hfm high field model, eucard wp7 meeting, 18/03/2010, pierre manil, 1/20 eucard-wp7-hfm mpwg bending...

20
HFM High Field Model, EuCARD WP7 meeting, 18/03/2010, Pierre Manil, 1/20 EuCARD-WP7-HFM MPWG Bending Test Pierre MANIL CEA/iRFU/SIS March 18, 2010 at Wroclaw

Upload: rudolph-wilkins

Post on 02-Jan-2016

214 views

Category:

Documents


1 download

TRANSCRIPT

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

1/2

0

EuCARD-WP7-HFMMPWG

Bending Test

Pierre MANILCEA/iRFU/SIS

March 18, 2010 at Wroclaw

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

2/2

0

Ackowledgement

• Thanks to the task and working group members. Especially:

► @ CERN:Attilio Milanese, Juan Carlos Perez, Gijs de Rijk, Ezio Todesco

► @ Saclay:Mélanie Bruchon, Maria Durante, François Kircher, Jean-Michel Rifflet, Etienne Rochepault, Françoise Rondeaux

► Tooling specification: MPWG

► Theoretical analysis: Attilio Milanese (CERN)

► Draftsman: Jean-François Millot (CEA)

► Fabrication: CERN workshop, followed by Juan Carlos Perez (CERN)

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

3/2

0

MPWG Activities

WP7: HFMGijs de Rijk (CERN)

7.3: High Field ModelJean-Michel Rifflet (CEA)

Specification WG Ezio Todesco (CERN)

EuCARD

Magnet Pre-design WG myself (CEA)

Cable Design WG Luc Oberli (CERN)

7.2: Support StudiesJaroslaw Polinski (WUT)

7.4: HTc insertPascal Tixador (Grenoble)

13 T magnet, so-called ‘Fresca 2’ HTc insert

• Preliminary models• Preliminary tests• Configuration choice• Optimization• Model realization• Realization

other tasks

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

4/2

0

MPWG Activities

Magnet Pre-design Workin Group

► Collaborative work between CERN and CEA» cf. talk from Jean-Michel at the beginning of the session

► First task is to discriminate between two options: “ Block vs. Cos(θ)”» cf. talk from Attilio, just before» Magnetic comparison => first analysis done» Mechanical comparison => on-going (CAST3M, ANSYS)» Feasibility

– Winding => 1st step = Bending Test, next week (this talk)– Pre-stress– …

» Configuration choice by April 2010 (DWG)» Magnetic Optimization » Mechanical optimization » Trials» In parallel: characterization tests

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

5/2

0

Bending Test: Goal

• We know by experience that if the Cos(θ) design is selected, we can manage with the ends

• What about the Block design ends?

Φ100 mm Pre-stress

The Bending Test considers only the Block configuration!

Flat racetracks

Block 2

Block 1

Block 4

Block 3

Flared endslike for HD2 [1]

sketch: A. Milanesepicture from HD2, courtesy of LBNL

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

6/2

0

Bending Test: Historical approach

• In the 80’s,the HERA magnet experienced a Block design at Saclay [2]

Stacking similar to a Block

Stacking similar to a Cos(Θ)

Sol. A

Sol. B

courtesy of J.M. Rifflet

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

7/2

0

Bending Test: Zones

• The baseline coil geometry divides into 3 or 4 zones:

► straight section (SS) parallel to the mid-plane of the magnet► hard-way bend zone (HW) in a plane containing the cable► optional straight section (OS) part on an inclined plane► easy-way bend zone (EW) on an inclined plane

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

8/2

0

Bending Test: Mockup

• Cardboard mockup illustrating the zones:

End (flat)

Hard-way bend zone (planar)

Straight section

Φ120 mmclear bore(including

mechanics)

Minimal radius(> 10.tcable)~220 mm

BLOCK 2

Block 1Block 2

courtesy of Attilio Milanese

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

9/2

0

Bending Test: Ideas dor the ends

• “Side”: double clothoid + flat part• Flat “racetrack” end

2 layers of cableFlat end

courtesy of Attilio Milanese

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

10/

20

End shape: Analytical approach

• Analytic study by Attilio to identify ‘best’ end configurations [3]

► Ideal beam is assumed► Good solution must:

» Not be too long» Be smooth up to second derivative» Be convex» Minimize the total strain energy» Avoid peaks of strain energy

► 5 geometries are compared:

φ120 circle

ellipse

superellipse

least energy

clothoid

courtesy of Attilio Milanese

Curvature k(x)

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

11/

20 • 3 geometries are selected for the Bending Test:

• The best one will be kept for the FRESCA2 magnet

End shape: Selected options

circle ellipse superellipse

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

12/

20

Bending Test Parameters (1/3)

Remarks:• HFM dummy cable is used (see sample)• The first dummy cable has a p of ~120 mm (Luc Oberli, 02/10) (mechanical instabilities with p > 140 mm)• No insulation for the first test campaign (bare dummy cable)

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

13/

20

Bending Test Parameters (2/3)

sketch: A. Milanese

Y2

Remarks:• wp includes Φb + 20 mm for mechanics• Block 2 is considered (minimal radius)• Nt corresponds to ~1/4 Block• Y2 corresponds to the lowest possible position for the Block 2

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

14/

20

Bending Test Parameters (3/3)

The Bending Tooling will allow to try many different configurations,with several degrees of freedom for each zone

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

15/

20

Tooling

• Specified by the MPWG from Jaunary on• Detailed design by Saclay (February)• Fabricated last week at CERN• Delivered at Saclay today (18/3)!

with J.F. Millot

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

16/

20 LHW = 160

Tooling d.o.f

values in mm.with J.F. Millot

LSS = 32080

Y2 = 21.8

r W =

120

L OS = 0 / 20 / 50

rb = 50Θ

Return end Φ121.82

end (3 options)

0/5/10/15/20/25°

The full configurationcorresponds toapprox. 2 m / turns

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

17/

20

Example: flat configuration

with J.F. Millot

The flat configurationcorresponds toapprox. 1.5 m / turns

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

18/

20

Experimental Design

# LSS

(mm)LHW

(mm)LOS

(mm)Θ(°)

End type HWtemplate

Nt CableLength Lc

Flat test 320 0 0 0 circle / 2 3 m

Flat end test 320 0 0 0 others / 2 6 m

Ramp test #1 320 160 50 25 best No 2 4 m

(Ramp test #N) 320 160 50 … best No 2 16 m

OS test 320 160 0 / 20 best best No 2 8 m

Optimal config’ 320 160 best best best No 10 20 m

HW shape test 320 80 / 160 best best best Yes 2 8 m

Insulated test 320 best best best best best 10 20 m

CABLE NEED ~90 m

Additional parameters:• winding tension (~50 kN with gradual decrease)• transposition pitch

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

19/

20

Next Steps

► Bending Test: next week at Saclay

► MPWG Meeting 06:Friday next week (26/3) at Saclay => Test conclusions

► Configuration choice: by April

► Mechanical modeling

► Magnetic optimization

► Mechanical characterization of the conductor:» Young modulus at RT & 2K» Thermal coefficient» Ultimate compressive stress (critical current)

HFM

Hig

h Fi

eld

Mod

el, E

uCAR

D W

P7 m

eetin

g, 1

8/03

/201

0, P

ierr

e M

anil,

20/

20

References

[1] Recent test results of the High Field Nb3Sn dipole magnet HD2P. Ferracin, B. Bingham, S. Caspi, D. W. Cheng, D. R. Dietderich, H. Felice, A. R. Hafalia, C. R. Hannaford, J. Joseph, A. F. Lietzke, J. Lizarazo, G. Sabbi, X. WangSubmitted to MT21, Hefei, Oct. 2009

[2] The HERA dipole magnet:J. Pérot, J.-M. RiffletRef

[3] Shapes of coil ends in racetrack layout for superconducting magnetsA. MilaneseCERN TE-Note-2010-04, Jan. 2010, EDMS 1057916

[4] FRESCA2 magnet specificationSWGversion 2.0, Feb. 2010, accessible on the Task 7.3 workspace

+ Previous talks this day