guia 2 redes

24
GUIA REDES 2 DIEGO ALBEIRO LÓPEZ TECNICO EN SISTEMAS CEET (Centro de electricidad electrónica y telecomunicaciones) BOGOTA D.C.

Upload: deko

Post on 04-Jun-2015

417 views

Category:

Technology


0 download

TRANSCRIPT

Page 1: Guia 2 REDES

GUIA REDES 2

DIEGO ALBEIRO LÓPEZ

TECNICO EN SISTEMAS

CEET

(Centro de electricidad electrónica y telecomunicaciones)

BOGOTA D.C.

2010

Page 2: Guia 2 REDES

PROTOBOARD

PRESENTADO POR:

DIEGO ALBEIRO LÓPEZ

TECNICO EN SISTEMAS

CEET

(Centro de electricidad electrónica y telecomunicaciones)

MAURICIO CENDALES

(Instructor)

PROYECTO

BOGOTA D.C.

2010

Page 3: Guia 2 REDES

1. Consultas:

QUE SON REDES: es un conjunto de equipos conectados por medio de cables, señales, ondas o cualquier otro método de transporte de datos, que comparten información (archivos), recursos (CD-ROM, impresoras, etc.), servicios (acceso a internet, e-mail, chat, juegos), etc. incrementando la eficiencia y productividad de las personas. Una red de comunicaciones es un conjunto de medios técnicos que permiten la comunicación a distancia entre equipos autónomos (no jerárquica -master/slave-). Normalmente se trata de transmitir datos, audio y vídeo por ondas electromagnéticas a través de diversos medios (aire, vacío, cable de cobre, cable de fibra óptica, etc.).

CLASIFICACION DE LAS REDES:

Por alcance o extensión: Red de área personal (PAN): es una red de computadoras para la

comunicación entre distintos dispositivos (tanto computadoras, puntos de acceso a internet, teléfonos celulares, PDA, dispositivos de audio, impresoras) cercanos al punto de acceso. Estas redes normalmente son de unos pocos metros y para uso personal, así como fuera de ella.

Red de área local (LAN): es la interconexión de varias computadoras y periféricos. Su extensión está limitada físicamente a un edificio o a un entorno de 200 metros, o con repetidores podría llegar a la distancia de un campo de 1 kilómetro. Su aplicación más extendida es la interconexión de computadoras personales y estaciones de trabajo en oficinas, fábricas, etc., para compartir recursos e intercambiar datos y aplicaciones. En definitiva, permite una conexión entre dos o más equipos.

Red de área de campus (CAN): es una red de computadoras que conecta redes de área local a través de un área geográfica limitada, como un campus universitario, o una base militar. Puede ser considerado como una red de área metropolitana que se aplica específicamente a un ambiente universitario. Por lo tanto, una red de área de campus es más grande que una red de área local, pero más pequeña que una red de área amplia.

Red de área metropolitana (MAN): Es una red de alta velocidad (banda ancha) que dando cobertura en un área geográfica extensa, proporciona capacidad de integración de múltiples servicios mediante la transmisión de datos, voz y vídeo, sobre medios de transmisión tales como fibra óptica y par trenzado (MAN BUCLE).

Red de área amplia (WAN): se extiende sobre un área geográfica extensa, a veces un país o un continente, y su función fundamental está orientada a la interconexión de redes o equipos terminales que se encuentran ubicados a grandes distancias entre sí. Para ello cuentan con una infraestructura basada en poderosos nodos de conmutación que llevan a cabo la

Page 4: Guia 2 REDES

interconexión de dichos elementos, por los que además fluyen un volumen apreciable de información de manera contínua.

Red de área de almacenamiento (SAN): s una red concebida para conectar servidores, matrices (arrays) de discos y librerías de soporte. Principalmente, está basada en tecnología fibre channel y más recientemente en iSCSI. Su función es la de conectar de manera rápida, segura y fiable los distintos elementos que la conforman. una red SAN se distingue de otros modos de almacenamiento en red por el modo de acceso a bajo nivel. El tipo de tráfico en una SAN es muy similar al de los discos duros como ATA,SATA y SCSI. En otros métodos de almacenamiento, (como SMB o NFS), el servidor solicita un determinado fichero, p.ej."/home/usuario/rocks". En una SAN el servidor solicita "el bloque 6000 del disco 4". La mayoría de las SAN actuales usan el protocolo SCSI para acceder a los datos de la SAN, aunque no usen interfaces físicas SCSI.

c) COMPONENTES:

Servidor: este ejecuta el sistema operativo de red y ofrece los servicios de red a las estaciones de trabajo.

Estaciones de Trabajo: Cuando una computadora se conecta a una red, la primera se convierte en un nodo de la ultima y se puede tratar como una estación de trabajo o cliente. Las estaciones de trabajos pueden ser computadoras personales con el DOS, Macintosh, Unix, OS/2 o estaciones de trabajos sin discos.

Tarjetas o Placas de Interfaz de Red: Toda computadora que se conecta a una red necesita de una tarjeta de interfaz de red que soporte un esquema de red específico, como Ethernet, ArcNet o Token Ring. El cable de red se conectara a la parte trasera de la tarjeta.

Page 5: Guia 2 REDES

Conectores LocalTalk: Se utilizan para ordenadores Mac, conectándose al puerto paralelo. En comparación con Ethernet la velocidad es muy baja, de 230KB frente a los 10 o 100 MB de la primera.

Tarjetas Token Ring: Son similares a las tarjetas Ethernet aunque el conector es diferente. Suele ser un DIN de nueve pines. Concentradores o Hub: Un concentrador o Hub es un elemento que

provee una conexión central para todos los cables de la red. Los hub son "cajas" con un número determinado de conectores, habitualmente RJ45

más otro conector adicional de tipo diferente para enlazar con otro tipo de red.

Repetidores: Cuando una señal viaja a lo largo de un cable va perdiendo "fuerza" a medida que avanza. Esta pérdida de fuerza puede desembocar en una pérdida de información. Los repetidores amplifican la señal que reciben permitiendo así que la distancia entre dos puntos de la red sea mayor que la que un cable solo permite.

Bridges: Los bridges se utilizan para segmentar redes grandes en redes más pequeñas. De esta forma solo saldrá de la red pequeña el tráfico

Page 6: Guia 2 REDES

destinado a otra red pequeña diferente mientras que todo el tráfico interno seguirá en la misma red. Con esto se consigue una reducción del tráfico de red.

Routers: Un router dirige tráfico de una red a otra, se podría decir que es un bridge súper inteligente ya que es capaz de calcular cual será el destino más rápido para hacer llegar la información de un punto a otro. Es capaz también de asignar diferentes preferencias a los mensajes que fluyen por la red y enrutar unos por caminos más cortos que otros así como de buscar soluciones alternativas cuando un camino está muy cargado.

Cortafuegos o Firewalls: Un firewall es un elemento de seguridad que filtra el tráfico de red que a él llega. Con un cortafuegos podemos aislar un ordenador de todos los otros ordenadores de la red excepto de uno o varios que son los que nos interesa que puedan comunicarse con él.

Sistema de Cableado: El sistema de la red está constituido por el cable utilizado para conectar entre si el servidor y las estaciones de trabajo.

Recursos y Periféricos Compartidos: Entre los recursos compartidos se incluyen los dispositivos de almacenamiento ligados al servidor, las unidades de discos ópticos, las impresoras, los trazadores y el resto de equipos que puedan ser utilizados por cualquiera en la red.

d) QUE ES TOPOLOGÍA DE RED: se define como la cadena de comunicación usada por los nodos que conforman una red para comunicarse. Un ejemplo claro de esto es la topología de árbol, la cual es llamada así por su apariencia estética, por la cual puede comenzar con la inserción del servicio de internet desde el proveedor, pasando por el router, luego por un switch y este deriva a otro switch u otro router o sencillamente a los hosts (estaciones de trabajo), el resultado de esto es una red con apariencia de árbol porque desde el primer router que se tiene se ramifica la distribución

Page 7: Guia 2 REDES

de internet dando lugar a la creación de nuevas redes o subredes tanto internas como externas.

e) INTERREDES: una Interred es un sistema de comunicación compuesto por varias redes que se han enlazado juntas para proporcionar unas posibilidades de comunicación ocultando las tecnologías y los protocolos y métodos de interconexión de las redes individuales que la componen. Estas son necesarias para el desarrollo de sistemas distribuidos abiertos extensibles. En ellas se puede integrar una gran variedad de tecnología de redes de área local y amplia, para proporcionar la capacidad de trabajo en red necesaria para cada grupo de usuario. Así, las intercedes aportan gran parte de los beneficios de los sistemas abiertos a las comunicaciones de los sistemas distribuidos.

f) RED LOCAL Y EXTENDIDA:

RED LOCAL: llevan mensajes a velocidades relativamente grande entre computadores conectados a un único medio de comunicaciones: un cable de par trenzado. Un cable coaxial o una fibra óptica. Un segmento es una sección de cable que da servicio y que puede tener varios computadores conectados, el ancho de banda del mismo se reparte entre dichas computadores. Las redes de área local mayores están compuestas por varios segmentos interconectados por conmutadores (switches) o concentradores (hubs).

RED EXTENDIDA: estas pueden llevar mensajes entre nodos que están a menudo en diferentes organizaciones y quizás separadas por grandes distancias, pero a una velocidad menor que las redes LAN. El medio de comunicación está compuesto por un conjunto de círculos de enlazadas mediante computadores dedicados, llamados rotures o encaminadores. Esto gestiona la red de comunicaciones y encaminan mensajes o paquetes hacia su destino.

g) PROTOCOLOS DE RED:

Conjunto de normas que regulan la comunicación (establecimiento, mantenimiento y cancelación) entre los distintos componentes de una red informática. Existen dos tipos de protocolos: protocolos de bajo nivel y protocolos de red. Los protocolos de bajo nivel controlan la forma en que las señales se transmiten por el cable o medio físico. En la primera parte del curso se estudiaron los habitualmente utilizados en

Page 8: Guia 2 REDES

redes locales (Ethernet y Token Ring). Aquí nos centraremos en los protocolos de red. Los protocolos de red organizan la información (controles y datos) para su transmisión por el medio físico a través de los protocolos de bajo nivel.

Cómo Trabaja TCP/IP: TCP/IP opera a través del uso de una pila. Dicha pila es la suma total de todos los protocolos necesarios para completar una transferencia de datos entre dos máquinas (así como el camino que siguen los datos para dejar una máquina o entrar en la otra). La pila está dividida en capas, como se ilustra en la figura siguiente:

EQUIPO SERVIDOR O CLIENTE

Capa deAplicaciones

Cuando un usuario inicia una transferencia de datos,esta capa pasa la solicitud a la Capa de Transporte.

Capa deTransporte

La Capa de Transporte añade una cabecera y pasalos datos a la Capa de Red.

Capa deRed

En la Capa de Red, se añaden las direcciones IP deorigen y destino para el enrrutamiento de datos.

Capa deEnlace de Datos

Ejecuta un control de errores sobre el flujo de datosentre los protocolos anteriores y la Capa Física.

CapaFísica

Ingresa o engresa los datos a través del medio físico,que puede ser Ethernet vía coaxial, PPP vía módem, etc.

Existen muchos protocolos. A pesar de que cada protocolo facilita la comunicación básica, cada uno tiene un propósito diferente y realiza distintas tareas.

Algunos protocolos sólo trabajan en ciertos niveles OSI. El nivel al que trabaja un protocolo describe su función. Por ejemplo, un protocolo que trabaje a nivel físico asegura que los paquetes de datos pasen a la tarjeta de red (NIC) y salgan al cable de la red.

Los protocolos también puede trabajar juntos en una jerarquía o conjunto de protocolos. Al igual que una red incorpora funciones a cada uno de los niveles del modelo OSI, distintos protocolos también trabajan juntos a distintos niveles en la jerarquía de protocolos. Los niveles de la jerarquía de protocolos se corresponden con los niveles del modelo OSI.

Page 9: Guia 2 REDES

- JERRAQUIAS DE RED: Una jerarquía de protocolos es una combinación de protocolos. Cada nivel de la jerarquía especifica un protocolo diferente para la gestión de una función o de un subsistema del proceso de comunicación. Cada nivel tiene su propio conjunto de reglas. Los protocolos definen las reglas para cada nivel en el modelo OSI: Los niveles inferiores en el modelo OSI especifican cómo pueden conectar los fabricantes sus productos a los productos de otros fabricantes, por ejemplo, utilizando NIC de varios fabricantes en la misma LAN. Cuando utilicen los mismos protocolos, pueden enviar y recibir datos entre sí. Los niveles superiores especifican las reglas para dirigir las sesiones de comunicación (el tiempo en el que dos equipos mantienen una conexión) y la interpretación de aplicaciones. A medida que aumenta el nivel de la jerarquía, aumenta la sofisticación de las tareas asociadas a los protocolos.

2. DIFERENTES TOPOLOGÍAS:

BUS

Page 10: Guia 2 REDES

ESTRELLA

MIXTA

ANILLO

DOBLE ANILLO

ARBOL

MALLA PARCIAL

Page 11: Guia 2 REDES

3. TIPOS DE REDES:

RED LAN Y METROPOLITANA:

ROUTER CON WIRELESS:

TIPOS DE CABLES PARA CONEXIÓN A INTERNET YA SEAN DIRECTOS O CRUZADAS (COAXIAL, FIBRA, UTP):

MALLA TOTALMENTE CONEXA

TARJETA DE RED INALAMBRICA

ROUTER INALÁMBRICO

CÁMARA ID

Page 12: Guia 2 REDES

4. MODELO OSI:

El Modelo de Referencia de Interconexión de Sistemas Abiertos, conocido mundialmente como Modelo OSI (Open System Interconnection), fue creado por la ISO (Organización Estándar Internacional) y en él pueden modelarse o referenciarse diversos dispositivos que reglamenta la ITU (Unión de Telecomunicación Internacional), con el fin de poner orden entre todos los sistemas y componentes requeridos en la transmisión de datos, además de simplificar la interrelación entre fabricantes. Así, todo dispositivo de cómputo y telecomunicaciones podrá ser referenciado al modelo y por ende concebido como parte de un sistema interdependiente con características muy precisas en cada nivel.

CABLES DE RED

CABLE UTP Y STP

FIBRA ÓPTICA

CABLE DE RED, ÓPTICA PONCHADA

Page 13: Guia 2 REDES

5. CONSULTAS:

REDES INALAMBRICAS:

Ventajas redes inalámbricas:

* No existen cables físicos.* Es más baratas.* Gran movilidad dentro del alcance de la red (las redes hogareñas inalámbricas suelen tener hasta 100 metros de la base transmisora).*Más facilidad de instalación.

Desventajas redes inalámbricas.

Todavía no hay estudios certeros sobre la peligrosidad (o no) de las radiaciones utilizadas en las redes inalámbricas.

Más inseguras, ya que cualquiera cerca podría acceder a la red inalámbrica. Se les puede agregar la suficiente seguridad como para que sea difícil hackearlas.

EVOLUCION:

Page 14: Guia 2 REDES

Los expertos empezaban a investigar en las redes inalámbricas hace ya más de 30 años. Los primeros experimentos fueron de la mano de uno de los grandes gigantes en la historia de la informática, IBM.

En 1979 IBM publicaba los resultados de su experimento con infrarrojos en una fábrica suiza. La idea de los ingenieros era construir una red local en la fábrica. Los resultados se publicaron en el volumen 67 de los Proceeding del IEEE y han sido considerados como el punto de partida en la línea evolutiva de las redes inalámbricas.

Las siguientes investigaciones se harían en laboratorios, siempre utilizando altas frecuencias, hasta que en 1985 la Federal Communication Comission asigna una serie de bandas al uso de IMS (Industrial, Scientific and Medical). La FCC es la agencia federal de EEUU encargada de regular y administrar en telecomunicaciones.

Esta asignación se tradujo a una mayor actividad en la industria y la investigación de LAN (red inalámbrica de alcance local) empezaba a enfocarse al mercado. Seis años más tarde, en 1991, se publicaban los primeros trabajos de LAN propiamente dicha, ya que según la norma IEEE 802 solo se considera LAN a aquellas redes que transmitan al menos a 1 Mbps

La red inalámbrica de alcance local ya existía pero su introducción en el mercado e implantación a nivel doméstico y laboral aun se haría esperar unos años. Uno de los factores que supuso un gran empuje al desarrollo de este tipo de red fue el asentamiento de Laptops y PDA en el mercado, ya que este tipo de producto portátil reclamaba más la necesidad de una red sin ataduras, sin cables

CONFLUENCIA TECNOLÓGICA

En este contexto, la previsión más realista, que también podría ser tachada de conservadora, apunta a una confluencia de ambas tecnologías: una red en la que coexistirá la radio y el cable y que, incluso la dualidad/antagonismo entre cable y radio aparecerá como algo transparente al usuario en el sentido de que sólo percibirá "la red", una red sin costuras en la que el cable y el radio convivirán para proporcionar cada una de las partes sus puntos fuertes,

Page 15: Guia 2 REDES

complementándose para conseguir soluciones óptimas en cada entorno.

En definitiva, precio, prestaciones y normas son los tres factores que, combinados, determinarán realmente la evolución del mercado de las WLAN: para que estos productos tengan el éxito necesario o lo que es lo mismo, para hablar de crecimientos desde una posición realista. Las WLAN tienen que presentar la misma capacidad y calidad de servicio al usuario que sus homólogas cableadas o, por lo menos, si no la misma, comparable.

De momento, las prestaciones de las WLAN se encuentran bastante por debajo de sus homólogas cableadas. Las WLAN trabajan a una décima parte de la velocidad de las LAN convencionales, entre 1,5 y 2 Mbps En particular, la mayor parte de fabricantes afirman haber conseguido velocidades de 2 Mbps en la banda de 2,45 GHz con una filosofía Ethernet. El próximo hito lo sitúan en 10 Mbps en base a mejoras de carácter incremental.

En lo que se refiere a este aspecto de una evolución de carácter incremental es importante destacar que se está observando actualmente una tendencia que, en algún momento, podría suponer una ruptura de la evolución de la tecnología de redes locales inalámbricas.

Cuando el modelo evolutivo de la tecnología está fuertemente marcado por el "technology push", es decir, cuando son los avances tecnológicos los que generan mercados, el modelo puede presentar discontinuidades y producirse rupturas con las secuencias tecnológicas anteriores correspondientes a un modelo evolutivo lineal, caracterizado por avances incrementales motivados por una preponderancia del "market pull". Esta ruptura vendría dada por la tecnología ATM, con la que se podrían llegar a conseguir, según parece, hasta 20 Mbps Actualmente, existen ya proyectos en curso sobre ATM por radio todavía en el estadio de investigación

NORMALIZACIÓN:

En 1990, en el seno de IEEE 802, se forma el comité IEEE 802.11, que empieza a trabajar para tratar de generar una norma para las WLAN. Pero no es hasta 1994 cuando aparece el primer borrador.

En 1992 se crea Winforum, consorcio liderado por Apple y formado por empresas del sector de las telecomunicaciones y de la informática para conseguir bandas de frecuencia para los sistemas PCS (Personal Communication Systems). En ese mismo año, la ETSI (Europea Telecomunicaciones Estándares Instituto), a través del comité ETSI-RES 10, inicia actuaciones para crear una norma a la que denomina Híper LAN (High Performance LAN) para, en 1993, asignar las bandas

Page 16: Guia 2 REDES

de 5,2 y 17,1 GHz En 1993 también se constituye la IRDA (Infrared Data Asociación) para promover el desarrollo de las WLAN basadas en enlaces por infrarrojos.

En 1996, finalmente, un grupo de empresas del sector de informática móvil y de servicios forman el Wireless LAN Interoperability Fórum (WLI Fórum) para potenciar este mercado mediante la creación de un amplio abanico de productos y servicios interpretativos. Del Comité de Normalización de Redes Locales (IEEE 802) del Instituto de Ingenieros Eléctricos, IEEE de Estados Unidos se puede entonces destacar las normas siguientes: · 802.3 CSMA/CD (ETHERNET) · 802.4 TOKEN BUS · 802.5 TOKEN RING · REDES METROPOLITANASPor otro lado, el Instituto Americano de Normalización, (ANSI), ha desarrollado unas especificaciones para redes locales con fibra óptica, las cuales se conocen con el nombre de FDDI, y es obre del Comité X3T9.5 del ANSI. La última revisión del estándar FDDI, llamada FDDI-II, ha adecuado la norma para soportar no sólo comunicaciones de datos, sino también de voz y video.

 

APLICACIONES:

Actualmente, las redes locales inalámbricas (WLAN) se encuentran instaladas mayoritariamente en algunos entornos específicos, como almacenes, bancos, restaurantes, fábricas, hospitales y transporte. Las limitaciones que, de momento, presenta esta tecnología ha hecho que sus mercados iníciales hayan sido los que utilizan información tipo "bursty" (períodos cortos de transmisión de información muy intensos seguidos de períodos de baja o nula actividad) y donde la exigencia clave consiste en que los trabajadores en desplazamiento puedan acceder de forma inmediata a la información a lo largo de un área concreta, como un almacén, un hospital, la planta de una fábrica o un entorno de distribución o de comercio al por menor; en general, en mercados verticales.

Page 17: Guia 2 REDES

El previsible aumento del ancho de banda asociado a las redes inalámbricas y, consecuentemente, la posibilidad del multimedia móvil, permitirá atraer a mercados de carácter horizontal que surgirán en nuevos sectores, al mismo tiempo que se reforzarán los mercados verticales ya existentes. La aparición de estos nuevos mercados horizontales está fuertemente ligada a la evolución de los sistemas PCS (Personal Communication Sistemas), en el sentido de que la base instalada de sistemas PCS ha creado una infraestructura de usuarios con una cultura tecnológica y hábito de utilización de equipos de comunicaciones móviles en prácticamente todos los sectores de la industria y de la sociedad.

Esa cultura constituye el caldo de cultivo para generar una demanda de más y más sofisticados servicios y prestaciones, muchos de los cuales han de ser proporcionados por las WLAN. De hecho, según datos de la CTIA (Celular Telephone Industry Associations), los clientes de los proveedores de servicios por radio se muestran en general satisfechos con los servicios recibidos, pero esperan más tanto en términos de servicio como de precio, tanto en el contexto celular como PCS.

TIPOS DE ONDA:

Radio UHF:

Las redes basadas en equipos de radio en UHF necesitan para su instalación y uso una licencia administrativa. Tienen la ventaja de no verse interrumpida por cuerpos opacos, pudiendo salvar obstáculos físicos gracias a su cualidad de difracción.

WaveLAN es una red inalámbrica de NCR que utiliza las frecuencias de 902-928 MHz en Estados Unidos, aunque en Europa ha solicitado la concesión de otras frecuencias, ya que esta banda está siendo utilizada por la telefonía móvil. Esta red va a 2 Mbps, y tiene una cobertura de 335 metros. Puede utilizarse de forma independiente o conectada a una red Novell convencional (Arcnet, Token Ring o Ethernet)

PureLAN es otra red de este tipo compatible con Novell NetWare, LAN Manager, LAN Server y TCP/IP. Va a 2 Mbps y tiene una cobertura de 240 metros.

Microondas:

Page 18: Guia 2 REDES

Las microondas son ondas electromagnéticas cuyas frecuencias se encuentran dentro del espectro de las súper altas frecuencias, SHF, utilizándose para las redes inalámbricas la banda de los 18-19 GHz Estas redes tienen una propagación muy localizada y un ancho de banda que permite alcanzar los 15 Mbps

Terrestres: Las antenas parabólicas se envían la información, alcanza kilómetros pero emisor y receptor deben estar perfectamente alineados. Su frecuencia es de 1 a 300 GHz

Satélite: la información se reenvía de un satélite, es de las ondas más flexibles pero es fácil que sufra interferencias.

LASER O INFRAROJO:

Deben estar alineados directamente, no atraviesan paredes y tienen una frecuencia de 300 GHz a 384 THz.

Hoy en día resulta muy útil para conexiones punto a punto con visibilidad directa, utilizándose fundamentalmente en interconectar segmentos distantes de redes locales convencionales (Ethernet y Token Ring). Es de resaltar el hecho de que esta técnica se encuentre en observación debido al posible perjuicio para la salud que supone la visión directa del haz. Como circuitos punto a punto se llegan a cubrir distancias de hasta 1000 metros, operando con una longitud de onda de 820 nanómetros.

Page 19: Guia 2 REDES