hatilima jasper 11042005 hw03

Upload: eugine-mambepa

Post on 05-Apr-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    1/16

    1

    0 ( )

    O --- 0

    11042005 D31207

    HatilimaJasper V.

    1. Given a (2,1,3) convolutional code with generator polynomials (13,15)8=(1+x+x , 1+x +x ),

    1). Draw the corresponding encoder diagram, state diagram, and trellis.

    2). Determine its transfer function by using Masson signal flow analysis.

    3). List the first three Hamming weight terms.

    4). If the received sequence over binary symmetric channel (BMC) is given by

    1 0, 0 0, 1 1, 1 0, 0 1, 1 1, 0 0, 1 0, 0 0.

    If Hamming correlation is utilized as the incremental path metric (namely, H(0,1)=H(1,0)=1,H(1,1)=H(0,0)=0), please determine the restored message sequence by following the maximumlikelihood decoding algorithm steps.

    2. Given a (2,1,3) recursive systematic convolutional code with generator polynomials(15/13)8=(1+x+x

    3/1+x

    2+x

    3),

    1). Draw the corresponding encoder diagram, state diagram, and trellis.

    2). Determine its transfer function by using Masson signal flow analysis.

    3). List the first three Hamming weight terms.

    Notes:

    1. The homework can be written either in English or in Chinese.2. Format and print your homework report on 176x250mm A4 white paper, using 10pt Times New

    Roman (or 5) for single-spaced text and 16pt Times New Roman (or 3 ) for title.The left, right, top and bottom margins should all be set to 20mm.

    3. Print out your report according to the required page layout requirement and hand in it together withthis sheet as cover.

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    2/16

    2

    QUESTION 13

    1 813 1g X X and2 3

    2 815 1g X X

    Code= ( , , )n k m = ( , , 1)cn k L = (2, 1, 3)Part 1: Encoder diagram, State diagram, Trellis diagram

    Encoder Diagram:

    a(l-1) a(l-2) a(l-3)

    X1

    X1

    u(l)

    State Diagram:This encoder can assume one of the eight possible states which we will designate by:

    0

    1

    2

    3

    000

    100

    010

    110

    s

    s

    s

    s

    4

    5

    6

    7

    001

    101

    011

    111

    s

    s

    s

    s

    S1

    100

    S4

    001

    S0

    000

    S2

    010

    S3

    110

    S6

    011

    S5

    101

    S7

    111

    1/01

    1/10

    1/11

    1/00

    1/001/100/10

    0/00

    1/111/01

    0/00

    0/10

    0/11 0/01

    0/01

    0/11

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    3/16

    3

    Trellis Diagram:

    S0=000

    S4=001

    S2=010

    S6=011

    S1=100

    S5=101

    S3=110

    S7=111

    1/11

    1/01

    1/00

    1/01

    1/10

    1/10

    1/00

    1/11

    0/00 0/00 0/00 0/00

    0/10

    0/01

    0/11

    0/10

    0/11

    0/00

    0/01

    0/00 0/00T=0 T=1 T=2 T=3 T=4 T=5 T=6

    Part 2:Transfer function from Masons formula:

    We first transform the state diagram by splitting the zero state as show below and using the following notations for the

    transitions:

    L : The number of nodes traversed

    W: the hamming weight of the input vector (uncoded input).D: the hamming weight of output vector (coded output).

    The transformed state diagram becomes:

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    4/16

    4

    S1

    100

    S4

    001

    S0

    000

    S2

    010

    S3110

    S6011

    S5

    101

    S7

    111

    WDL

    WDL

    WL

    WL

    DL

    WDL

    L

    DL

    DL

    DL

    D^2 L

    S0

    000

    WD^2 L

    WDL

    WD^2 LD^2 L

    Masons formula:

    ( , , )i i

    i

    F

    T W D L

    Where:1 . .

    i t m j v h

    i t m j v h

    L L L L L L

    C C C C C C

    Andi

    is calculated in a similar manner but deletes the loops touchingi

    K from the summation.

    Forward Loops [K]:3 6 6

    1 0 1 3 7 6 4 0 1K S S S S S S S F W D L 2 8 5

    2 0 1 3 6 4 0 2K S S S S S S F W D L 3 10 7

    3 0 1 3 6 5 2 4 0 3K S S S S S S S S F W D L 6 4

    4 0 1 2 4 0 4K S S S S S F WD L 4 8 8

    5 0 1 3 7 6 5 2 4 0 5K S S S S S S S S S F W D L 4 8 8

    6 0 1 2 5 3 7 6 4 0 6K S S S S S S S S S F W D L

    3 10 7

    7 0 1 2 5 3 6 4 0 7K S S S S S S S S F W D L Other loops [L]:

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    5/16

    5

    2 2

    1 2 5 2 1

    2 3

    2 1 2 4 1 2

    2 4 4

    3 1 3 6 4 1 3

    3 2 5

    4 1 3 7 6 4 1 4

    L S S S C WD L

    L S S S S C WD L

    L S S S S S C W D L

    L S S S S S S C W D L

    2

    5 7 7 5

    3 6 6

    6 1 3 6 5 2 4 1 6

    4 4 7

    7 1 3 7 6 5 2 4 1 7

    4 4 7

    8 1 2 5 3 7 6 4 1 8

    3 6 6

    9 1 2 5 3 6 4 1 9

    2 4 3

    10 5 3 6 5 10

    3 2 4

    11 5 3 7 6 5 11

    L S S C WD L

    L S S S S S S S C W D L

    L S S S S S S S S C W D L

    L S S S S S S S S C W D L

    L S S S S S S S C W D L

    L S S S S C W D L

    L S S S S S C W D L

    Product of non-touching pairs of loops :2 2 2 2 4 31 5

    3 2 4 2 3 4 4 7

    11 2

    2 3 6 6 4 8 7

    5 6

    2 4 4 3 6 5

    5 3

    2 3 6 6 4 8 7

    5 9

    2 4 3 2 3 3 6 6

    10 2

    2 4 3 2 3 6 4

    10 5

    1 3

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( ) ( )

    ( )

    L L WD L WD L W D L

    L L W D L WD L W D L

    L L WD L W D L W D L

    L L WD L WD L W D L

    L L WD L W D L W D L

    L L W D L WD L W D L

    L L W D L WD L W D L

    L L

    2 2 2 4 4 3 6 6

    2 3 2 2 4 4

    2 5

    2 2 3 2 5 4 4 7

    1 4

    ( )( ) ( )

    ( ) ( )

    WD L W D L W D L

    L L WD L WD L W D L

    L L WD L W D L W D L

    Product of non-touching triplets of loops :2 2 3 6 5 4 8 7

    1 3 5

    2 4 3 2 4 4 4 8 7

    10 2 5

    ( ) ( )

    ( ) ( )

    L L L WD L W D L W D L

    L L L W D L W D L W D L

    There are no sets of four or more non-touching loops.

    1i t m j v h

    i t m j v h

    L L L L L L

    C C C C C C

    2 2 2 3 2 4 4 3 2 5 2 3 6 6

    4 4 7 4 4 7 3 6 6 2 4 3 3 2 4 2 4 3

    4 4 7 4 8 7 3 6 5 4 8 7 3 6 6 3 6 4

    3 6 6 2 4 4 4 4 7 4 8 7 4 8 7

    1 (

    )

    WD L WD L W D L W D L WD L W D L

    W D L W D L W D L W D L W D L W D L

    W D L W D L W D L W D L W D L W D L

    W D L W D L W D L W D L W D L

    2 2 3 3 2 5 4 3 6 5 41 ( ) ( ) ( )WD L L L W D L L W D L L And we have

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    6/16

    6

    2 2

    1 1

    2 2 2 2 4 3

    2 1 5 1 5

    2

    3 5

    4 10 11 5 10 5

    2 4 3 3 2 4 2 3 6 4

    5

    6

    2

    7 5

    1 1

    1 1

    1 1

    1

    .... 1

    1

    1

    1 1

    L WD L

    L L L L WD L WD L W D L

    L WD L

    L L L L L

    W D L W D L WD L W D L

    L WD L

    1 1 2 2 3 3 4 4 5 5 6 6 7 7

    ( , , )i i

    i

    F

    T W D L

    F F F F F F F

    3 6 6 2 2 2 8 5 2 2 2 2 4 3

    3 10 7 2

    6 4 2 4 3 3 2 4 2 3 6 4

    4 8 8 4 8 8 3 10 7 2

    2 2 3 3 2 5 4 3 6 5 4

    (1 ) (1 )(1 )

    (1 )

    (1 )

    1 ( ) ( ) ( )

    W D L WD L W D L WD L WD L W D LW D L WD L

    WD L W D L W D L WD L W D L

    W D L W D L W D L WD L

    WD L L L W D L L W D L L

    Part 3: Listing the first three hamming weight terms

    0

    ( , , )P

    P

    T W D L aS b

    2

    0 0 0 0 0 0a WD L 2[ 0 0 0 0 0 Tb D L

    2

    2

    0 0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    WL

    DL WDL

    DL WDL

    S DL WDL

    DL WDL

    D L WL

    L WD L

    2P L For 4,5,6L , we have 2,3,4P . We therefore obtain the first three hamming weight terms as follows:

    2

    4 ( , , )LT W D L aS b

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    7/16

    7

    2 2

    2

    2

    2

    0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0

    WL D L

    DL WDL

    DL WDL

    WD L DL WDL

    DL WDL

    D L WL

    L WD L

    2

    4 3 2 5 3 2 4 3 3 3 3

    0

    0

    [ 0 0 0 ] 0

    0

    0

    0

    D L

    WD L W D L W D L W D L

    6 4WD L

    3

    5 ( , , )LT W D L aS b 2 2

    0 0 0 0 0 0WD L S S b

    4 3 2 5 3 2 4 3 3 3 3[ 0 0 0 ]WD L W D L W D L W D L Sb 2 8 5W D L

    4

    6 ( , , )LT W D L aS b 2 3

    0 0 0 0 0 0WD L S S b 2 6 4 2 5 4 3 3 4 2 4 4 3 6 4 3 5 4 4 5 4[ ]W D L W D L W D L W D L W D L W D L W D L S b

    2 8 6 3 6 6W D L W D L

    6 4

    4LT WD L 2 8 5

    5

    2 8 6 3 6 6

    6

    L

    L

    T W D L

    T W D L W D L

    Part 4: Decoding the received sequence

    The maximum likelihood decoder maximizes the likelihood function over the entire sequence( )arg max ( )m

    m

    L P Z U

    Where Z is the received code sequence, U is the possible code sequence.

    So the procedure will be a special case of maximum likelihood that has a Markov property, it is the Viterbi algorithm and

    with require the calculation of incremental path metric

    { ( ) ( )} { ( ), ( )}H

    z l u l d z l u l

    Then adding the incremental path metric to the old cumulative state metric, i.e.

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    8/16

    8

    ( ) ( 1) { ( ), ( )}j j HM l M l d z l u l where 0,1,...,2 1m

    j

    At 0t :

    Timei

    t Received bits,

    Z Cumulative State Metric ( )

    jM l

    0t -0 0 0( ) (000) 0M S M

    1t 1 01 0 1 0 0( ) (000) ( ) (10, 00) 1

    HM S M M S d

    1 1 1 0 0( ) (100) ( ) (10,11) 1

    HM S M M S d

    2t 0 02 0 1 0( ) ( ) (00, 00) 1HM S M S d

    2 1 1 0( ) ( ) (00,11) 3

    HM S M S d

    2 2 1 1( ) ( ) (00,10) 2HM S M S d

    2 3 1 1( ) ( ) (00,01) 2

    HM S M S d

    3t 1 13 0 2 0

    ( ) ( ) (11, 00) 3HM S M S d

    3 1 2 0( ) ( ) (11,11) 1HM S M S d

    3 2 2 1( ) ( ) (11,10) 4HM S M S d

    3 3 2 1( ) ( ) (11,01) 4HM S M S d

    3 4 2 2( ) ( ) (11, 01) 3HM S M S d

    3 5 2 2( ) ( ) (11,10) 3HM S M S d

    3 6 2 3( ) ( ) (11,11) 2

    HM S M S d

    3 7 2 3( ) ( ) (11, 00) 4HM S M S d From here, the states will be entered by two paths and the one that gives a larger

    state metric is eliminated.

    4t 1 03 0

    4 0

    3 4

    ( ) (10,00) 4( ) {

    ( ) (10,11) 4..

    H

    H

    M S dM S

    M XS d

    3 0

    4 1

    3 4

    ( ) (10,11) 4( ) {( ) (10, 00) 4..

    H

    H

    M S dM SM XS d

    3 1

    4 2

    3 5

    ( ) (10,10) 1( ) {

    ( ) (10, 01) 5..

    H

    H

    M S dM S

    M XS d

    3 1

    4 3

    3 5

    ( ) (10,01) 3( ) {

    ( ) (10,10) 3..

    H

    H

    M S dM S

    M XS d

    3 2

    4 4

    3 6

    ( ) (10, 01) 6..( ) {

    ( ) (10,10) 2

    H

    H

    M S dM S

    M

    X

    S d

    3 24 5

    3 6

    ( ) (10,10) 4..( ) {

    ( ) (10,01) 4H

    H

    M S dM S

    M

    X

    S d

    3 3

    4 6

    3 7

    ( ) (10,11) 5( ) {

    ( ) (10, 00) 5..

    H

    H

    M S dM S

    M XS d

    3 3

    4 7

    3 7

    ( ) (10, 00) 5( ) {

    ( ) (10,11) 5..

    H

    H

    M S dM S

    M XS d

    So from the above, the elimination is done. For the paths entering a node and with

    equal values of the cumulative state metric, one is arbitrarily chosen. The same

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    9/16

    9

    algorithm is done for the remaining stages and only the surviving paths are shown in

    this table from 5t to 9t 5t 0 1

    5 0 4 0( ) ( ) (01,11) 3

    HM S M S d

    5 1 4 4( ) ( ) (01, 00) 3HM S M S d

    5 2 4 5( ) ( ) (01, 01) 4HM S M S d

    5 3 4 1

    ( ) ( ) (01, 01) 4H

    M S M S d

    5 4 4 2( ) ( ) (01,01) 1HM S M S d

    5 5 4 2( ) ( ) (01, 01) 3HM S M S d

    5 6 4 3( ) ( ) (01,11) 4

    HM S M S d

    5 7 4 3( ) ( ) (01, 00) 4HM S M S d

    6t 1 16 0 5 4

    ( ) ( ) (11,11) 1HM S M S d

    6 1 5 4( ) ( ) (11, 00) 3HM S M S d

    6 2 5 5( ) ( ) (11, 01) 4HM S M S d

    6 3 5 5( ) ( ) (11,10) 4

    HM S M S d

    6 4 5 4( ) ( ) (11,10) 5HM S M S d

    6 5 5 6( ) ( ) (11, 01) 5HM S M S d

    6 6 5 3( ) ( ) (11,00) 3

    HM S M S d

    6 7 5 7( ) ( ) (11,11) 5HM S M S d

    7t 0 07 0 6 0( ) ( ) (00, 00) 1HM S M S d

    7 1 6 0( ) ( ) (00,11) 3HM S M S d

    7 2 6 1( ) ( ) (00,10) 4

    HM S M S d

    7 3 6 1( ) ( ) (00, 01) 4HM S M S d

    7 4 6 6( ) ( ) (00,10) 4HM S M S d

    7 5 6 6( ) ( ) (00, 01) 4

    HM S M S d

    7 6 6 7( ) ( ) (00, 00) 5HM S M S d

    7 7 6 3( ) ( ) (00, 00) 4HM S M S d

    8t 1 08 0 7 0( ) ( ) (10,00) 2HM S M S d

    8 1 7 0( ) ( ) (10,11) 2

    HM S M S d

    8 2 7 1( ) ( ) (10,10) 3HM S M S d

    8 3 7 5( ) ( ) (10,10) 4

    HM S M S d

    8 4 7 6( ) ( ) (10,10) 5

    HM S M S d

    8 5 7 2( ) ( ) (10,10) 4HM S M S d

    8 6 7 7( ) ( ) (10, 00) 5HM S M S d

    8 7 7 7( ) ( ) (10,11) 5

    HM S M S d

    9t 0 09 0 8 0( ) ( ) (00,00) 2HM S M S d

    9 1 8 0( ) ( ) (00,11) 4

    HM S M S d

    9 2 8 1( ) ( ) (00,10) 3HM S M S d

    9 3 8 1( ) ( ) (00, 01) 3

    HM S M S d

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    10/16

    10

    9 4 8 2( ) ( ) (00,01) 4HM S M S d

    9 5 8 2( ) ( ) (00,10) 4HM S M S d

    9 6 8 7( ) ( ) (00,00) 5

    HM S M S d

    9 7 8 3( ) ( ) (00, 00) 4HM S M S d

    From the state metrics at 9t , we trace the surviving paths back and have the following trellis:

    S0=000

    S4=001

    S2=010

    S6=011

    S1=100

    S5=101

    S3=110

    S7=111

    0/00 0/00 0/00T=0 T=1 T=2 T=3 T=4 T=5 T=6

    1/11

    T=9

    2

    4

    4

    3

    5

    4

    4

    3

    0/11

    0/01

    0/10

    0/000/000/00

    We see that state0

    S has the lowest metric of value 2 and so we trace it back into the trellis to produce the following code

    sequence:

    00 00 11 10 01 00 00

    Which is then decoded to the following information bits:0 0 1 0 0 0 0 0, but the last three zeros are for zero termination. Therefore the final sequence of bits is:

    0 0 1 0 0

    QUESTION 2: RECURSIVE SYSTEMATIC CONVOLUTION ENCODER3

    1 1g X X and2 3

    2 1g X X Part 1: Encoder diagram, State diagram, Trellis diagram:

    1 1( ) ( ) ( ) ( )X D U D x l u l

    (1)

    32 1 1

    2

    ( )( ) ( ) ( ) ( ) ( ){1 }

    ( )

    U DX D g D A D g D A D D D

    g D

    32 ( ) ( ) ( ) ( )X D A D A D D A D D

    (2)Where

    2 3

    2

    ( ) ( )( )

    ( ) 1

    U D U DA D

    g D D D

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    11/16

    11

    2 3( ) ( ) ( ) ( )A D A D D A D D U D 2 3( ) ( ) ( ) ( )A D U D A D D A D D (3)

    Transforming equations (2) and (3) into time domain:

    32 2( ) ( ) ( ) ( ) ( ) ( ) ( 1) (1 3)X D A D A D D A D D x l a l a l a

    2 3( ) ( ) ( ) ( ) ( ) ( ) ( 2) ( 3)A D U D A D D A D D a l u l a l a l

    Note that ( )u l is the input message bit sequence and ( )a l are the register contents.

    Encoder Diagram:

    a(l-1) a(l-2) a(l-3)

    X1

    X2

    u(l) a(l)

    State Diagram:

    S1

    100

    S4

    001

    S0

    000

    S2

    010

    S3

    110

    S6

    011

    S5

    101

    S7

    111

    1/10

    0/01

    1/11

    0/00

    0/000/010/01

    0/001/11

    1/10

    0/00

    0/01

    1/11 1/10

    1/10

    1/11

    Trellis Diagram:

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    12/16

    12

    S0=000

    S4=001

    S2=010

    S6=011

    S1=100

    S5=101

    S3=110

    S7=111

    1/11

    1/10

    0/00

    1/10

    0/01

    0/01

    0/00

    1/11

    0/00 0/00 0/00 0/00

    0/01

    1/10

    1/11

    0/01

    1/11

    0/00

    1/10

    0/00T=0 T=1 T=2 T=3 T=4 T=5

    Part 2: Transfer function from Masons formula:

    To determine the transfer function we first transform the state diagram by splitting the zero state as show below and usingthe following notations for the transitions:

    L : The number of nodes traversed

    W: the hamming weight of the input vector (uncoded input).

    D: the hamming weight of output vector (coded output).

    The transformed state diagram becomes:

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    13/16

    13

    S1

    100

    S4

    001

    S0

    000

    S2

    010

    S3

    110

    S6

    011

    S5

    101

    S7

    111L

    WDL

    S0

    000

    WD^2 L

    WD^2 L

    L

    L

    WDLDL

    DL DL

    WD^2 L

    DL

    WDLDL

    WD^2 L

    Masons formula:

    ( , , )

    i i

    i

    F

    T W D L

    Forward Loops [K]:

    3 6 6

    1 0 1 3 7 6 4 0 1K S S S S S S S F W D L 4 8 5

    2 0 1 3 6 4 0 2K S S S S S S F W D L 7 10 7

    3 0 1 3 6 5 2 4 0 3K S S S S S S S S F W D L 3 6 4

    4 0 1 2 4 0 4K S S S S S F W D L 6 8 8

    5 0 1 3 7 6 5 2 4 0 5K S S S S S S S S S F W D L 2 8 8

    6 0 1 2 5 3 7 6 4 0 6K S S S S S S S S S F W D L 3 10 7

    7 0 1 2 5 3 6 4 0 7K S S S S S S S S F W D L Other loops [L]:

    2 2

    1 2 5 2 1

    2 3

    2 1 2 4 1 2

    2 4 4

    3 1 3 6 4 1 3

    2 5

    4 1 3 7 6 4 1 4

    L S S S C WD L

    L S S S S C WD L

    L S S S S S C W D L

    L S S S S S S C WD L

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    14/16

    14

    2

    5 7 7 5

    5 6 6

    6 1 3 6 5 2 4 1 6

    4 4 7

    7 1 3 7 6 5 2 4 1 7

    4 7

    8 1 2 5 3 7 6 4 1 8

    6 6

    9 1 2 5 3 6 4 1 92 4 3

    10 5 3 6 5 10

    2 4

    11 5 3 7 6 5 11

    L S S C WD L

    L S S S S S S S C W D L

    L S S S S S S S S C W D L

    L S S S S S S S S C D L

    L S S S S S S S C WD L

    L S S S S C W D L

    L S S S S S C WD L

    Product of non-touching pairs of loops :2 2 2 2 4 3

    1 5( ) ( )L L WD L WD L W D L 2 4 2 3 2 4 7

    11 2( ) ( )L L WD L WD L W D L 2 5 6 6 6 8 7

    5 6( ) ( )L L WD L W D L W D L 2 2 4 4 3 6 5

    5 3( ) ( )L L WD L W D L W D L 2 6 6 2 8 7

    5 9( ) ( )L L WD L WD L W D L 2 4 3 2 3 3 6 610 2( ) ( )L L W D L WD L W D L

    2 4 3 2 3 6 4

    10 5( ) ( )L L W D L WD L W D L 2 2 2 4 4 3 6 6

    1 3( ) ( )L L WD L W D L W D L 2 3 2 2 4 4

    2 5( ) ( )L L WD L WD L W D L 2 2 2 5 2 4 7

    1 4( ) ( )L L WD L WD L W D L

    Product of non-touching triplets of loops :2 2 3 6 5 4 8 7

    1 3 5

    2 4 3 2 4 4 4 8 7

    10 2 5

    ( ) ( )

    ( ) ( )

    L L L WD L W D L W D L

    L L L W D L W D L W D L

    There are no sets of four or more non-touching loops.

    1i t m j v h

    i t m j v h

    L L L L L L

    C C C C C C

    2 2 2 3 2 4 4 2 5 2 5 6 6

    4 4 7 4 7 6 6 2 4 3 2 4 2 4 3

    2 4 7 6 8 7 3 6 5 2 8 7 3 6 6 3 6 4

    3 6 6 2 4 4 2 4 7 4 8 7 4 8 7

    1 (

    )

    WD L WD L W D L WD L WD L W D L

    W D L D L WD L W D L WD L W D L

    W D L W D L W D L W D L W D L W D L

    W D L W D L W D L W D L W D L

    2 2 2 3 2 5 2 5 6 6 4 4 7

    4 7 6 6 2 4 2 4 7 6 8 7 3 6 5 2 8 7

    3 6 6 3 6 4 4 8 7

    1

    2

    2 2

    WD L WD L WD L WD L W D L W D L

    D L WD L WD L W D L W D L W D L W D L

    W D L W D L W D L

    And we have2 2

    1 11 1L WD L 2 2 2 2 4 3

    2 1 5 1 51 1L L L L WD L WD L W D L 2

    3 51 1L WD L

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    15/16

    15

    4 10 11 5 10 5

    2 4 3 2 4 2 3 6

    1

    .... 1

    L L L L L

    W D L WD L WD L W D L

    51

    61

    2

    7 51 1L WD L

    1 1 2 2 3 3 4 4 5 5 6 6 7 7

    ( , , )i i

    i

    F

    T W D L

    F F F F F F F

    3 6 6 2 2 4 8 5 2 2 2 2 4 3

    7 10 7 2

    3 6 4 2 4 3 2 4 2 3 6 4

    6 8 8 2 8 8 3 10 7 2

    (1 ) (1 )

    (1 )

    (1 )

    (1 )

    W D L WD L W D L WD L WD L W D L

    W D L WD L

    W D L W D L WD L WD L W D L

    W D L W D L W D L WD L

    3 6 6 4 8 8 4 8 5 5 10 7 5 10 6 6 12 8 7 10 7

    8 12 8 3 6 4 4 8 5 6 8 8 2 8 8 3 10 7 4 12 8

    2 2 2W D L W D L W D L W D L W D L W D L W D L

    W D L W D L W D L W D L W D L W D L W D L

    Part 3: Listing the first three hamming weight terms

    0

    ( , , )P

    P

    T W D L aS b

    2

    0 0 0 0 0 0a WD L 2[ 0 0 0 0 0 Tb W D L

    2

    2

    0 0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    0 0 0 0 0

    L

    WDL DL

    DL WDL

    S DL WDL

    WDL DL

    WD L L

    L WD L

    2P L For 4,5,6L , we have 2,3,4P . We therefore obtain the first three hamming weight terms as follows:

    2

    4 ( , , )LT W D L aS b

  • 7/31/2019 Hatilima Jasper 11042005 HW03

    16/16

    16

    2 2

    2

    2

    2

    0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0 0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0

    0 0 0 0 0 0

    L WD L

    WDL DL

    DL WDL

    WD L DL WDL

    WDL DL

    WD L L

    L WD L

    2

    2 4 3 3 5 3 4 3

    0

    0

    [ 0 0 0 0] 0

    0

    0

    0

    WD L

    W D L W D L WD L

    3 6 4W D L

    3

    5 ( , , )LT W D L aS b 2 2

    0 0 0 0 0 0WD L S S b

    2 4 3 3 5 3 4 3[ 0 0 0 0]W D L W D L WD L S b 4 8 5W D L

    4

    6 ( , , )LT W D L aS b 2 3

    0 0 0 0 0 0WD L S S b 3 6 4 2 5 4 2 4 4 4 6 4 5 4[ 0 0]W D L W D L W D L W D L WD L S b

    4 8 6W D L

    3 6 4

    4LT W D L

    4 8 5

    5

    4 8 6

    6

    L

    L

    T W D L

    T W D L