gre geometry

17
Math 101 << RETURN TO THE PREVIOUS SECTION | CONTINUE TO THE NEXT SECTION >> 2.1 ARITHMETIC 2.2 ALGEBRA 2.3 GEOMETRY 2.4 DATA ANALYSIS Geometry Geometry has a long and storied history that goes back thousands of years, which we’re sure you’re dying to hear about. But unless you’re taking the GRE to go for your masters in math history, this has no possible relevance to your life. So we’ll skip the history lesson and get right to the facts. Lines and Angles An angle is composed of two lines and is a measure of the spread between them. The point where the two lines meet is called the vertex. On the GRE, angles are measured in degrees. Here’s an example: The ° after the 45 is a degree symbol. This angle measures 45 degrees. Acute, Obtuse, and Right Angles Angles that measure less than 90° are called acute angles. Angles that measure more than 90° are called obtuse angles. A special angle that the GRE test makers love is called a right angle. Right angles always measure exactly 90° and are indicated by a little square where the angle measure would normally be, like this: Straight Angles Multiple angles that meet at a single point on a line are called straight angles. The sum of the angles meeting at a single point on a straight line is always equal to 180°. You may see something like this, asking you to solve for n: The two angles (one marked by 40° and the one marked by n°) meet at the same point on the line. Since the sum of the angles on the line must be 180°, you can plug 40° and TEST PREP CENTERS GRE Test Center SPARKCOLLEGE College Admissions Financial Aid College Life Help Log in Sign Up for a Free Account

Upload: kmeena73

Post on 07-Nov-2015

95 views

Category:

Documents


3 download

DESCRIPTION

Geomtery

TRANSCRIPT

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 1/17

    Math101

    2.1 ARITHMETIC2.2 ALGEBRA

    2.3 GEOMETRY2.4 DATAANALYSIS

    GeometryGeometryhasalongandstoriedhistorythatgoesbackthousandsofyears,whichweresureyouredyingtohearabout.ButunlessyouretakingtheGREtogoforyourmastersinmathhistory,thishasnopossiblerelevancetoyourlife.Sowellskipthehistorylessonandgetrighttothefacts.

    LinesandAnglesAnangleiscomposedoftwolinesandisameasureofthespreadbetweenthem.Thepointwherethetwolinesmeetiscalledthevertex.OntheGRE,anglesaremeasuredindegrees.Heresanexample:

    Theafterthe45isadegreesymbol.Thisanglemeasures45degrees.

    Acute,Obtuse,andRightAnglesAnglesthatmeasurelessthan90arecalledacuteangles.Anglesthatmeasuremorethan90arecalledobtuseangles.AspecialanglethattheGREtestmakersloveiscalledarightangle.Rightanglesalwaysmeasureexactly90andareindicatedbyalittlesquarewheretheanglemeasurewouldnormallybe,likethis:

    StraightAnglesMultipleanglesthatmeetatasinglepointonalinearecalledstraightangles.Thesumoftheanglesmeetingatasinglepointonastraightlineisalwaysequalto180.Youmayseesomethinglikethis,askingyoutosolveforn:

    Thetwoangles(onemarkedby40andtheonemarkedbyn)meetatthesamepointontheline.Sincethesumoftheanglesonthelinemustbe180,youcanplug40and

    TESTPREPCENTERS

    GRETestCenter

    SPARKCOLLEGECollegeAdmissions

    FinancialAid

    CollegeLife

    Help Login SignUpforaFreeAccount

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 2/17

    nintoaformulalikethis:

    40+n=180

    Subtracting40frombothsidesgivesn=140,orn=140.

    VerticalAnglesWhentwolinesintersect,theanglesthatlieoppositeeachother,calledverticalangles,arealwaysequal.

    Angles and areverticalanglesandarethereforeequal.Angles andarealsovertical,equalangles.

    ParallelLinesAmorecomplicatedversionofthisfigurethatyoumayseeontheGREinvolvestwoparallellinesintersectedbyathirdline,calledatransversal.Parallelmeansthatthelinesruninexactlythesamedirectionandneverintersect.Heresanexample:

    line1isparalleltoline2

    Dontassumelinesareparalleljustbecausetheylookliketheyarethequestionwillalwaystellyouiftwolinesaremeanttobeparallel.Eventhoughthisfigurecontainsmanyangles,itturnsoutthatitonlyhastwokindsofangles:bigangles(obtuse)andlittleangles(acute).Allthebiganglesareequaltoeachother,andallthelittleanglesareequaltoeachother.Furthermore,anybigangle+anylittleangle=180.Thisistrueforanyfigurewithtwoparallellinesintersectedbyathirdline.Inthefollowingfigure,welabeleveryangletoshowyouwhatwemean:

    Asdescribedabove,theeightanglescreatedbythesetwointersectionshavespecialrelationshipstoeachother:

    Angles1,4,5,and8areequaltooneanother.Angle1isverticaltoangle4,andangle5isverticaltoangle8.Angles2,3,6,and7areequaltooneanother.Angle2isverticaltoangle3,andangle6isverticaltoangle7.Thesumofanytwoadjacentangles,suchas1and2or7and8,equals180becausetheyformastraightanglelyingonaline.Thesumofanybigangle+anylittleangle=180,sincethebigandlittleanglesinthisfigurecombineintostraightlinesandallthebiganglesareequalandallthelittleanglesareequal.Soabigandlittleangledontneedtobenexttoeachothertoaddto180anybigplusanylittlewilladdto180.Forexample,sinceangles1and2sumto180,andsinceangles2and7areequal,thesumofangles1and7alsoequals180.

    Byusingtheserules,youcanfigureoutthedegreesofanglesthatmayseemunrelated.Forexample:

    Ifline1isparalleltoline2,whatisthevalueofyinthefigureabove?

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 3/17

    Again,thisfigurehasonlytwokindsofangles:bigangles(obtuse)andlittleangles(acute).Weknowthat55isalittleangle,soymustbeabigangle.Sincebigangle+littleangle=180,youcanwrite:

    y+55=180

    Solvingfory:

    y=18055

    y=125

    PerpendicularLinesTwolinesthatmeetatarightanglearecalledperpendicularlines.Ifyouretoldtwolinesareperpendicular,justthink90.Wedlovetotellyoumoreaboutthesebeauties,buttheresreallynotmuchelsetosay.

    PolygonBasicsApolygonisatwodimensionalfigurewiththreeormorestraightsides.Polygonsarenamedaccordingtothenumberofsidestheyhave.

    NumberofSides Name

    3 triangle

    4 quadrilateral

    5 pentagon

    6 hexagon

    7 heptagon

    8 octagon

    9 nonagon

    10 decagon

    12 dodecagon

    n ngon

    Allpolygons,nomatterhowmanysidestheypossess,sharecertaincharacteristics:

    Thesumoftheinterioranglesofapolygonwithnsidesis(n2)180.Forinstance,thesumoftheinterioranglesofanoctagonis(82)180=6(180)=1080.Apolygonwithequalsidesandequalinterioranglesisaregularpolygon.Thesumoftheexterioranglesofanypolygonis360.Theperimeterofapolygonisthesumofthelengthsofitssides.Theareaofapolygonisthemeasureoftheareaoftheregionenclosedbythepolygon.EachpolygontestedontheGREhasitsownuniqueareaformula,whichwellcoverbelow.

    Forthemostpart,thepolygonstestedinGREmathincludetrianglesandquadrilaterals.Alltriangleshavethreesides,buttherearespecialtypesoftrianglesthatwellcovernext.Thenwellmoveontofourcommonquadrilaterals(foursidedfigures)thatappearonthetest:rectangles,squares,parallelograms,andtrapezoids.

    Wellthenleavetheworldofpolygonsandmakeourwaytocirclesandthenconcludethisgeometrysectionwithadiscussionofthethreedimensionalsolidsyoumayseeonyourtest:rectangularsolids,cubes,andrightcircularcylinders.

    TrianglesOfallthegeometricshapes,trianglesareamongthemostcommonlytestedontheGRE.ButsincetheGREtendstotestthesametrianglesoverandover,youjustneedtomasterafewrulesandafewdiagrams.Welllookatsomespecialtrianglesshortly,butfirstwellexplainfourveryspecialrules.

    TheFourRulesofTrianglesCommitthesefourrulestomemory.

    1.TheRuleofInteriorAngles.Thesumoftheinterioranglesofatrianglealwaysequals180.Interioranglesarethoseontheinside.Wheneveryouregiventwoanglesofatriangle,youcanusethisformulatocalculatethethirdangle.Forexample:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 4/17

    Whatisthevalueofainthefigureabove?

    Sincethesumoftheanglesofatriangleequals180,youcansetupanequation:

    a+100+60=180

    Isolatingthevariableandsolvingforagivesa=20.

    2.TheRuleofExteriorAngles.Anexteriorangleofatriangleistheangleformedbyextendingoneofthesidesofthetrianglepastavertex(ortheintersectionoftwosidesofafigure).Inthefigurebelow,distheexteriorangle.

    Since,together,dandcformastraightangle,theyaddupto180:d+c=180.Accordingtothefirstruleoftriangles,thethreeanglesofatrianglealwaysaddupto180,soa+b+c=180.Sinced+c=180anda+b+c=180,dmustbeequaltoa+b(theremoteinteriorangles).Thisgeneralizestoalltrianglesasthefollowingrules:Theexteriorangleofatriangleplustheinterioranglewithwhichitsharesavertexisalways180.Theexteriorangleisalsoequaltothesumofthemeasuresoftheremoteinteriorangles.

    3.TheRuleoftheSides.Thelengthofanysideofatrianglemustbegreaterthanthedifferenceandlessthanthesumoftheothertwosides.Inotherwords:

    differenceofothertwosides

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 5/17

    Whatisonepossiblevalueofxif?(A) 4(B) 5(C) 7(D) 10(E) 15

    Accordingtotheruleofproportion,thelongestsideofatriangleisoppositethelargestangle,andtheshortestsideofatriangleisoppositethesmallestangle.ThequestiontellsusthatangleC

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 6/17

    rundownthestreetandproclaimittotheworld,entirelyinthebuff.OrmaybethatwasArchimedes...?Hey,itwasalongtimeago.SufficeittosaythatsomenakedGreekguythoughtupsomethingcool.

    SincePythagorastookthetroubletoinventhistheorem,theleastwecandoislearnit.Besides,itsoneofthemostfamoustheoremsinallofmath,anditistestedwithregularityontheGRE,toboot.Hereitis:

    Inarighttriangle,a2+b2=c2,wherecisthelengthofthehypotenuseandaandbarethelengthsofthetwolegs.

    Andheresasimpleapplication:

    Whatisthevalueofbinthetriangleabove?

    Thelittlesquareinthelowerleftcornerletsyouknowthatthisisarighttriangle,soyourecleartousethePythagoreantheorem.Substitutingtheknownlengthsintotheformulagives:

    32+b2=52

    9+b2=25

    b2=16

    b=4

    Thisisthereforetheworldfamous345righttriangle.ThankstothePythagoreantheorem,ifyouknowthemeasuresofanytwosidesofarighttriangle,youcanalwaysfindthethird.Eureka!indeed.

    PythagoreanTriples.BecauserighttrianglesobeythePythagoreantheorem,onlyaspecificfewhavesidelengthsthatareallintegers.Forexample,arighttrianglewithlegsoflength3and5hasahypotenuseoflength .PositiveintegersthatobeythePythagoreantheoremarecalledPythagoreantriples,andthesearetheonesyourelikelytoseeonyourtestasthelengthsofthesidesofrighttriangles.Herearesomecommonones:

    {3,4,5}

    {5,12,13}

    {7,24,25}

    {8,15,17}

    InadditiontothesePythagoreantriples,youshouldalsowatchoutfortheirmultiples.Forexample,{6,8,10}isaPythagoreantriple,sinceitisamultipleof{3,4,5},derivedfromsimplydoublingeachvalue.Thisknowledgecansignificantlyshortenyourworkinaproblemlikethis:

    Whatisthevalueofzinthetriangleabove?

    Sure,youcouldcalculateitoutusingthePythagoreantheorem,butwhowantstosquare120and130andthenworktheresultsintotheformula?Pythagorashimselfwouldprobablysay,Ah,screwit...andheadoffforachatwithSocrates.(Actually,PythagorasdiedabouttwentyyearsbeforeSocrateswasborn,butyougetthepoint.)

    ButarmedwithourPythagoreantriples,itsnoproblemforus.Thehypotenuseis130,andoneofthelegsis120.Theratiobetweenthesesidesis130:120,or13:12.Thisexactlymatchesthe{5,12,13}Pythagoreantriple.Soweremissingthe5partofthetriplefortheotherleg.However,sincethesidesofthetriangleinthequestionare10

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 7/17

    timeslongerthanthoseinthe{5,12,13}triple,themissingsidemustbe510=50.

    306090RIGHTTRIANGLESAsyoucansee,righttrianglesareprettydarnspecial.ButtherearetwoextraspecialonesthatappearwithastoundingfrequencyontheGRE.Theyare306090righttrianglesand454590righttriangles.Whenyouseeoneofthese,insteadofworkingoutthePythagoreantheorem,youllbeabletoapplystandardratiosthatexistbetweenthelengthofthesidesofthesetriangles.

    Theguywhonamed306090trianglesdidnthavemuchofanimaginationormaybehejustdidnthaveacoolnamelikePythagoras.Thenamederivesfromthefactthatthesetriangleshaveanglesof30,60,and90.So,whatssospecialaboutthat?This:Thesidelengthsof306090trianglesalwaysfollowaspecificpattern.Iftheshortlegoppositethe30anglehaslengthx,thenthehypotenusehaslength2x,andthelongleg,oppositethe60angle,haslength .Therefore:

    Thesidesofevery306090trianglewillfollowtheratio1: :2

    Thankstothisconstantratio,ifyouknowthelengthofjustonesideofthetriangle,youllimmediatelybeabletocalculatethelengthsoftheothertwo.If,forexample,youknowthatthesideoppositethe30angleis2meters,thenbyusingtheratioyoucandeterminethatthehypotenuseis4meters,andthelegoppositethe60angleis

    meters.

    454590RIGHTTRIANGLESA454590righttriangleisatrianglewithtwoanglesof45andonerightangle.Itssometimescalledanisoscelesrighttriangle,sinceitsbothisoscelesandright.Likethe306090triangle,thelengthsofthesidesofa454590trianglealsofollowaspecificpattern.Ifthelegsareoflengthx(thelegswillalwaysbeequal),thenthehypotenusehaslength .

    Thesidesofevery454590trianglewillfollowtherationof

    Thisratiowillhelpyouwhenfacedwithtriangleslikethis:

    Thisrighttrianglehastwoequalsides,whichmeansthetwoanglesotherthantherightanglemustbe45each.Sowehavea454590righttriangle,whichmeanswecanemploythe ratio.Butinsteadofbeing1and1,thelengthsofthelegsare5and5.Sincethelengthsofthesidesinthetriangleabovearefivetimesthelengthsin

    the righttriangle,thehypotenusemustbe ,or .

    AreaofaTriangleTheformulafortheareaofatriangleis:

    area= or

    Keepinmindthatthebaseandheightofatrianglearenotjustanytwosidesofatriangle.Thebaseandheightmustbeperpendicular,whichmeanstheymustmeetatarightangle.

    Letstryanexample.Whatstheareaofthistriangle?

    Notethattheareaisnot ,becausethosetwosidesdonotmeetatarightangle.Tocalculatethearea,youmustfirstdetermineb.Youllprobablynoticethatthisisthe345righttriangleyousawearlier,sob=4.Nowyouhavetwoperpendicularsides,soyoucancorrectlycalculatetheareaasfollows:

    Trianglesaresurelyimportant,buttheyarenttheonlygeometricfiguresyoullcomeacrossontheGRE.Wemovenowtoquadrilaterals,whicharefoursidedfigures.The

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 8/17

    firsttwowecoveryourenodoubtfamiliarwith,nomatterhowlongyouvebeenoutofhighschool.Theothertwoyoumayhaveforgottenaboutlongago.

    RectanglesArectangleisaquadrilateralinwhichtheoppositesidesareparallelandtheinterioranglesareallrightangles.Theoppositesidesofarectangleareequal,asindicatedinthefigurebelow:

    AreaofaRectangleTheformulafortheareaofarectangleis:

    area=baseheightorsimplya=bh

    Sincethebaseisthelengthoftherectangleandtheheightisthewidth,justmultiplythelengthbythewidthtogettheareaofarectangle.

    DiagonalsofaRectangleThetwodiagonalsofarectanglearealwaysequaltoeachother,andeitherdiagonalthroughtherectanglecutstherectangleintotwoequalrighttriangles.Inthefigurebelow,thediagonalBDcutsrectangleABCDintocongruentrighttrianglesBADandBCD.Congruentmeansthatthosetrianglesareexactlyidentical.

    Sincethediagonaloftherectangleformsrighttrianglesthatincludethediagonalandtwosidesoftherectangle,ifyouknowtwoofthesevalues,youcanalwayscalculatethethirdwiththePythagoreantheorem.Forexample,ifyouknowthesidelengthsoftherectangle,youcancalculatethelengthofthediagonal.Ifyouknowthediagonalandonesidelength,youcancalculatetheothersidelength.Also,keepinmindthatthediagonalmightcuttherectangleintoa306090triangle,inwhichcaseyoucouldusethe1: :2ratiotomakeyourcalculatingjobeveneasier.

    SquaresHey,buddy,dontyoubenosquare...

    ElvisPresley,JailhouseRock

    Wedontknowwhy,butsometimearoundthe1950sthewordsquarebecamesynonymouswithuncool.Ofcourse,thatsthesamedecadethatbroughtuswordslikedaddyOanddancescalledTheHandJive.

    Wethinkthatsquaresareinfactniftylittlegeometriccreatures.They,alongwithcircles,areperhapsthemostsymmetricalshapesintheuniversenothingtosneezeat.Asquareissosymmetricalbecauseitsanglesareall90andallfourofitssidesareequalinlength.Rectanglesarefairlycommon,butaperfectsquareissomethingtobehold.Likearectangle,asquaresoppositesidesareparallelanditcontainsfourrightangles.Butsquaresoneuprectanglesbyvirtueoftheirequalsides.

    Asifyouveneverseenoneoftheseinyourlife,hereswhatasquarelookslike:

    AreaofaSquareTheformulafortheareaofasquareis:

    area=s2

    Inthisformula,sisthelengthofaside.Sincethesidesofasquareareallequal,all

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 9/17

    youneedisonesidetofigureoutasquaresarea.

    DiagonalsofaSquareThesquarehastwomorespecialqualities:

    Diagonalsbisecteachotheratrightanglesandareequalinlength.Diagonalsbisectthevertexanglestocreate45angles.(Thismeansthatonediagonalwillcutthesquareintotwo454590triangles,whiletwodiagonalsbreakthesquareintofour454590triangles.)

    Becauseadiagonaldrawnintothesquareformstwocongruent454590triangles,ifyouknowthelengthofonesideofthesquare,youcanalwayscalculatethelengthofthediagonal:

    Sincedisthehypotenuseofthe454590trianglethathaslegsoflength5,accordingtotheratio ,youknowthat .Similarly,ifyouknowonlythelengthofthediagonal,youcanusethesameratiotoworkbackwardtocalculatethelengthofthesides.

    ParallelogramsAparallelogramisaquadrilateralwhoseoppositesidesareparallel.Thatmeansthatrectanglesandsquaresqualifyasparallelograms,butsodofoursidedfiguresthatdontcontainrightangles.

    Inaparallelogram,oppositesidesareequalinlength.Thatmeansthatinthefigureabove,BC=ADandAB=DC.Oppositeanglesareequal:ABC=ADCandBAD=BCD.Adjacentanglesaresupplementary,whichmeanstheyaddupto180.Here,anexampleisABC+BCD=180.

    AreaofaParallelogramTheareaofaparallelogramisgivenbytheformula:

    area=bh

    Inthisformula,bisthelengthofthebase,andhistheheight.Asshowninthefigurebelow,theheightofaparallelogramisrepresentedbyaperpendicularlinedroppedfromonesideofthefiguretothesidedesignatedasthebase.

    DiagonalsofaParallelogram

    Thediagonalsofaparallelogrambisect(split)eachother:BE=EDandAE=ECOnediagonalsplitsaparallelogramintotwocongruenttriangles:ABD=BCDTwodiagonalssplitaparallelogramintotwopairsofcongruenttriangles:AEB=DECandBEC=AED

    TrapezoidsAtrapezoidmaysoundlikeanewStarWarscharacter,butitsactuallythenameofaquadrilateralwithonepairofparallelsidesandonepairofnonparallelsides.Heresanexample:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 10/17

    Inthistrapezoid,ABisparalleltoCD(shownbythearrowmarks),whereasACandBDarenotparallel.

    AreaofaTrapezoidTheformulafortheareaofatrapezoidisabitmorecomplexthantheareaformulasyouveseenfortheotherquadrilateralsinthissection.Wellsetitoffsoyoucantakeagoodlookatit:

    Inthisformula,s1ands2arethelengthsoftheparallelsides(alsocalledthebasesofthetrapezoid),andhistheheight.Inatrapezoid,theheightistheperpendiculardistancefromonebasetotheother.

    IfyoucomeacrossatrapezoidquestionontheGRE,youmayneedtouseyourknowledgeoftrianglestosolveit.Heresanexampleofwhatwemean:

    Findtheareaofthefigureabove.

    Firstofall,werenottoldthatthefigureisatrapezoid,butwecaninferasmuchfromtheinformationgiven.Sinceboththelinelabeled6andthelinelabeled10formrightangleswiththelineconnectingthem,the6and10linesmustbeparallel.Meanwhile,theothertwolines(theleftandrightsidesofthefigure)cannotbeparallelbecauseoneconnectstothebottomlineatarightangle,whiletheotherconnectswiththatlineata45angle.Sowecandeducethatthefigureisatrapezoid,whichmeansthetrapezoidareaformulaisinplay.

    Thebasesofthetrapezoidaretheparallelsides,andweretoldtheirlengthsare6and10.Sofarsogood,buttofindthearea,wealsoneedtofindthetrapezoidsheight,whichisntgiven.

    Todothat,splitthetrapezoidintoarectangleanda454590trianglebydrawingintheheight.

    Onceyouvedrawnintheheight,youcansplitthebasethatsequalto10intotwoparts:Thebaseoftherectangleis6,andthelegofthetriangleis4.Sincethetriangleis454590,thetwolegsmustbeequal.Thisleg,though,isalsotheheightofthetrapezoid.Sotheheightofthetrapezoidis4.Nowyoucanplugthenumbersintotheformula:

    Anotherwaytofindtheareaofthetrapezoidistofindtheareasofthetriangleandtherectangle,thenaddthemtogether:

    area= (44)+(64)

    (16)+24

    8+24=32

    CirclesAcircleisthecollectionofpointsequidistantfromagivenpoint,calledthecenter.Circlesarenamedaftertheircenterpointsthatsjusteasierthangivingthemnames

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 11/17

    likeRalphandBetty.Allcirclescontain360.Thedistancefromthecentertoanypointonthecircleiscalledtheradius(r).Radiusisthemostimportantmeasurementinacircle,becauseifyouknowacirclesradius,youcanfigureoutallitsothercharacteristics,suchasitsarea,diameter,andcircumference.Wellcoverallthatinthenextfewpages.Thediameter(d)ofacirclestretchesbetweenendpointsonthecircle,passingthroughthecenter.Achordalsoextendsfromendpointtoendpointonthecircle,butitdoesnotnecessarilypassthroughthecenter.Inthefollowingfigure,pointCisthecenterofthecircle,ristheradius,andABisachord.

    TangentLinesTangentsarelinesthatintersectacircleatonlyonepoint.Justlikeeverythingelseingeometry,tangentlinesaredefinedbycertainfixedrules.

    Heresthefirst:Aradiuswhoseendpointistheintersectionpointofthetangentlineandthecircleisalwaysperpendiculartothetangentline,asshowninthefollowingfigure:

    Andthesecondrule:Everypointinspaceoutsidethecirclecanextendexactlytwotangentlinestothecircle.Thedistancesfromtheoriginofthetwotangentstothepointsoftangencyarealwaysequal.Inthefigurebelow,XY=XZ.

    CentralAnglesandInscribedAnglesAnanglewhosevertexisthecenterofthecircleiscalledacentralangle.

    Thedegreeofthecircle(thesliceofpie)cutbyacentralangleisequaltothemeasureoftheangle.Ifacentralangleis25,thenitcutsa25arcinthecircle.

    Aninscribedangleisanangleformedbytwochordsoriginatingfromasinglepoint.

    Aninscribedanglewillalwayscutoutanarcinthecirclethatistwicethesizeofthedegreeoftheinscribedangle.Forexample,ifaninscribedangleis40,itwillcutanarcof80inthecircle.

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 12/17

    Ifaninscribedangleandacentralanglecutoutthesamearcinacircle,thecentralanglewillbetwiceaslargeastheinscribedangle.

    CircumferenceofaCircleThecircumferenceistheperimeterofthecirclethatis,thetotaldistancearoundthecircle.Theformulaforcircumferenceofacircleis:

    circumference=2r

    Inthisformula,ristheradius.Sinceacirclesdiameterisalwaystwiceitsradius,theformulacanalsobewrittenc=d,wheredisthediameter.Letsfindthecircumferenceofthecirclebelow:

    Pluggingtheradiusintotheformula,c=2r=2(3)=6.

    ArcLengthAnarcisapartofacirclescircumference.Anarccontainstwoendpointsandallthepointsonthecirclebetweentheendpoints.Bypickinganytwopointsonacircle,twoarcsarecreated:amajorarc,whichisbydefinitionthelongerarc,andaminorarc,theshorterone.

    Sincethedegreeofanarcisdefinedbythecentralorinscribedanglethatinterceptsthearcsendpoints,youcancalculatethearclengthaslongasyouknowthecirclesradiusandthemeasureofeitherthecentralorinscribedangle.

    Thearclengthformulais:

    arclength=

    Inthisformula,nisthemeasureofthedegreeofthearc,andristheradius.Thismakessense,ifyouthinkaboutit:Thereare360inacircle,sothedegreeofanarcdividedby360givesusthefractionofthetotalcircumferencethatarcrepresents.Multiplyingthatbythetotalcircumference(2pr)givesusthelengthofthearc.

    Heresthesortofarclengthquestionyoumightseeonthetest:

    CircleDhasradius9.WhatisthelengthofarcAB?

    TofigureoutthelengthofarcAB,weneedtoknowtheradiusofthecircleandthemeasureofC,theinscribedanglethatinterceptstheendpointsofarcAB.Thequestionprovidestheradiusofthecircle,9,butitthrowsusalittlecurveballbynotprovidingthemeasureofC.Instead,thequestionputsCinatriangleandtellsusthemeasuresoftheothertwoanglesinthetriangle.Likewesaid,onlyalittlecurveball:YoucaneasilyfigureoutthemeasureofCbecause,asyouknowbynow,thethreeanglesofatriangleaddupto180:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 13/17

    c=180(50+70)

    c=180120

    c=60

    Sincecisaninscribedangle,arcABmustbetwiceitsmeasure,or120.Nowwecanplugthesevaluesintotheformulaforarclength:

    AreaofaCircleIfyouknowtheradiusofacircle,youcanfigureoutitsarea.Theformulaforareais:

    area=r2

    Inthisformula,ristheradius.Sowhenyouneedtofindtheareaofacircle,yourrealgoalistofigureouttheradius.Ineasierquestionstheradiuswillbegiven.Inharderquestions,theyllgiveyouthediameterorcircumferenceandyoullhavetousetheformulasforthosetocalculatetheradius,whichyoullthenplugintotheareaformula.

    AreaofaSectorAsectorofacircleistheareaenclosedbyacentralangleandthecircleitself.Itsshapedlikeasliceofpizza.Theshadedregioninthefigureontheleftbelowisasector.Thefigureontherightisasliceofpepperonipizza.Seetheresemblance?

    Theareaofasectorisrelatedtotheareaofacirclejustasthelengthofanarcisrelatedtothecircumference.Tofindtheareaofasector,findwhatfractionof360thesectormakesupandmultiplythisfractionbythetotalareaofthecircle.Informulaform:

    areaofasector=

    Inthisformula,nisthemeasureofthecentralanglethatformstheboundaryofthesector,andristheradius.Anexamplewillhelp.Findtheareaofthesectorinthefigurebelow:

    Thesectorisboundedbya70centralangleinacirclewhoseradiusis6.Usingtheformula,theareaofthesectoris:

    MishMashes:FigureswithMultipleShapesTheGREtestmakersevidentlyfeelitwouldbenofunifallofthesegeometricshapesyourelearningappearedinisolation,sosometimestheymashthemtogether.Thetrickintheseproblemsistounderstandandbeabletomanipulatetherulesofeachfigureindividually,whilealsorecognizingwhichelementsofthemishmashesoverlap.Forexample,thediameterofacirclemayalsobethesideofasquare,soifyouusetherulesofcirclestocalculatethatlength,youcanthenusethatanswertodeterminesomethingaboutthesquare,suchasitsareaorperimeter.

    Mishmashproblemsoftencombinecircleswithotherfigures.Heresanexample:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 14/17

    WhatisthelengthofminorarcBEincircleAiftheareaofrectangleABCDis18?

    TofindthelengthofminorarcBE,youhavetoknowtwothings:theradiusofthecircleandthemeasureofthecentralanglethatintersectsthecircleatpointsBandE.BecauseABCDisarectangle,andrectanglesonlyhaverightangles,BADis90.Inthisquestion,theytellyouasmuchbyincludingtherightanglesign.Butinaharderquestion,theydleavetherightanglesignoutandexpectyoutodeducethatBADis90onyourown.AndsincethatanglealsohappenstobethecentralangleofcircleAinterceptingthearcinquestion,wecandeterminethatarcBEmeasures90.

    Findingtheradiusrequiresabitofcreativevisualizationaswell,butitsnotsohard.Thekeyistorealizethattheradiusofthecircleisequaltothewidthoftherectangle.Soletsworkbackwardfromtherectangletogiveuswhatweneedtoknowaboutthecircle.Theareaoftherectangleis18,anditslengthis6.Sincetheareaofarectangleissimplyitslengthmultipliedbyitswidth,wecandivide18by6togetawidthof3.Asweveseen,thisrectanglewidthdoublesasthecirclesradius,sowereinbusiness:radius=3.Allwehavetodoispluginthevalueswefoundintothearclengthformula,andweredone.

    Thatcoversthetwodimensionalfiguresyoushouldknow,buttherearealsosomethreedimensionalfiguresyoumaybeaskedaboutaswell.Wellfinishupthisgeometrysectionwithalookatthose.

    RectangularSolidsArectangularsolidisaprismwitharectangularbaseandedgesthatareperpendiculartoitsbase.InEnglish,itlooksalotlikeacardboardbox.

    Arectangularsolidhasthreeimportantdimensions:length(l),width(w),andheight(h).Ifyouknowthesethreemeasurements,youcanfindthesolidsvolume,surfacearea,anddiagonallength.

    VolumeofaRectangularSolidTheformulaforthevolumeofarectangularsolidbuildsontheformulafortheareaofarectangle.Asdiscussedearlier,theareaofarectangleisequaltoitslengthtimesitswidth.Theformulaforthevolumeofarectangularsolidaddsthethirddimension,height,toget:

    volume=lwh

    Heresagoodoldfashionedexample:

    Whatisthevolumeofthefigurepresentedbelow?

    Thelengthis3x,thewidthisx,andtheheightis2x.Justplugthevaluesintothevolumeformulaandyouregoodtogo:v=(3x)(x)(2x)=6x3.

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 15/17

    SurfaceAreaofaRectangularSolidThesurfaceareaofasolidistheareaofitsoutermostskin.Inthecaseofrectangularsolids,imagineacardboardboxallclosedup.Thesurfaceofthatclosedboxismadeofsixrectangles:Thesumoftheareasofthesixrectanglesisthesurfaceareaofthebox.Tomakethingseveneasier,thesixrectanglescomeinthreecongruentpairs.Wevemarkedthecongruentpairsbyshadesofgrayintheimagebelow:Onepairisclear,onepairislightgray,andonepairisdarkgray.

    Twofaceshaveareasoflw,twofaceshaveareasoflh,andtwofaceshaveareasofwh.Thesurfaceareaoftheentiresolidisthesumoftheareasofthecongruentpairs:surfacearea=2lw+2lh+2wh.

    Letstrytheformulaoutonthesamesolidwesawabove.Findthesurfaceareaofthis:

    Again,thelengthis3x,thewidthisx,andtheheightis2x.Pluggingintotheformula,weget:

    surfacearea=2(3x)(x)+2(3x)(2x)+2(x)(2x)

    =6x2+12x2+4x2

    =22x2

    DIVIDINGRECTANGULARSOLIDSIfyouredoingreallywellontheMathsection,theCATprogramwillbeginscroungingforthetoughest,mostesotericproblemsitcanfindtothrowyourway.Onesuchproblemmaydescribeasolid,giveyouallofitsmeasurements,andthentellyouthattheboxhasbeencutinhalf,likeso:

    Anumberofpossiblequestionscouldbecreatedfromthisscenario.Forexample,youmaybeaskedtofindthecombinedsurfaceareaofthetwonewboxes.OrmaybeaQuantitativeComparisonquestionwouldaskyoutocomparethevolumeoftheoriginalsolidwiththatofthetwonewones.Actually,thevolumeremainsunchanged,butthesurfaceareaincreasesbecausetwonewsides(shadedinthediagram)emergewhentheboxiscutinhalf.Youmayneedtoemployabitofreasoningalongwiththeformulasyourelearningtoansweradifficultquestionlikethis,butithelpstoknowthisgeneralrule:Wheneverasolidiscutintosmallerpieces,itssurfaceareaincreases,butitsvolumeisunchanged.

    DiagonalLengthofaRectangularSolidThediagonalofarectangularsolid,d,isthelinesegmentwhoseendpointsareoppositecornersofthesolid.Everyrectangularsolidhasfourdiagonals,eachwiththesamelength,thatconnecteachpairofoppositevertices.Heresonediagonaldrawnin:

    Itspossiblethataquestionwilltesttoseeifyoucanfindthelengthofadiagonal.Herestheformula:

    Again,listhelength,wisthewidth,andhistheheight.TheformulaislikeapumpedupversionofthePythagoreantheorem.Checkitoutinaction:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 16/17

    WhatisthelengthofdiagonalAHintherectangularsolidbelowifAC=5,GH=6,andCG=3?

    Thequestiongivesthelength,width,andheightoftherectangularsolid,soyoucanjustplugthosenumbersintotheformula:

    Theproblemcouldbemademoredifficultifitforcedyoutofirstcalculatesomeofthedimensionsbeforepluggingthemintotheformula.

    CubesAcubeisathreedimensionalsquare.Thelength,width,andheightofacubeareequal,andeachofitssixfacesisasquare.Hereswhatitlookslikeprettybasic:

    VolumeofaCubeTheformulaforfindingthevolumeofacubeisessentiallythesameastheformulaforthevolumeofarectangularsolid:Wejustneedtomultiplythelength,width,andheight.However,sinceacubeslength,width,andheightareallequal,theformulaforthevolumeofacubeiseveneasier:

    volume=s3

    Inthisformula,sisthelengthofoneedgeofthecube.

    SurfaceAreaofaCubeSinceacubeisjustarectangularsolidwhosesidesareallequal,theformulaforfindingthesurfaceareaofacubeisthesameastheformulaforfindingthesurfaceareaofarectangularsolid,exceptwithssubstitutedinforl,w,andh.Thisboilsdownto:

    volume=6s2

    DiagonalLengthofaCubeTheformulaforthediagonalofacubeisalsoadaptedfromtheformulaforthediagonallengthofarectangularsolid,withssubstitutedforl,w,andh.Thisyields

    ,whichsimplifiesto:

    volume=

    RightCircularCylindersArightcircularcylinderlookslikeoneofthosecardboardthingsthattoiletpapercomeson,exceptitisnthollow.Ithastwocongruentcircularbasesandlookslikethis:

    Theheight,h,isthelengthofthelinesegmentwhoseendpointsarethecentersofthecircularbases.Theradius,r,istheradiusofitsbase.FortheGRE,allyouneedtoknowaboutarightcircularcylinderishowtocalculateitsvolume.

    VolumeofaRightCircularCylinderThevolumeofthiskindofsolidistheproductoftheareaofitsbaseanditsheight.Becausearightcircularcylinderhasacircularbase,itsvolumeisequaltotheareaofthecircularbasetimestheheightor:

    volume=r2h

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 17/17

    Findthevolumeofthecylinderbelow:

    Thiscylinderhasaradiusof4andaheightof6.Usingthevolumeformula,itsvolume=(4)2(6)=96.

    WevecoveredalotofgroundsofarinthisMath101chapter,workingourwaythrougharithmetic,algebra,andnowgeometry.Wellbringitonhomewithourfinalsubject,dataanalysis.

    Help|Feedback|Makearequest|Reportanerror

    Math101

    Whenyourbooksandteachersdontmakesense,wedo.

    ContactUs|PrivacyPolicy|TermsandConditions|About|Sitemap|AdvertiseFictionBooks|Textbooks|eTextbooks|ClassicBooks|UsedBooks|TeenBooks|nook|eReader

    2011SparkNotesLLC,AllRightsReserved