handbook of ripping 12ed cat

Upload: brabuantony

Post on 06-Apr-2018

368 views

Category:

Documents


16 download

TRANSCRIPT

  • 8/3/2019 Handbook of Ripping 12ed CAT

    1/32

    H A N D B O O K O F R I P P I N G

    Twelfth Edition

  • 8/3/2019 Handbook of Ripping 12ed CAT

    2/32

  • 8/3/2019 Handbook of Ripping 12ed CAT

    3/32

    HANDBOOK

    Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 - 5

    Material Hardness and Rippability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 - 7

    Rippability Investigation and Prediction Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 - 11

    Ripping Equipment Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 - 14

    Cat Ripping Tip Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

    Ripping Equipment Troubleshooting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

    Ripping Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 - 19

    Ripping Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 - 23

    Special Ripping Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

    Estimating Ripper Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 - 26

    Ripping vs. Drilling and Blasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    Ripper Compatibility Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 - 29

    Caterpillar Track-Type Tractor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

    H A N D B O O K O F R I P P I N G T W E L F T H E D I T I O N

    F E B R U A R Y 2 0 0 0 C A T E R P I L L A R I N C . P E O R I A , I L L I N O I S

    w w w . C A T . c o m

    Table of ContentsO F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    4/32

    Production ripping is being used more andmore today as an alternative to drillingand blasting with explosives. Actually, ripping

    has a long history dating back to the Roman

    Empire. There is evidence the Romans used a

    ripper mounted on wheels and pulled by oxen

    when they were building the Appian Way.

    Rippers were also used in the United States

    during railroad construction from

    1860 to 1880.

    History of the Ripper

    The ripper as we know it today did not

    appear until approximately 1930. Rippers

    drawn by tractors were developed by R.G.

    LeTourneau in 1931 and used on the Hoover

    Dam project. At that time, they weighed about

    7,500 pounds and were pulled by tractors

    with about 75 flywheel horsepower

    (equivalent to todays Caterpillar D4C track-

    type tractor). Their chief shortcomings were

    their clumsiness and poor penetration ability.

    If enough weight was added to obtain

    adequate penetration, the tractors werent

    powerful enough to pull them. Extra tractors

    were often added until as many as three

    tractors were pushing or pulling a single

    ripper. These units achieved only limited

    success, usually in shale, clay, limestone,

    hardpan, cemented gravel, and frozen

    ground.

    Modern Rippers

    Modern tractors of the 50s and 60s

    advanced ripping capabilities by mounting the

    ripper to the rear of the machine. This design,

    coupled with advanced hydraulic systems,

    more machine weight, and greater

    horsepower, greatly improved ripping

    performance and efficiency.

    These advances in performance

    were welcomed as environmental factorsbegan to limit or restrict conventional blasting

    techniques. Urban encroachment, safety, and

    pollution concerns all have placed much

    greater demands on customers ability to us

    drill and blasting as a way to remove materi

    In the mining world, concern for mixing

    materials, process improvements (leach

    pads), and similar safety and environmental

    considerations likewise increased interest

    in ripping.

    4

    HANDBOOKIntroduction

    O F R I P P I N G

    Current tractors have becomeso successful in rippingapplications that 75% of theD8R D11R are shipped fromthe factory with rippers.

    % of tractors %equipped single %

    with rippers shank multishank

    D11 83% 82% 18%

    D10 86% 75% 25%

    D9 75% 72% 28%

    D8 59% 57% 43%

  • 8/3/2019 Handbook of Ripping 12ed CAT

    5/32

    The Current Cat Ripper

    The current line of large Caterpillarelevated sprocket tractors made further

    advancements with the suspended

    undercarriage. The bogie system improved

    operator ride for increased comfort.

    The bogie system also increased the

    tractive capability of the tractor by keeping

    more track in contact with the surface. This

    increased traction allows the machine to put

    more usable horsepower into the job, less

    track spin for less wear, and overall

    improvement in cost per hour.

    5

    Summary

    Environmental and safety concerns havemade production ripping a popularalternative to drilling and blasting.Design advances, including hydraulicenhancements, increased horsepower,and better traction, continue to improve

    ripping performance and efficiency.

  • 8/3/2019 Handbook of Ripping 12ed CAT

    6/32

    Not all materials or formations can beripped. Others cannot be rippedeconomically. Determining whether or not a

    rock formation can be ripped is not a simple

    process, but todays technology and

    experience can help develop a reasonable

    prediction for each customer site.

    Obviously, the ideal test for determining

    rippability is to put a ripping tractor on thejob and see if it can rip the material test by

    trial. But this may not be practical due to the

    time and expense involved. Therefore, in

    order to determine if ripping is feasible, a

    basic knowledge of geology and rock

    characteristics affecting ripping is necessary.

    This knowledge is gained through on-the-job

    experience ripping in various formations.

    When classified by origin, rocks fall into

    one of three categories, with similarrippability characteristics existing within each

    type. Knowing the correct classification can

    often help answer the question: Can it be

    ripped?

    Igneous Rocks are formed by the

    cooling of molten masses originating within

    the earth. Igneous rocks never contain fossils,

    are identified by their mineral content and

    texture, and almost never have the stratified,banded, or foliated characteristics of other

    rocks. They usually possess high compressive

    and tensile strength. Granites, basalts,

    pegmatites, pitchstone, and pumice are

    igneous rocks commonly encountered on

    earthmoving jobs. Formations of these rocks

    are usually the most difficult to rip because

    they typically lack the stratification and

    cleavage planes essential to the successful

    ripping of hard rock. Igneous rocks are

    usually rippable only where they are deeply

    weathered and/or very highly fractured. These

    conditions can readily be detected via field

    seismic surveys.

    Metamorphic Rocks result from the

    transformation of pre-existing rocks which

    have been changed in mineral composition,

    texture, or both. The agents causing

    metamorphism in rocks are shearing stresseintense pressure, chemical action from

    liquids and gases, and high temperatures.

    Common metamorphic rocks are gneiss,

    slate, marble, quartzite, and schist. These

    rocks vary in rippability depending on their

    degree of stratification or foliation. All are

    found on or near the earths surface and

    usually occur as homogeneous masses.

    6

    Material Hardness and Rippability

    Igneous Rock Metamorphic Rock

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    7/32

    Sedimentary Rocks consist of material

    derived from destruction of previously

    existing rocks. Water action is responsible for

    the largest percentage of sedimentary rocks,

    although some result from wind or glacialpressure. Their most prominent feature is

    stratification, i.e., they are built of layers

    differing in texture, material, thickness, color,

    or a combination of these properties. This

    layering is referred to as bedding, and

    individual layers, which are often uniform in

    texture, color, and composition, are

    referred to as beds. A single bed may vary in

    thickness from paper thin to several hundred

    feet. Examples of common sedimentary rocks

    are sandstone, limestone, shale,

    conglomerate, and caliche. This family of

    rocks is generally the most easily ripped.

    The material condition of rock affects its

    rippability. Although sedimentary formations

    generally offer the best opportunity for

    ripping, and igneous and metamorphic the

    least, decomposed granites and otherweathered igneous and metamorphic rocks

    often can be ripped economically.

    Little or no trouble is encountered with

    hardpan, clays, shales, or sandstones.

    Likewise, any highly stratified or laminated

    rocks and formations with extensive

    fracturing offer good possibilities for ripping.

    Solid, thickly bedded rock formations may

    require drilling and blasting. A discussion of

    ripping vs. blasting, and when each may beconsidered appropriate, is included later in

    this handbook.

    7

    Sedimentary Rock

    Summary

    While some materials still cannot be

    ripped or ripped economically, heaviermachines, improvements in horsepower,and advancements in tractor design aremaking ripping possible in moreapplications.

    The physical characteristics whichfavor ripping may be summarized by:

    1. Frequent planes of weaknessessuch as fractures, faults, andlaminations

    2. Weathering3. Moisture-permeated formations

    4. High degree of stratification5. Brittleness6. Low strengths7. Low field seismic velocity

    The list of conditions which make rippingdifficult is not nearly as long as it used tobe. Ripping tends to be more difficult ifthe rock formation is:

    1. Massive2. Without planes of weakness3. Crystalline rock4. Non-brittle, energy-absorbing roc

    fabrics5. High strengths6. High field seismic velocity

  • 8/3/2019 Handbook of Ripping 12ed CAT

    8/328

    Rippability Investigation & Prediction Service

    Although visible laminations, faults, andfractures may indicate rippability and areusually helpful, conditions which are not

    visible are also important. Thats because

    surface features give only a clue as to what lies

    underneath. To determine rippability when a

    field trial is not feasible, a method of estimating

    underlying characteristics is required.Caterpillar has developed a systematic

    analysis procedure to predict the rippability ofa rock formation which combines new

    technology with geological and rippingexperience. Our process for gathering theinformation necessary to make a prediction iscalled the Rippability Investigation andPrediction (RIP) service and is availablethrough Caterpillar research. (Contact yourdistrict office.) The service consists of threesteps:

    1. Rock analysis

    2. Site inspection3. Seismic analysis

    Rock MechanicsAnalysis

    A rock mechanics analysis is the firstphase of the RIP service and requires that afresh rock sample be submitted to our lab fanalysis along with other pertinentinformation about the site. (Minimum samp

    size should be 10" x 10" x 10".)

    D8R Ripper

    Performance

    Multi or SingleShank No. 8Series D Ripper

    Estimated bySeismic WaveVelocities

    Rippers

    Seismic VelocityMeters Per Second x 1000

    Feet Per Second x 1000

    TOPSOIL

    CLAY

    GLACIAL TILL

    IGNEOUS ROCKS

    GRANITE

    BASALT

    TRAP ROCK

    SEDIMENTARY ROCKS

    SHALE

    SANDSTONE

    SILTSTONE

    CLAYSTONE

    CONGLOMERATE

    BRECCIA

    CALICHE

    LIMESTONE

    MET

    SCHIST

    SLATE

    MINERAL & ORES

    COAL

    IRON ORE

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    0 1 2 43

    RIPPABLE

    MARGINAL

    NON-RIPPABLE

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    9/32

    Geological SiteInspection

    The second phase of the RIP service

    consists of a site visit by Caterpillar personnel

    which includes a geological inspection. During

    the site inspection, the rock formation in

    question is examined for in-place rock mass

    characteristics that may affect a rippingtractors performance. These may include rock

    type, degree of weathering, bedding features,

    joint characteristics, and many other pertinent

    geological features.

    Seismic Evaluation

    The third phase of the RIP service includa seismic evaluation. Caterpillar introducedthe use of the refraction seismograph in 195as an aid to determine rippability of materiaThe instrument functions by measuringseismic velocity, an indicator of the degree oconsolidation of rock formations. Caterpillacontinues to offer this service, along withmany independent firms.

    9

    Rippers

    D9R Ripper

    Performance Multi or SingleShank Ripper

    Estimated bySeismic WaveVelocities

    RIPPABLE

    MARGINAL

    NON-RIPPABLE

    Seismic VelocityMeters Per Second x 1000

    Feet Per Second x 1000

    TOPSOIL

    CLAY

    GLACIAL TILL

    IGNEOUS ROCKS

    GRANITE

    BASALT

    TRAP ROCK

    SEDIMENTARY ROCKS

    SHALE

    SANDSTONE

    SILTSTONE

    CLAYSTONE

    CONGLOMERATE

    BRECCIA

    CALICHE

    LIMESTONE

    METAMORPHIC ROCKS

    SCHIST

    SLATE

    MINERALS & ORES

    COAL

    IRON ORE

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    0 1 2 43

  • 8/3/2019 Handbook of Ripping 12ed CAT

    10/3210

    Not all material conditions are visiblefrom the surface. To determine therippability of below-the-surface materialand formations, Caterpillar Inc.developed a systematic analysisprocedure based on technology and fieldexperience. The service consists of three

    steps:1. Rock analysis2. Site inspection3. Seismic evaluation

    Rippers

    Caterpillar Systematic Analysis

    D10R Ripper

    Performance

    Multi or SingleShank Ripper

    Estimated bySeismic WaveVelocities

    RIPPABLE

    MARGINAL

    NON-RIPPABLE

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    Seismic VelocityMeters Per Second x 1000

    Feet Per Second x 1000

    0 1 2 43

    TOPSOIL

    CLAY

    GLACIAL TILL

    IGNEOUS ROCKS

    GRANITE

    BASALT

    TRAP ROCK

    SEDIMENTARY ROCKS

    SHALE

    SANDSTONE

    SILTSTONE

    CLAYSTONE

    CONGLOMERATE

    BRECCIA

    CALICHE

    LIMESTONE

    METAMORPHIC ROCKS

    SCHIST

    SLATE

    MINERALS & ORES

    COAL

    IRON ORE

    Rippability Investigation & Prediction Service

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    11/3211

    D11R Ripper

    Performance

    Multi or SingleShank Ripper

    Estimated bySeismic WaveVelocities

    RIPPABLE

    MARGINAL

    NON-RIPPABLE

    Seismic VelocityMeters Per Second x 1000

    Feet Per Second x 1000 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

    0 1 2 43

    GLACIAL TILL

    IGNEOUS ROCKS

    GRANITE

    BASALT

    TRAP ROCK

    SEDIMENTARY ROCKS

    SHALE

    SANDSTONE

    SILTSTONE

    CLAYSTONE

    CONGLOMERATE

    BRECCIA

    CALICHE

    LIMESTONE

    METAMORPHIC ROCKS

    SCHIST

    SLATE

    MINERALS & ORES

    COAL

    IRON ORE

    Rippers

  • 8/3/2019 Handbook of Ripping 12ed CAT

    12/32

    Selecting the proper ripping tools canmake the difference between just beingable to rip a material, and being able to reach

    optimum efficiency and maximum production

    (lowest cost/yd3).

    For any ripping job, choosing the right

    ripping tractor for conditionsdepends on:

    1. Tractor flywheel horsepower2. Tractor gross weight3. Downpressure available at the tip

    The elevated-sprocket design tractor withmodern resilient undercarriage has proven to

    be an excellent ripping tractor because of itssuperior tractive ability. These large tractorsare able to rip many previously unrippablematerials and have greatly increased rippingproduction in existing ripping applications.

    Ripper Selections

    The first step in ripper selection is todetermine the application. Will the job call forproduction ripping or will the tractor be usedas a multipurpose tool? The more productionripping required, the greater the effectivenessof the single shank ripper. If the tractorspends more than 20 percent of its time

    ripping, it is considered a production rippinapplication. Material also has an effect onripper selection. The harder or tighter amaterial, the more the application calls forthe single shank ripper.

    The multishank design becomes moreeffective in multiple site/multiple use

    applications where versatility is an asset. Inthese applications, material may not be ashard and ripping depth not as important. Thmore varied the job conditions, the greaterthe need for the multishank ripper. Themultishank is especially useful in pre-rippinfor scrapers or other loading tools, coveringwider area, or ripping close to a high wall oobstruction.

    12

    Proper equipment selection and sound ripping techniques are critical to effective and economic ripping.Following sections will focus on these two important areas.

    Ripping Equipment Selection

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    13/32

    Hinge-type

    Ripper

    In aHinge-type ripper, the linkage carryingthe beam and shank pivots about a fixed point at

    the rear of the tractor. As the shank enters theground and penetrates to maximum depth, thetooth angle is constantly changing.

    Hinge-type rippers offer the advantage of anaggressive entry angle, but cannot be adjusted tocompensate for varying conditions.

    AParallelogram-type ripper allows thelinkage carrying the beam and shank tomaintain an essentially constant tip-groundangle regardless of tooth depth. This type ofripper has advantages over the hinge-type whenripping above maximum depth, but does notprovide the aggressive tooth angle necessary forhard-to-penetrate materials.

    13

    Adjustable

    Parallelogram

    Ripper

    TheAdjustable Parallelogramripper combines the features of both the hinge-type and parallelogram rippers. It can vary thetip angle beyond vertical for improvedpenetration and can be hydraulically adjustedwhile ripping to provide the optimum ripping

    angle in most materials.All Caterpillar large tractors useadjustable

    parallelogram rippers, available in single shankand multishank arrangements. The single shankmodels are built for the toughest ripping work,where maximum penetration and depth isrequired. The multishank arrangement willaccept three shanks for use in less densematerials.

    Figure 1

    Figure 3

    Figure 2

    ParallelogramRipper

  • 8/3/2019 Handbook of Ripping 12ed CAT

    14/32

    Track Shoe WidthWorking on rock requires narrow shoes to

    reduce bending or breakage. However, mostripping tractors work in several different kindsof materials. This variety of work environmentsrequires a track width that does the best all-around job, therefore a standard width trackshoe is usually the best choice. A good rule ofthumb is to use the narrowest shoe thatprovides adequate flotation and traction,

    without excessive track slippage. Shoes of thecorrect width give maximum performance andthe lowest operating costs. Because ripping isoften an abrasive, high impact application,heavy-duty Caterpillar extreme service shoesare usually recommended. These are single-grouser shoes heat-treated to a higher tensilestrength, and provide more wear material thanconventional shoes.

    14

    Summary

    To achieve optimum efficiency andmaximum production (lowest cost/yd3),selection of the proper rippingequipment is crucial. Application-specific choices must be made betweensingle shank or multishank rippers.Proper selection of shank protectors

    and tips can affect ripping productivityand efficiency.

    Ripper Shanks

    Only straight ripper shanks are availablefor the large track-type tractors. Theseprovide the lifting action needed in tight,laminated materials, plus the ripping abilityrequired in blocky or slabby ripping material.All of the shanks for the large tractors are ofthe one-piece design, eliminating the weld

    joint. This increases strength at a critical areaand allows for improved heel clearance. Therolled stock from which a ripper is made isnow cut to length, bent, then fully machined atthe tip end.

    Shank protectors are standard for D8and larger Caterpillar shanks. The replaceableprotectors are pinned to the leading edge ofthe shank (see figure 4), protecting it fromwear and greatly extending shank life.

    Ripper tips (see Figure 4) are availablein several shapes and sizes designed to meetspecific application requirements. Threequestions should be considered whendetermining the best ripper tip for aparticular job:

    1. How difficult is the material topenetrate?

    2. What are the fracture

    characteristics?3. How abrasive is the material?

    Tooth penetration can be the keyto ripping success in many situations,especially in homogeneous materialssuch as mudstone or fine-grainedcaliche, or in tightly cementedconglomerate. These materials arenot difficult to rip if they can bepenetrated. Caterpillar manufactures

    short, intermediate, and long penetration tiprecommended for use in compacted, densematerials where initial penetration is difficulThese alloy steel tips resist tempering (loss hardness) at higher operating temperaturesfor long wear life. They are also self-sharpening and provide excellent penetratiocapability.

    Ripping Equipment Selection

    H A N D B O O K O F R I P P I N G

    ShankProtectors

    RipperTips

    A standard width track shoeperforms a multitude of jobs.

    Figure 4

  • 8/3/2019 Handbook of Ripping 12ed CAT

    15/32

    Tip Selection

    Tip selection is also affected by theabrasiveness of the material. Centerlineripper tips are designed for abrasiveapplications where increased wear life is aconsideration. Centerline tips are made ofsteel, are self-sharpening, and providereversibility due to the centerline design.

    Although there are three centerline tiplengths available (short, intermediate, andlong), each is recommended for a specificapplication.

    Ripper Tip Designs:

    The short tip (see Figures 5 and 6) shouldbe used in extreme impact conditions only,as it does sacrifice some wear materialcompared to intermediate and long tips.

    The intermediate tip (see Figures 7 and 8)is used for moderate impact and abrasionconditions.

    The long tip (see figures 9 and 10) isdesigned for low impact, highly abrasiveconditions where breakage is not a

    problem. This tip has the greatest amountof potential wear material.

    For both penetration and centerlineripper tips,always use the longest tip thatwill rip without excessive breakage. Thiswill provide increased wear life, simplybecause the longer the tip, the more wearmaterial available. Using the correct tip iscritical to low-cost ripping, so you may wantto try different tips before making your finalselection. Since longer tips offer more wearmaterial, its usually recommended to try a

    longer tip first and switch to a shorter one ifexcessive breakage occurs.

    15

    Figure 7 -

    IntermediateCenterline Tip

    Figure 8 -IntermediatePenetration Tip

    D11R Single Shank

    D11R MultishankD10R

    D9G, D9H, D9RD8H thru D8R

    Summary

    Caterpillar manufactures short,intermediate, and longtempering-resistant steel alloypenetration tips for use incompacted, dense materialswhere initial penetration isdifficult; and short, intermediate,and long steel centerline tipsfor increased wear life inabrasive applications.Alwaysuse the longest tip that will ripwithout excessive breakage.

    Cat Ripping Tip Options

    Figure 5 - ShortCenterline Tip

    Figure 6 - ShortPenetration Tip

    Figure 9 - LongCenterline Tip

    Figure 10 - LongPenetration Tip

  • 8/3/2019 Handbook of Ripping 12ed CAT

    16/3216

    Use the following chart to aid in solving problems involving ripping equipment.

    Problem Causes Action

    Excessive tip breakage Tip may be too long for conditions Change to shorter tip

    Shank protector missing Check and replace if needed

    Shank or adapter nose broken, Check and replace if neededbent, or worn

    Wrong shank angle Adjust shank angle

    Too many shanks being used Decrease number of shanks

    Operator backing up or Raise tip before turning orturning with tip in ground backing up

    Shank or adapter breakage Badly worn shank Repair or replace shank

    Operator side loading shank Rip only in straight line in

    Operator turning while ripping forward direction

    Operator backing up withtip in ground

    Difficult tip installation Material buildup on shank nose Remove materialShank nose bent or damaged Repair or replace shank

    Lack of penetration Wrong tip in use Try different tip or penetration tip

    Material too dense Use larger tractor, if possible

    Make series of very shallowpasses to provide improvedtraction

    Pre-blast

    Improper operator technique Change operators or instruct as toproper technique (see followingsection on ripping techniques)

    Penetration tip installed the Look for word bottom engravedwrong way on tip and install accordingly

    Damage to track shoes Track shoes too wide Use narrower extreme service

    Track shoes not extreme service shoes

    Ripping Equipment Troubleshooting Guide

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    17/32

    The best ripping procedure depends on ajobs actual conditions. Likewise, asconditions vary from job to job, what is

    appropriate for one situation may not work in

    the next. Experience is the best teacher when it

    comes to maximizing ripping efficiency. But a

    review of the following 11 points can help

    identify the necessary procedures.

    1. How many shanks

    should be used?

    The multishank ripper is intended as a highproduction ripper in hard-packed soils and forloosened embedded rock. It is intended to beused in material that can be ripped with at leasttwo shanks. It is intended for applicationswhere ripping with a single center shank isrequired less than 20 percent of the time. It isnot intended for high production ripping inrock with a single center shank. One shank

    should be used in material which breaks out inlarge slabs so the slabs either fracture orpass around the single shank. When two ormore shanks are used in this situation, theshank can act as a rake and wedge the largerslabs under the ripper beam. Or, as oftenhappens when using two shanks in difficultmaterials, one of the shanks may becomestalled by a hard spot. This causes off-centerloads to be placed upon the ripper beam andmounting, and thus the tractor.

    A single shank can be used in the centerpocket of a multishank ripper in order to gainpenetration in more difficult material. Themultishank frame provides the flexibility toachieve the greatest ripping production invarious strengths of materials.

    The use of only one shank centers the loadin the beam and mounting assembly and allowsfull force to be exerted at a single point. Even ifthe material can be handled by two shanks,

    production can often be increased by using asingle shank for smoother operation and lessslippage and stalling.

    Two shanks can be most effective in softer,easily fractured materials which are going to bescraper loaded. In some cases, two shanks maybe required by job conditions such as rippingalong a high wall or the toe of a slope. Threeshanks should be used only in very easy-to-ripmaterial such as clay hardpan or soft shales.

    2. When should a deep

    rip shank be used?

    A deep rip shank should be used wherelaminations or other places of weakness existthat cannot be reached with the standard length

    shank. These longer shanks also have thepotential to produce greater volume perripping pass in many materials compared to astandard single shank. Common applicationsinclude relatively easily ripped material such clay hardpans, coal, and some sandstones anshales. Caution must be applied when usingdeep shanks in harder material, because theextra shank length reduces their ability tohandle ripping loads when compared toconventional shanks.

    These shanks are designed for light tomoderate duty and therefore can break whenused in the extended positions in hardmaterial.

    17

    Ripping Basics

  • 8/3/2019 Handbook of Ripping 12ed CAT

    18/3218

    3. Should tandem ripping ever

    be considered?

    Improvements in tractor design, includingelevated sprocket, bogie suspension, andincreased weight and horsepower, have madetandem ripping obsolete.

    4. Should material ever be

    blasted before ripping?

    Rock that is extremely difficult to penetrateand rip can often be lightly blasted (calledpreblasting or pop blasting) and thenripped successfully. In many applicationspreblasting can provide cost and environmentalbenefits over complete blasting.

    The procedure simply involves light chargeson wide centers to improve initial ripperpenetration. Ripping normally then has theadvantage of fracturing the material intosmaller pieces than blasting. This method hasproduced cost savings in some applications,

    but must undergo careful cost evaluation.It is also cost effective in many operationsto rip as much material productively aspossible and then blast the unrippablematerial. This allows the operation to move asmuch material as possible at the lowestpossible cost.

    5. What is cross-ripping and

    when is it used?

    Cross-ripping involves ripping an area witha series of longitudinal passes (east to west, for

    example) and then covering the same areawhile ripping in a transverse direction (north-south).

    In general, cross-ripping makes the pitrougher, increases scraper tire wear, andrequires twice as many passes; however, it doeshelp break up hard spots or material whichcomes out in large slabs, and will loosen

    vertically laminated material in which single-pass ripping produces only deep channels.When material is extremely hard to penetrate,cross-ripping will often separate fractureplanes set up by the first pass and allow ripperuse where blasting would otherwise berequired.

    Cross-ripping is often done to reducematerial size to better facilitate scraper loadingof the material, or in order to meet crusherthroat limitations. When considering cross-ripping, careful analysis should determine ifmaterial removal efficiency is increased enoughto offset the increased time and expense.

    6. Which direction is best?

    Generally, ripping direction is dictated bythe job layout. However, there are certainconditions under which ripping direction willgreatly affect results.

    When ripping in a scraper cut, it is always

    best to rip in the same direction that thescrapers will load. If the rock formation lies insuch a manner that cross-ripping is required,the final pass should always be in the directionof scraper loading. This procedure yieldsseveral advantages. It greatly aids scraperloading, reduces the chances of damaging orspringing the scraper bowl, allows the rippingtractor to double as a pusher in certainsituations, and it permits traffic to flow in thesame direction.

    Occasionally, a rock formation will be

    found containing vertical laminations orfractures that run parallel to the cut, in whichcase, ripping in the direction of the cut mayresult only in deep channels. When this occurs,it may be necessary to rip the material acrossthe cut first to obtain proper fracturing, thenmake the final pass in the direction of the cut.

    Material such as caliche tends to break oudifferently than most materials. Thisbuttercutting effect lowers productivity anddemands additional ripping passes.

    When applied to ripping, buttercutting is term used to describe material breakoutsimilar to the slicing of a knife through butterThere is minimal fracturing of the rippedmaterial except in the vicinity of the shank. Thcan occur in soft or non-brittle materials thatdisplay discontinuous breakout. Discontinuobreakout occurs in rock because there are nopreferred planes of weakness for a fracture topropagate along. Examples of materials whichcan exhibit this type of breakout are cementegravels, caliches, and breccias.

    Its also advantageous to rip downhillwhenever possible. Gravity helps the tractortake maximum advantage of its weight andhorsepower. However, uphill ripping isoccasionally used to get more rear-end down

    pressure or to get under and lift slabbymaterial.If the material is laminated and the plane

    the laminations is inclined upward toward thsurface, its best to rip from the shallow end(where the laminations reach the surface)toward the deep end. This helps keep theripper tip in the ground. When ripping is donin the opposite direction, the tip tends to ridover the laminations and be forced out of thground.

    7. What gear is best forripping?

    Proper gear and speed selection is criticalobtaining maximum ripper production andefficient tractor operation. Generally speakingfirst gear is used in most ripping situationsbecause a speed of 1 to 1-1/2 mph, at about 2throttle, gives the most economical production

    Ripping Basics

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    19/3219

    Just a small increase in speed above theoptimum can result in ripper tip wear, excessivetrack slip, and ultimately in lower production

    and higher costs. Excessive speed generatesexcessive heat at the ripper tip and greatlyshortens tip life. Therefore, when ripping ineasy-to-rip materials, it is better to rip deeper atregular speed or use two or three shanks thanto use one shank and increase ripping speed.

    8. What is the best ripping

    depth?

    Ripping depth is normally determined byjob requirements, material hardness, beddingthickness and degree of fracturing. Ideally,

    ripping with standard shanks should be doneat the maximum depth that penetration andtraction allow. This results in maximumproduction per unit of fuel and tip wearmaterial used.

    Sometimes, however, it may not bepractical to rip at maximum depth. Whenopening a cut on a very hard or smoothsurface where grouser penetration is limited,making a series of shallow cuts significantlyimproves traction and penetration byproviding a bed of loose material for thetrack grousers to grip. Or where considerablestratification is encountered, it is usually bestto rip and remove the material in its naturallayers rather than try to make a full-depthpass. An initial pass at less than full-depth willoften break the material loose so that thesecond pass can be made at the optimumdepth and achieve more completefragmentation.

    Ripping depth and the number of shanksto be used should be considered together.

    While deep ripping with a single shank usuallyyields maximum production, many soft orthinly laminated materials can often be betterhandled by multiple shanks at a more shallowripping depth.

    9. Is a difficult first pass

    normally encountered?

    Usually the first pass is the most difficult

    because in consolidated material there are novoids for the loosened material to moveinto. Thus, initial penetration can be difficult,and proper technique and penetration angleis a must. On subsequent passes, material canmove into voids created by the previous pass.For this reason, a decision to blast should notbe made based on seemingly poorperformance during the first ripping pass.

    10. What pass spacing should

    be used?

    Pass spacing helps determine theproduction rate, because obviously the fewernumber of passes, the shorter the amount oftime required to cover the area. Optimumspacing then is necessary to maximizeproduction and hold down costs. Using themaximum recommended spacing is notalways advisable because material end-useand removal methods must also beconsidered. The closer the spacing, thesmaller the ripped fragments of material willbe. Thus, crusher requirements and loadingmethods can determine the correct spacing.

    When full penetration can be obtained,pass spacing of one half the tractor width isusually recommended. This allows one trackto ride over the material just ripped, thusincreasing traction and further crushing thematerial. Using this as a base, pass spacingcan either be increased or decreaseddepending upon the fracturing characteristicsof the material and end-use requirements.

    11. What about removingthe ripped material?

    First of all, for best results, never removeall the ripped material covering an area ifdeeper ripping must be done. Dozers andscrapers should always have one or twoinches of crushed material resting on top ofthe solid formation for increased traction and

    to help cushion the tractor. The coefficient otraction is much greater for a tractor workinon crushed rock than for one working on a

    smooth, solid bed of rock.Where scrapers are to be used to remov

    and haul the material, its important toconsistently rip to a uniform depth. Thiseliminates protruding knobs of hard rock anshallow spots which could force the scrapercutting edge out of the ground. This isdamaging to cutting edges and to the scrapethemselves, possibly reducing the useful lifethe unit and certainly increasing itsmaintenance costs. A good rule of thumb is rip no deeper than can be ripped on the mo

    difficult part of the cut area, and thus nodeeper than the scrapers can readily load.

    Summary

    With today's advancements in tractor

    design elevated sprocket, bogiesuspension, increased weight andhorsepower the need for second tractortandem ripping has been eliminated.

    Ripping depth and the number ofshanks should be considered together.Deep ripping with a single shank usually

    yields maximum production; but many softor thinly laminated materials can often bebetter handled by multiple shanks at ashallower ripping depth.

  • 8/3/2019 Handbook of Ripping 12ed CAT

    20/3220

    Until now, this handbook has dealt with thekinds of information necessary beforeripping begins material rippability, ripping

    basics, ripping equipment selection, etc. This

    section will introduce perhaps the most

    important variable of all in maximizing ripper

    production effective operator technique.

    This section provides important techniques

    which can make the difference between

    success or failure. Again, each rippingsituation is different; these techniques are

    recommended to increase production,

    maximize ripper tip life, reduce track wear,

    and prevent tractor and ripper damage in the

    majority of ripping applications.

    The Decelerator as a Key to

    Ripping

    The decelerator is one of the mostimportant controls on the tractor, and properuse of it is a must for efficient ripper

    operation. Located to the right of the brake, itshould be used to match drawbar pull toavailable traction and ground conditions, and

    to prevent track spin. Too much power whileripping can result in excessive track spin,reduced undercarriage and ripper tip life, andpotential tractor damage. A constant, steadypull when ripping maximizes production andminimizes wear and tear on the operator andthe machine.

    Proper use of the decelerator enables theoperator to apply just enough power to be onthe verge of track spin, taking advantage of all

    usable horsepower. This technique isespecially important when making initial cutson a smooth or hard surface. Use thedecelerator to start out slowly, reduce theaggressiveness of the tracks, and make aseries of light cuts to break up surfacematerial and form a work pad for the nextseries of deeper cuts.

    Ripping Techniques

    H A N D B O O K O F R I P P I N G

    Positioning the RipperShank at the Start of

    the Pass

    Achieving initial penetration is critical anmay be the determining factor for whether amaterial is rippable or not. Adjustable ripperhave the advantage of allowing the operatorto experiment and find the best angle forpenetration.

    In most cases, initial penetration for eachpass begins with the ripper shank angled weback beyond the vertical position (see Figur11), depending on tip selection. If the rock iextremely hard, angling the shank back nearthe maximum angle may enable penetrationand thus permit ripping the material. Whenripping more easily penetrated material suchas soft shale, the shank angle may be onlyslightly back beyond vertical for initialpenetration.

    In hard material, the rear of the tractor

    may be forced up slightly as the ripper tipcontacts the surface and penetration begins.This effect is normal, but if the ripper tip failsto penetrate, and the rear of the tractor staysup, raise the shank enough to set the tracksdown flat again. Then try different shank anguntil the best angle for penetration is found,while looking for faults, weak spots, fractureand weathering to aid initial penetration.

    Figure 11

  • 8/3/2019 Handbook of Ripping 12ed CAT

    21/32

    Positioning the RipperShank During the Pass

    Using the correct shank angle during thepass is very criticalto ripper production. Forbest results in most situations, follow theseguidelines.

    Adjust the shank angle forward until thetractor feels pulled into or pinned to theground. Due to shank design, a shank anglethat may appear to be too far forward canactually be in the best position for ripping.

    The ripper tip should be slightly below theheel of the shank, as shown in Figure 12.

    This angle is best for ripping because the

    force exerted on the small area of the tipinitially fractures and weakens the material.Then as the shank passes through, thematerial is shattered from the bottom to thetip. If the shank pitch angle is too far back(not moved forward enough afterpenetration), it causes the tip to dragacrossthe rock and puts the face of the tip andshank in contact with the material beingripped. This results in excessive wear andincreased resistance, lifting the rear of thetractor, so that traction is lost and rippingeffectiveness reduced. Operating with theshank angle too far back is the most commonerror made by ripping tractor operators.

    This condition shank too far back raises the rear of the tractor (See Figure13`)and results in: 1. high undercarriagewear rate (track spin); 2. poor shank life(shank impacts rock first); 3. poor tip life(tip is dragged across rock and cannot self-sharpen); 4. reduced production.

    For parallelogram rippers, the operator

    can estimate when the shank is in the bestripping position by observing the tilt cylinderrods. After finding the best ripping angle for

    the material you are working in, see how

    much of the cylinder rod is extended and usthis as a guide for future reference.

    At the proper shank angle, the tip willpenetrate and split the rock much as a wedgis used to split a log. At the same time, thiswill help keep the tip short by wearing moreon the bottom surface than on the top.

    Its also very important to avoid moving

    the shank too far forward. This permits the tto rise above the shank heel, resulting inrapid heel wear and loss of penetration.

    21

    Proper Shank LengthSelection

    The length of shank extended from theripper frame pocket is determined by twogeneral rules. First, use a length at which thetractor can efficiently pull the shank through

    the material; secondly, maintain sufficientclearance under the lower ripper frame toavoid interference from large chunks or slabsbrought to the surface.

    When the material is very hard andpenetration is difficult, the shank should be inthe shortest position. The objective is tooperate the lower ripper frame as parallel tothe material as possible, for even stress

    distribution. Occasionally though, the shankmay bring up chunks or slabs that lodgeunder the lower ripper frame. This situationmay lift the rear of the tractor. If this occursrepeatedly, increase the clearance under thelower frame by extending the shank. This maycause the lower frame to operate inclined

    upward, rather than parallel to the ground.Although not the ideal frame position, it doesprevent plugging the ripper frame. Avoiddropping the ripper frame so that it inclinesdownward from the tractor.

    This traps ripped material under the frameand makes forward travel difficult, whilecausing excessive wear and potential damageto the underside of the ripper beam.

    Figure 12

    Figure 13

    Figure 14

  • 8/3/2019 Handbook of Ripping 12ed CAT

    22/3222

    Dozer Position WhileRipping

    A dozer carried too high during rippingcan allow the tractor to straddle and hang upon large objects if it fails to push them out ofthe way. There is also danger that a track mayride up on an object, tilting the tractor andrisking damage to the shank or ripper frame.

    These problems can be overcome by carryingthe blade low enough to remove obstructions,but high enough to allow smaller fragments topass under. Remember, its not practical to tryto rip and doze at the same time.

    Ripping DowngradeRipping downgrade can increase

    production. If the job layout permits, thedowngrade approach can be helpful when

    working a hard spot or seam.There are several situations to be avoide

    when ripping downgrade.1. Remember that traction on rock is les

    than on dirt.2. Avoid ripping on or creating slopes th

    tractor cannot climb.3. Avoid sideslopes.Even in conditions that appear ideal,

    downgrade ripping may not always bepractical. For instance, when the material liein heavy, longer, level laminations, ripping w

    be difficult and production will be reduced.this situation is encountered, the best solutiowould be to rip upgrade. The degree of theslope and available traction may limit rippindepth and handling methods.

    Using Hydraulic Force to

    Help Fracture Rock

    An effective technique for ripping hardrock seams or pockets is to combine tractordrawbar power and hydraulic force. When theripper has contacted the hard rock, followthis procedure:

    1. Use the decelerator to control trackslip.

    2. Use the ripper shank control to adjustshank angle back slightly.

    3. Maintain engine speed high enough toallow the tractor to continue movingforward as the ripper shank anglesback.

    4. While the tractor moves forward,return the ripper shank to its originalposition (forward), combining ripperhydraulic force with tractor drawbarpull.

    This technique can be very effective intough material as well as when attacking harrock pockets or seams.

    n most cases, ripping downgrade is the most productive.

    Ripping Techniques

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    23/3223

    Ripping CoalAll methods for ripping rock can beapplied to ripping coal. Even so, rippingcoal requires additional consideration.

    If the shank is not angled forwardenough after penetration, the tip will bluntrapidly and may cause the tip tomushroom.

    Since ripping characteristics of coal canbe widely varied, the ripper tip should bechecked often for evidence of blunting, orcolor change caused by heat buildup.

    Should either of these conditions beobserved, increase the shank angleforward. It may also be advisable to useless down pressure, or rip at a slowerspeed.

    Occasional Deposits ofHard Rock or Boulders

    Pockets or seams of hard rock orboulders are common in many rippingoperations. Sometimes they may be too hardto be easily broken. There are several ways torip hard spots and boulders. If it is a seam ofextra hard material, try to determine thedirection the seam runs. It may lie diagonally,

    perpendicular, or parallel to the direction ofripping. By observing where the hard spotsare found, a pattern will emerge. This patternwill reveal the direction of the hard material.

    When the direction of the hard deposit hasbeen determined, rip directly across the hardmaterial. Often the grain will lie crosswise tothe deposit.

    In some cases hard deposits are found inthe form of pockets or knots, or they may beboulders. It may be possible to work theripper tip under them and lift them out.

    NOTE: When a deposit of hard materialcannot be removed, it may be necessary towork around it until it is exposed enough todoze out.

    Correct dozer position during ripping process.

    Pockets or seamsof hard rock can beremoved moreeasily if the patternof the material isunderstood.

    Summary

    There are many variables to ripping.Utilization of the proper operatortechniques will increase production,maximize ripper tip life, reduce trackwear, and prevent tractor and ripperdamage.

  • 8/3/2019 Handbook of Ripping 12ed CAT

    24/3224

    Most of the discussion in the precedingsections has concerned the ripping ofwell-consolidated rocks and minerals.

    Ripping is also used in other materials and

    applications in order to save the user money,

    do the job faster or more effectively, or even

    as a method to convert unusable land into a

    productive asset at a lower bottom line cost.One such application is the use of large

    track-type tractors for deep ripping inagricultural areas. In many cases, breaking uphardpan under the surface permits formerlynon-productive land to be economicallyplanted.

    Californias San Joaquin Valley, forexample, holds a virtually impermeable layerof clay and iron oxide hardpan up to six feetbelow the surface. Ranging from an inch totwo feet in thickness, this layer prevents deeproot penetration and traps water at the

    surface. By deep ripping, sometimes to adepth of seven feet, this hardpan layer iseffectively shattered.

    Diversity of MaterialsThat Can Be Ripped

    As demand for tillable land increases,deep ripping may prove a solution todwindling supplies in many areas.

    Three of the more common materials

    often ripped besides rock are coal or lignite,concrete, and asphalt or blacktop paving.These materials are somewhat easily ripped,but special considerations are involved inorder to maintain maximum production. Inany case, wherever such materials can beripped, it is usually cheaper to rip them thanto loosen and break them up by other means.

    Old concrete, usually six to eight inchesthick, can usually be effectively broken with asingle shank ripper. A ripper in this case isespecially effective in severing steelreinforcing rods or wire which can poseloading and removal problems.

    Most asphalt surfacing and other types ofblacktop paving are easily torn up with aripper, usually a multishank. Although the

    nature of the materials varies, at times thesesurfaces can be ripped with multishankrippers mounted on track-type loaders ormotor graders.

    Although procedures and methods forripping rock can also be applied to rippingcoal, additional attention is required due to itsunusual properties.

    Some people use very long shanks in coalor lignite ripping and make repetitive passeseach about two feet (0.6m)deeper than thepreceding one. Leach pads have also become

    an important ripping tractor opportunity.Deep ripping of the pads loosens materialwhich in turn improves the leaching process.Custom deep rip multishank rippingpackages are available on D9 D11 formaximum production and efficiency.

    Frozen Ground Ripping

    Another application seen increasinglymore often is the ripping of frozen ground.

    Frozen ground used to bring wintertime jobsto a standstill, especially in the northern U.S.,Canada, and Alaska. With current rippingtractor technology, however, few frozen soilsor subsoils exist which cannot be ripped.Generally, if the material can be ripped inwarm weather it can be ripped when frozen,although at lower production rates.

    Leach pads have become an importantripping tractor opportunity.

    Summary

    Ripping is often used in materials andapplications other than rock to save costand time, and increase efficiency. ContactCustom Products or your local dealer forspecial ripping applications.

    Special Ripping Applications

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    25/32

    SEISMIC VELOCITY (in feet per second x 1000)

    1 2

    SEISMIC VELOCITY (in meters per second x 1000)

    PRODUCTION(bm/

    hour)

    3

    PRODUCTION(BCY/hour)

    2500

    3

    2000

    1750

    1500

    1250

    1000

    750

    500

    250

    2000

    1500

    1000

    500

    0

    4 5 6 7 8

    IDEAL

    ADVERSE

    SEISMIC VELOCITY (in meters per second x 1000)

    3250

    3000

    2750

    2500

    2250

    2000

    1750

    1500

    1250

    1000

    750

    500

    250

    2 3 4 5 6 7 8 9

    SEISMIC VELOCITY (in feet per second x 1000)1 2

    PRODUCTION(BCY/hour)

    PRODUCTION(bm/

    hour)

    3

    IDEAL

    ADVERSE

    2500

    2250

    2000

    1750

    1500

    1250

    1000

    500

    250

    750

    3250

    3000

    2750

    2500

    2250

    2000

    1750

    1500

    1250

    1000

    750

    500

    250

    2 3 4 5 6 7 8

    SEISMIC VELOCITY (in feet per second x 1000)1 2

    SEISMIC VELOCITY (in meters per second x 1000)

    PRODUCTION(BC

    Y/hour)

    PRODUCTION(bm/

    hour)

    3

    IDEAL

    ADVERSE

    2500

    2250

    2000

    1750

    1500

    1250

    1000

    500

    250

    750

    5000

    2 3 4 5 6 7 8

    SEISMIC VELOCITY (in feet per second x 1000)1 2

    SEISMIC VELOCITY (in meters per second x 1000)

    PRODUCTIO

    N(BCY/hour)

    PRODUCTION(bm/

    hour)

    3

    4000

    3000

    2000

    1000

    9 10

    3750

    3000

    2250

    1500

    750

    3

    IDEAL

    ADVERSE

    25

    D8R with Single Shank

    D9R with Single Shank

    D10R with Single Shank

    D11R with Single Shank

    Ripping costs must be compared to othermethods of loosening material usuallydrilling and blasting on a cost per ton or

    bank cubic yard (BCY) or bank cubic meter

    (BCM) basis. (See density charton page 26 to

    transfer between bank cubic yards and tons.)

    Thus, an accurate estimate of ripping

    production is needed to determine unit ripping

    costs.

    Estimating Ripper Production

  • 8/3/2019 Handbook of Ripping 12ed CAT

    26/32

    There are three general methods ofestimating ripping production:

    1. The most widely used and acceptedmethod is to survey and cross-section the areaand then record the time spent ripping. Afterthe material has been removed, cross-sectionthe area again to determine the volume of rockremoved. The volume divided by the time spentripping gives the ripping rate in terms of bankcubic yards or bank cubic meters per hour.

    2.Another method is to record the timespent by scrapers or trucks. Total quantity andtime required can be converted to productionin tons, bank cubic yards, or bank cubicmeters per hour.

    3. The third method (if a study isunavailable) is using a production rippingformula for quick estimating on the job. Byknowing the ripping distance, rip spacing,and depth of penetration, volume per cyclecan be calculated. From this, production in

    BCY (BCM) can be determined. Experiencehas shown results obtained from this methodare about 10 to 20 percent higher than themore accurate methods of weighing or cross-sectioning. See the latest edition of theCaterpillar Performance Handbook for moredetailed information.

    Considerations for usingproduction estimatinggraphs

    Machine rips full-time no dozingPower shift tractors with single shank

    rippers100% efficiency (60 min/hour) Charts are for all classes of material In igneous rock with seismic velocity of

    8000 fps or higher for the D10, and6000 fps or higher for the D9 and D8, the

    production figures shown should bereduced by 25%.

    Upper limit of charts reflect ripping underideal conditions only. If conditions such asthick lamination, vertical lamination or anyfactor which would adversely affectproduction are present, the lower limitshould be used.

    Ripping CostsThe required production rate and cost per

    bank cubic yard (BCY) or bank cubic meter(BCM) are the determining factors as to whatmethod should be used to get solid materialsinto movable form. The advantage of the largeripping tractor over drilling and blasting is itsability to loosen many materials faster and atslower cost per yard (meter). To moreprecisely evaluate this advantage, itsnecessary to know the methods used to figureripping costs on a per unit basis. (SeeDensity Chartto transfer between bankcubic yards and tons.)

    The method of determining owning andoperating costs for a ripping tractor issubstantially the same as for any other tractor.There is the purchase price of the tractor andattachments, plus delivery costs to the jobsite.Ripping tractors usually are equipped withextreme service track shoes and additionalguarding. Also include taxes, insurance,

    depreciation and other fixed owning costs.The principal difference whenconsidering a ripping tractor versus a dozingtractor is the amount charged for repairs andthe replacement of ground engaging toolssuch as ripper tips, shank protectors, cuttingedges, etc.

    Ripping and dozing hard rock isunquestionably one of the most difficult anddemanding jobs a track-type tractor can do.

    Consequently, higher repair costs must beexpected. See Performance Handbook forgeneral cost estimating techniques.

    Density Chart

    26

    Approximate Densities TON/YD3 TONNES/Y___________________________________________

    Limestone 2.0 2.2 2.37 2.6

    Dolomite & marble 2.3 2.35 2.72 2.7Chalky lime 1.8 2.0 2.13 2 .6

    Coquina (corals) 1.5 1.8 1.77 2.1

    Sandstone (strong) 1.8 2.2 2.13 2.6

    Weak sandstone 1.7 1.8 2.01 2.1

    Tar sands 2.4 2.8 2.84 3.3

    Quartzites 2.2 2.3 2.60 2.7

    Conglomerates 2.1 2.2 2.48 2.6

    Shales 2.2 2.3 2.60 2.7

    Slates 2.3 2.72

    Gypsum 1.9 1.95 2.25 2.3

    Anhydri te 2.4 2.5 2.84 2.9

    Gneiss 2.3 2.8 2.72 3.3

    Granite 2.2 2.4 2.60 2.8

    Basalt 2.2 2.4 2.60 2.8

    Dark igneous 2.6 2.8 3.07 3.3

    Coal 1.2 1.42

    Conversions:

    One U.S. Ton = .9 Metric Ton One Yd3 = .765 Mete

    Summary

    An accurate estimate of rippingproduction is needed to determine unitripping costs. The most accurate costestimates are obtained by conducting on-site ripping job studies.

    Estimating Ripper Production

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    27/32

    Because of the improvements in rippingtractor capabilities, a viable alternativeto blasting exists. As mentioned before,

    environmental factors will undoubtedly play

    an important role in reaching this decision.For example, in an urban area there may

    be restrictions prohibiting the use ofexplosives, making ripping a necessity.Political factors or the threat of terrorism

    severely restrict the use of explosives in somecountries. But in most situations, where thereis equal opportunity for the use of eithermethod, the first consideration is probablyone of cost will it be cheaper to rip orblast? This initial-cost consideration mustthen be weighed with other influencingfactors: the economics of fully utilizingequipment; the end use of the material; andtransporting and loading methods.

    Full utilization of the equipmentavailable or already on the job can help

    determine the best method of loosening thematerial. This is because many earthmovingjobs already involve track-type tractors andscrapers for a sizable portion of the totalyardage. If this equipment can be used tofinish the job rather than bring in a rockcrew with drills, explosives, loaders andhauling units its not difficult to appreciatethe savings involved. Its soon apparent thatconsiderable effort can be expended to ripthe material in order to keep scrapers on thejob.

    End-use of the materialalsoinfluences the ripping vs. blasting decision.There are few size limitations when the rockis simply moved by a bulldozer and wasted.If the material is used to form anembankment, however, very definitelimitations are usually placed upon the size

    of the rocks to be accepted. Optimumcompaction cannot be obtained if there arelarge rocks in the fill.

    Variations in ripping depth, spacing, anddirection of passes usually can produce the

    desired material size. Blasting is at timesunpredictable, as the desired rockfragmentation may be difficult to obtain andeven require expensive secondary blasting(in effect, reblasting). Appreciable increasesin crusher production have been realized bycement plants and aggregate quarries afterswitching from a blasting to a rippingoperation.

    The final comparison of ripping vs.blasting can be made in terms ofhow thematerial is to be moved.As we stated, dozed

    material presents few problems. Material toploaded into hauling units cannot be largerthan the loading bucket.

    Scrapers can inexpensively haul materialswhich are well broken up and loosened.Elevating loaders and conveyors are highcapacity systems. Their greatest advantage

    high production can be achieved only if thematerial is in small pieces and easy tohandle. Generally, ripping is the most cost-effective method to achieve theserequirements.

    A cost analysis will indicate theeconomics of ripping over drilling blasting.This ample comparison indicates how rippertip life is an important factor in decipheringthe production needed for ripping to be cost

    effective. Ripper tips are the most expensivevariable in the operating costs of rippingtractors, accounting for approximately 30 to40 percent of total operating costs on thelargest tractors.

    In the final analysis, a ripping vs. blastingdecision will depend on the total volume ofmaterial to be loosened and moved, on theproduction capabilities and costs of theripping tractor(s) used, and on the size andrelative efficiency of drilling and blasting

    techniques.

    27

    Summary

    The initial-cost consideration betweenripping or blasting must be weighted withother factors: the economics of fullyutilizing equipment; the end use of thematerial; and transportation and loadingmethods.

    End-use of the material is an important

    factor in determining whether to rip or blast.

    Ripping vs. Drilling and Blasting

  • 8/3/2019 Handbook of Ripping 12ed CAT

    28/32

    The topic of ripper compatibility betweenvarious tractors generates questions andconcerns. The following information serves as

    a basic reference for ripper compatibility.

    The D11R (Serial Number 7PZ) SingleShank and Multishank Ripper Arrangementsare interchangeable with the D11R (SerialNumber 9TR).

    The D11R Carrydozer (Serial Number AAF)Single Shank and Multishank RipperArrangements are interchangeable with theD11R Carrydozer (Serial Number 9XR).

    The D11R (Serial Number 9TR) SingleShank and Multishank Ripper Arrangementsare not recommended for use on the D11R(Serial Number 8ZR) or the D11N (SerialNumber 4HK). The pitch cylinders aredifferent in length and stroke and arepinned to the tractor rather than usingtrunnion ball mountings.

    The D11R (Serial Number 8ZR) SingleShank and Multishank RipperArrangements are interchangeable with theD11N (Serial Number 4HK).

    The D11N Single Shank Ripper Shank doesnot fit on the D10 Ripper. The size of theD11N shank is 110 by 450 mm(43.0" by 177.2"), while the D10 shank is100 by 400 mm (39.4" by 157.5").

    The D11N Multishank Ripper Shank will fiton the D10 Ripper. Both use the sameshank size.

    The D11N Multishank Ripper Shank BeamAssembly will fit on a D11N Tractorequipped with an impact ripper. A singleshank beam assembly will not fit.

    The D10 Single Shank and MultishankRipper is not compatible to the D11NTractor. The mounts are different. TheD10N Pushblock will fit on the D9N Ripperif excess material is burned off.

    The D1OR Single Shank and MultishankRipper Arrangements will fit and can beused on the D1ON.

    The D1ON Single Shank and MultishankRipper Arrangements are notrecommended for use on the D1OR.Mounting groups are different,transmission guards are different, and thesingle shank ripper is a different size crosssection. Also the transmission cannot beserviced or removed without removing theripper frame.

    The D10N Multishank Beam Assembly willfit on a D10N Tractor equipped with animpact ripper. A single shank beam

    assembly will not fit.

    The D9L Multishank Ripper is notrecommended for use on the D10NTractor. In the carry position, the ripper tipcan contact the track on the D10N Tractor.

    The D9L Single Shank Ripper is notrecommended for use on the D10NTractor. Extensive rework is required.

    The D9R Single Shank and Multishank

    Ripper Arrangements are notrecommended for use on the D9N or viceversa. Pitch and lift cylinders are different,as well as hydraulic pressures,transmission guard, and lines group. Ifconversion is a necessity, contact yourlocal dealer.

    The D9L Single Shank Ripper Frame is not

    compatible with the multishank ripperbeam due to different frame requirement

    The D9L conversion from standard to deeripping requires one 3G8567 Tooth Grouone 9W3353 Hydraulic Pin Puller, and on7T4408 Pin Puller Control. The conversiodoes not work on a D9L MultishankRipper.

    The D9L Impact Ripper Beam Assembly inot interchangeable with the D10N TractoImpact Ripper Beam Assembly and viceversa.

    The D9L Multishank Beam Assembly willon a D9L Tractor equipped with an impacripper. A single shank beam assembly wilnot fit.

    The D9H Ripper is not compatible with aSeries N Tractor.

    The D9H Ripper is not recommended foruse on the D8L Tractor. Extensive reworkrequired.

    The D8R Single Shank and MultishankRipper Arrangements are interchangeablwith the D8N with slight modifications tothe lines group.

    The D8K Ripper will fit the D9N Tractor i4Z0511 Adapter Arrangement (CustomProduct) is used.

    The D8K Ripper is not recommended foruse on the D8N Tractor. The ripper mounare different.

    The D8K Single Shank Ripper fits the D8LTractor with use of 4Z0511 AdapterArrangement (Custom Product) and4Z0519 Pin Puller Modification.

    28

    Ripper Compatibility Guidelines

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    29/3229

    The D8K Ripper is not recommended foruse on the D7H Tractor. The fuel tank onthe D7H Tractor is too low.

    The shank block holders for the D8K, D8L,D8N, and D9N Tractors are the same.

    The single shank and multishank D8LRadial Rippers fit directly on the D9NTractor. The ripper teeth areapproximately 305 mm (12") closerto the track, possibly trapping morematerial. Digging depth increases by

    25 mm (1") with the multishank ripperDigging depth decreases 25 mm (1")with the single shank ripper.

  • 8/3/2019 Handbook of Ripping 12ed CAT

    30/3230

    D11R850 fwhp/634 kW230,100 lb/104 590 kg

    D11R Carrydoz850 fwhp/634 kW248,600 lb/113 000 kg

    D10R570 fwhp/425 kW144,986 lb/65 764 kg

    D8R305 fwhp/228 kW82,880 lb/37 594 kg

    D9R405 fwhp/302 kW104,538 lb/47 418 kg

    Short center line

    Short penetration

    Short center line

    Short center line

    Intermediate penetration

    Intermediate penetration

    Short center line

    Intermediate center line

    Short center line

    Short center line

    Intermediate center line

    Short center line

    8.9 ft.2707mm6.4 ft.1958 mm10.7 ft.3267 mm8.2 ft.2490 mm5.9 ft.1799 mm9.8 ft.2977 mm7.6 ft. 2322 mm5.2 ft.1600 mm9.0 ft. 2750 mm6.6 ft.2010 mm5.2 ft.1600 mm8.0 ft.2449 mm

    63.5 in.1612 mm42.1 in.1070 mm85.7 in.2178 mm53.9 in.1370 mm37.0 in.941 mm73.1 in.1857 mm48.6 in.1231 mm31.6 in.798 mm65.3 in.1658 mm44.5 in.1130 mm30.7 in.780 mm62.0 in.1574 mm

    S/S

    M/S

    D/R

    S/S

    M/S

    D/R

    S/S

    M/S

    D/R

    S/S

    M/S

    D/R

    D11R &D11R CD

    D10R

    D9R

    D8R

    Model Ripper Standard Tip Shank Length Penetration (Depth)*

    S/S= Single shank M/S= Multishank D/R= Deep ripping shank

    * Ripper penetration measured at maximum depth with standard tipandshank pinned in tophole.

    Note: This chart does not represent all of the possible configurations. Contact your Cat dealer.

    Caterpillar Track-Type Tractor Specifications

    H A N D B O O K O F R I P P I N G

  • 8/3/2019 Handbook of Ripping 12ed CAT

    31/32

  • 8/3/2019 Handbook of Ripping 12ed CAT

    32/32