for Interaction of Factors

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 28

  • Factorial Design

    %ACN

    Temp

    30ºC

    40ºC

    25% 35%

    For More Detailed Understanding

    30%

    35ºC

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 29

  • Factorial Design for Two Factors

    %ACN

    Temp

    30ºC

    40ºC

    25% 35%

    With Center-Point - Orthogonal Design

    30%

    35ºC

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 30

  • Non-Orthogonal Design for Two Factors

    %ACN

    Temp

    30ºC

    40ºC

    25% 35%

    (25%, 30ºC), (30%, 35ºC) and (35%, 40ºC)

    30%

    35ºC

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 31

  • Factorial Design for Three Factors

    with Center Point

    % Acid % ACN

    Temp

    3 Factors, 23 + 1 = 9

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 32

  • OUTLINE

    Page 33

    • Definitions - column parameters

    • Systematic Approach

    - Comments

    - Experimental Designs

    - Example

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 34

    Decide upon the objective

    What are the properties of the analyte(s)

    Decide upon detector, column, mp, etc.

    Literature search?

    Perhaps perform a few familiarization

    experiments to get feel for behavior?

    Gradient (e.g., 10% to 90% ACN/20 min)

    Plot effect of mobile phase on retention

    Perform more detailed exp’s if necessary

    PROCEDURE

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 35

    - What is the objective?

    (assay, det. impurities, prep, trace level)

    - What is important?

    (time, peak capacity, LOQ/LOD)

    - What kinds of constraints?

    (equipment, sample properties)

    Decide upon the objective

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • The Analytes - Benzodiazepines

    Nitrazepam

    Diazepam

    Oxazepam Temazepam Alprazolam

    Flunitrazepam Clonazepam Lorazepam

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 36

    http://www.sigmaaldrich.com/thumb/structureimages/03/mfcd00057903.gifhttp://www.sigmaaldrich.com/thumb/structureimages/04/mfcd00057904.gifhttp://www.sigmaaldrich.com/thumb/structureimages/81/mfcd00078881.gif

  • Page 37

    - Column (e.g., C18, phenyl, CN, etc.)

    - Mobile Phase Solvents (e.g., MeOH, ACN)

    - Acid (e.g., HOAc, Formic, TFA, H3PO4, none)

    - Buffer (e.g., acetate, formate, none)

    - Temperature

    Decide upon detector, column, mp, etc

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 38

    Model Compounds

    Single Column

    (Poroshell 120 EC-C18, 3.0 x 100 mm)

    Single Organic Solvent

    (prefer ACN)

    Simple Acid/Buffer

    (formic acid, ammonium formate, H3PO4)

    Separation of Eight Benzodiazepines

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 39

    Decide upon the objective

    What are the properties of the analyte(s)

    Decide upon detector, col’m, mobile phase, etc.

    Literature search?

    Perhaps perform a few familiarization

    experiments to get feel for behavior?

    Gradient (e.g., 10% to 90% ACN/20 min)

    Plot effect of mobile phase on retention

    Perform more detailed exp’s if necessary

    PROCEDURE

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 40

    Gradient screening

    Isocratic separation – vary mobile phase

    strength

    Simple screening design

    Factorial design

    Experimental Designs

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Initial Gradient

    Page 41

    Gradient: 10% ACN to 90% in 5 min (16%/min)

    26% 42% 58% 74%

    % B – at head of column

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Effect of Mobile Strength on Retention

    Page 42

    k =

    (tR-t0)

    t0

    k = 0.5

    k = 0.8

    k = 1.3

    k = 2.0

    k = 3.4

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Isocratic Runs

    Page 43 26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Initial Gradient 10% to 90% ACN/0.1% Formic Acid in 20 min

    Page 44 26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Initial Gradient 10% to 90% ACN/0.1% FA in 20 min

    Page 45 26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Gradient – Compare %Formic Acid 10% ACN to 90% in 20 min

    Page 46

    No FA

    0.1% FA

    1% FA

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Gradient – Compare %Formic Acid 10% ACN to 90% in 20 min

    Page 47

    No FA

    0.1% FA

    1% FA

    60%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 48

    Decide upon the objective

    What are the properties of the analyte(s)

    Decide upon detector, col’m, mobile phase, etc.

    Literature search?

    Perhaps perform a few familiarization experiments

    to get feel for behavior?

    Gradient (e.g., 10% to 90% ACN/20 min)

    Plot effect of mobile phase on retention

    Perform more detailed exp’s if necessary

    PROCEDURE

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 49

    Gradient screening

    Isocratic separation – vary mobile phase

    strength

    Simple screening design

    Factorial design

    Experimental Designs

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Isocratic Runs – 35°C, no acid

    Page 50

    45%

    40%

    35%

    30%

    25%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Isocratic Runs – 35°C, no acid

    Page 51

    45%

    40%

    35%

    30%

    25% Wrap-around peak

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Isocratic Runs – 25% ACN, 35°C, no acid

    Page 52

    1st Inj

    Wrap-around peak

    2nd Inj

    Gradient

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Isocratic Runs – 35°C, no acid

    Page 53

    45%

    40%

    35%

    30%

    25% Wrap-around peak

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Isocratic Runs – 35°C, no acid

    Page 54

    45%

    40%

    35%

    30%

    25% Wrap-around peak

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Peak 7

    Peak 7

    Peak 7

  • Isocratic Runs – 35°C, no acid

    Page 55

    45%

    40%

    35%

    30%

    25% Wrap-around peak

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Peak 7

    Peak 7

    Peak 7

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    0

    5

    10

    15

    20

    25

    30

    20 25 30 35 40 45 50

    tR

    % ACN

    Retention of Peak-7

    tR-7

    ln(k-7)

    ln(k7)

  • Isocratic Runs – 35°C, no acid

    Page 56

    45%

    40%

    35%

    30%

    25% Wrap-around peak

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Peak 7

    Peak 7

    Peak 7

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    3.0

    3.5

    0

    5

    10

    15

    20

    25

    30

    20 25 30 35 40 45 50

    tR

    % ACN

    Retention of Peak-7

    tR-7

    ln(k-7)

    ln(k) = ln(kw) – S(%B)

    ln(k7)

  • Change in Order of Elution

    Page 57

    -- k = 7.4

    -- k = 20

    -- k = 20

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 58

    ACN0 30%

    7.5%/min

    ACN0 20%

    8.65%/min

    ACN0 20%

    2 min

    10.65%/min

    Zorbax Eclipse XDB-C18

    4.6 x 150 mm, 5 um

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 59

    Decide upon the objective

    What are the properties of the analyte(s)

    Decide upon detector, col’m, mobile phase, etc.

    Literature search?

    Perhaps perform a few familiarization experiments

    to get feel for behavior?

    Gradient (e.g., 10% to 90% ACN/20 min)

    Plot effect of mobile phase on retention

    Perform more detailed exp’s if necessary

    PROCEDURE

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 60

    Gradient screening

    Isocratic separation – vary mobile phase

    strength

    Simple screening design

    Factorial design

    Experimental Designs

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Screening for Main Effects/Star Points

    %ACN

    Temp 45ºC

    25ºC

    40% 20%

    Number of Exp’s = 2 x 4 + 1= 9

    %Acid 0%

    1%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 61

  • Screening for Main Effects (Star Points)

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 10

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 62

  • Screening for Main Effects

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 10

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 63

  • Screening for Main Effects

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 10

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 64

  • Gradient – Compare %Formic Acid 10% ACN to 90% in 20 min

    Page 65

    No FA

    0.1% FA

    1% FA

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Compare %FA

    Page 66

    1% FA

    No FA

    0.1% FA

    30% ACN, 10 mM AF, 35°C

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-1

    Exp-4

    Exp-5

  • Star Points

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 0

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 67

    10

  • Effect of Temp

    Page 68

    40°C

    30°C

    35°C

    30% ACN/0.1% FA, 10 mM AF

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-1

  • Page 69

    Temperature – Main Effect

    35% ACN, 0.1% FA 40°C

    15°C

    20°C

    25°C

    30°C

    35°C

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Star Points

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 10

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 70

  • Effect of Ammonium Formate

    Page 71

    30% ACN, 0.1% FA 35°C 25 mM

    10 mM

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-8

    Exp-1,9

  • Star Points

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 0

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 72

    10

  • Star Points

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 0

    Yes

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 73

    10

  • Star Points

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 0

    Yes Yes

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 74

    10

  • Star Points

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 0

    Yes Yes Yes

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 75

    10

  • Star Points

    Exp % ACN % FA Temp mM AF

    1 30 0.1 35 10

    2 40 0.1 35 10

    3 20 0.1 35 10

    4 30 1.0 35 10

    5 30 0 35 10

    6 30 0.1 45 10

    7 30 0.1 25 10

    8 30 0.1 35 25

    9 30 0.1 35 0

    Yes Yes Yes Defer

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 76

    10

  • Screening - Star Points

    Conclusions

    • %ACN, Temp, FA, all affect the separation

    • Order of elution reversals are observed -

    potentially very confusing

    • Will choose to leave AF out of optimization

    • FA affects separation, but not required for

    chromatography

    • Sometimes find our conditions or very close

    using screen, but not in this case

    26-March-2014 Improving HPLC Separations

    Agilent Restricted Page 77

  • Page 78

    Gradient screening

    Isocratic separation – vary mobile phase

    strength

    Simple screening design

    Factorial design

    Experimental Designs

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 79

    Time/Effort

    • Initial Gradients: > Half Day

    • Isocratic: > Half Day (overnight?)

    • Screening: Set-up ~ 2 hrs

    • Screening: Run overnight

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Factorial Design for Three Factors

    with Center Point

    % Acid % ACN

    Temp

    3 Factors, 23 + 1 = 9

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 80

  • 3 Factor Factorial Design

    Exp % ACN % FA Temp

    1 30 0.10 35

    2 35 0.15 40

    3 35 0.15 30

    4 35 0.05 40

    5 35 0.05 30

    6 25 0.15 40

    7 25 0.15 30

    8 25 0.05 40

    9 25 0.05 30

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 81

  • Displaying Results

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 82

  • Displaying Results

    %ACN

    % Acid

    0.05%

    0.15%

    25% 35%

    __ (+) 40°C

    __ (-) 30°C

    __ (+) 40°C

    __ (-) 30°C

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 83

  • 40°C

    0.15% Formic Acid, 35% ACN

    Page 84

    30°C

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-2

    Exp-3

  • 40°C

    0.15% Formic Acid, 35% ACN

    Page 85

    30°C

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-2

    Exp-3

    %ACN

    % FA

    0.05%

    0.15%

    25% 35%

  • 40°C

    0.05% Formic Acid, 35% ACN

    Page 86

    30°C

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-4

    Exp-5

  • 40°C

    0.05% Formic Acid, 35% ACN

    Page 87

    30°C

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-4

    Exp-5

    %ACN

    % FA

    0.05%

    0.15%

    25% 35%

  • 40°C, 0.15%

    Temp, Formic Acid, 35% ACN

    Page 88

    30°C, 0.15%

    30°C, 0.05%

    40°C, 0.05%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Factorial Design for Three Factors

    with Center Point

    % Acid % ACN

    Temp

    3 Factors, 23 + 1 = 9

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 89

  • Factorial Design for Three Factors

    with Center Point

    % Acid % ACN

    Temp

    3 Factors, 23 + 1 = 9

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 90

  • Factorial Design

    Exp % ACN % FA Temp

    1 30 0.10 35

    2 35 0.15 40

    3 35 0.15 30

    4 35 0.05 40

    5 35 0.05 30

    6 25 0.15 40

    7 25 0.15 30

    8 25 0.05 40

    9 25 0.05 30

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 91

  • Displaying Results

    %ACN

    % Acid

    0.05%

    0.15%

    25% 35%

    40°C (+) __

    30°C (-) __

    40°C (+) __

    30°C (-) __

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 92

  • 0.15% Formic Acid; 25% ACN

    Page 93

    40°C, 0.15%

    30°C, 0.15%

  • 0.15% Formic Acid; 25% ACN

    Page 94

    40°C, 0.15%

    30°C, 0.15%

  • 0.15% Formic Acid; 25% ACN

    Page 95

    40°C, 0.15%

    30°C, 0.15%

    Merged peaks

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-6

    Exp-7

    Resolved

    peaks

  • 0.05% Formic Acid; 25% ACN

    Page 96

    40°C, 0.05%

    30°C, 0.05%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-8

    Exp-9

  • 0.05% Formic Acid; 25% ACN

    Page 97

    40°C, 0.05%

    30°C, 0.05%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-8

    Exp-9

    %ACN

    % FA

    0.05%

    0.15%

    25% 35%

  • 0.05% Formic Acid; 25% ACN

    Page 98

    40°C, 0.05%

    30°C, 0.05%

    Merged peaks

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    Exp-8

    Exp-9

    Partial Sep’n

  • 40°C, 0.15%

    Temp, Formic Acid, 25% ACN

    Page 99

    30°C, 0.15%

    30°C, 0.05%

    40°C, 0.05%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • 40°C, 0.15%

    Temp, Formic Acid, 35% ACN

    Page 100

    30°C, 0.15%

    30°C, 0.05%

    40°C, 0.05%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • 0.15% Formic Acid; 25% ACN

    Page 101

    40°C, 0.15%

    30°C, 0.15%

    35°C, 0.15%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Factorial Design for Three Factors

    with Center Point

    % Acid % ACN

    Temp

    3 Factors, 23 + 1 = 9

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 102

  • Factorial Design

    Exp % ACN % FA Temp

    1 30 0.10 35

    2 35 0.15 40

    3 35 0.15 30

    4 35 0.05 40

    5 35 0.05 30

    6 25 0.15 40

    7 25 0.15 30

    8 25 0.05 40

    9 25 0.05 30

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted Page 103

  • 0.15% Formic Acid; 22% ACN

    Page 104

    50°C, 0.15%

    35°C, 0.15%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    40°C, 0.15%

  • 0.15% Formic Acid; 22% ACN

    Page 105

    35°C, 0.15%

    30°C, 0.15%

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

    25°C, 0.15%

  • Isocratic Runs – 25% ACN, 35°C, no acid

    Page 106

    1st Inj

    Wrap-around peak

    2nd Inj

    Gradient

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 107

    OBSERVATIONS

    • Effect of small changes in acid

    • Order of elution changes with % ACN

    • Order of elution changes with Temp

    • Similar polarity – similar retention

    • 22% ACN, 30°C and 25°C, 0.15% formic acid provide separation

    • Expect changes in retention

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 108

    Gradient screening

    Isocratic separation – vary mobile phase

    strength

    Simple screening design

    Factorial design

    Experimental Designs – Increasing

    “Power”

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 109

    Time/Effort

    • Initial Gradients: > Half Day (3 exp’s)

    • Isocratic: Over-night (7 exp’s)

    • Screening: Set-up ~ 2 hrs

    • Screening: Over-night (15 exp’s)

    • Factorial: Set-up ~ 2 hrs

    • Factorial: Over-night (9 exp’s)

    • Optimization: > Half Day (6 exp’s)

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Page 110

    OBJECTIVE

    • Demonstrate a systematic approach to method development

    • Improve understanding of separation process

    • Development of more robust methods

    • More efficient than “random walk”

    26-March-2014

    Improving HPLC Separations

    Agilent Restricted

  • Thank you – Questions?

    Improving HPLC Separations

    Agilent Restricted

    26-March-2014 Page 111

    Bill Champion

    800-227-9770, opt 3, LC Column Support

    [email protected]