Download - GRE Geometry

Transcript
  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 1/17

    Math101

    2.1 ARITHMETIC2.2 ALGEBRA

    2.3 GEOMETRY2.4 DATAANALYSIS

    GeometryGeometryhasalongandstoriedhistorythatgoesbackthousandsofyears,whichweresureyouredyingtohearabout.ButunlessyouretakingtheGREtogoforyourmastersinmathhistory,thishasnopossiblerelevancetoyourlife.Sowellskipthehistorylessonandgetrighttothefacts.

    LinesandAnglesAnangleiscomposedoftwolinesandisameasureofthespreadbetweenthem.Thepointwherethetwolinesmeetiscalledthevertex.OntheGRE,anglesaremeasuredindegrees.Heresanexample:

    Theafterthe45isadegreesymbol.Thisanglemeasures45degrees.

    Acute,Obtuse,andRightAnglesAnglesthatmeasurelessthan90arecalledacuteangles.Anglesthatmeasuremorethan90arecalledobtuseangles.AspecialanglethattheGREtestmakersloveiscalledarightangle.Rightanglesalwaysmeasureexactly90andareindicatedbyalittlesquarewheretheanglemeasurewouldnormallybe,likethis:

    StraightAnglesMultipleanglesthatmeetatasinglepointonalinearecalledstraightangles.Thesumoftheanglesmeetingatasinglepointonastraightlineisalwaysequalto180.Youmayseesomethinglikethis,askingyoutosolveforn:

    Thetwoangles(onemarkedby40andtheonemarkedbyn)meetatthesamepointontheline.Sincethesumoftheanglesonthelinemustbe180,youcanplug40and

    TESTPREPCENTERS

    GRETestCenter

    SPARKCOLLEGECollegeAdmissions

    FinancialAid

    CollegeLife

    Help Login SignUpforaFreeAccount

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 2/17

    nintoaformulalikethis:

    40+n=180

    Subtracting40frombothsidesgivesn=140,orn=140.

    VerticalAnglesWhentwolinesintersect,theanglesthatlieoppositeeachother,calledverticalangles,arealwaysequal.

    Angles and areverticalanglesandarethereforeequal.Angles andarealsovertical,equalangles.

    ParallelLinesAmorecomplicatedversionofthisfigurethatyoumayseeontheGREinvolvestwoparallellinesintersectedbyathirdline,calledatransversal.Parallelmeansthatthelinesruninexactlythesamedirectionandneverintersect.Heresanexample:

    line1isparalleltoline2

    Dontassumelinesareparalleljustbecausetheylookliketheyarethequestionwillalwaystellyouiftwolinesaremeanttobeparallel.Eventhoughthisfigurecontainsmanyangles,itturnsoutthatitonlyhastwokindsofangles:bigangles(obtuse)andlittleangles(acute).Allthebiganglesareequaltoeachother,andallthelittleanglesareequaltoeachother.Furthermore,anybigangle+anylittleangle=180.Thisistrueforanyfigurewithtwoparallellinesintersectedbyathirdline.Inthefollowingfigure,welabeleveryangletoshowyouwhatwemean:

    Asdescribedabove,theeightanglescreatedbythesetwointersectionshavespecialrelationshipstoeachother:

    Angles1,4,5,and8areequaltooneanother.Angle1isverticaltoangle4,andangle5isverticaltoangle8.Angles2,3,6,and7areequaltooneanother.Angle2isverticaltoangle3,andangle6isverticaltoangle7.Thesumofanytwoadjacentangles,suchas1and2or7and8,equals180becausetheyformastraightanglelyingonaline.Thesumofanybigangle+anylittleangle=180,sincethebigandlittleanglesinthisfigurecombineintostraightlinesandallthebiganglesareequalandallthelittleanglesareequal.Soabigandlittleangledontneedtobenexttoeachothertoaddto180anybigplusanylittlewilladdto180.Forexample,sinceangles1and2sumto180,andsinceangles2and7areequal,thesumofangles1and7alsoequals180.

    Byusingtheserules,youcanfigureoutthedegreesofanglesthatmayseemunrelated.Forexample:

    Ifline1isparalleltoline2,whatisthevalueofyinthefigureabove?

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 3/17

    Again,thisfigurehasonlytwokindsofangles:bigangles(obtuse)andlittleangles(acute).Weknowthat55isalittleangle,soymustbeabigangle.Sincebigangle+littleangle=180,youcanwrite:

    y+55=180

    Solvingfory:

    y=18055

    y=125

    PerpendicularLinesTwolinesthatmeetatarightanglearecalledperpendicularlines.Ifyouretoldtwolinesareperpendicular,justthink90.Wedlovetotellyoumoreaboutthesebeauties,buttheresreallynotmuchelsetosay.

    PolygonBasicsApolygonisatwodimensionalfigurewiththreeormorestraightsides.Polygonsarenamedaccordingtothenumberofsidestheyhave.

    NumberofSides Name

    3 triangle

    4 quadrilateral

    5 pentagon

    6 hexagon

    7 heptagon

    8 octagon

    9 nonagon

    10 decagon

    12 dodecagon

    n ngon

    Allpolygons,nomatterhowmanysidestheypossess,sharecertaincharacteristics:

    Thesumoftheinterioranglesofapolygonwithnsidesis(n2)180.Forinstance,thesumoftheinterioranglesofanoctagonis(82)180=6(180)=1080.Apolygonwithequalsidesandequalinterioranglesisaregularpolygon.Thesumoftheexterioranglesofanypolygonis360.Theperimeterofapolygonisthesumofthelengthsofitssides.Theareaofapolygonisthemeasureoftheareaoftheregionenclosedbythepolygon.EachpolygontestedontheGREhasitsownuniqueareaformula,whichwellcoverbelow.

    Forthemostpart,thepolygonstestedinGREmathincludetrianglesandquadrilaterals.Alltriangleshavethreesides,buttherearespecialtypesoftrianglesthatwellcovernext.Thenwellmoveontofourcommonquadrilaterals(foursidedfigures)thatappearonthetest:rectangles,squares,parallelograms,andtrapezoids.

    Wellthenleavetheworldofpolygonsandmakeourwaytocirclesandthenconcludethisgeometrysectionwithadiscussionofthethreedimensionalsolidsyoumayseeonyourtest:rectangularsolids,cubes,andrightcircularcylinders.

    TrianglesOfallthegeometricshapes,trianglesareamongthemostcommonlytestedontheGRE.ButsincetheGREtendstotestthesametrianglesoverandover,youjustneedtomasterafewrulesandafewdiagrams.Welllookatsomespecialtrianglesshortly,butfirstwellexplainfourveryspecialrules.

    TheFourRulesofTrianglesCommitthesefourrulestomemory.

    1.TheRuleofInteriorAngles.Thesumoftheinterioranglesofatrianglealwaysequals180.Interioranglesarethoseontheinside.Wheneveryouregiventwoanglesofatriangle,youcanusethisformulatocalculatethethirdangle.Forexample:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 4/17

    Whatisthevalueofainthefigureabove?

    Sincethesumoftheanglesofatriangleequals180,youcansetupanequation:

    a+100+60=180

    Isolatingthevariableandsolvingforagivesa=20.

    2.TheRuleofExteriorAngles.Anexteriorangleofatriangleistheangleformedbyextendingoneofthesidesofthetrianglepastavertex(ortheintersectionoftwosidesofafigure).Inthefigurebelow,distheexteriorangle.

    Since,together,dandcformastraightangle,theyaddupto180:d+c=180.Accordingtothefirstruleoftriangles,thethreeanglesofatrianglealwaysaddupto180,soa+b+c=180.Sinced+c=180anda+b+c=180,dmustbeequaltoa+b(theremoteinteriorangles).Thisgeneralizestoalltrianglesasthefollowingrules:Theexteriorangleofatriangleplustheinterioranglewithwhichitsharesavertexisalways180.Theexteriorangleisalsoequaltothesumofthemeasuresoftheremoteinteriorangles.

    3.TheRuleoftheSides.Thelengthofanysideofatrianglemustbegreaterthanthedifferenceandlessthanthesumoftheothertwosides.Inotherwords:

    differenceofothertwosides

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 5/17

    Whatisonepossiblevalueofxif?(A) 4(B) 5(C) 7(D) 10(E) 15

    Accordingtotheruleofproportion,thelongestsideofatriangleisoppositethelargestangle,andtheshortestsideofatriangleisoppositethesmallestangle.ThequestiontellsusthatangleC

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 6/17

    rundownthestreetandproclaimittotheworld,entirelyinthebuff.OrmaybethatwasArchimedes...?Hey,itwasalongtimeago.SufficeittosaythatsomenakedGreekguythoughtupsomethingcool.

    SincePythagorastookthetroubletoinventhistheorem,theleastwecandoislearnit.Besides,itsoneofthemostfamoustheoremsinallofmath,anditistestedwithregularityontheGRE,toboot.Hereitis:

    Inarighttriangle,a2+b2=c2,wherecisthelengthofthehypotenuseandaandbarethelengthsofthetwolegs.

    Andheresasimpleapplication:

    Whatisthevalueofbinthetriangleabove?

    Thelittlesquareinthelowerleftcornerletsyouknowthatthisisarighttriangle,soyourecleartousethePythagoreantheorem.Substitutingtheknownlengthsintotheformulagives:

    32+b2=52

    9+b2=25

    b2=16

    b=4

    Thisisthereforetheworldfamous345righttriangle.ThankstothePythagoreantheorem,ifyouknowthemeasuresofanytwosidesofarighttriangle,youcanalwaysfindthethird.Eureka!indeed.

    PythagoreanTriples.BecauserighttrianglesobeythePythagoreantheorem,onlyaspecificfewhavesidelengthsthatareallintegers.Forexample,arighttrianglewithlegsoflength3and5hasahypotenuseoflength .PositiveintegersthatobeythePythagoreantheoremarecalledPythagoreantriples,andthesearetheonesyourelikelytoseeonyourtestasthelengthsofthesidesofrighttriangles.Herearesomecommonones:

    {3,4,5}

    {5,12,13}

    {7,24,25}

    {8,15,17}

    InadditiontothesePythagoreantriples,youshouldalsowatchoutfortheirmultiples.Forexample,{6,8,10}isaPythagoreantriple,sinceitisamultipleof{3,4,5},derivedfromsimplydoublingeachvalue.Thisknowledgecansignificantlyshortenyourworkinaproblemlikethis:

    Whatisthevalueofzinthetriangleabove?

    Sure,youcouldcalculateitoutusingthePythagoreantheorem,butwhowantstosquare120and130andthenworktheresultsintotheformula?Pythagorashimselfwouldprobablysay,Ah,screwit...andheadoffforachatwithSocrates.(Actually,PythagorasdiedabouttwentyyearsbeforeSocrateswasborn,butyougetthepoint.)

    ButarmedwithourPythagoreantriples,itsnoproblemforus.Thehypotenuseis130,andoneofthelegsis120.Theratiobetweenthesesidesis130:120,or13:12.Thisexactlymatchesthe{5,12,13}Pythagoreantriple.Soweremissingthe5partofthetriplefortheotherleg.However,sincethesidesofthetriangleinthequestionare10

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 7/17

    timeslongerthanthoseinthe{5,12,13}triple,themissingsidemustbe510=50.

    306090RIGHTTRIANGLESAsyoucansee,righttrianglesareprettydarnspecial.ButtherearetwoextraspecialonesthatappearwithastoundingfrequencyontheGRE.Theyare306090righttrianglesand454590righttriangles.Whenyouseeoneofthese,insteadofworkingoutthePythagoreantheorem,youllbeabletoapplystandardratiosthatexistbetweenthelengthofthesidesofthesetriangles.

    Theguywhonamed306090trianglesdidnthavemuchofanimaginationormaybehejustdidnthaveacoolnamelikePythagoras.Thenamederivesfromthefactthatthesetriangleshaveanglesof30,60,and90.So,whatssospecialaboutthat?This:Thesidelengthsof306090trianglesalwaysfollowaspecificpattern.Iftheshortlegoppositethe30anglehaslengthx,thenthehypotenusehaslength2x,andthelongleg,oppositethe60angle,haslength .Therefore:

    Thesidesofevery306090trianglewillfollowtheratio1: :2

    Thankstothisconstantratio,ifyouknowthelengthofjustonesideofthetriangle,youllimmediatelybeabletocalculatethelengthsoftheothertwo.If,forexample,youknowthatthesideoppositethe30angleis2meters,thenbyusingtheratioyoucandeterminethatthehypotenuseis4meters,andthelegoppositethe60angleis

    meters.

    454590RIGHTTRIANGLESA454590righttriangleisatrianglewithtwoanglesof45andonerightangle.Itssometimescalledanisoscelesrighttriangle,sinceitsbothisoscelesandright.Likethe306090triangle,thelengthsofthesidesofa454590trianglealsofollowaspecificpattern.Ifthelegsareoflengthx(thelegswillalwaysbeequal),thenthehypotenusehaslength .

    Thesidesofevery454590trianglewillfollowtherationof

    Thisratiowillhelpyouwhenfacedwithtriangleslikethis:

    Thisrighttrianglehastwoequalsides,whichmeansthetwoanglesotherthantherightanglemustbe45each.Sowehavea454590righttriangle,whichmeanswecanemploythe ratio.Butinsteadofbeing1and1,thelengthsofthelegsare5and5.Sincethelengthsofthesidesinthetriangleabovearefivetimesthelengthsin

    the righttriangle,thehypotenusemustbe ,or .

    AreaofaTriangleTheformulafortheareaofatriangleis:

    area= or

    Keepinmindthatthebaseandheightofatrianglearenotjustanytwosidesofatriangle.Thebaseandheightmustbeperpendicular,whichmeanstheymustmeetatarightangle.

    Letstryanexample.Whatstheareaofthistriangle?

    Notethattheareaisnot ,becausethosetwosidesdonotmeetatarightangle.Tocalculatethearea,youmustfirstdetermineb.Youllprobablynoticethatthisisthe345righttriangleyousawearlier,sob=4.Nowyouhavetwoperpendicularsides,soyoucancorrectlycalculatetheareaasfollows:

    Trianglesaresurelyimportant,buttheyarenttheonlygeometricfiguresyoullcomeacrossontheGRE.Wemovenowtoquadrilaterals,whicharefoursidedfigures.The

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 8/17

    firsttwowecoveryourenodoubtfamiliarwith,nomatterhowlongyouvebeenoutofhighschool.Theothertwoyoumayhaveforgottenaboutlongago.

    RectanglesArectangleisaquadrilateralinwhichtheoppositesidesareparallelandtheinterioranglesareallrightangles.Theoppositesidesofarectangleareequal,asindicatedinthefigurebelow:

    AreaofaRectangleTheformulafortheareaofarectangleis:

    area=baseheightorsimplya=bh

    Sincethebaseisthelengthoftherectangleandtheheightisthewidth,justmultiplythelengthbythewidthtogettheareaofarectangle.

    DiagonalsofaRectangleThetwodiagonalsofarectanglearealwaysequaltoeachother,andeitherdiagonalthroughtherectanglecutstherectangleintotwoequalrighttriangles.Inthefigurebelow,thediagonalBDcutsrectangleABCDintocongruentrighttrianglesBADandBCD.Congruentmeansthatthosetrianglesareexactlyidentical.

    Sincethediagonaloftherectangleformsrighttrianglesthatincludethediagonalandtwosidesoftherectangle,ifyouknowtwoofthesevalues,youcanalwayscalculatethethirdwiththePythagoreantheorem.Forexample,ifyouknowthesidelengthsoftherectangle,youcancalculatethelengthofthediagonal.Ifyouknowthediagonalandonesidelength,youcancalculatetheothersidelength.Also,keepinmindthatthediagonalmightcuttherectangleintoa306090triangle,inwhichcaseyoucouldusethe1: :2ratiotomakeyourcalculatingjobeveneasier.

    SquaresHey,buddy,dontyoubenosquare...

    ElvisPresley,JailhouseRock

    Wedontknowwhy,butsometimearoundthe1950sthewordsquarebecamesynonymouswithuncool.Ofcourse,thatsthesamedecadethatbroughtuswordslikedaddyOanddancescalledTheHandJive.

    Wethinkthatsquaresareinfactniftylittlegeometriccreatures.They,alongwithcircles,areperhapsthemostsymmetricalshapesintheuniversenothingtosneezeat.Asquareissosymmetricalbecauseitsanglesareall90andallfourofitssidesareequalinlength.Rectanglesarefairlycommon,butaperfectsquareissomethingtobehold.Likearectangle,asquaresoppositesidesareparallelanditcontainsfourrightangles.Butsquaresoneuprectanglesbyvirtueoftheirequalsides.

    Asifyouveneverseenoneoftheseinyourlife,hereswhatasquarelookslike:

    AreaofaSquareTheformulafortheareaofasquareis:

    area=s2

    Inthisformula,sisthelengthofaside.Sincethesidesofasquareareallequal,all

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 9/17

    youneedisonesidetofigureoutasquaresarea.

    DiagonalsofaSquareThesquarehastwomorespecialqualities:

    Diagonalsbisecteachotheratrightanglesandareequalinlength.Diagonalsbisectthevertexanglestocreate45angles.(Thismeansthatonediagonalwillcutthesquareintotwo454590triangles,whiletwodiagonalsbreakthesquareintofour454590triangles.)

    Becauseadiagonaldrawnintothesquareformstwocongruent454590triangles,ifyouknowthelengthofonesideofthesquare,youcanalwayscalculatethelengthofthediagonal:

    Sincedisthehypotenuseofthe454590trianglethathaslegsoflength5,accordingtotheratio ,youknowthat .Similarly,ifyouknowonlythelengthofthediagonal,youcanusethesameratiotoworkbackwardtocalculatethelengthofthesides.

    ParallelogramsAparallelogramisaquadrilateralwhoseoppositesidesareparallel.Thatmeansthatrectanglesandsquaresqualifyasparallelograms,butsodofoursidedfiguresthatdontcontainrightangles.

    Inaparallelogram,oppositesidesareequalinlength.Thatmeansthatinthefigureabove,BC=ADandAB=DC.Oppositeanglesareequal:ABC=ADCandBAD=BCD.Adjacentanglesaresupplementary,whichmeanstheyaddupto180.Here,anexampleisABC+BCD=180.

    AreaofaParallelogramTheareaofaparallelogramisgivenbytheformula:

    area=bh

    Inthisformula,bisthelengthofthebase,andhistheheight.Asshowninthefigurebelow,theheightofaparallelogramisrepresentedbyaperpendicularlinedroppedfromonesideofthefiguretothesidedesignatedasthebase.

    DiagonalsofaParallelogram

    Thediagonalsofaparallelogrambisect(split)eachother:BE=EDandAE=ECOnediagonalsplitsaparallelogramintotwocongruenttriangles:ABD=BCDTwodiagonalssplitaparallelogramintotwopairsofcongruenttriangles:AEB=DECandBEC=AED

    TrapezoidsAtrapezoidmaysoundlikeanewStarWarscharacter,butitsactuallythenameofaquadrilateralwithonepairofparallelsidesandonepairofnonparallelsides.Heresanexample:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 10/17

    Inthistrapezoid,ABisparalleltoCD(shownbythearrowmarks),whereasACandBDarenotparallel.

    AreaofaTrapezoidTheformulafortheareaofatrapezoidisabitmorecomplexthantheareaformulasyouveseenfortheotherquadrilateralsinthissection.Wellsetitoffsoyoucantakeagoodlookatit:

    Inthisformula,s1ands2arethelengthsoftheparallelsides(alsocalledthebasesofthetrapezoid),andhistheheight.Inatrapezoid,theheightistheperpendiculardistancefromonebasetotheother.

    IfyoucomeacrossatrapezoidquestionontheGRE,youmayneedtouseyourknowledgeoftrianglestosolveit.Heresanexampleofwhatwemean:

    Findtheareaofthefigureabove.

    Firstofall,werenottoldthatthefigureisatrapezoid,butwecaninferasmuchfromtheinformationgiven.Sinceboththelinelabeled6andthelinelabeled10formrightangleswiththelineconnectingthem,the6and10linesmustbeparallel.Meanwhile,theothertwolines(theleftandrightsidesofthefigure)cannotbeparallelbecauseoneconnectstothebottomlineatarightangle,whiletheotherconnectswiththatlineata45angle.Sowecandeducethatthefigureisatrapezoid,whichmeansthetrapezoidareaformulaisinplay.

    Thebasesofthetrapezoidaretheparallelsides,andweretoldtheirlengthsare6and10.Sofarsogood,buttofindthearea,wealsoneedtofindthetrapezoidsheight,whichisntgiven.

    Todothat,splitthetrapezoidintoarectangleanda454590trianglebydrawingintheheight.

    Onceyouvedrawnintheheight,youcansplitthebasethatsequalto10intotwoparts:Thebaseoftherectangleis6,andthelegofthetriangleis4.Sincethetriangleis454590,thetwolegsmustbeequal.Thisleg,though,isalsotheheightofthetrapezoid.Sotheheightofthetrapezoidis4.Nowyoucanplugthenumbersintotheformula:

    Anotherwaytofindtheareaofthetrapezoidistofindtheareasofthetriangleandtherectangle,thenaddthemtogether:

    area= (44)+(64)

    (16)+24

    8+24=32

    CirclesAcircleisthecollectionofpointsequidistantfromagivenpoint,calledthecenter.Circlesarenamedaftertheircenterpointsthatsjusteasierthangivingthemnames

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 11/17

    likeRalphandBetty.Allcirclescontain360.Thedistancefromthecentertoanypointonthecircleiscalledtheradius(r).Radiusisthemostimportantmeasurementinacircle,becauseifyouknowacirclesradius,youcanfigureoutallitsothercharacteristics,suchasitsarea,diameter,andcircumference.Wellcoverallthatinthenextfewpages.Thediameter(d)ofacirclestretchesbetweenendpointsonthecircle,passingthroughthecenter.Achordalsoextendsfromendpointtoendpointonthecircle,butitdoesnotnecessarilypassthroughthecenter.Inthefollowingfigure,pointCisthecenterofthecircle,ristheradius,andABisachord.

    TangentLinesTangentsarelinesthatintersectacircleatonlyonepoint.Justlikeeverythingelseingeometry,tangentlinesaredefinedbycertainfixedrules.

    Heresthefirst:Aradiuswhoseendpointistheintersectionpointofthetangentlineandthecircleisalwaysperpendiculartothetangentline,asshowninthefollowingfigure:

    Andthesecondrule:Everypointinspaceoutsidethecirclecanextendexactlytwotangentlinestothecircle.Thedistancesfromtheoriginofthetwotangentstothepointsoftangencyarealwaysequal.Inthefigurebelow,XY=XZ.

    CentralAnglesandInscribedAnglesAnanglewhosevertexisthecenterofthecircleiscalledacentralangle.

    Thedegreeofthecircle(thesliceofpie)cutbyacentralangleisequaltothemeasureoftheangle.Ifacentralangleis25,thenitcutsa25arcinthecircle.

    Aninscribedangleisanangleformedbytwochordsoriginatingfromasinglepoint.

    Aninscribedanglewillalwayscutoutanarcinthecirclethatistwicethesizeofthedegreeoftheinscribedangle.Forexample,ifaninscribedangleis40,itwillcutanarcof80inthecircle.

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 12/17

    Ifaninscribedangleandacentralanglecutoutthesamearcinacircle,thecentralanglewillbetwiceaslargeastheinscribedangle.

    CircumferenceofaCircleThecircumferenceistheperimeterofthecirclethatis,thetotaldistancearoundthecircle.Theformulaforcircumferenceofacircleis:

    circumference=2r

    Inthisformula,ristheradius.Sinceacirclesdiameterisalwaystwiceitsradius,theformulacanalsobewrittenc=d,wheredisthediameter.Letsfindthecircumferenceofthecirclebelow:

    Pluggingtheradiusintotheformula,c=2r=2(3)=6.

    ArcLengthAnarcisapartofacirclescircumference.Anarccontainstwoendpointsandallthepointsonthecirclebetweentheendpoints.Bypickinganytwopointsonacircle,twoarcsarecreated:amajorarc,whichisbydefinitionthelongerarc,andaminorarc,theshorterone.

    Sincethedegreeofanarcisdefinedbythecentralorinscribedanglethatinterceptsthearcsendpoints,youcancalculatethearclengthaslongasyouknowthecirclesradiusandthemeasureofeitherthecentralorinscribedangle.

    Thearclengthformulais:

    arclength=

    Inthisformula,nisthemeasureofthedegreeofthearc,andristheradius.Thismakessense,ifyouthinkaboutit:Thereare360inacircle,sothedegreeofanarcdividedby360givesusthefractionofthetotalcircumferencethatarcrepresents.Multiplyingthatbythetotalcircumference(2pr)givesusthelengthofthearc.

    Heresthesortofarclengthquestionyoumightseeonthetest:

    CircleDhasradius9.WhatisthelengthofarcAB?

    TofigureoutthelengthofarcAB,weneedtoknowtheradiusofthecircleandthemeasureofC,theinscribedanglethatinterceptstheendpointsofarcAB.Thequestionprovidestheradiusofthecircle,9,butitthrowsusalittlecurveballbynotprovidingthemeasureofC.Instead,thequestionputsCinatriangleandtellsusthemeasuresoftheothertwoanglesinthetriangle.Likewesaid,onlyalittlecurveball:YoucaneasilyfigureoutthemeasureofCbecause,asyouknowbynow,thethreeanglesofatriangleaddupto180:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 13/17

    c=180(50+70)

    c=180120

    c=60

    Sincecisaninscribedangle,arcABmustbetwiceitsmeasure,or120.Nowwecanplugthesevaluesintotheformulaforarclength:

    AreaofaCircleIfyouknowtheradiusofacircle,youcanfigureoutitsarea.Theformulaforareais:

    area=r2

    Inthisformula,ristheradius.Sowhenyouneedtofindtheareaofacircle,yourrealgoalistofigureouttheradius.Ineasierquestionstheradiuswillbegiven.Inharderquestions,theyllgiveyouthediameterorcircumferenceandyoullhavetousetheformulasforthosetocalculatetheradius,whichyoullthenplugintotheareaformula.

    AreaofaSectorAsectorofacircleistheareaenclosedbyacentralangleandthecircleitself.Itsshapedlikeasliceofpizza.Theshadedregioninthefigureontheleftbelowisasector.Thefigureontherightisasliceofpepperonipizza.Seetheresemblance?

    Theareaofasectorisrelatedtotheareaofacirclejustasthelengthofanarcisrelatedtothecircumference.Tofindtheareaofasector,findwhatfractionof360thesectormakesupandmultiplythisfractionbythetotalareaofthecircle.Informulaform:

    areaofasector=

    Inthisformula,nisthemeasureofthecentralanglethatformstheboundaryofthesector,andristheradius.Anexamplewillhelp.Findtheareaofthesectorinthefigurebelow:

    Thesectorisboundedbya70centralangleinacirclewhoseradiusis6.Usingtheformula,theareaofthesectoris:

    MishMashes:FigureswithMultipleShapesTheGREtestmakersevidentlyfeelitwouldbenofunifallofthesegeometricshapesyourelearningappearedinisolation,sosometimestheymashthemtogether.Thetrickintheseproblemsistounderstandandbeabletomanipulatetherulesofeachfigureindividually,whilealsorecognizingwhichelementsofthemishmashesoverlap.Forexample,thediameterofacirclemayalsobethesideofasquare,soifyouusetherulesofcirclestocalculatethatlength,youcanthenusethatanswertodeterminesomethingaboutthesquare,suchasitsareaorperimeter.

    Mishmashproblemsoftencombinecircleswithotherfigures.Heresanexample:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 14/17

    WhatisthelengthofminorarcBEincircleAiftheareaofrectangleABCDis18?

    TofindthelengthofminorarcBE,youhavetoknowtwothings:theradiusofthecircleandthemeasureofthecentralanglethatintersectsthecircleatpointsBandE.BecauseABCDisarectangle,andrectanglesonlyhaverightangles,BADis90.Inthisquestion,theytellyouasmuchbyincludingtherightanglesign.Butinaharderquestion,theydleavetherightanglesignoutandexpectyoutodeducethatBADis90onyourown.AndsincethatanglealsohappenstobethecentralangleofcircleAinterceptingthearcinquestion,wecandeterminethatarcBEmeasures90.

    Findingtheradiusrequiresabitofcreativevisualizationaswell,butitsnotsohard.Thekeyistorealizethattheradiusofthecircleisequaltothewidthoftherectangle.Soletsworkbackwardfromtherectangletogiveuswhatweneedtoknowaboutthecircle.Theareaoftherectangleis18,anditslengthis6.Sincetheareaofarectangleissimplyitslengthmultipliedbyitswidth,wecandivide18by6togetawidthof3.Asweveseen,thisrectanglewidthdoublesasthecirclesradius,sowereinbusiness:radius=3.Allwehavetodoispluginthevalueswefoundintothearclengthformula,andweredone.

    Thatcoversthetwodimensionalfiguresyoushouldknow,buttherearealsosomethreedimensionalfiguresyoumaybeaskedaboutaswell.Wellfinishupthisgeometrysectionwithalookatthose.

    RectangularSolidsArectangularsolidisaprismwitharectangularbaseandedgesthatareperpendiculartoitsbase.InEnglish,itlooksalotlikeacardboardbox.

    Arectangularsolidhasthreeimportantdimensions:length(l),width(w),andheight(h).Ifyouknowthesethreemeasurements,youcanfindthesolidsvolume,surfacearea,anddiagonallength.

    VolumeofaRectangularSolidTheformulaforthevolumeofarectangularsolidbuildsontheformulafortheareaofarectangle.Asdiscussedearlier,theareaofarectangleisequaltoitslengthtimesitswidth.Theformulaforthevolumeofarectangularsolidaddsthethirddimension,height,toget:

    volume=lwh

    Heresagoodoldfashionedexample:

    Whatisthevolumeofthefigurepresentedbelow?

    Thelengthis3x,thewidthisx,andtheheightis2x.Justplugthevaluesintothevolumeformulaandyouregoodtogo:v=(3x)(x)(2x)=6x3.

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 15/17

    SurfaceAreaofaRectangularSolidThesurfaceareaofasolidistheareaofitsoutermostskin.Inthecaseofrectangularsolids,imagineacardboardboxallclosedup.Thesurfaceofthatclosedboxismadeofsixrectangles:Thesumoftheareasofthesixrectanglesisthesurfaceareaofthebox.Tomakethingseveneasier,thesixrectanglescomeinthreecongruentpairs.Wevemarkedthecongruentpairsbyshadesofgrayintheimagebelow:Onepairisclear,onepairislightgray,andonepairisdarkgray.

    Twofaceshaveareasoflw,twofaceshaveareasoflh,andtwofaceshaveareasofwh.Thesurfaceareaoftheentiresolidisthesumoftheareasofthecongruentpairs:surfacearea=2lw+2lh+2wh.

    Letstrytheformulaoutonthesamesolidwesawabove.Findthesurfaceareaofthis:

    Again,thelengthis3x,thewidthisx,andtheheightis2x.Pluggingintotheformula,weget:

    surfacearea=2(3x)(x)+2(3x)(2x)+2(x)(2x)

    =6x2+12x2+4x2

    =22x2

    DIVIDINGRECTANGULARSOLIDSIfyouredoingreallywellontheMathsection,theCATprogramwillbeginscroungingforthetoughest,mostesotericproblemsitcanfindtothrowyourway.Onesuchproblemmaydescribeasolid,giveyouallofitsmeasurements,andthentellyouthattheboxhasbeencutinhalf,likeso:

    Anumberofpossiblequestionscouldbecreatedfromthisscenario.Forexample,youmaybeaskedtofindthecombinedsurfaceareaofthetwonewboxes.OrmaybeaQuantitativeComparisonquestionwouldaskyoutocomparethevolumeoftheoriginalsolidwiththatofthetwonewones.Actually,thevolumeremainsunchanged,butthesurfaceareaincreasesbecausetwonewsides(shadedinthediagram)emergewhentheboxiscutinhalf.Youmayneedtoemployabitofreasoningalongwiththeformulasyourelearningtoansweradifficultquestionlikethis,butithelpstoknowthisgeneralrule:Wheneverasolidiscutintosmallerpieces,itssurfaceareaincreases,butitsvolumeisunchanged.

    DiagonalLengthofaRectangularSolidThediagonalofarectangularsolid,d,isthelinesegmentwhoseendpointsareoppositecornersofthesolid.Everyrectangularsolidhasfourdiagonals,eachwiththesamelength,thatconnecteachpairofoppositevertices.Heresonediagonaldrawnin:

    Itspossiblethataquestionwilltesttoseeifyoucanfindthelengthofadiagonal.Herestheformula:

    Again,listhelength,wisthewidth,andhistheheight.TheformulaislikeapumpedupversionofthePythagoreantheorem.Checkitoutinaction:

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 16/17

    WhatisthelengthofdiagonalAHintherectangularsolidbelowifAC=5,GH=6,andCG=3?

    Thequestiongivesthelength,width,andheightoftherectangularsolid,soyoucanjustplugthosenumbersintotheformula:

    Theproblemcouldbemademoredifficultifitforcedyoutofirstcalculatesomeofthedimensionsbeforepluggingthemintotheformula.

    CubesAcubeisathreedimensionalsquare.Thelength,width,andheightofacubeareequal,andeachofitssixfacesisasquare.Hereswhatitlookslikeprettybasic:

    VolumeofaCubeTheformulaforfindingthevolumeofacubeisessentiallythesameastheformulaforthevolumeofarectangularsolid:Wejustneedtomultiplythelength,width,andheight.However,sinceacubeslength,width,andheightareallequal,theformulaforthevolumeofacubeiseveneasier:

    volume=s3

    Inthisformula,sisthelengthofoneedgeofthecube.

    SurfaceAreaofaCubeSinceacubeisjustarectangularsolidwhosesidesareallequal,theformulaforfindingthesurfaceareaofacubeisthesameastheformulaforfindingthesurfaceareaofarectangularsolid,exceptwithssubstitutedinforl,w,andh.Thisboilsdownto:

    volume=6s2

    DiagonalLengthofaCubeTheformulaforthediagonalofacubeisalsoadaptedfromtheformulaforthediagonallengthofarectangularsolid,withssubstitutedforl,w,andh.Thisyields

    ,whichsimplifiesto:

    volume=

    RightCircularCylindersArightcircularcylinderlookslikeoneofthosecardboardthingsthattoiletpapercomeson,exceptitisnthollow.Ithastwocongruentcircularbasesandlookslikethis:

    Theheight,h,isthelengthofthelinesegmentwhoseendpointsarethecentersofthecircularbases.Theradius,r,istheradiusofitsbase.FortheGRE,allyouneedtoknowaboutarightcircularcylinderishowtocalculateitsvolume.

    VolumeofaRightCircularCylinderThevolumeofthiskindofsolidistheproductoftheareaofitsbaseanditsheight.Becausearightcircularcylinderhasacircularbase,itsvolumeisequaltotheareaofthecircularbasetimestheheightor:

    volume=r2h

  • 6/1/2015 SparkNotes:GRE:Geometry

    http://www.sparknotes.com/testprep/books/gre/chapter2section3.rhtml 17/17

    Findthevolumeofthecylinderbelow:

    Thiscylinderhasaradiusof4andaheightof6.Usingthevolumeformula,itsvolume=(4)2(6)=96.

    WevecoveredalotofgroundsofarinthisMath101chapter,workingourwaythrougharithmetic,algebra,andnowgeometry.Wellbringitonhomewithourfinalsubject,dataanalysis.

    Help|Feedback|Makearequest|Reportanerror

    Math101

    Whenyourbooksandteachersdontmakesense,wedo.

    ContactUs|PrivacyPolicy|TermsandConditions|About|Sitemap|AdvertiseFictionBooks|Textbooks|eTextbooks|ClassicBooks|UsedBooks|TeenBooks|nook|eReader

    2011SparkNotesLLC,AllRightsReserved


Top Related