h.-g. moser semiconductor laboratory mpi for physics, munich silicon detector systems at flair...

30
H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop Pixel Detectors based on 3D Interconnection Super LHC upgrade ~10 times luminosity ~10 times radiation damage Need for R&D to replace/upgrade the ATLAS inner detector. Especially the pixel detector faces serious challenges due to radiation damage. R&D project: thinned silicon detectors with 3D interconnection -Radiation hardness thin planar detectors -Production costs 3D alternative to bump bonding -Module layout 3D inter silicon vias (increase live fraction) -High performance electronics 3D multi layer electronics

Upload: morris-jacobs

Post on 16-Jan-2016

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Pixel Detectors based on 3D Interconnection

Super LHC upgrade

~10 times luminosity~10 times radiation damage

Need for R&D to replace/upgrade the ATLAS inner detector.Especially the pixel detector faces serious challenges due to radiation damage.

R&D project: thinned silicon detectors with 3D interconnection

-Radiation hardness thin planar detectors-Production costs 3D alternative to bump bonding-Module layout 3D inter silicon vias (increase live fraction)-High performance electronics 3D multi layer electronics

Page 2: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

The Challenge

Expected conditions at LHC and sLHC

LHC:

• Start 2008• L = 1034cm-2s-1

• Integrated Luminosity: 500 fb-1 (10y)• Fluence: 3x1015cm-2 (1 MeV n, 4cm)• Multiplicity: 0.5-1 k tracks/event

sLHC:

• Start 2016• L = 1035cm-2s-1

• Integrated Luminosity: 2500 fb-1 (5y)• Fluence: 1.6x1016cm-2 (1 MeV n, 4cm)• Multiplicity: 5-10 k tracks/event

New detector concepts needed

Page 3: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

The ATLAS Pixel Detector

Main cost driver: Bump bonding !

Present Layout:

-250 m n-in-n pixel sensor-50 x 400 m2 pixels-0.25 m rad hard ASIC-raf hard till 1015 n/cm2

-Live fraction ~71%-Cantilever for readout-Sensor width 2x chip size: 16 mm-Large material overhead

At sLHC:

-Vdep ~ 4200V-Charge collection: ~15%

(at 1016 n/cm2)-High occupancy

Page 4: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

ATLAS sLHC Upgrade R&D

Page 5: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

R&D for a novel pixel detector for SLHC

R&D on thin (O(50m) FZ silicon detectors:Based on well known pixel sensor technology.Can be operated at 1016 n/cm2 (Vdep, Ileak, CCE).

3D interconnection (sensor – electronics; electronics – electronics):

Alternative to bump bonding (fine pitch, potentially low cost?). New possibilities for ASIC architecture (multilayer, size reduction). Optimization of rad. hardness, speed, power. Impact on module design (ultra thin ASICs, top contact, 4-side abuttable).

Can lead to an advanced module design: rad hard with low material budget

Si pixel sensor

BiCMOS analogue

CMOS digital

Page 6: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Motivation for Thin Detectors

T. Lari, Vertex 2004, Como

LHC

After 1016 n/cm2: Vdep > 4000V (250 m) -> operate partially depleted.Large leakage currents.Charge loss due to trapping (mean free path ~ 25 m). le > lh (need n-in-n or n-in-p) to collect electrons.

No advantage of thick detectors ->thin detectors: low Vdep, Ileak (and X0)However: small signal size is a challenge for the readout electronics

Page 7: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Thinning Technology

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special lab

sensor wafer

handle wafer

1. implant backsideon sensor wafer

2. bond sensor waferto handle wafer

3. thin sensor sideto desired thickness

4. process DEPFETson top side

5. structure resist,etch backside upto oxide/implant

Industry: TraciT, GrenobleHLL HLL main lab HLL special labSensor wafer: high resistivity d=150mm FZ wafer.Bonded on low resistivity “handle” wafer”.(almost) any thickness possible

Thin (50 m) silicon successfully produced at MPI.

- MOS diodes.- Small strip detectors.- Mechanical dummies.

-No deterioration of detector properties, keep Ileak <100pA/cm2

Page 8: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Measurements (Vdep, Ileak, CCE)

Fretwurst et al. NIM A 552 (2005):After short term annealing:

Vdep < 100V at 1016 1/cm2.

However, detectors need to be kept cold (reverse annealing!).

Leakage currents: (80oC, 8min) = 2.4 x 10-17 A/cm.

Fretwurst et al. NIM A 552 (2005): MPI diodes, 50 m:

CCE ~ 66% @ 1016 p/cm2

(extrapolated).

Similar to results from epi-material (G.Kramberger):

3200e (62% average), 2400e (60% most prob).

Page 9: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Summary: Thin Detectors

Cannot beat trapping (with planar detectors)! Challenge: small signal! Small pixel size (low capacitance) helps. Electronics R&D.

Keep Vdep low.Keep Ileak low.Reduce X0*.

First results on radiation hardness and CCE encouraging.Can be produced with standard FZ material.Large scale industrial production possible.Thickness can be adapted to radius (fluence) -> parameter!

R&D topics:

Make real pixel detectors.Irradiations, measurement of CCE.Optimize thickness, n-in-n or n-in-p ?Charge sharing.Optimize production process, industrial fabrication.Electronics development: operate at ~1000 e- threshold (50 m)

*) if this is not an issue: backside etching not necessary, simpler fabrication.

Page 10: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

3D Interconnection

Two or more layers (=“tiers”) of thinned semiconductor devices interconnected to form a “monolithic” circuit.

Different layers can be made in different technology (BiCMOS, deep sub- CMOS, SiGe,…..).

3D is driven by industry:Reduces R,L and C.Improves speed.Reduces interconnect power, x-talk.Reduces chip size.Each layer can be optimized individually.

For HEP: sensor layer: fully depleted SiExample: 2-Tier CMOS Sensor, 1024 x 1024 pixel, pitch 8 m by MIT-Lincoln Lab

Page 11: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

World Wide Interest in 3D

R. Yarema (Fermilab)

3D is discussed in the ITRS (International Technology Roadmap for Semiconductors) as an approach to improve circuit performance and permit continuation of Moore’s Law.

R&D driven by industry.Different approaches (solder, SOI, epoxy).

MPI will work with Fraunhofer IZM, Munich.

Page 12: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

IBM Press Release

Page 13: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Two Different 3D Approaches

Wafer to Wafer bonding

• Must have same size wafers

• Less material handling but lower overall yield

Die to Wafer bonding

• Permits use of different size wafers

• Lends itself to using KGD (Known Good Die) for higher yields

KGD

Dice/test

Die to Wafer Wafer to Wafer

IZM offers Die to Wafer processing -> optimal for prototyping

Page 14: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

IZM chip to wafer concept

Page 15: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

IZM SLID Process

•Alternative to bump bonding (less process steps “low cost” (IZM)).•Small pitch possible (<< 20 m, depending on pick & place precision).•Stacking possible (next bonding process does not affect previous bond).•Wafer to wafer and chip to wafer possible.

Page 16: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Through Silicon Vias

•Hole etching and chip thinning•Via formation with W-plugs.•Face to face or die up connections.•2.5 Ohm/per via (including SLID).•No significant impact on chip performance (MOS transistors).

ICV = Inter Chip Vias

Page 17: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Multilayer electronics:

Split analogue and digital partUse different, individually optimized technologies:

-> gain in performance, power, speed, rad-hardness, complexity.-> smaller area (reduce pixel size or more functionality).

4-side abuttable devices:

-> no dead space.-> simpler module layout.-> larger modules.

(reduce complexity and material)

Advantages of 3D

50 x 400 m2

(0.25 m)May shrink to~ 50 x 50 m2

(130 nm)

400 m

50 m

50

m

50 m

Conventional CMOS sensor(optical, similar: MAPS)

Page 18: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Advantages for Module Design

Control on top of pixel area.External contact from top.Contact pixels through vias:-> 4-side buttable.-> No “cantilever” needed.

Larger module with minimal dead space.

Less support structures & services.Substantial material savings.

Pixel area(facing sensor)

PeripheryPipeline and controlBond pads(cantilever)

Page 19: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Advantages even for single layer

Make use of smaller feature size (gain space)-> move periphery in between pixels (can keep double column logic)-> backside contacts with vias possible-> no cantilever needed, 4-side abuttable

Periphery, column logic, services

Pixel area

Conventional Layout 3D Layout

Page 20: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Conceptual Module Design

“Designer’s dream”

Two layer chip (“analogue” and “digital” layer)Connected to thin detector using SLID

small pixel size small pitch

Low material budget: 4-side abuttable ASICs large live fraction (-> 100%)larger modulesless services and material overhead

further advantages if used with edgeless sensors

Cooling pipeSupport/heat spreader (Carbon/TPG?)Thinned sensor/frameMultilayer chipFlex-busModule control/data link

Page 21: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Proposed R&D Program

a) Test interconnection process with diode test structures

b) Build demonstrator using ATLAS pixel chip and pixel sensors made by MPI

R&D Issues:

• Technology: compatible with sensors, ASICs?

• Interconnection quality: e.g. capacitance (face-to-face or die up?).

• Yield & Costs.

• Production in industry. • Reduce material (copper

layer).

Page 22: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Status & Plans

Diode Test wafers processed at IZM -Preparation for SLID process-Diffusion barriers & Cu layers

Diode properties unchangedNext step: thermal treatment (SLID)

Production of thin pixel detectorsATLAS footprint, single chip size:Summer 2007-includes test structures for irradiations (diodes, strips, small pixel arrays)

Connection of wafer & ATLAS pixel chip using SLID: 2008

Full demonstrator (thinning, SLID, ICV): 2009

Electronics R&D pending

Page 23: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

R&D at Fermilab

D FF

X, Y line control

Token passing logic

Test inputcircuit

OR, SR FF

b0

b1

b2

b3

b4

Analog T. S.

IntegratorDiscriminator

DCS + Readout

Schmitt Trigger+NO

R

Pad foredgeless detector

High resistivity substrate

20 um

3 Tier readout chip for ILC – R. YaremaSubmitted at MIT Lincoln LabNo Sensor yet!

Page 24: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Summary

3D interconnection offers a solution for highly integrated, complex, high performance pixel detectors

-Could be used with many sensor types (planar, 3D, DEPFET,………)

-Can combine different ASIC technologies

-Backside-connection of 4-side abuttable chips

-Thinning of ASICs is basic ingredient -> low mass!

-R&D driven by industry -> potentially cost effective solutions

-Several HEP groups started to look into 3D (Fermilab, MPI)

-MPI started a R&D program for the ATLAS sLHC upgrade:

3D interconnection using IZM SLID and ICV processesThin FZ sensors (“standard” pixel sensors optimized for SLHC).3D Interconnection is an option for other sensor types (e.g. 3D detectors).Inviting collaborators (especially ASIC experts)

Page 25: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Copper

ILD 5-7 µm

IsolationTungsten Plug

Si 10 µm

Passivation

Alloy

Radiation Length - SLID-ICV

X0 of

Si: 9.36cm,W: 0.35cm, Cu: 1.43 cm, Sn: 1.21 cm

assuming: -: pixel 50x50 µm2, 3 tiers r/o

then material per pixel:

sensor -: 50…100 µm SiSi r/o -: 3x20 µm 60 µm Si3x ICVs, W -: 20 µm deep, Φ 4 µm 8 µm Si3x contact Cu: A=100 µm2, t=6 µm, 5 µm Si3x contact Sn: A=100 µm2, t=2 µm, 2 µm Si___________________________________________

material per pixel 125…175 µm Si

0.12-0.16% X0

Page 26: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Face-to-Face SOLID Process (IFX)

Top chipCu and Sn coating

Bottom chipCu coating, bond pads

No underfill

Inter chip vias15 x 15 µm² 5 µm vias to LM

Redistribution

Insulation trenches15 µm

Passive areaheat spreader

External IOsstandard wire bonds

Status of the project: Process defined, tooling exists (Datacon, EVG), ready for produtionunfortunately, Mr. Huebner is now with Qimonda and they don't make chipcards…

Page 27: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

Comparison of Solder ProcessesComparison of Solder Processes

FBGA

Metallization and solder apply

SOLID

Metallization and solder apply

Pick & place (no flux)

Soldering

1st step

2nd step

3rd step

4th step

Reflow

Pick & place (flux)

Soldering

Page 28: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

R&D at MIT Lincoln Lab

Page 29: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

R&D at MIT Lincoln Lab

Page 30: H.-G. Moser Semiconductor Laboratory MPI for Physics, Munich Silicon Detector Systems at Flair Workshop GSI 18-20 Apr. 2007 Pixel Detectors based on 3D

H.-G. MoserSemiconductor

LaboratoryMPI for Physics,

Munich

Silicon Detector Systems at Flair

WorkshopGSI 18-20 Apr.

2007

R&D at MIT Lincoln Lab