hmk_3_soln

Upload: yusufshaban

Post on 07-Jul-2018

215 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/18/2019 hmk_3_soln

    1/4

    ECE 350 – Linear Systems I

    Solutions to Homework #3

    1.  Transforming the circuit and applying voltage division:

    V (s) = s1+  s

     E (s) = ss +1

    !"#

    $%&  1+ e

    ' s

    s'   e

    '2 s

    s!"#

    $%&  = s

    s +1( ) + se

    ' s

    s s +1( ) '   se

    '2 s

    s s +1( )

    ( v(t ) = )    t ( ) ' e't u(t )+ e'   t '1( )u(t  ' 1) ' e'   t '2( )u(t  '  2)

     

    2. 

    Transforming the circuit and writing a nodal equation for V:

    V  !   16 +1

    s

    "#$

      %&'

    8s+

    1+

    V  ! 1

    s

    1

    2s

    = 0 ( V (s) =s2+  s +

    1

    16

    s s +1

    4

    "#$

      %&'

    2  =

     A

    s+

     B

    s +1

    4

    +

    s +1

    4

    "#$

      %&'

    2

    (  A  = 1; B  = 0;C   = 12( v(t ) =  u(t )+ 1

    2te

    ! 1

    4 t u(t )

     

    3. 

    Transforming the circuit and writing mesh equations:

    1

    s I   +  s I   +

    1

    2v

     x

    !"#

    $%&  + 2   I  '

     1

    s

    !"#

    $%&  = 0;v

     x  = 2   I  '

     1

    s

    !"#

    $%& (   I (s) =

    s

    2+1

    s2+  s +

    1

    2

     I (s) =

    1

    2s +

    1

    2

    !"#

      $%&

    s +1

    2

    !

    "#

      $

    %&

    2

    +

    1

    2

    !

    "#

      $

    %&

    2  +

    3

    2

    1

    2

    !"#  $%&

    s +1

    2

    !

    "#

      $

    %&

    2

    +

    1

    2

    !

    "#

      $

    %&

    2 ( i(t ) =   e

    ' 1

    2t    1

    2cos

      t 

    2+

    3

    2sin

      t 

    2

    !"#

    $%&

     u(t )

     

    4. 

    Transforming the circuit, since we have a single loop with one voltage sources and seriesimpedances:

     I (s) =

     E (s)+2

    s

    1+8

    5s+

    s

    10

    ; E (s) =!0.5s + 2.5

    s2+1

    "  I (s) =15s

    2+ 25s + 20

    s2+1( )   s + 2( )   s + 8( )

     "  i(t ) =   e!2t  ! 2e!8t  + cos t  + sint #$   %&u(t )

     

  • 8/18/2019 hmk_3_soln

    2/4

    5. 

    Transforming the circuit and writing a nodal equation at the top of the current source:

    V (s) ! 2

    s

    10+

    1

    s + 3+

    V (s)

    10

    s

    = 0 " V (s) =!8s + 6

    s s +1( )   s + 3( )

    " v(t ) =   2 ! 7e!t  + 5e!3t #$   %&u(t )

     

    6. Transforming the circuit and writing KCL at the inverting input of the op amp:

    0 !  s + 2

    s2+ 4s +13

    2+

    0 ! V 4

    s

    = 0 " V (s) =!2   s + 2( )

    s s2+ 4s +13( )

    " v(t ) =   !  4

    13+  e

    !2t    4

    13cos3t  !

      6

    13sin 3t 

    #$%

    &'(

    )

    *+

    ,

    -.u(t )

     

    7.

    a.>> tplot=0:.01:10;

    >> zplot=2*exp(-tplot)+tplot.*exp(-tplot)+.5*(tplot.^2).*exp(-tplot);>> plot(tplot, zplot, 'r')

    b.>> t=[0 10];

    >> zinit=[-1; 2];>> [t,z]=ode45(@prob4, t, zinit);>> hold on

    >> plot(t,z(:,2))

    m-file:function dz=prob4(t, z)dz=[-2*z(1)-z(2)+exp(-t); z(1)];

  • 8/18/2019 hmk_3_soln

    3/4

     they are the same

    8.

    a.

    >> tplot=0:.01:10;

    >> yplot=cos(2*tplot)+4*sin(2*tplot)-exp(-tplot).*cos(2*tplot)-4.5*exp(-tplot).*sin(2*tplot);

    >> plot(tplot, yplot)

    b.

  • 8/18/2019 hmk_3_soln

    4/4

     they are the same