gravitations in minkowski space-time interactions and results of astrophysical interest

75
PHYSICS REPORTS (Section C of Physics Letters) 33, No. 2 (1977) 51—125. NORTH-HOLLAND PUBLISHING COMPANY GRAVITONS IN MINKOWSKI SPACE-TIME. INTERACTIONS AND RESULTS OF ASTROPHYSICAL INTEREST* G. PAPINI and S.R. VALLURI Department of Physics and Astronomy, University of Regina, Regina, Saskatchewan S4S 0A2, Canada Received January 1977 Contents: 1. Introduction 53 6.3. Gravitational photon—photon and photon— 2. Quantization of linear gravitational fields 54 scalar particle scattering 91 2.1. The linear approximation 54 6.4. Bending of light in an external gravitational 2.2. The quantization scheme of Gupta 56 field 94 2.3. The supplementary conditions 58 7. Annihilation of spinless particles into gravitons 95 2.4. The gravitational field in interaction 59 8. The graviton—particle vertex, the proton—neutron 2.5. Weinberg’s theory of massless mass difference and related problems 97 particles 60 9. Photoproduction of gravitons 101 3. Rules to calculate diagrams 66 9.1. Graviton photoproduction in static external 4. Graviton production from particle—antiparticle gravitational fields 101 annihilation 70 9.2. The processes of the type 7 + e - e + g 103 4.1. Electron—position annihilation 70 93. Photoproduction in static electromagnetic 5. ~ bremsstrahlung 74 fields 104 5.1. Weinberg’s formula ~ 10. Synchrotron radiation 110 5.2. Gravitational bremsstrahlung from the sun 80 11. Terrestrial sources of gravitational radiation 110 5.3. Bremsstrahlung in neutron stars 81 11.1. Induced emission of gravitons 110 5.4. Graviton bremsstrahlung with gravitational 11.2. Super radiating states 113 scattering 82 11.3. Continuous generation of a gravitational 5.5. Graviton bremsstrahlung with Coulomb beam 114 scattering 84 11.4. Stimulated generation of coherent 6. Scattering of gravitons and gravitational scattering 86 gravitational radiation 116 6.1. The scattering of gravitons by spinless 11.5. Lattice vibrations in solids 119 particles 86 12. Results of astrophysical interest 121 6.2. Gravitational scattering of neutrinos 88 References 123 * Supported by the National Research Council of Canada. Single orders for this issue PHYSICS REPORTS (Section C of PHYSICS LETTERS) 33, No.2(1977) 5 1—125. Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must be accompanied by check. Single issue price Dfl. 30.—, postage included.

Upload: g-papini

Post on 21-Jun-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Gravitations in Minkowski space-time interactions and results of astrophysical interest

PHYSICSREPORTS(SectionC of PhysicsLetters)33, No. 2 (1977)51—125.NORTH-HOLLAND PUBLISHING COMPANY

GRAVITONS IN MINKOWSKI SPACE-TIME.INTERACTIONS AND RESULTS OF ASTROPHYSICAL INTEREST*

G. PAPINI andS.R.VALLURIDepartmentofPhysicsand Astronomy,Universityof Regina,

Regina,SaskatchewanS4S0A2,Canada

ReceivedJanuary1977

Contents:

1. Introduction 53 6.3. Gravitationalphoton—photonandphoton—2. Quantizationof lineargravitationalfields 54 scalarparticlescattering 91

2.1. The linear approximation 54 6.4. Bendingof light in anexternalgravitational2.2. Thequantizationschemeof Gupta 56 field 942.3. Thesupplementaryconditions 58 7. Annihilation of spinlessparticlesinto gravitons 952.4. Thegravitational field in interaction 59 8. Thegraviton—particlevertex,theproton—neutron2.5. Weinberg’stheory of massless massdifferenceandrelatedproblems 97

particles 60 9. Photoproductionof gravitons 1013. Rulesto calculatediagrams 66 9.1. Gravitonphotoproductionin staticexternal4. Gravitonproductionfrom particle—antiparticle gravitationalfields 101

annihilation 70 9.2. Theprocessesof thetype7 + e- e + g 1034.1. Electron—positionannihilation 70 93. Photoproductionin staticelectromagnetic

5. ~ bremsstrahlung 74 fields 1045.1. Weinberg’sformula ~ 10. Synchrotronradiation 1105.2. Gravitationalbremsstrahlungfrom thesun 80 11. Terrestrialsourcesof gravitationalradiation 1105.3. Bremsstrahlungin neutronstars 81 11.1. Inducedemissionof gravitons 1105.4. Gravitonbremsstrahlungwith gravitational 11.2. Superradiatingstates 113

scattering 82 11.3. Continuousgenerationof a gravitational5.5. Gravitonbremsstrahlungwith Coulomb beam 114

scattering 84 11.4. Stimulatedgenerationof coherent6. Scatteringof gravitonsandgravitationalscattering 86 gravitationalradiation 116

6.1. Thescatteringof gravitonsby spinless 11.5. Lattice vibrationsin solids 119particles 86 12. Resultsof astrophysicalinterest 121

6.2. Gravitationalscatteringof neutrinos 88 References 123

* Supportedby theNational ResearchCouncil of Canada.

Singleordersfor this issue

PHYSICSREPORTS(SectionC of PHYSICSLETTERS) 33, No.2(1977)5 1—125.

Copiesof thisissuemaybeobtainedat thepricegivenbelow. All ordersshouldbesentdirectly to thePublisher.Ordersmust beaccompaniedby check.

Single issuepriceDfl. 30.—, postageincluded.

Page 2: Gravitations in Minkowski space-time interactions and results of astrophysical interest

GRAVITONS IN MINKOWSKI SPACE-TIME.

INTERACTIONS AND RESULTS

OF ASTROPHYSICAL INTEREST

G.PAPINI and S.R.VALLURI

DepartmentofPhysicsandAstronomy,UniversityofRegina,Regina,SaskatchewanS4S0A2, Canada

NORTH-HOLLAND PUBLISHING COMPANY — AMSTERDAM

Page 3: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand S.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof asrophysicalinterest 53

Abstract:

A reviewis presentedof thequantizationproceduresapplicableto lineargravitationalfields in Minkowski space—timeand ofvariousinteractionprocessesinvolvinggravitons.Thediscussionis mainly concernedwith thoseprocessesthat in theFeynmandiagrammaticapproachinvolvegravitonson externallines andareof particularastrophysicalinterestbecauseof their contributionto backgroundgravitationalradiationin the universe.More specificallytheyaregravitonproductionfrom particle—antiparticleannihilation,gravitationalbremsstrahlung,scatteringof gravitonsandphotoproduction.Among thetopicsdiscussedarealso, thegraviton—particlevertexandsomeof its applications,andthe problemof coherentemissionof gravitationalradiationin thelaboratory.

1. Introduction

Although an extremelysatisfactoryclassicaldescriptionof gravitationexists,its completequanti-zationhasso far defiedeveryattempt.Einstein’sgeneraltheoryof relativity doesin fact presentfrom thepoint of view of quantumfield theory,a variety of mathematicaldifficulties. Thesearisechiefly from thenon-linearityof the field equations,the presenceof a complicatedgaugegroup,constraintsin the initial value formulationof the theory,andthe loss of the Poincaregroupsoimportantto particlephysicists(AshtekarandGeroch[1], DeWitt [22]). The probablediscoveryof sourcesof stronggravitationalfieldssuchas blackholesmayhavemadethe problemof thecompletequantizationof the gravitationalfield evenmoreacute,as astrophysicalobservationsrequirequantitativepredictionswhicharedifficult to makeon the basisof a still nonexistingtheory.

Stronggravitationalfields, no matterhow importantand interesting,do not howeverencompassthe wholerealmof quantumphenomenawheregravitationplaysa role. Weakgravitationalsourcesareindeedvery numerousin our universeandaremostreadily availableto us in the laboratory.Thelinearizedgeneraltheory of relativity is adequateto dealwith thesesources,canbe quantizedconsistentlyin anumberof waysandtheinteractionsof the quantaof the field, thegravitons,with otherparticlescanbe studied.

Most of theseinteractionshavean interestin themselvesandserveto ascertainin a clearerway,the significanceandrole of gravitationin physics.The studyof gravitationwould certainlynot becompletewithout their consideration.Someprocesses,however,havea directastrophysicalinterest.Bremsstrahlung,for instance,andphotoproductiondo generatesizeableamountsof gravitationalradiation(GR) which canbecomparablein magnitudewith thoseof classicalprocesses.All pro-cesses,thencontributeto the creationof abackgroundof gravitationalradiationin theuniverse.This vastandas yet untappedsourceof informationhasgreatcosmologicalandastrophysicalin-terest.In fact, becauseof the extremeweaknessof their interactionsgravitonsarealmostunab-sorbableandcould thereforeconveyto us informationaboutthe variousevolutionarystagesof theuniverse.With only a few exceptions,dictatedmainly by the natureof the particularproblemathand,the processesconsideredin thisarticlearelinear.Thus,problemssuchas the fall of matterdown a blackhole(Zerilli [93], Davis, Ruffini, PressandPrice [161), the radiationdueto thecollision of two non-rotatingblackholes (Hawking[401), the stimulatedor spontaneousemissionfrom rotatingblackholes(Unruh [76], Hawking [411) andseveralotherinterestingproblemsforwhich the linearizedtheory is not adequate,do not fall within the scopeof this review.

Mostof the linearprocessesthathaveso far beenstudiedin the literatureareherereviewedandpresentedin as selfcontaineda way as possible.Much work hasbeenproducedin this fieldin thelatesixties thatstill lies scatteredover numerousjournals.Hence the desirabilityof a review

Page 4: Gravitations in Minkowski space-time interactions and results of astrophysical interest

54 G. Papiniand S.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

which mayhelpto reassessthe role of theseprocessesin astrophysics.This role has,sometimesandin our opinion unwarrantedly,beenplayeddown in the literature.

Although no realattemptis madeto estimatethe overall backgroundof GR in the universe,which would obviouslybe of considerableastrophysicalsignificance,linear processescan be dis-tinctly singledout thatcontributeto the increaseor, conversely,thedecreaseof GR in the universeand to thelife andevolutionof astrophysicalobjects.It is found, in particular,thathigh coherencecan compensate,within limits, for the weaknessof certainsources.Fromthis point of view theproblemof highly organizedmatterhasindeedbeenbarelydiscussedin theliterature.

2. Quantizationof linear gravitationalfields

Quantizationtheoriesfor linear gravitationalfields havebeenproposedin the pastby Rosenfeld[70] andPauliandFierz [28]. More recently,the problemof quantizingthe linearizedversionofthe generaltheoryof relativity hasbeentackledalongdifferent linesby severalauthorswith similarresults.Worth of particularattentionamongthe quantizationproceduresis the functional integralsmethoddevelopedby DeWitt [21] andFadeevandPopov [26] which is hereonly mentioned.Although we essentiallyfollow in this article the approachof Gupta [33], the approachof Weinbergis also reportedin somedetail. Also interestingis thepathdependentformalismof Mandelstam[521 becauseof its connectionwith the theory of gaugefields. In Mandelstam’sapproachanyreferenceto a coordinatesystemis avoidedandunphysicalvariableslike the metric tensorg1~~neednot be mentionedascurvatureis directly introducedfrom thevery beginning.The quantizationofcurvatureimplies that space—timecanno longerbeviewedas consistingof a four dimensionalin-finity of points. Hencethe resultsof measurementsin quantumtheoryareno longerpathindepen-dent.Again the first orderperturbationcalculationsgive resultsequivalentto thoseof flat spacetheories.

The questionof renormalizationis not dealtwith in this paper.It is knownthat in the caseofpuregravitationalfieldsall one-loopdivergenciescan be eliminatedby a field renormalization(‘t Hooft andVeltman [74], DeWitt [211). This is no longer the caseas soonas gravitonsinteractwith otherparticles(‘t Hooft and Veltman [74], DeserandvanNieuwenhuizen[17—20]), withthe exceptionof externaloff-massshellgravitonswhich whenaddedto a flat spacerenormalizableprocessleaveit finite (van Nieuwenhuizen[771). It is implicitly hopedthat the lower order termsof perturbationtheory arevalid for mostprocessesconsidered.

2. 1. Thelinear approximation

Einstein’sequationscanbe written in the form

~ — = !~<2~ (2.1)

whereR~0is the Ricci tensor,~ the metric tensor,R R~,i~= ‘~Jl6irG, G thegravitationalcon-stantandT,.LV the energymomentumtensorof the “matter field”. Matter hereincludeseverythingexceptthe gravitationalfield.

‘y°~~is definedas the energymomentumtensordensityfor the matterfield

= T0P~[~~. (2.2)

Page 5: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandS.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest ~

The covariantdivergenceof R1~~— ~g,2~Rvanishes.It thereforefollows that the divergenceoftoo vanishes:

— ~jr’~ag~p= 0, (2.3)

(2.4)af

t~ is thepseudotensorof the gravitationalfield and

at~/ax~= —~r°~ag~/ax~. (2.5)

The linear approximationis definedby expandingthemetric tensorandkeepingonly thefirstorder terms

= + i~h~ (2.6)

where is theMinkowski metric. It follows that

a2h a2h a~hx

D2h~ (ax~a~+ ax~a~)+ ax~a~+~(ax~~— ~2~) = KTpv , (2.7)

~ T~’ (28)ax~ 2ax~

By usingthe de Donder—Lanczoscondition

— ~ah~/axM= 0 (2.9)

oneobtainsfrom (2.7)

D2h~~— ~ = ~ . (2.10)

By defining

h ‘6 ~ 211~zv ‘Y~v2 ,.~v”YX

andusing (2.10)and(2.11)onegets

D2’y~~KT~~; ~‘y~p/axv0 (2.12)

—~ ~ ~ax 2a~ 4a’~I) ~.L

! ‘YXP aYXP 1 a7~a’y~ ~ (a’fxp a~1 1 a7X ~ (2 13~ 2 — — 2 ,.iv — 2 ax0 . )

Hencethe Hamiltoniandensitycanbe written as:

c?~=±[__~-_J~+!--~_L_I--1 (2142L at at 2 at at 2 ax0 ax0 4ax0 ax0]~

Page 6: Gravitations in Minkowski space-time interactions and results of astrophysical interest

56 G. Papiniand S.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

It also follows from (2.12) that

02 a7~~/ax~= ~ aT~/ax~ D~a~~/ax~= 0. (2.15)

The two equationsagreeonly in the first approximation.However,for the exactnon lineargravitationalfield the supplementaryconditionsareexactlycompatiblewith the field equations.

2.2. Thequantizationschemeof Gupta

The Lagrangiandensity is constructedas a functionof the independentvariables and‘y

E =_!(~2~~ (216)4\ ax~ ax~ 2 ax~ax~

Thusthe field equationsare:

D2’y,

2~”0; D270 (2.17)

andthe Hamiltoniandensitybecomes

~=ll~i~fI+!ñ L~i1 (218)2 L at at 2 at at 2 ax~ ax~ 4 ax~ax~j

Equation(2.18)will be reconciledwith (2.14)by choosingthe supplementaryconditionsin sucha way that the expectationvaluesof ‘y and coincide. In termsof ~‘s, we have

— aL _1 ~Yii 21911 a(a711/at) 2 at

andthe commutationrelationsare:

[‘y11(r, t), I1~,(r’, t)] = i6(r’ — r) (2.20)

[7ii(r~ t), ~1(r~ t)] = 2i6(r’ —r) (2.21)

[‘y~ (x), ‘y,1 (x’)] = 2iD(x — x’), (2.22)

where

D(x — x’) — 2i ~ fdk’ expf—ik’(x — x’)} (2.23)(2ir)

4 P-~O k’2 + p2

is the singularfunction for the gravitationalfield. Since‘Y12 = 721 and1112 = aL/a(a712/at),the

following commutationrelationalsoholds:

[y12(x), 712(x’)] = iD(x — x’) (2.24)

Page 7: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand S.R.Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsof astrophysicalinterest 57

and,morein general

[7Mv(x), y~~(x’)]= i(6~~6~~+6~sp6vX) D(x — x’) (2.25)

[7(x), 7(x’)] = —4iD(x — x’). (2.26)

and~ arethenexpandedinto planewavesin the form

~ ~ wt)} +a~~(k)exp~—i(k~r—wt)}} (2.27)

= ~ 2~ {a(k) exp{i(k.r — wt)} +a~(k)exp{—i(k~r— wt)} }. (2.28)

Substitutionof the abovetwo equationsinto (2.24)and(2.25) gives:

[aMP(k),a~~(k)]= V6Vp + 6!2P6VX (2.29)

[a(k),a~(k)] = —1 . (2.30)

Useof the last six equationsin the Hamiltoniandensityandomissionof the zeropoint energygivetheHamiltonianof the gravitationalfield:

f~dv ~ ~ . (2.31)

The following four operatorsaredefinedfor convenience:

a’~1(k)~(a11(k)—a22(k)); a~2(k)~(a11(k)+a22(k))

1 1 (2.32)

a’33(k) a33(k) ; a~(k)= a®(k).

Theyobeythecommutationrules

[a~1(k),a’~(k)] = 1; [a’22(k),a~(k)]= 1(2.33)

[a’33(k), a’~(k)1 = 1; [a~,(k), a~(k)] = 1

The Hamiltoniancanthenbe written as:

fcxdv ~ k {a’~a” +a~a221+a~a’33+a~a’°°—a~a

+ a~2a

12+ a~3a

23+ a~1a

31 — a~0a’°— a~0a

2°— a~a30}. (2.34)

Therearethereforeeleventypesof gravitonscorrespondingto elevenindependentcomponentsof ‘y,~,and~. Sincethe commutatorsinvolving a

10(k)anda(k)havea negativesign it is convenientto usean indefinite metric in dealingwith the components7i~and~.

Page 8: Gravitations in Minkowski space-time interactions and results of astrophysical interest

58 G. PapiniandS.R.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

2.3. Thesupplementaryconditions

Becauseof the introductionof an indefinite metric,anystate‘P is normalisedas

= (1)nlO+n20+n30+n (2.35)

wheren10, n20, n30 andn arethe occupationnumbersof the a10-,a20-, a30- anda- gravitons.The supplementaryconditions

a7~-~---~‘P0; (y~—7~)’P0 (2.36)

where and7~arethepositive frequencypartsof7Mv and~, now determinethe allowablewave

functionsq thatdescribethestateof the gravitationalfield andensurein particularthat

0 ; (7~~)= (7) . (2.37)

Substitutionof the Fourierexpansionsof in (2.36)andthe choiceof k alongthex3 axis

gives:

(a3~(k)—a01(k))’P0 ; i 1,2 (2.38)

(a33 (k) — a00(k)) ‘I’ = 0 ; (~/~a~3(k) — a03(k))’P = 0 (2.39)

(a30(k) — a00(k))‘I’ = 0 ; (a30(k) — \/~i~0(k))‘P = 0. (2.40)

Theseequationseliminatestatesin which a31 anda01 gravitonsarepresentin the absenceof inter-action. Also from equations(2.36)andthe Fourierexpansionsof and7, oneobtains

(a~(k)— 2a(k)) ‘P = 0, (a’22(k) — a(k))’P = 0 (2.41)

which imply the absenceof a2- anda-gravitonsin a puregravitationalfield. Hence,thesupplemen-tary conditionseliminate9 typesof gravitonsfor a puregravitationalfield:

n23 = = = n02 = n03 = n22 = n33 = n00 = n = 0 (2.42)

while the occurrenceof negativeprobabilitiesin real statesas predictedby eq. (2.36) is prevented.Only gravitonsof the typesa,2 anda,1 can existandthe vacuumstatemaybe definedasthat

containingno a12 anda11 gravitons.Sinceall the componentsof andy~containabsorptionoperators,the vacuumstate‘P0 satisfiesthe equations:

= 0 ; y~’P0= 0. (2.43)

The only nonvanishingcomponentof the spin operatoris then

~ 2[a~(k)a÷(()—at(k)a_(k)]“2~I~(n~(k)—n_(k)) (2.44)

wheren÷andn arethenumbersof gravitonscorrespondingto the operatorsa÷(k)andajk).Equation(2.44) showsthat gravitonsareparticlesof spin 2 with two independentspin statescorrespondingto spin axisparallelor antiparallelto the directionof motion.

Page 9: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandS.R.Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsofastrophysicalinterest 59

2.4. Thegravitationalfield in interaction

The interactionof the gravitationalfield with matteris representedby the Lagrangiandensity:

1 / a7~~a7’~ 1 a7 a7 K.12 = — ~-~.---— -s-—- —-~-~:.) ~ — 2&~07)T. (2.45)

The aboveequationgives riseto the field equations:

o27,2v = KT~~; D2’y~= KT~. (2.46)

The supplementaryconditionsaremodified in the Heisenbergrepresentationto:

[a7~~/ax~]‘P = 0 (2.47)

— ~ ‘I’ = 0 (2.48)

where [ ]~denotesthe positivefrequencypart. In the absenceof interactiontheyareindenticalto thepreviousconditionsgivenin (2.37).The termsa7~~/ax~and(‘,‘~ — 7) canbe split into posi-tive andnegativefrequencyparts in the presenceof interactionin the Heisenbergrepresentation.Also the following equationshold:

o2a

7~0/ax~= 0 (2.49)

o2(7,~—7)=0. (2.50)

Passingfrom the Heisenbergrepresentationto theinteractionrepresentation,the following equationsare obtained:

[a7~~/ax~+ K fD~(x’— x) T0~(x’)dv] ‘P(t) = 0 (2.51)

~ — 7~)”P= 0. (2.52)

D~(x— x’) is the positivefrequencypart of D(x — x’). Thosegravitonswhich could not exist in apuregravitationalfield cannow appearin virtual statesin the presenceof interactiondueto theT0~term.The wholetheory is Lorentzinvariant.

In particular,the field equationsfor the electromagneticfield aregiven by:

a9~~/axv= _p12 (2.53)

a.~‘2/ax’2 = 0, ~‘2V = ~/EiFPV (2.54)

F’2V = aA~/ax’2— aA’2/ax~ g’2XgVPF~ (2.55)

p’2~/TjJM . (2.56)

The total Lagrangiandensityof the gravitationalandelectromagneticfields maythenbe split intotwo parts

2tot = .12+ ER (2.57)

Page 10: Gravitations in Minkowski space-time interactions and results of astrophysical interest

60 G. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

and

ER = —~ ~ ~J’2~~ —~ v~g’~g~~ (2.58)

which, by usingthe LorentzconditionaAo/axa= 0, becomes

ER = _~T’2v9~~— ~K70~(F0’2F~— ~ . (2.59)

The first order interactionterm is given by

(2.60)

whereT’-”~ is theusualflat spaceenergy-momentumtensorof theelectromagneticfield.

2.5. Weinberg’stheoryofmasslessparticles

Lineargravitationalfields canalsobe quantizedby meansof Weinberg’s“physical particlesonly”approach[85—87]. In this approachparticlesaredefinedas theirreduciblerepresentationsof theinhomogeneousLorentz groupandplay a morefundamentalrole than fieldssinceparticleoperatorsenterthe interactionin the form of free fields which transformaccordingto variousrepresentationsof the homogeneousLorentzgroupandcommutewith eachotherat spacelikeseparations.The Smatrix is Lorentz invariant andthe Feynmanrules for gravitons(andphotons)canbe obtained.In order to accountfor the inversesquarelaw forces,potentialsareintroducedwhich a priori maynot be invariant.Thereby,the Lorentz invarianceof theSmatrix becomesa difficult requirementto satisfy. The salientfeatureof the formalism is that for masslessparticleof spin/ 2, the onlyLorentz invariant theory is just thatof Einstein.With anexactlyconservedcurrent,in the weakfield limit, the field equationsreduceto thosederivedby Gupta.Weinberg’sapproachis herepresentedwith a view to illustratehow thegulf betweenthetheoryof masslessparticlesandtherestof particlephysicscould possiblybe bridged.

2.5.1. ThefieldsWeinbergshowsthat in theperturbationtheory for massiveparticlesof anyspin, the amplitudes

for emissionor absorptionof a particlewith spin/ vanishesnecessarilyasp1~i

2 for momentump -* 0 whenm -~ 0.

The necessityto avoid this difficulty which would makethe existenceof inversesquarelawsimpossibleleadsto the introductionof potentialswhose/th derivativesgive the fields. Forsim-plicity, the fields for particlesof spin/ arechosento be transformedunderthe (2/ + 1) dimen-sionalrepresentations(/ 0) and(0/) of the homogeneousLorentzgroup. TheyareindicatedbyØ

0(x) andx0(x) respectivelyandcanbe written as tensorsF_(x) andF1.(x) of rank 2/asfollows:

F~’2’~i 1 [‘221/21.~ = (2ir) 3/2 ~+i ~ d3~ [p’2’e~’(p) — p1/’ e~’(p)]

- (21p1)112

[p’2ie~i(p)— Vj’2f()] [a(p, ±j)eiPx + b*(p, ~/)e~] . (2.61)

b* is theantiparticlecreationoperator,a is the particleannihilationoperator,b is the antiparticleannihilationoperator,a* is theparticlecreationoperator.

Therefore,F_ (x) andF÷(x)arejust linear combinationsof ~(x) andx(x) andvice versa.The

Page 11: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandSR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest 61

polarizationvectorse~(p)in (2.61) aredefinedas

e~(p)= R~(~)e~ (2.62)

e~= l/\/~ e~= ±i/~JT; e43 e2 =0. (2.63)

R~(p)is a purerotationthat carriesthe z-axis into the directionof p.i) F~(x)eachhavenot morethan(2/ + 1) linearly independentcomponents.

ii) F÷(x)actuallyaretensors,that is, theytransformas:

U(A)F~’2’~””2i’1’U’(A) = A~1A~i~ (Ax) . (2.64)

A~is a properorthochronousLorentztransformation.The correspondingunitary operatoris U(A)while U’(A) is its inverse.Also

A~A~= . (2.65)

The U(A) formsan infinite dimensional(andreducible)unitary,representationof the Inhomoge-neousLorentz Group:

U(A, ~) U(A, a) = U(AA, Aa ÷~)

U(A) U(A) = U(AA). (2.66)

Therefore,from (2.64),F~transformsaccordingto somereducibleor irreduciblerepresentationof the homogeneousLorentzgroup.Themost generalrepresentationthat canbe constructedfroma(p, +/) exp(ip~x)+ b~(p,—/) exp(—ip . x) is a sumof representationsof type

F÷: (0,j)(L/+~)(1,/+ 1)... (2.67)

while the mostgeneralrepresentationthatcanbe constructedfrom a(p, —/) exp(ip . x)+ b~(p,+1) exp(ip . x) is a sum of

F : (/, 0) (j + ~) (I + 1, 1)... (2.68)

as hasbeenshownby Weinberg.The only way suchsumscanhavedimensionality‘~ 2/ + 1 is for themto consistjust of the first

terms(0, /) and(1, 0). The representationdeterminesthe fields uniquely,so F.4. mustbe x andF

mustbe 0.The following propertiesof F~arementionedto numberthe componentsof F~:

1) The F~‘s aresymmetricunderinterchangeof any two index pairs,2) Antisymmetricunderinterchangeof indiceswithin a pair,3) They areeitherself-dualor anti-self-dualwithin eachindex pair,4) Thecompletetraceon anytwo index pairsvanishes.

The conditionsof antisymmetryandselfdualityor antiself-dualitylower the numberof indepen-dentcomponentsfor eachindex pair from 16 to 6 to 3. The conditionsito 3 would give F~(x)the samenumberof componentsas for a symmetrictensorin 3 dimensions,i.e.,

~ (2.69)

Page 12: Gravitations in Minkowski space-time interactions and results of astrophysical interest

62 G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

Condition4 imposesN1_2 constraints.Therefore,the numberof independentcomponentsleft

is not greaterthan2/ + I,

N1 — N1_2 ~ 2/ + 1 . (2.70)

The proofthat theF~(x) aretensors,is containedin Weinberg’sarticle [87] . The fieldsF~(x) obeythe free field equations

D2F~’2i~il”(x)=0 (2.71)

a~F~1’2i~’1”(x)=0. (2.72)

For I = 1, (2.61)gives two of Maxwell’s equations.The five independentcomponentsof F~’2°~I X77]

areidentified with theleft or right handedpartsof the source-freeRiemann—Christoffeltensor.The potentialscannow be introducedandarefound to be suitableto formulateatheory of

photonsandgravitons.The potentialsarenot tensorsandtheir transformationpropertiesareshownin thenextsubsection.The S matrix follows as a naturalconsequenceof the introductionof thepotentialsandthe currentoperatorin theinteractionrepresentationas shownin subsection2.5.3.

The transformationof theSmatrix follows from the Lorentztransformationrule for onepar-ticle statesandthe imposition of two conditionson the currentoperatorin the Heisenbergrepresen-tation.

2.5.2. The potentialsThe tensorfieldsF~(x)arethe/th derivativesof the potentialsas canbe seenfrom (2.61),

A~’’2I(x) = f P e~1(p) ... e~i(p)[a(p,±j)eiPx+ (~_i)jb*(p,~j)e~i~~x](2.73)(2ir)3/2 (21p1)112

F~’2’~1(x) = a’2A~÷(x) — a1/A~(x) (2.74)

F+1’2~1‘~1(x) a’2axA~Y~(x) — a’2a~A~~’(x)— a1/a~A+’2x(x)+ a~a~A~’(x)+ a~a~A~’(x). (2.75)

SinceA~arefree of theobjectionablefactorspI, theycanbe usedto constructa theory of photonsandgravitons.The A~(x) cannotbe tensors,becausethe tracelesspart of a symmetrictensorofrank/ transformsaccordingto the (//2, //2) representationof the homogeneousLorentzgroupandthis is not oneof the representations(2.67)and(2.68)allowedfor masslessparticlesof helicityX = ±/.Also,A~vanishesif anyof its indicesis = 0, a propertyhardly admissiblefor a tensor.Thepotentialsthereforetransformin the following way:

U(A)A~’”’2i(x) U’(A) = A~1... A~(2~y3/2~ d3p [e~1 (p) — pV1f~(p, A)] M (2.76)

1 / (21p1)”2

M [e~i(p) — p1/ff±(p, A)] [a(p, ±1)exp(ip . Ax) + (—1)~b*(p, ÷j)exp(—ip Ax)] . (2.77)

Equation(2.76)canbe expressedin a morecompactform as:

U(A)A~’’2i(x)U-1(A) = A~’... A~/A~’~i(Ax)+ ~a’2rO~1’2r-1Mr÷1~’2i(x1A). (2.78)

Page 13: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsof astrophysicalinterest 63

The secondterm on the right-handsideof the aboveequationdenotesthegradienttermsandtheA~aretensorsexceptfor gradientterms.Sincethephotonandgravitonaretheir own antiparticles,it is convenientto restrictanyfurtherdiscussionto purely neutralparticlesanddefinephasessuchthat

b(p, ±/)= (—1)~a(p, ±1). (2.79)

Then

(2.80)

Therefore,Hermitianfields canbe definedsuchthat

A’21.’2i(x)A+’21”~’2i(x)+A~ñ1~”’2i(x)

= (2~3/2 j d3p ~e~1~) ... e~J(p)[a(p, ±j)e~ +a*(p, ~j)ex] (2.81)(2~pI)”2

B’2’”’2/(x) = —iA’2÷’”~’2i(x)+ L4M1~’2J(x)

= — i d~p ~ (±)e~1(p)... e~(p)[a(p,±j)eiP~+a*(p, ;f)~iP~x] (2.82)(2ir)312 (21p1)112 ± —

with A carryingintrinsicparity (—1 )/, while B hasintrinsic parity --(—1 )“ . A’2 andA’21/ canthere-forecoupleto normaltensorslike the electriccurrentandenergymomentumtensor,while the B’shaveto coupleto tensorsof abnormalparity, like the currentof magneticmonopoles.

2.5.3. Lorentzinvarianceand current conservationThe spacelike componentsof the currentoperatorin the interactionrepresentationaredefined

by

= —t5H’(x°)/5A”.t/(x). (2.83)Fromthepotentials(2.73) it canbe seenthat theSmatrix for emissionof a particlewith m = 0,helicity ±j,andmomentump in atransitionc~-~ ~3is

S~0(p,±J)____ 1 e~(p)...e~(p)fd4xe’P~~ (—1)

(2ir)312 (21p1)112 n0 fl.

X f dt1 ... dt~(bIT{H’(t1)... H’(t~)g~1(x)}Ia). (2.84)

The aboveS matrix canbe expressedin termsof exactenergyeigenstatesandHeisenbergrepresen-tation operatorsas

Spa(P,±/) 1 1 ~ (2.85)(2ir)

312 (21p1)112

Page 14: Gravitations in Minkowski space-time interactions and results of astrophysical interest

64 G. Papini and SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

= J’d4x e_ht~x(boutIg~11(x)Ia in) (2.86)

gH (x) = e~~~tg(0)e_i~~t= ei~te_~~~otg(t) &hbot e_~~t. (2.87)

Fromthe Lorentztransformationrule for oneparticlestatestheSmatrix transformsas1/2

Sp~(p,±i)=(~)SA~(Ap,±/)exp{;ij~(p,A)}. (2.88)

This is possibleif andonly if

(i) g~’~1(p)isthespacelikepart of a symmetrictensorgH~)~.(p) with

U(A)g~~.(p)U’(A)= A~Ig~~1/1(Ap). (2.89)

(ii) The tensoris conserved

p’2lg(hl)(p) = 0. (2.90)

The propagatorfor the/ = 2 particleis givenby

(T{A’21/(x), A~(y)}>

0 = (2~3/2 j d3p fl’2VX~(p){O(x—y) ei~_~+ O(y _x)ei~Y_x)}

(21p1)112 (2.91)

H’2VXSl(p) = ~ e’t(p) e~(p)e~(p)e~(p) (2.92)

In momentumspace,this gives

= ifd4x exp{—iq . (x — y)} (TfA’21/(x), AX~(y)}0= HM1/~(q)/(q

2— ie). (2.93)

Lettingp = k = (001), using(2.63)andevaluatingthe polarizationsumshowsthat the only non-vanishingcomponentsof (2.92)are

11’’’’(k) = fl2222(k) = 111212(k)= 112u2(k)= fl1221(k) = 112121(k)= _11u122(k) = fl221‘(k) =

(2.94)

Thereis asimplerelation betweenfl’2~~(k)andH’21/(k). fl’21/(k) is given by

fl’2P(p)~ e~(p)e~(p). (2.95)

Application of therotationR(~j)enablesto representfl’21/~(q)as:

= ~ [HMX(q)11V11(q)Vlt(q)+ flM1t(q)flVX(q) — fl’21~(q)flX??(q)~ (2.96)

where

(,,M ~ 2 ~2 V

q q /q0+~ ~7‘7 (2.97)1q12 1q12

= [0001] . (2.98)

Page 15: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 65

The propagator(2.93)canbe split into threeparts

~~q) = ~1(q) + ~(q) + ~~q) (2.99)

~~VXt1(q) = ~‘7PX’7V7~ + ‘7’2T?’7VX — ~‘2X~Xr1)/(q2 — ic) (2.100)

while ‘~Gradcontainsall termscarryinga factorq’2, q°qX or q” and ~Loc is theremainingpart

= [(‘7’2?~’7V’771 + ‘7’2Tl’7V’7X +77VX77’271n +77~’7’27f’— 77)2V77X7111 —

(2.101)

The ~Loc term doesnot havea poleatq = 0, so its Fouriertransformis temporallylocal, andits effect canbe cancelledby addinga “Newtonian” term to theinteraction.

The currentg’21/(x) hasto be conservedto eliminatethe l/q2 polein ~Grad~ The only conserved

symmetrictensoris the energymomentumtensorO’2V, so A’2V hasto be coupledto Forexactconservation must involve the potential A’2V. Therefore the proof of Lorentz invariance becomesextremelydifficult for thecaseof / = 2 (the graviton) but forj = lit is simplebut longwinded.

The effectivegravitonpropagatoris

~~PX1?(q) ~j[’7PX’7V71 + — ‘7’2V’7X5?]/(q2 — ic) . (2.102)

2.5.4.DerivationofEinstein‘s equationsFor themasslessparticlewith / = 2 the Lorentzinvarianttheory leadsto the derivationof

Einstein’sequations.The interactionrepresentationpotentialin this caseis traceless.It thenfol-lows thatthe tracelesspart of the Heisenbergrepresentationpotentialis given by:

A~4(x,t) — ~‘A~,k(x, t) = U(t)A~’(x,t)U’(t) . (2.103)

Analogouslyto the caseof the scalarpotentialfor the electromagneticfield, six componentsof the

Heisenberg representation potential areintroducedandlead to the equations

(2.104)

V2A~.,1(x)= —~g~(x) (2.105)

V2A~(x)— ~A~k(x) = —~g~

1(x)— ~g~(x) (2.106)

a1A~(x)+ ~aOA~k(x)= 0. (2.107)

The S matrix for a transitiona—f3 dueto an infinitesimalc-number can then be expressed as:

= _if d4xq3outIA~’(x)I~ in)6g~

1/(x). (2.108)

The field equations satisfied by (2.103) are:

02 [A~(x, t) — ~6”A~k(x, t)] = —fd~yD”(x—y)g~(y,t) (2.109)

where

Page 16: Gravitations in Minkowski space-time interactions and results of astrophysical interest

66 G. PapiniandS.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

Dui~(r)= (2~r)3fd3p Hiikl(p) exp(ip r) = ~[(

6ik ö” + 6116jk — 61/6k/) ~53(x — y)(2.110)

+ ~ a’a”~1’ + aat

6Jk + a’a’6” — aa’6”~’ — akal6ii)D(x — y) + ~a’a’a’~a’~(x ---y)]

~(x —y) = (27r)-3f~±exp{ip.(x —y)} = ~(0) — 1xy1 (2.111)IpI 7r

By usingthe currentconservationconditiononeobtains

02A~(x)— a°a’A~(x) — a

0a’A~(x)— a’a’[A~(x) — ~A~k(x)] = —g~(x)+

(2.112)

The tracelesspart ofA~is divergencelessas is A”(x),

a,A~(x) — ~a,A~k(x) = 0. (2.113)

Theseequationscanalsobe expressedas

R~1/(x)= —g~1/(x)+ ~g’21/g~~(x)

or equivalentlyas

R~1/(x)— ~gP1/R~~(x)= g~j1/(x) (2.114)

where R’2H1/ is given by

R~j1/(x)= D2A~~(x)— a’2a~A~~(x— a~a~A~’2(x)+ a’2a~A~,~(x). (2.1 15)

Equations(2.110)and(2.111)mustalsobe retainedas gaugeconditionson thepotential.Theyarisebecauseof the specialway in which A”(x) havebeenconstructed.Equations(2.113)and(2.114) arerecognizedas Einstein’sequationsin the weakfield approximationprovidedthatg’2V is takenas

g’21/(x)~’21/+A’2H1/(x)

andthe.energymomentumtensorO’2V is for matteralone,which is howeverinconsistentwith therequirement that the current g’2~’be conserved.The mattertensor

0’2V haszerocovariant divergence,but its ordinarydivergenceis � 0 if gravitationalinteractionsmustbe accountedfor. Guptahasshownthat (2.113)with an exactlyconservedright-handsideis exactlyequivalentto Einstein’sequations.

The Feynmanrulesfor photonsandgravitonscanthusbe formulatedandaresummedup insection3.

3. Rules to calculatediagrams

The Feynmanrulesfor photons,gravitons,electrons,andneutrinosetc.can now be formulatedandaresummedup in section3. It is worthwhile to mention thatthe rulesdiscussedarenot a corn-pletesetof Feynmanrulesandcannotbe usedto calculatehigher order termsinvolving closedgravitonloops.

Page 17: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 67

The wavefunctionof anincidentelectronof momentump~andspin S~is given by the solutionof the Dirac equation,

(p—m)’1’,—0 (3.1)

‘P~(x)= i/~~-~U(p,, S~)exp(—ip, . x). (3.2)

For a neutrinoof momentump~andspin S~

= U(p1, S~)exp(—ip~. x). (3.3)

The wavefunction is normalizedto unit probability in a box of volume V. In a similar way, thewavefunction in the final stateis givenby:

‘P~(x)= i/~iU(p~,Sf) exp(ip1~x) (3.4)

for the electron,and

= U(pf, Sf) exp(ip~. x) (3.5)

for the neutrino.The wavefunctionsin momentumspaceareobtainedby useof the Fouriertransform.~/m/E,~-V U(p1~,S~f) describesan electronin momentumspacein either the initial or the

final stateand\/(11V~i U(p1~,S1~)describesa neutrinoin either the initial or the final state.The four vectorpotentialof a “photon” with momentum andpolarizationc~is written as

a planewave

A’2(x,p) = ~V (e~~+ e~t~) (3.6)

P~P°~ (3.7)

f’2 is the unit polarizationvectorandsatisfiesthe transversalitycondition,

e~p’2=0. (3.8)

The wavefunctionof an incomingphotonis givenin momentumspaceby:

= (2ir)3/2 �~(Pi). (3.9)

Similarly the wavefunctionof anoutgoing photonis given by:

‘P~t = (2ir)312 ~ E~(p~). (3.10)

The photonpropagatoris given by the equation:

DD~(x—y)=64(x—y) (3.11)

Page 18: Gravitations in Minkowski space-time interactions and results of astrophysical interest

68 C. Papini and S.R.Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsofastrophysicalinterest

d4 qDF(x — y) = f e~Y)D~(q2) (3.12)

(2ir)~

DF(K2) —~— ‘7’2~/(~2 — ie). (3.13)(2ir)~

This last equationdescribesavirtual photonpropagator(p -+ ii) for aninternalline of momentumK.

The form of the electron—electron—photonvertexis dictatedby the requirementthat A’2 is

coupledto a conservedcovariantquantity.The Lagrangianfor the electron—electron—photoninteractionis given by:

.12~= —e’T~~y~’P1A’2. (3.14)

In momentumspacetheelectron—electron-—photonvertex is given by:

—(27r)4e7~64. (3.15)

The potentialfor anexternalparticleof momentump andhelicity ±2is given by:

A~1”22= (2~)_3/2f~ e~(p)e~(p)[a(p, ±2)eipx+ b*(p, ~2)e~Px] . (3.16)

The gravitonis its own antiparticlelike thephoton,

h(p,±2)a(p,±2), b*(p,±2)a*(p,±2). (3.17)

In momentumspacethe wavefunction of anincoming gravitonis:

= 1 1 c~(p)e~(p). (3.18)(2ir)312 ~

The wavefunctionof an outgoinggravitonis:

e~(p)e~(p). (3.19)

g (2ir)312 \/T3~The symmetricaltensor0’2V is givenby:

= —~(‘I”y’2a~’W+ ‘P71/a’2’P). (3.20)

The electron—electron—gravitonvertex is given by:

—~(~p7Vp~); (K~l6~G). (3.21)The neutrino—neutrino—gravitonvertexcanbe expressedas:

+ i7

5)(7~p1/ + 71/pu) . (3.22)

The scalar—scalar—gravitonvertexis givenby:

—~K(p1~p21/+p11/p2~, — m2~~

1/) (3.23)

wherep1 andp2 arethe initial and final four momentaof the scalarparticleandm is the massofthe scalarparticle.

Page 19: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand S.R. Valluri, Gravitons in Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 69

The photon—photon—gravitonvertexis given by:

—~ {(~i~P1n— e10p1~)(e21/p2— c~p21~)— ~6.~(e10p~— e1~j310)(e~p~— e~p~)} (3.24)

wherep1 andp2 arethe initial andfinal four momentaande~and�2 the respectivepolarizations.It is obtainedfrom the interactionLagrangian—~ Kh’2V T’2V for aparticleandcanbe usedto describeeffectslike theredshift,the deflectionof light by the sunandalso for interactionsof fermions,scalarparticlesetc.with gravitonsin the weakfield approximation.T’2V is theenergymomentumtensorof the particleconsidered.Also the energymomentumtensorfor scalarmatteris given bythe expression:

=

01V01’2 — ~~7~010~10 —

Table 3.1Feynmanrulesfor gravitons,photons,electrons,neutrinos,andscalarparticles

Wavefunctions Gravitonvertices

Externalparticleof Wavefunction Particles Vertexmomentump

Photon—photon— _/-~(j~~{(e~~ 1OPI’2)., —3/2 1An incomingphoton () _______ graviton x

(21p1)112 -

-3/2 1 X (e~p~—e~p~)}An outgoingphoton (2ir) �

(2ipi)’~2 —

Electron—electron—., —3/2 1 ‘2An incominggraviton (.~ir) e~(p)e~(p) graviton

(21p1)’’24 4Electron—electron— _e(2~)~

., —3/2 1An outgoinggraviton (.~ir) e~(p)e~(p) photon

(21p1)”2 — — Scalar—scalar——~Q-l’2P2V~PlVp

2’2—m ~~‘2V)\/i~GJ/c~:U(p1 S1) graviton, —3/2An incomingelectron (sir) — Neutrino—neutrino— i ~ ~

graviton., —3/2An incomingneutrino (.~ir) j/~iU(p,.S~) Propagators

PhotonpropagatorAn outgoingelectron (2,r)_3/2 J/ii~K U(pf, Sf) for aninternalline

—i(2ir)

4 ~~‘21’/(q2~je)carrying momentum

j/~U(pfSf)., —3/2An outgoingneutrino (hlr) — Scalarpropagator —i(2ir)4/(q2 —ie)

Gravitonpropagator —i(2ir)4An incoming scalarparticle (27r)_3~’21/~U(p1,s~I 2(q

2—ie)

An outgoingscalarparticle (2i~)312

Page 20: Gravitations in Minkowski space-time interactions and results of astrophysical interest

70 G. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

Table 3.2.Non-lineargravitonvertices.

Although theseverticesarebeyondthescopeof this review,they are introducedfor convenienceastheyareusedin a few instancesin the courseof thereview.

Particles Vertex

3 gravitons —2~’~i~~P3V2~’21V2~V1’23— ~ ~3’21P3~V1’22~V2’2 2~3P2~2V3~’21V2~1/1’23

p3)?~’2V?1J’2?1’2V+ ~

4 2~ ~ 1211/I 1221/I 8 2 3 ‘2i~i ‘221/3 1/2123 8 2 3 12iV, ‘22~2 1231/3

— 4~2V3~2’23~M1V1~122V2 + l~2V3~2’23~’2,V2~’22V, }

Twograviton-two scalar — ~ — ~ — ~‘2K~vx~~1 p2 + ~ 112p24~ + p1 ,~p212)+ ~‘2,~(P1?J’2~+ p11/p2~)

+ ~ +p1~p21/)+ ~V~~Pl~P2’2 + ~1’2~2X~

— ~12V~lX~2K ±p1~p2~)—~ld’2VlUt’2’2~

4. Graviton production from particle—antiparticle annihilation

The productionof gravitonsfrom particle-antiparticleannihilationhasbeenconsideredbyIvanenkoandSokolov [42, 43] andIvanenkoandBrodsky [45]. More in generalthe possibilityofmutualtransformationsof matterandgravitonshasbeendiscussedby Ivanenko[44]. IvanenkoandSokolovthencalculatedthe crosssectionsof the transmutationsof scalarparticlesinto gravitons.For a scalarfield resultcoincidesup to a constantfactorwith the resultobtainedby Vladimirov[79] for the non-relativisticapproximationto the electron—positionannihilationinto gravitons.Vladimirov’s work is discussedbelow.

4. 1. Electron—positionannihilation

Vladimirov [79] hasstudiedthe following processes:

a) e~+e-~g+gb) e~+e-+g+7

which are representedby the diagrams(a—e) and(f—k) of fig. 4.1 wheree~ande arethe positronand electron,g is the gravitonand7 is the photon.Thesereactionshavea higherprobability ofoccurence.In fact,particularlyfavourableconditionsfor thesereactionsexist in supernovae,wherethe corecanreach5 X l0~K andpair densitiesare consequentlyvery high. The interactionHamiltonianusedby Vladimirov in a previouspaper[801makesuseof

H = ~i(\/~) (h121/ — ~ö121/h)(~7~~L~!—

but yields howeverincompleteresults.For this reasonVladimirov hasusedin his morerecent

Page 21: Gravitations in Minkowski space-time interactions and results of astrophysical interest

C. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 71

p~. .~

Ik1’~ ~‘~2 ,k2 1i2\

P2/\~1

Ca) (b) Cc)

I

,~i”t’\ // ~ j~i12

Cd) (0)

(kI

Fig.4.1. (a)—(e)Brokenlines representgravitons: Theprocessese~+e— g + g. (f)—(k) Wave line representsphoton: Theprocessese++ e -~ g + ‘y.

paperthe tetradformalismof Fock and Ivanenko.The tetradformalism is in fact requiredto in-corporatespinorsin curvedspace—time.The influenceof a gravitationalfield on a fermionfieldis thereforedescribedby meansof a tetrad field andall its equationsarederivablefrom a varia-tional principle. If h~,ha12 denotethe contravariant,covariantcomponentsof a tetradnumeratedby an index a runningfrom I to 4, with h~beingtimelike andtheother3 tetradvectorsspacelike,then

ha’2 = ~abJ,!1 , ha’2 = ‘7ab~’2 , (4.1)

where~ = 77ab is theMinkowski metric. The connectionbetweenthe tetradfield and themetric

field g121/(x) is given by

g121/ or h~haV= g’21/ . (4.

Thenthe field equationscanbederivedby meansof the variationalprinciple ~ I (L + Lm ) d4x 0

Page 22: Gravitations in Minkowski space-time interactions and results of astrophysical interest

72 G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

whereL is the gravitationalLagrangianandLm is the matterLagrangianwhich is a functionof thetetradfield variablesandthematter field variablesandtheir first orderderivatives.Also theLagrangianis invariant underconstantLorentzrotationsof the tetrads,

= L’(x) ha’2(x) (4.3)

whereL’ is the Lorentzrotation.For a completedescriptionof the interactionof the gravitationalandspinorfields, it is neces-

sary to takethe Lagrangiandensityof the sumof the spinorfield in curvedspaceandthegravita-tional field:

2jnt = E~+ £2 + ~12grav (4.4)

.12k is the first order term in the expansionof the equation:

— ~ ~/T~ [—i~~yaha12 -~!+ 7aha’2’P + 2m’~’P+ ~ (~‘Yc7a7b — 7b7a1c)c12~~~’2,1/a1

ax’2 ax’2 (4.5)andis of the form

.121 = ~ ~J~(h

121/ + ~77121/h)(_i~P712~! + i ~ . (4.6)ax

1/ ax1/

The density£2, the expansionof (4.5) to orderK, hasthe form

£2 = ~(h12ahua + ?1’2Vhabhab)(_i’117’2 ~! ÷~~! 7~~I~)+!~4mh121/h’21/4’

— ~ (-,~12i-~1/~-~__ — 71/h12~-~_—~ — 71/70712h0~~ + Kf(h). (4.7)

The secondline of (4.7) resultsfrom the introductionof the tetrad.12grav is the first order expan-

sion of the Lagrangiandensityof thegravitationalfield. Therefore:

12 = - h ~ab ~ + i/~ih -~-~- -~-~- -- i/~iih —~ —~gray V 4 ‘2~ ax12 ax1/ V 8 121/ ax12 ax1/ V 2 12~axb axa

— h121/~ + 1/ic h121/ ~ ~vb (4.8)

A lengthybut straighforwardcalculationyields the differentialcrosssection:

= ~ (4~)2pk0 [p2 m2cos20 + p4sin20 + 2p4sin20 cos20 + ~(m2 — p2sin20)2

~3p2m4 +m2p2(m2-—p2sin20) p8sin2O 1 (4.9)

m2 +p2sin2O (m2 +p2sin2O)2J

wherep is the momentumof the fermionand0 the anglebetweenthe directionof motionof theinitial particlesandthemomentumof the graviton.

In the classicalcase,whenk~— m2 ~‘ p2, the aboveformulatakesthe form:

Page 23: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsofastrophysicalinterest 73

dci~1 2 ~ 1m K —. (4.10)d~ 64(8ir)

2 V

The radiation is equallyprobablein all directions.In the ultrarelativisticcase,in whichp2 —. k~~

dci K4k~(3sin220+2sin4O). (4.11)

d~ 28(8ir)2

From (4.11) onecanseethat thereis no radiationof gravitonsin the directionsof propagationof the initial particles.

From (4.9) it is alsopossibleto obtaina similar formulafor theannihilationof two four com-ponentneutrinos(m= 0) into two gravitons(WheelerandBrill [90]).

The total interactionLagrangianof spinor,gravitationalandelectromagneticfields is given by:

12int = e’4’712’T!A’2 — ~e~/~’I’712’pA’2h— ~ +‘~f12~F12°h~

- (4.12)— ~ ~./~F121/F’2”h+ ~ ~m’~I’h + ~~/~(h121/+ ~g121/h)(_i~i!712 ~!712~f) + \/~f(3h)+0(K

2).

~/~f(3h) are termscontainingthe productof threegravitonfunctions.A transformationof thepair into a photonanda gravitonis possiblefor identicalpolarizationsand the processesarere-presentedby the diagramsf—k of fig. 4.1. If the calculationis in the centerof masssystem,thecontributionsof the diagramsf, i andk mutually cancel.

The differential cross section is given by

2i~ i2 .1 2 2e2i~2 n3 sin2 0 r sin u(,~ — z.p sin )~dci = 1 + sin20 + I d~. (4.13)

4(8ir)2 k0(k~— p

2 cos2O) L — p2 cos2O ~l

In the classicalcasep2 ~ k~= m2

dOei e2~2 /V\3= I— I sin~0 (1 + 2 sin2O). (4.14)

d~ 4(8ir)2 \

Becauseof the presenceof the factor sin20 in (4.14) theproductionof gravitonsandphotonshasa maximumat 0 = ir. Thereis no radiationin thedirectionsof the momentaof the initial particles.In theultra relativistic casep2 ‘-~ k~~‘ m2 the crosssectionbecomes

dci e22K (1 +cos2O) (4.15)

d~ 4(8ir)2

and no longer depends on the energy of the particles. The radiationof gravitonsbecomesstrongestin the directions of the momenta of the original particles.

A comparisonof the total crosssectionsfor processesa)(non linear)andb) canbe madein theclassicalas well as the ultra relativistic cases.In thenon relativistic approximationthe total crosssection of two graviton annihilationhasthe form

r~rgK2m. (4.16)

Page 24: Gravitations in Minkowski space-time interactions and results of astrophysical interest

74 C. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

The total crosssectionfor photon—gravitonannihilationis

l3rr 2

Gd 480ir (-i-) re~—. (4.17)

In the ultra relativistic approximationthe total crosssectionfor two gravitonannihilationis

4k2 2 k2

Gur = = Th8 ~ (4.18)

and increases with k~. For k

0 ~ \/~7~gmc2,the crosssectionof the two gravitonannihilation

becomesof the order of the crosssectionof two photonannihilation.For electrons,k0 ~ = 1021 m,

the total crosssectionof thephoton—gravitonannihilationis

~ r~r5/48~r1.26 X 1068 cm2 (4.19)

anddoesnot dependon the energyor the massof the colliding particles.At the sameenergiesthecrosssectionof two photonannihilationbecomesof the orderof thecrosssectionof photon—gravitonannihilation,

k~ k

0 cr —~\/r~/r8. (4.20)

In theultra relativistic case,the crosssection,unlike theelectrodynamicalcaseincreaseswithenergyandfor k0 —‘ 1021 m certainly exceedsthe limits of the field approximationandbecomescomparablewith the crosssectionfor the annihilationinto photons.

In spiteof the extremelysmall valuesobtainedfor the gravitationaltransmutations,suchprocessesmaybe of importanceon a cosmologicalscaleas stressedby Wheeler [89].

5. Gravitational bremsstrahlung

Bremsstrahlungis a well definedprocessonly within certainlimits; thesimultaneousemissionof very soft gravitonsfor instanc’e,too soft to be observablewithin theaccuracyof the energydeterminationof theincidentandoutgoingparticle,canneverbe excluded.Suchradiationis al-wayspresent,evenin the usualelasticscattering.Since it is impossibleto makea cleanphysicaldistinction betweenbremsstrahlungandradiationlessscatteringwhenthe emittedgravitonis ex-tremelysoft, the considerationsarerestrictedto the emissionof not too soft gravitons.The ex-ternal field could be a Coulombfield. The contributionsof HalpernandLaurent [36] ,Weinberg[88], Carmeli[15], Barkeret al. [3] and Boccaletti[12] areconsideredin detail. The contributionto gravitonemissionfrom bremsstrahlungprocessesis certainlynot insignificantas shownlater inthe calculations.

5.]. Weinberg’sformula

Weinberghasobtained,as aconsequenceof a treatmentin which the infrareddivergenceofquantumgravidynamicsare removedwith the samemethodsusedin quantumelectrodynamicsaformulawhichgives the emissionrateandspectrumof soft gravitonsin an arbitrarycollision

Page 25: Gravitations in Minkowski space-time interactions and results of astrophysical interest

C. Papiniand S.R. Valluri, Gravitonsin Minkowskispace—rime.Interactionsand resultsof astrophysicalinterest 75

process.The derivedformulafor gravitationalbremsstrahlungis usedto estimatethe gravitationalradiationemitted during thermalcollisions in thesun which, within the solarsystem,is found tobea strongersourceof gravitationalradiationthanclassicalsourcessuchas planetarymotion.

A shortaccountof the treatmentof the infrareddivergencesarisingfrom very soft real andvirtual photonsandgravitonsis given. In a combinedtheory of electromagnetismandgravitation,the infraredphotonsandgravitonssimply supply independentcorrectionfactorsto transitionrates.

The attachmentof a softphotonline with momentumq to an outgoingchargedparticleline ina Feynmandiagramneedsthe introductionof an extrachargedparticlepropagatorwith momentumq + p andoneextravertex for the transitionp + q -÷p. If the soft photonline is attachedto anincomingchargedparticleline, the extrapropagatoris for momentump — q andthe transitionisp -~ p — q. The extra factor introducedin the matrix elementin the limit q -+ 0 is:

~en’7npn’2I(pn q — i7?n�) ; ~= ±1 (5.1)

wherethesum runsover all externallines in the original diagram.If a soft gravitonline of momen-tum q is attached,in the limit q -~ 0 theextra factoris:

‘./l6irG ~ ‘lnPn’2P1/n/(Pn q — i

770e) (5.2)

andthesumagainrunsover all externallines in the original diagram.Theeffect of attachingNsoftgravitonlines to anarbitrary Feynmandiagramis just to multiply the matrix elementby Nfactorsof eq. (5.2). Becauseof this factorizationit is possibleto performa sumoveran unlimitednumberof verycomplicatedFeynmandiagrams.

The virtual infrareddivergencesarenow discussedandthe equationsderivedaboveareusedtoobtainexpressionsfor the infraredvirtual gravitoncorrections.It is shownfurtherthat thediver-gencescancel.In order to obtaintheseresults,it is perhapseasierto dealbeforewith soft photonsandderiveat theend thecorrespondingresultsfor gravitons.The effect of addingN virtual infra-red photonlines to a diagramthat doesnot alreadyinvolve anyinfraredlines is to multiply thematrix by N pairsof factors:

~i:~e~77~p’2~/(p~q —

Each pair is connectedby a photonpropagator{—i/(2ir)4} ?7

121//(q2 — ie) while a summationover

the polarizationindices andan integrationoverq arecarriedout. In additiononemustdivide by2NN! becausetheexternalline poles factoronly if we sumover all placesto which the two endsof eachvirtual infraredphotonline are attachedandthis includesspurioussumsover theN permu-tationsof thelinesandover the two directionseachline might be thoughtto flow. The result isthen:

f d4qA(q)] (5.3)

A(q) = —i enem‘7n’7m Pn Pm (5.4)(2ir)4(q2 — ie) nm (p~ q — “7n~)(Pm q —

Page 26: Gravitations in Minkowski space-time interactions and results of astrophysical interest

76 C. PapiniandSR.Valluri, Gravitonsin Minkowskispace--time.Interactionsand resultsofastrophysicalinterest

A is a cut off energy,a cut off I qI ~‘ A is imposedto displaythelogarithmicdivergencesaspowersof ln A, whereA ~ A. This cut off only affectsthe infraredlines becauseit is only thesethat giveinfrareddivergencesfor A = 0.

The negativesign ofp~qin the seconddenominatormeansthat if q is the momentumemittedby line n, q mustbe absorbedby line m. SummationoverN leadsto the conclusionthat S matrixfor an arbitraryprocessmaybe expressedas:

s~exp(~f d4qA(q)) . (5.5)

is the S matrix without virtual photons of infraredtype. The ratefor a -~ i3 is given by:

exp (Ref d4qA(q)) (5.6)

Re f d4qA(q) = [_ 1 ~ d4q~(q2)]. ~ enem’7n’7mpn Pm = —A ln~ (5.7)2 . (2ir)3 nm (Pn q)(prn . q) A

whereA is the positivedimensionlessconstant:

A = fd2czA~)

- I ~ enem’7n’7m(pn~pm)Li - - . (5.8)

2(2ir)3 nm (E~—p~~q)(E~ Pm ~q)Integrationgives:

1 1 ____A = ‘7nflm’~n~ma— In . (5.9)

8ir2 um ~nnt —

13nm is therelativevelocity of particlesn andm in the rest frame of either

!~nm= (1 — in~m~/(p~— Pm)2)112 . (5.10)

Therefore:

r’~=F~°~(AIAy’. (5.11)

The sameprocedureappliesto gravitons,with the substitutionA -÷ B where

G l+jl3~~ l+!3nmB=— ~flnh7mmnmm — ln . (5.12)

2ir nm I~ (1 — ~2 )1/2 1 — ~nmnm nm

Hence:

- l6irG {(Pn~Pm)2m~m~n}(En_Pn~)(Em Pm ~ (5.13)

Page 27: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsofastrophysicalinterest 77

andoneobtainsr’ =r’O r,./A\B

13°

SinceB> 0, the aboveequationshowsthat all processeshavezeroratein thelimit A -~ 0just asallchargedparticleshavezeroratefor A -+ 0 in electrodynamics.The paradoxis resolvedby takinginto accountthe infrareddivergencesdueto emissionof real soft gravitons.

The S matrix elementsfor emittingN real soft gravitonsin a processa -~ ~ is obtainedby multi-plying the S matrix for a -~ ~ by N factorsof the type(5.2) and thencontractingeachof thesefactorswith the appropriategraviton“wave function”:

(2ir~3/2(2IqI~~”2e(q, ±1)�(q, ±1)

whereq is the gravitonmomentum,h = ±2is its helicity, ~12 is thepolarizationvector.Thereforethe gravitonemissionmatrix elementis:

I (Pn ~*(q~, ~hr))2

S~(l,2, ...N)S

130 II (2ir)~12 77 . (5.15)

r1 2Iq~i’/2n Pn q,~

By squaringeq. (5.15),summingover helicitiesanddividing by N! becausegravitonsarebosonsone

obtainstheratefor emissionof N soft gravitonswith momentanearq1, q2, q3, ...

F~(q1,q2,...q~)d3q

1 ...d3q~ ~ £~B(q~)d3q~, (5.16)

whereF~=

B(q) = (27r)_3/2~~J_~.l6~rG~ fln77mP’2n P~nP~mP~H121/~0(q) (5.17)

IqI

and

= E e12(q,±)e1/(q,±)e(q,±)e(q,±1). (5.18)

Also

11121/~~(q)= ~ {H12p(q)Hv~(q)+ H120(q)H1/~(q) — 11121/(q)H~0(q)} (5.19)

where11121/(q)=

Therefore

‘7n’7m {(p~ •p~)2 —~rn~m~} (5.20)IqI nm (Pn q)(prn q)

B(q)B(~)/IqI3 . (5.21)

The ratesfor emissionof N gravitons with energiesnear ~ C1~~is given by integrationof (5.16)oversolid angles,

Page 28: Gravitations in Minkowski space-time interactions and results of astrophysical interest

78 G. Papini and SR. Valluri, Gravitons in Minkowskispace—time. Interactions and results of astrophysical interest

RN dw1 dw2 dwNwN)dwl ... dwN 1’13~-~-— ~— ... -~-— . (5.22)

The precedingequationshowsthat the gravitonemissionratecontainslogarithmicinfrareddiver-genceson integration.Useof the well knownrepresentationof the stepfunctiongives:

~ exp(Bf ~e~0) du (5.23)

andfor A -~ 0

= (E/A)B b(B)F~ (5.24)

where

b(B) -i_f da~—0exp(x f ~ (e’~~’°— l)} . (5.25)

By inserting(5.14),which displaysthevirtual infrareddivergences,into (5.24)

F1~(’~E)=(E/A)’

tb(B)1’13

00 . (5.26)

It is seenthat all dependenceon the infraredcut off A disappears.F~is the ratefor the processa -÷ ~3without soft gravitonemission,andwithout inclusionof virtual infraredgravitons.To lowestorderin G the aboveequationgives the powerspectrumof soft gravitonsaccompanyinga reactiona —~ f3 as:

E dF130(~E) = B F~dE. (5.27)

The rateof emissionof energyin soft gravitationalradiationduringcollisions is:

P(~A)=f EdF(~<E). (5.28)

“Soft” heremeansthat the emittedenergyE is <A. By using(5.26)oneobtains:

P(~A) = 1 + B b(B) Ar0 BAFQ. (5.29)

If theparticlesinvolved in the collision arenon relativistic then(5.10)maybe expandedin termsof V~and Vm with Vp/E

1~nm V~+ ~ — 2Vn~Vm — V~V~— 3(V,1~Vm )2 + 2(V~+ V~)(V0 Vm). (5.30)

Useof (5.30) in (5.12)gives:

1 ÷~2 “l+° 1/2___- nm ln( ~ =l+~(Vn_Vm)

2+~(V~+V~)2+.... (5.31)

2R2, (1 32)1/2 1 ~f~nmrn m

Page 29: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 79

Becauseof energymomentumconservationthe following equationshold

~ 77nmn(l+~+~~...)0, �~flnmnVn(l+~Vn2+...)0 (5.32)

Use of (5.31) to (5.32) in (5.13)gives in nonvanishingorderin V

B=_G(~Q~/Q

1J+~Q~1) (5.33)

77n’~nVniVnj. (5.34)

In non relativistic elastictwo body scattering

= ~p

2 V4 sin20~, = 0 (5.35)

wherep is the reducedmass,V = I V1 — V2 I is the relativevelocity andOc is the scatteringanglein

the centerof masssystem.Therefore:

_8G 2 4 2p V sin Oc . (5.36)

The ratefor suchcollisionsper cm3/secis Vn

1n2 da/d~wheren1 andn2 arethe numberdensitiesof particles1 and2. Hence the total poweremittedin soft gravitationalradiationattributableto1—2 collisions is:

P(’~<A)=~.cp2 V~n1n2V~Af~5~fl

20cd~ (5.37)

T’ is the volumeof the source.“Soft” radiationcanbe definedby taking thecutoff A ~pV2.This formulacanbe usedto estimatethe thermalgravitationalradiationfrom the sun. The mostfrequent collisions are the Coulombcollisionsbetweenelectronsandprotonsor electrons.There-fore:

pme, V , nine, n2ne+np

2ne, (5.38)

~ sin20~d~2= 8ire2 ln AD. (5.39)d~Z (3kT)2

AD is the ratio of the Debyeshieldingradiusto theaverageimpactparameter.The solargravita-tional radiationis given by:

p0 = 9-~ (3kT)

312 ~L fl~V® ~!~_- ln AD . (5.40)

In the sun’scoreT~ l0~K, ~e = ~ x 1025 cm3, V® = 2 x 1031 cm3

lnAD 4. (5.41)

Thereforethe poweris calculatedto be

Page 30: Gravitations in Minkowski space-time interactions and results of astrophysical interest

80 C. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

P® 6X l0’~erg/sec. (5.42)

As a comparison,classicalquadrupoleradiation for the Jupiter—sunsystemyields only 7.6 X 1011

erg/secat extremelylow frequencies.The thermal gravitationalradiationfrom thesun appearsto be the dominantsourceof gravita-

tional radiationin the solarsystem.A binary starlike SiriusA andB radiatesmoreclassically,thepoweris 8 x 1014 erg/sec,andalsomorethermally.Thermalcollisionsmaypossiblyprovidethemost importantsourceof gravitationalradiationin the universe.

The powerspectrumformulaof eq. (5.17)is bothclassicalandquantummechanical.Also,sinceeverythingin the universeis almosttransparentto gravitons,eq. (5.37) maybe useddirectlyto compute the thermalgravitationalradiationfrom anyhot body.

5.2. Gravitationalbremsstrahlungfrom the sun

Carmeli [15] hascalculatedthe solargravitationalradiationpowerby determiningthe spectralresolutionof low frequencygravitationalradiationby a systemof colliding particles.The spectralresolutionis obtainedby applicationof Fourieranalysisto the LandauandLifshitz’s formula [5 1]for the gravitationalradiationintensity. In general,in the spectraldistributionof the radiationaccompanyinga collision,the main part of the intensityis containedin the frequenciesw I /r,wherer is the orderof magnitudeof thedurationof the collision. For this interval of frequencies,however,onecannotobtaina generalformulafor the distribution. The “tail” of the distributionat low frequencies,satisfyingthe conditionwr -~ 1, is, however,easierto handle.This is in factthe casediscussedby Weinberg,as seenin section5.1. This part of the calculationby Carmeli isthusa classicalversionof Weinberg’streatmentandthe result for the spectralpowerof the gravi-tationalradiation is in accordwith the resultof Weinberg.By usingCarmeli’smethod,however,onecanalsoestimatethe totalgravitationalradiationof the scatteringprocessfor all possiblefrequencies,andwithout resolution into Fourier integrals.In fact, if ~E denotesthe gravitationalradiationaccompanyinga collision of two chargedparticles,theni~Eis obtainedfrom theradia-tion formulaby integrationover the time interval (_oo, oc) of the collision at all possiblefrequen-cies

f Idt= f (d3D)2 (5.43)

‘~ dt3

whereD,k is themassquadrupolemoment

Dlk=J’p(3x1x1c — ~5ikxx)d3x (5.44)

The ratefor such collisions/cm3sec is v1 n1 n2 du/d~2.Hence the total powerradiatedfor any

two particles1 and2 is

P= fv~vn1n2~

or (Spitzer[73])

Page 31: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand S.R.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 81

P—V~vn1n2f ~E2irpdp. (5.45)

The integralin (5.45) is the effectiveradiationandits value for quadrupolegravitationalradia-tion canbe calculatedby following the methodof LandauandLifshitz [51]. The result is:

f dpf dtI2~p3~~pe2V3. (5.46)

The total poweris therefore:

___ 124P p e v n1n2 T’ . (5.47)

Useof the equations(5.38)dueto non relativistic collisions in thesungives thetotal radiationas

= 64irG -~-e2n~(3kT)2l’~. (5.48)

9c5 m

Using thesamedatatakenby Weinbergfor the sun’score:

T~l0~K, ne 3 x 1O~~cm3 V~2X 1031 cm3. (5.49)

Thesolargravitationalradiationpoweris found to be

Pac 5 X l0’~erg/sec. (5.50)

This value is about 10 timeslarger thanthe oneobtainedfrom eq.(5.37). It also doesnot requireany cut off as theintegral(5.46)unlike (5.37)converges.

5.3. Bremsstrahlungin neutronstars

Boccaletti[12] hasappliedWeinberg’sresultsto studythe emissionof high frequencygravita-tional radiationfrom neutronstars.

The datausednow are

—. 1019 cm3 for the volume of the neutrino star,

p — 1014 g/cm3 for themassdensity

n = particlenumber 0.6 X 1038 cm3 , (5.51)

1.3 X l0~cm—1

EF = P~/2rn— 5 X l0~erg —‘30 MeV, A — ~EF

V 0.75 X 1010 cm/secis thecenterof massvelocity,m is theneutronmassandt1eff is the effective

Page 32: Gravitations in Minkowski space-time interactions and results of astrophysical interest

82 C. Papini and S.R. Valluri, Gravitons in Minkowski space--time.Interactionsand resultsof astrophysicalinterest

reducedparticlenumberdueto the degenerategaswhile n is the original particledensity

neff = n kT/EF~. (5.52)

The phenomenologicalcrosssectionci is

l0~~cm2 . (5.53)

Thereforethe poweris calculatedto be

P(~A)= 1.6 X 1026 erg/sec. (5.54)

This valueof P is calculatedfor the tail of the spectrumand the averagegraviton frequencyis

v 0.4 X 1022 Hz . (5.55)

The total gravitationalradiationof a neutronstar,including all the frequenciesof the spectrumandwithout anycut off is:

P— 1027 erg/sec (5.56)

with the sameratio of total to tail powerfoundby Carmeli for Coulombscatteringin the sun.

5.4. Gravitonbremsstrahlungwith gravitationalscattering

The formulationof Gupta[33] can be usedto treatgravitonbremsstrahlungin a mannersimilarto photonbremsstrahlung.A discussionof the problemof infrared divergencesin processesinvolv-ing the emissionof photonscanbe found for instancein JauchandRohrlich [47] or Yennieet al.[92]. FromWeinberg’sformulation [88] it canbe acceptedthat the infrareddivergencein gravitonbremsstrahlungis cancelledby the diagramthat contributesin radiationlessscattering,thoughWeinberghasnot discussedthe selfenergydiagramsin radiationlessscatteringwhich are necessaryto cancelthe infrareddivergentrenormalizationconstantin the vertexdiagram.The problem,thoughquite similar to that in quantumelectrodynamics,is morecumbersometo resolvein thepresentcase.

The gravitonbremsstrahlungcrosssectionfor aspinlessparticle is derivedby Barkeret al. [3]by including linear as well as non linear gravitationalinteractions.They alsoshow that the totalprobability for the emissionof non physicalgravitonsin this processvanishes.The completeelimination of the infrared divergencein graviton bremsstrahlungis carriedout by usingthevertexandselfenergydiagramssuggestedby the work of Dyson [25] andWard [81].

The collision betweentwo spinlessparticlesof massesm andM is consideredwith the restrictionsM ~‘ m and~MV~,J~ M. Theseconditionsallow full considerationof the gravitationalfield whichis not doneif the scattereris representedby meansof an externalfield.

The initial andfinal propagationfour vectorsof the heavyparticleareq andq’, andthatof theparticleof massm arep andp’. The propagationvectorof the emittedgravitonis k. The scatteringoperatorfor the diagramsof fig. 5.1 is given by:

~

4V512 \/2p0p0k0(k+p —p)

2

X I,~a~(k)a~(q’)a(q)a~(p’)a(p) (5.57)

Page 33: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 83

p’ q p’ q’ p’ q?

/

q

p p q p q p

Ca) C.) (bi Cc)

p q’

/

/

q p q p q p

Cd) Cd) (a)

Fig.5.1. Thelowestorderdiagramsfor gravitonbremsstrahiungwith gravitationalscattering.

where

I,,, = A,1 + B,1 + C~1 (5.58)

A11 ~p2 _p~2)(~p~ ~0)k

B.. = 2(p~— !~2)~l~ + 2(p’ — ~i.m2)p~p1— p.p1[(4p~p0— ~p

2) + (k +fJ’ —p)2] (5.59)(p’—p)2—k~

(k+p’ —p)2p~p.C~,= C /, k2=0, p2=p’2=—p2 . (5.60)

(p’ —p)2 — k~

A,1 representsthecontributionof diagrams(a) and(a’), while B,1 andG~1representthecontribu-

tionsof diagrams(b) and(c). The remainingdiagramsgive vanishingcontributionsin view of thelargemassof the scatterer.

After summationover the two polarizationstatesof the graviton, the gravitonbremsstrahlungcrosssectionbecomes

Page 34: Gravitations in Minkowski space-time interactions and results of astrophysical interest

84 G. Papini and S.R. Valluri, Gravitons in Minkowski space—time. Interactions and results of astrophysical interest

do = K6M2 ~ ~~sin 0 ~in0’ dO dO’ dØ’ [Pp4 sin4O + K2p’4 sin40’

32(2ir)4 k0 P1 (k+p’—-p)

4((p’—p)2 —k~)2

+L2 p’2 p2 sin20 sin2O’ + 2JKp’2p2 sin20 sin2O’ cos2~’

+2.JLIpI3Ip’Isin30sinO’cosØ’+2KLIp’I3IpIsin3O’sin0cos~’ (5.61)

with

1 2 ‘2 ((p’ —p)2 — — 2k0(IpI cosO—p0))

= -- ~°~) ~i~r~50 —

((p’ —p)2 — k~+ 2k

0(Ip’I cos0’ -- p’0))

Ip’Icos~’—p~ (5.62)

L4(~p2—p~p

0)k0

The anglebetweenp andk is 0, thepolaranglesof p are0’ and~‘. In the non relativistic ap-proximation, (5.61) can be easily integratedover the angles.Whenp

2 ~ p2

k0 — — ~2 — ,,‘2 )/2~

sothat

J= ~p[p2 —p’2 +(p’ —p)2] ; L = —p(p2 —p’2); K ~p[p2 —p’2 — (p’ —p)2]

(5.63)(k +p’ —p)2= (p’ —p)2 ; (p’ —p)2 — = (p’ —p)2

Integrationover theangles~‘, 0’ and0 gives (in C.G.S.units)

dU=!~j1ch ~ (~±+3~_t~P11nJiil’,I)

l5(4ir)3 k

0 \ Ipl 21p12 p1 — Ip

~ (s~~-+~(2—e)ln (5.64)

where~ is the ratioof the gravitonenergyandthe incidentparticleenergy.The logarithmictermis entirely dueto diagrams(a)and(a’) which involve linear gravitationalinteraction,andit domi-natesthe bremsstrahlungcrosssectionin the non relativistic approximation.However,the generalresult(5.61)showsthatthe contributionsof diagrams(b) and(c), which involve non lineargravi-tational interactions,arequite importantat relativistic energies.

5.5. Graviton bremsstrahlungwith Coulombscattering

Thegravitonemissionduring the Coulombscatteringof a spinlessparticleof chargee by a heavyparticleof chargeZe canalsobe estimatedalonglinessimilar to thoseexpoundedin section5.4.

Page 35: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papini and S.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 85

Ca) Cd)

:‘F-~-~-~:‘~~-~t(b) Cc)

:‘F~-~:~—~ :H—~-~~-

Cd) Cd’) C.)Fig.5.2. Gravitonbremsstrahlungwith Coulombscattering.

However, in addition to the particle—gravitoncouplingterms,onemustconsiderthe particle—photoncouplingterms

ieA12[(a12 U*) U — U*(aM U)] _e2A

12A12 U* U, (5.65)

the particle—photon—gravitoncouplingterms

ieg(h121/ — ~.i5121/h~)A12[(a1/U*)U— U*a1/U]+0(eK2, e2~) (5.66)

andthe photon—gravitoncouplingterms

—~Kh121/(F~F

1/~.5121/FFXP)+O(K2) (5.67)

The lowestorderdiagramsfor the processunder considerationareshownin fig. 5.2 andcanbetreatedin the samemanneras the diagramsof fig. 5.1. The diagrams(a), (a’), and(b) only contri-buteto the scatteringcrosssectionwhich can be expressedas

72 4 2 dk0 . o o’ Afi ~~Q’d-~”

do = ~ e g IL sin sin U U [J’2p4 sin4 0 + K’2p’4 sin4 0’

8(2ir)4 k0 tpI (k + p’ -- p)

4 ((p’ — p)2 — k~)2

+L’2p’2p2 sin20 sin2O’ + 2J’K’p’2p2 sin20 sin20’ cos20’

+ 2J’L’Ip13 Ip’I sin30 sin 0’ cos 0’ + 2L’K’ Ip’13 p1 sin30’ sin 0 cos 0’] (5.68)

where

Page 36: Gravitations in Minkowski space-time interactions and results of astrophysical interest

86 C. Papiniand SR.Valluri, Gravitons in Minkowskispace—time.Interactionsand resultsof astrophysical interest

= p’0 [(p’0 — p)2 — — 2k

0(IpI cos0 — p0)] /(p cos0 — p0)

[(p’ —p)2 — k~+ 2k

0(Ip’l cos0’ — p’0)]K =—p , , , (5.69)

p I cos0 — p0

L’—2(p0+p’0)k0

Replacementof (GMm/hc)2 by (Ze2/4irhc)2in (5.64)gives thecrosssectionin the non relativistic

approximation.

6. Scatteringof gravitonsandgravitationalscattering

This sectionis concernedwith the scatteringof gravitonsby spinlessparticles,the gravitationalscatteringof severalparticlesandthebendingof light in a gravitationalfield.

6. 1. Thescatteringofgravitonsby spinlessparticles

Barkeret al. [4] consideredthescatteringof gravitonsby spinlessparticlesandthe annihilationof two spinlessparticlesinto two gravitonsandhaveobtainedthe scatteringand annihilationcrosssectionsfor variouspolarizationstatesof the graviton.The propertyof invarianceundergaugetransformationsis satisfied.The authorshaveonly imposedthe requirementof asymptoticgaugeinvarianceandby doing sohaveobtainedweakergaugeconditionsthanthoseusedby Jackiw [46].The processesarerepresentedby fig. 6.1.

For neutraland chargedparticlestheinteractionLagrangiansusedarerespectively

12int = _~Kh121/[a12U0a1/u0— !~121/~u~P~J — !~121/p

2UU]

—~K2p2(h~jh~— 2h121/h

121/) U0U0+0(K

3) (6.1)

and

2iflt = —Kb121/[a

12U* a1/U — ~ o121/a~U—- ~6121/p2 U~U] —. ~K2p2 (h1212h~— 2h121/h

121/)U* U + 0(K3)(6.2)

p’ ~‘

, II~ ,

Ii,,’ / /

/ I’.————

, Ii Ii,

p p p p

(a~ (~) (b~ (C)

Fig. 6.1. Graviton scatteringby a spinlessparticle.

Page 37: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 87

while the gravitoncouplingtermsarerepresentedby

2int ~K(h121/— ~~5121/h~)[~a12h013a1/hnP— a~h~a°h~+ a

13h~12a~h~

+ ~a0h~aahM1/— a0h~a°h~

13]+ 0(K2). (6.3)

Expressions(6.1) to (6.3) aregiven as orderedproducts,in which U0 and U representthe field

operatorsfor neutralandchargedspinlessparticles,andh121/ representsthe field operatorforgravitons.

The contributionof the observablegravitonsto the scatteringoperatorin the interactionpictureis obtainedby meansof the Fourierdecomposition,

~ (L)~

2 [a121/(k)exp{i(k~r— wt)} +a,1/(k) exp{—i(k r — wt)}]

wt = k0x0 , k0 = I kI (6.4)

a121/(k) = e121/~(k)a~(k)+ e,~1/,_(k)a_(k) (6.5)

e121/,+(k) ~ [(e~(k)e~(k) — e~(k)e~(k))+i(e~(k)e~(k)+e~(k)e~(k))] (6.6)

a÷(k) and a (k) areannihilationoperatorsfor gravitonswith their spin axesparallelandantiparallelto k, while e

m(k) and e2 (k) are unit vectorssuchthatk, e1(k) ande2 (k) aremutually perpendicularande~= e~= 0.

Also a (p) and a* (p’) arethe annihilationandcreationoperatorsfor the spinlessparticle.In the laboratorysystem,

pO, p0=p, kk’+p’

p+k0k’0+p’0. (6.7)

The polarizationvectorsassociatedwith thegravitonsarechosensuchthat

e’(k’)e’(k) I;~,)~kI’ e2(k’)>~~, e2(k)=k~1~. (6.8)

Thenthecontributionsof thediagrams(a)and(a’) of fig. 6.1 vanishandthe contributionsofthe remainingdiagramstakea muchsimpler form. The scatteringoperatorfor the diagramscan beexpressedas:

1 k21 pkk’

S = (27r)46(p+ k — p’ — k’) (ppk0k’0)”

2 4 2 k0 — k’0

k2 ipk k’\1/2 1 ria*(pF)a(p) iV2(2ir)4 5(p+ k —p’ — k’)—(~ 0 0) I ~l +—~)

16 ~O0 (k0 — k’0)

112 L k0k01 (6.9)

/ k~k’’2

X (a’(k’)a~(k) + a~(k’)aJk)) + ~l -— ~—-i-) (a(k’)a(k) + a~(k’)a+(k))ja*(P’)a(P).0 K

0

Page 38: Gravitations in Minkowski space-time interactions and results of astrophysical interest

88 G. Papiniand S.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsof astrophysicalinterest

Asymptoticgaugeinvariancerequiresthat the scatteringoperatorbe invariant whensubjecttotransformationsof the form

aj1/(q) -~ a1/(q) — iq12A(q) — iq1/X(q)

a013(p) -÷ a013(p)+ ip0A13(p)+ ip13A~(p) (6.10)

a requirementmanifestlysatisfied.The resultingscatteringcrosssectionsfor variouspolarizationsstatesof the gravitonsare

dci~ do

d~ = G2m2cot4~Ocos~O/(l+ 2�sin2~0)2

da÷ do

j~G2m2 sin4~0/(l+2�sin2~0)2 (6.11)wheree is theincidentgravitonenergyin unitsof m and0 is thegravitonscatteringangle.Onaveragingover the initial polarizationstatesand summingover the final ones,

= G2m2(cot4~0cos4~0+ sin4~0)/(1+ 2�sin2~0)2 (6.12)

which, in the nonrelativistic approximationis

G2m2[cot4~0 cos4~0+ sin4~0]. (6.13)

The non relativistic crosssectionagreeswith the resultsof Jackiw [461, GrossandJackiw [32],DeWitt [21] but (6.12)disagreeswith the resultgiven by DeWitt [211.

6.2. Gravitationalscatteringofneutrinos

Boccalettietal. [11] haveconsideredthe gravitationalscatteringof neutrinosin the onegraviton exchangeapproximation.The problemis a priori interestingbecauseneutrinoshavezeromassandspin ~ andmustthereforeexhibit the characteristicbehaviourof fermionsandatthesametimebearsomerelationshipto thatof photons,becauseof the zeromass.A behavioursimilarto thatof photonsshouldalsobe expectedon the basisof the work of PapapetrouandCorinaldesi[63] who foundthat the spin of the particlehaspracticallyno influenceon the value of thede-flection of light in a Schwarzschildfield. An interestingpoint however,hasbeenraisedbyKobzarevandOkun [48] who haveobservedthat from thepointof view of the gravitationalinteractionthereis no reasonwhy four componentneutrinosshouldnot exist.Boccalettietal.haveshownin their calculationsthat two andfour componentneutrinosarescatteredin thesameamountby bosonsandin the smallanglelimit havethe samecrosssectionsas photonsexceptinthe caseof neutrino—neutrinoscatteringwhich gives two slightly differentcrosssectionsfor thetwo andfour componentcases.

6.2.1. Neutrinosin the gravitationalfield ofa large massThe behaviourof a neutrinobeamin a gravitationalfield canbe representedby the diagrams

of fig. 6.2.

Page 39: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 89

q2

Fig. 6.2. Neutrino scatteringin anexternalgravitationalfield.

The matrix elementis given by

(p2IMIp1>® ~ ~

4(p2+q—p1)d

3q.

8(2ir)2 IqI (6.14)The differentialcrosssectioncanbe obtainedfrom (6.14)in the usualway. The result is

4K a’~® cos2(0/2) (615)

d~ 16 4(217.)2 sin4(0/2)

In the limit of smallanglesoneobtains

4 ‘~2d KIvI® 1— = —. (6.16)d~ 4(2ir)2 o~

Thereforea neutrinobeamis deflected,by a largemassin the sameamountas a light beam.Thereis alsono differencein this respectbetweena two componentanda four componentneutrino.

6.2.2.Neutrino—scalarandneutrino—photonscatteringThe crosssectionof neutrino—scalarparticleandneutrino—photonscattering canbe also

evaluatedin the onegravitonexchangeapproximation.The matrix elementfor neutrino—scalarparticle scattering is represented by

<k2 p2 IMIk1p1>

= 2(2~)28~° (p1 ~)2 ü ~(l + i75)(~p~ + 7~p1/)u~(k

1~k21/+ k112k2~— m2~Mv)• (6.17)

Page 40: Gravitations in Minkowski space-time interactions and results of astrophysical interest

90 C. Papiniand SR. Valluri, Gravitons in Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

Fig. 6.3. Neutrino—scalarparticlescattering. Fig. 6.4. Neutrino—photonscattering.

k1 and k2 are initial and final four momentaof thescalarparticleandp1 andp2 the four momentaof theneutrinoandp = p1 + p2 in fig. 6.3. In the small anglelimit the differential crosssectionisgiven by

d 4 2

U K ~ , (6.18)d&2 4(2ir)

2 ~4

wherew is the total c.m. energyand0 the scatteringanglein thec.m. system.Expression(6.18) isequalto thecrosssectionfor the problemin which theneutrinois replacedby a photon(Boccalettietal. [9]). The diagram for neutrino—photonscatteringis shownin fig. 6.4.

The matrix elementis given by

2K _fj . 1/ ________(k2p2IMIk1p1)= U1/ ~(l+ry5)(’y p

12+y12p)u1/4(2ir)

2 ../i~fi~ (p1 —p2)

2

X [(e112k10— e10k112)(e21/k~— e~k21/)— ~12p(eiakip— e113k~,)(e~k~— e~k~)]. (6.19)

For smallangles,the differentialcrosssectioncanbe approximatedby

(620)dfZ ~ (2ir)

2

which is equalto photon—photonscatteringcrosssection

6.2.3.Neutrino—neutrinogravitationalscatteringThe matrix elementis givenby

(p3p4IMIp1p2) ~c

2 ~ [ii(p3)~(l +iy5)(y

1/p12+~12p1/)u(p1) 1 ii(p4)~(l +i75)

16(2ir)2 (p

1 p3)

2

X (y1/p~+~12p~)u(p2)—~(p4)~(l +iy5)(7

1/q12+712q1/)u(p1) 1 2 ~~3)

(p1 —p4)

X ~(l + iy5)(’y1/q~+712q~)u(p2)] (6.21)

Page 41: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandSR.Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsof astrophysicalinterest 91

~

~P4 p~ p3

Ca) (b)

Fig. 6.5. Neutrino—neutrino gravitational scattering.

wherep = p1 + p3,p’ = p2 ÷p4, q = p1 + p4,q’ = p2 + p3 in fig. 6.5.In the c.m. system,in which k is the commonmodulusof the momentaand0 the scattering

anglebetweenp1 andp3, the differentialcrosssectionin thesmallanglelimit is given by

d 5 ~ k2

—~---— (6.22)d~2 ~ (2ir)2 ü~

if thecontributionof the7~termsareincluded.If thecontributionof the ‘y~termsaresubtractedtheresultantcrosssectionis given by:-~-~-=~ —~— ~— (623)

df~ ~ (2ir)2 o~

From the abovetwo equationsit is seenthat the gravitationalscatteringof two componentneutrinosis slightly different from thatof four componentneutrinos.Moreover,(6.23) is exactlythe sameas the correspondentphoton—photoncrosssection.In the caseof a four componentneutrino,the virtual gravitonscould be convertedinto pairsof anomalousneutrinosandanti-neutrinos,thatis left i~andright ~. Thesepairscannotbe scatteredabsorbedor emittedthroughweak interactionsandwould only be deflectedby gravitationalfields andwould themselvesbesourcesof thesefields as pointedout by KobzarevandOkun [48].

6.3. Gravitationalphoton—photonandphoton—scalarparticlescattering

Boccalettiet al. [9] havecalculatedthe crosssectionsfor the photon—photonandphoton—scalarparticlescatteringbothclassicallyandby usingthelinearizedquantumtheoryof gravitation.

The correspondenceprinciple would obviouslyconnectthesetwo methods.It is thereforecon-firmed by bothcalculationsthat thegravitationalactionof a beamof light is twice asgreatas theNewtonianone.

As pointedout by the authors,thecomparisonbetweenclassicalandquantizedtheory is not a

Page 42: Gravitations in Minkowski space-time interactions and results of astrophysical interest

92 G. PapiniandSR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

purelyacademicproblem.The investigationsinto the peculiaritiesof gravitationalinteractionbe-tweenphotonsor betweenphotonsandparticlesis interestingat leastfor two reasons:

i) On astrophysicalgrounds,becauseof the possibleinsight into astrophysicsandperhapsintocosmologyandthe variousapplicationsandconsequenceson bothdomains.

ii) It maybe possiblein a not too distantfuture to producemoreandmore intensephotonbeamsandthereforetestsomeof the theoreticalpredictions.

The photon—photonand photon—-scalarparticlescatteringarediscussedin thelowest orderintheperturbativeapproach,all diagramsof figs. 6.6 and6.7 arewith only an intermediategraviton.

The Lagrangiandensityfor the interactionbetweenthe e.m. andgravitationalfields is given by:

= — ~Kh121/T121/ . (6.24)

h121/ representsthe gravitationalfield, ~‘121/ is the energymomentumtensorof the c.m. field; theangulardifferentialcrosssectionfor unpolarizedphotonsis

do 2K4 k2 1 1

= .— — ~—[l +cos16~O+sin’6~O]. (6.25)d~Z (2ir)2 sin20

~k3 ~k5~k4 - - - -

(a) (hi

Fig. 6.6. Photon—photonscattering.

Ill

T k1-k2

/N<2

Fig.6.7. Photon—scalarparticlescattering.

Page 43: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papini and S.R. Valluri, Gravitonsin Minkowski space—time.Interactionsand resultsof astrophysicalinterest 93

The expressionin squarebracketsis identicalto theresult obtainedby Barkeretal. [5, 6],thoughcalculatedby completelydifferentmethods.In thec.m. frame k is thephotonmomentumand0 is thescatteringangle.For smallangles

/,1 ‘~ 44 k2 k2j_~±2~) —~-— — 64G2 . (6.26)

i’ \2 ,1a4

quantum i~.7TJ rv u

The classicalcalculationyields 4 timesthe valueof (6.26).This is equivalentto sayingthat theclassicaldeflectionangleis greaterby a factorof 2. This factormaybe accountedfor by consider-ing that in the classicalcasea fixed beamreplacesthephotonof thequantumcaseas a sourceofgravitationalfield. But in the quantumproblemthephotontoo, is deflected.For symmetryreasons,a factor2 for the deflectionangleshouldthereforeappear.

Photon—scalarparticle scatteringK

1 is the four momentumof the initial photonandK2 thatof the final photon;p1 andp2 arethe analogousquantitiesfor the scalarparticle.

The energymomentumtensorfor scalarmatteris

T121/ = 011/0112— ~ + ~m202 ~ (6.27)

and thedifferentialcrosssectionis representedby

do K4 w4 /l+cos0\2

dfl 16(2ir)2 4(w — k)2 ‘~l — cos0) (6.28)Forsmallangles(6.28)becomes

K2 I w2 \2 1 2’ w2 \2 1p — 16G i p — (c.g.s.) (6.29)

\d~2/quantum 4(2ir)2 \W k/ o~ — k~’ o~

wherew is the total energyin the centerof masssystemandk is thephotonenergy.The classicaldifferentialcrosssectionis given by

16G2 ~- ~ . (6.30)k2 o~

The classicalformuladiffers from the quantumoneby a factorof k2 /(w — k)2. This meansthatthe classicalanglediffers from the quantumoneby a factorof k/(w — k), that is by the ratio ofthephotonenergyto the particleenergy.The symmetryargumentspreviouslyadvancedarenolongervalid.

In the casewhenthe ratio k/(w — k) = ~, i.e., the photon—photonscattering,w = 3k.

It thenfollows that the differencebetweenthe classicalandquantumformulais the sameas inthe case of photon—photon scattering.

A massiveparticleexertsa gravitationalactionexactlyas thatof a photonof the sameenergy.In differentwords,the gravitationaldeflectionof a particleby a beamof light is doublethat aswould be obtainedby replacingthe beamby an averagedensityof matterequalto thatof light.Barkeret al. [4] haveobtaineda similar resultby applyingthe quantumtheoryof gravitationto thecaseof photon—scalarparticlescattering.Barkeret al. give the gravitationalpotentialandfind thatlight is deflectedby a heavyobjectby twice the amountpredictedby the Newtoniantheory.

Page 44: Gravitations in Minkowski space-time interactions and results of astrophysical interest

94 G. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

6.4. Bendingof light in an externalgravitationalfield

Boccalettiet al. havecalculatedthe effect of the bendingof a light beamin a gravitationalfieldandconsideredtheinteractionof a photonwith the externalgravitationalfield of the sun.Thiscorrespondsto oneof the threecrucial testsof Einstein’stheoryandis shownin fig. 6.8.

The interactionLagrangiandensityis knownfr~mthe work of Guptaand follows from (2.60).The first orderwavefunctionin momentumspaceis therefore:

— ~Kö~”(E~’~ — !o1/P~) (e~k~— c~k~)(e~k~— �~k~) (6.31)

wheree~,k’, and~2, k2 arethe polarizationvectorandmomentumof the two photons.Fig. 6.8 is theanalogof Rutherfordscatteringin quantumelectrodynamics.Thematrix elementM in the externalfield approximation(JauchandRohrlich [47]) is given

by:

K2M(k

2 IMIk1) = 0 ! f~12x(~f~vooPo— !~/~VP)

(211)2(4k°k~)1/2

X (e~k,~— e,~k~)(e~k~— e~k~)~~!_~4(k2 +q — k1)d

3q . (6.32)I qI

= —KM® /47rr is the staticexternalpotentialandM® is the solarmass.

0(q) = ~ M® /(27r)3/2) I~2 (6.33)

is the Fouriertransformofh°°.q is the momentum of the virtual graviton.Thegraviton polariza-tion tensorhasin this caseonly the time components

6~vp= ~/~u0 ~p0 = (6.34)

Thegaugeis chosen,suchthat �?= = 0. Hence

~~:ttq2

Fig. 6.8. Photon scattering in anexternal gravitational field.

Page 45: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papini andSR. Valluri, Gravitonsin Minkowski space—time.Interactions and resultsofastrophysicalinterest 95

<k2IMIk1)=(6.35)

V~K2M®

2(2ir)2(4k° k~12 f—____ [k~ k~(~~2) — ~(k1 k2)(c1 ~2) + ~(e~k2)(e~k1)] ~

4(k2+ q — k1) d

3q

and

K4M2do = ~ ~ [k~ k~(e

1~2) — ~(k1 k2)(e1~2) + ~(e~k2)(e2k1)] 2

(2ir)2(2k?k~)4 pol

ä(k~ k?)d3k2 = K

4M~ f(1 +cos0)2d~= K4M~ fcos4~0 d~2.(6.36)

(/c?2 ~ — 2k?k~cosO)2 (411)216 1 — COS 0 (411)216

For smallangles,tan 0 — 0

42d KM® 1

— —. (6.37)d~ 4(211)2 ~4

According to Einstein’stheory the angleby which a photonis deviatedin thegravitationalfield

4GM0

0= r (6.38)

wherer is the leastdistancefrom the centreof the sunattainedby the travelling photon.Equation(6.38) is the sameas the oneresultingfrom Einstein’sgeneralrelativity andis there-

fore a goodcheckof the quantizedtheory.

7. Annihilation ofspinless particles into gravitons

The formalismin the calculationof thescatteringof gravitonsby spinlessparticleshasbeenex-tendedto theannihilationof two neutralor oppositelychargedspinlessparticleswith propagationvectorsp andp’ into two gravitonswith propagationvectorsk andk’ as shownin fig. 7.1. It takesinto accountthe self-interactionof gravity as shownin section4. In the c.m.system

p’—p; k’0—k, p’0p0—k’0=k0. (7.1)

The polarizationvectorsassociatedwith the two gravitonsarechosenas:

ei(k’)1~,~,1 e1(k)1~<P1=e1(k~); e2(k’)~1~

e2(k)-~ kxe1(k) —e2(k’). (7.2)

The scatteringoperatorcanbe expressedas

Page 46: Gravitations in Minkowski space-time interactions and results of astrophysical interest

96 G. Papiniand S.R.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

/ 7/

/ / k

/ /

(a) (d)

/

\ / k”..,I /

/

I /<\...~~

Cb) (C)

Fig. 7.1. Annihilation of two neutralor oppositelychargedspinlessparticlesinto two gravitons.

S= —iV2 (211)~6(p + p’ — k — k’)a(p’)a(p)[(a(k’) a(k’) + a* (k’)a_ (k)) (Fa + F~+ Fb + F~)

+ (a (kl)a* (k) + a* (k’)a÷(k))(F5+ Fa’)] (7.3)

where

K2 (p4 —(p — k)2(p + k)2)2 = — K2 (p4 —(p+ k)2(p — k)2)2

Fa~ ~Fa=~~ p~(p2+(p—k)2) p~(p2+(p+k)2)

Fb = —~-~ p~[p2(p2 — 4p~)— (p — k)2(p + k)2] , F~= —f-—. (7.4)p

0

Theresultingcrosssectionsfor variouspolarizationstateof the two gravitonsare

do~÷— do__ G2E2 I ÷ ~34sin40 2

- d~ - ~ ~2 ~2 sin20 1 ~2 cos2Ol (7.5)

do~_ do_k G2E2 r ~34sin4O 2

d~- d~ - 4~ [~_p2 cos20] (7.6)

with

Ep0, l3IpI/p0v (7.7)

Page 47: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papini andS.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest 97

whereE is the particleenergy,v its velocity, and0 is the anglebetweenk andp. The total crosssectioncanbe obtainedby integratingboth da÷÷anddo__ over 0 from 0 to ~ir andintegratingeitherdo~_or dci_~over 0 from 0 to 11. Thus:

=~__~G2E2 [~ — 3~3+3~_p7 + (~— 2~+ 3~— 2~6+~~8)lnI +p] (7.8)4j32 l—~

= ~ ~ [7P — 4 W135 — ~7 + (l0~— — 9j3~+ 2/36 + ~/38) ln 1 ~ 1. (7.9)2/32 1 —j3j

The total crosssectionis given by

o=o~.+o__ +o.._ . (7.10)

In the non relativistic approximation

airG2m2//3 (7.11)

while in the extremerelativistic approximation

ow~irG2E2. (7.12)

The aboveresultsarequalitatively in agreementwith the earlierestimatesof WheelerandBrill[90] andof IvanenkoandSokolov [42] but thenumericalfactorsin the abovetwo equationsdisagreewith theresultsof DeWitt [21].

8. The graviton—particlevertex,the proton—neutronmassdifferenceandrelatedproblems

The analysisof the graviton—particlevertexin itself, that is quite separatefrom otherpartsofa Feynmandiagram,canbe usedin a numberof problems,including thecalculationsof the proton—neutronmassdifference(Pagels[62]), andthebindingenergiesof the deuteronandsingletdeuteron(HareandPapini [38, 39]). Theseapplicationsare essentiallybasedon thecloseanalogyexistingbetweenelectricchargeandgravitationalmassas quantitiesindicating thesourcestrengthof theelectromagneticandgravitationalfields respectively.Thismayalsobe expressedby sayingthatas the electricandmagneticstructuresof a particleareobtainedin theparticle—photonvertex,soits mechanicalpropertiesarecontainedin the particle—gravitonvertex. Dispersionrelationsmaythenbe obtainedfor the form factorsappearingin bothvertices.

The nucleon-gravitonvertex of fig. 8.1 that correspondsto the traceof theenergy-momentumtensorcan be representedin the form (Pagels[62])

= ll(P)[G(w2) + G’(w2)l] (8.1)

whereGand G’ arenucleon mechanical form factors.It satisfiesTCP-invariance.At threshold,

whereall linesareon the massshell, oneobtainsG(M2)=M (8.2)

which is the graviton—nucleoncouplingconstant.Following Bincer’s method[7] one can thenderivesidewisedispersionrelationfor the mechanicalform factor. For protonandneutrontheyare

Page 48: Gravitations in Minkowski space-time interactions and results of astrophysical interest

98 G. Papini and SR. Valluri, Gravitons in Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

w *m -o

t

Fig. 8.1. Thenucleon—gravitonvertex.

2 2 ‘2 ‘2

G~n(W2) =M~~+ - ‘ f - ‘ . (8.3)11 M2 (w’2 — M2 ) (w’2 — w2 — ie)

p,n P,flFrom theseonecanimmediatelyderivethe proton—neutronmassdifference

1 ImG~(w2)dw2 1 °° ImG~(w2)dw2öM=M —M =—f ——f . (8.4)p n 1i~ 2 2 M2 11 2 2 ~i2M~ W — M~ w

The additionalassumptionof low energydominance,alreadytestedsuccessfullyin the calculationof anomalous magnetic moments (Drell and Pagels [23] ; Parson[68]) restrictsthe integrationsin (8.4) to X2M~and A2M~respectivelywith X2 3 (Drell and Pagels [23]). The contributionstoIm G~

0canthenbe calculatedby expandingthe vertex as shown in fig. 8.2. The N’y and Nir con-

N ~prn2

~17~-— —-

- - - ~ q 1’

N ~I3 N rn2

Fig. 8.2. Contributionsto Im ~

Page 49: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandSR. Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsof astrophysicalinterest 99

= ~ + ______ +

Fig. 8.3. Ny contributions to Im G(w2).

~ • _______________+ . + ~ + -N N Sly

5 M M g~.

Fig. 8.4. Nir contributions to Im G(w2).

- 2 /I =0,,• w2*rn~ ,“‘

Fig. 8.5. The two nucleonintermediate state.

7

I’

=_

Fig. 8.6. The electromagneticcontribution.

tributionscanbe furtherexpandedin figs. 8.3 and8.4. Most of the diagramsin figs. 8.3 and8.4canbe calculatedin the poleapproximation.This is sufficient to give thecorrectexperimentalvaluefor 6M. Completelyanalogousproceduresareappliedto the determinationof the deuteronbindingenergy(HareandPapini [39]). Thevertex of interestis LV(w2) in this caseand and

arethe polarizationvectorsfor theoff andon-shelldeuteronsrespectively.Figs.8.5, 8.6 and8.7 representthe two nucleonintermediatestate,the electromagneticcontributionand thebreak-upcontributionrespectively.The Lorentzconditiond~� = 0 andTCPinvariancerestrictthe vertex to the expression

Page 50: Gravitations in Minkowski space-time interactions and results of astrophysical interest

100 C. PapiniandSR.Valluri, Gravitons in Minkowski space—time. Interactions and results of astrophysical interest

,I, I’

7 ,, p

/I~

‘I

Fig. 8.7. Thebreakupcontribution.

(8.5)

Oneconcludes,howeverin this casethat

Fd(M~)=2M~. (8.6)

The subtracteddispersionrelationnow isG(w2)=M+W M

2 IrnG(w’2)dw’2 (8.7)

M2 (w’2 — M2)(w’2 — w2 — i�)

andthebindingenergy

B=Mn+Mp_Md (8.8)

can be calculatedas

B JIm G~(w’2)dw’2 + 1 jIm G0(w’

2)dw’2 — i Im Gd(w’2)dw’2 (8.9)M~ w’2 — M~ ~ M,~ w’2 — M~ ~ M~ w’2 — M~

which canbe extendedto the moregeneralcaseofalight nucleus(HareandPapini[38] ). Again lowenergydominancerestrictsthe integrationsin (8.9) to X’2M~andX2M~respectively.A’2 is deter-minedby the relation

X’2M~—M~=A2M~—M~. (8.10)

SinceA2 is alreadyknown,so is A’2. They yield the correctvalueof the bindingenergy.The samemethodapplied to the singletdeuteronindicatesthatthe systemis unbound.The analysisof theparticle--gravitonvertex,andin ~heparticularproblemsconsideredthe assumptionof thresholddominanceappearthereforeto be ableto link andexplainthe neutron—protonmassdifference,thedeuteronbindingenergyandthenon-existenceof a boundsingletneutron—protonpair.

Page 51: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papini and SR. Valluri, Gravitons in Minkowskispace—time.Interactionsandresultsof astrophysicalinterest 101

9. Photoproduction of gravitons

Photoproductionprocessesof the type‘y + e -+ e + g havebeenfirst studiedby Vladimirov [79].Perhapsmoreinteresting,at leastfrom the astrophysicalpoint of view, is the interactionof photonswith a staticelectromagneticfield andtheconsequentemissionof gravitons.Strongsourcesofelectromagneticradiationdo in fact exist in theuniverse,amongthem arequasars,pulsars,galaxiesandin our planetarysystem,the sun.The linear theorywithin certainlimits is adequateto dealwith them.

WeberandHinds [83] havestudiedthe photoproductionof gravitonsstartingfrom a Hamiltonianformulation.They haveshownthat tl1e processesof the creationof gravitonsby Coulombscatteringof photonsandby scatteringin a magnetostaticfield occurandhavecalculatedthe crosssectionsfor a largevolumecontainingauniform field. Such interactionsmight leadto observableeffectsover a long periodof time.

Also PapiniandValluri [64—67] haveconsideredtheprocessof photoproductionof gravitonsin staticelectromagneticfields andhaveapplied theresultsto thestudyof gravitationalradiationfrom avariety of astrophysicalobjects.Radiationrateshavebeenestimatedin different frequencyrangesof the electromagneticspectrum.Photoproductionhasbeenfound to contributea signifi-cant amountof gravitationalradiation.

9.1. Gravitonphotoproductionin static externalgravitationalfields

Boccalettiet al. [8] haveconsideredtheemissionof a gravitonby a photonin a gravitationalexternalfield asrepresentedby the two diagramsof fig. 9. 1.

k1 and k2 arethe four momentaof theinitial and final photonrespectively.p is the four

Fig. 9.1. Graviton photoproduction in a static externalfield.

Page 52: Gravitations in Minkowski space-time interactions and results of astrophysical interest

102 G. Papini and S.R. Valluri, Gravitons in Minkowski space—time. Interactions and results of astrophysical interest

momentumof the emittedgravitonandq thatof the virtual graviton.The matrix elementcorre-spondingto the two diagramsis given by:

(pk2 IMI k1> K2 fb12x(~f~.&0

6p0 — ~L~61/P) (�~k~— �~k’) I(2ir)

2(8k?k~p°)”2 (p + k2)

2

X

x (�~k~_e~k~) 0(~Tt T÷612X(..r2&05P0 —~&~)(�~k~—�~k~) 1 2

(k1 —p)

x [ö120(k1 -- p)1/(k1 — p)~— ~1/0(k1 — p)12(k1 — p)~— ~512~(k1—p)~(k1— p)0 + ö,~.(k1— p)12(k1 —p)0]

x (�~k~— �~k~)5~~(~~1t — ~5rt~)O(q)~4(k

2 +p +q — k1) d3q . (9.1)

In the caseof an extendedsource,like a galaxy, the Fourierintegralis evaluatedfrom a minimumr0 that is the radiusof thegalaxy,and thisimposesa constrainton the exchangemomentumq

do =(27r)2ff ö(k~+p°— k~)I(pk2IMIk1)I2

= k6 m2 j — k?) ~ (~ 2 { statesof thegraviton} 2 d3 k2 d

3 p]

8(2it)~ 1k1 — k2 —p1

4 k?k°2p° pol gray

= K6m2 f ~0 fd02f d02fd0fd0Q~ ~ 2{...}~). (9.2)QI”~ \5 p01 grayo~~iT~0 0 0 0 0

Q is givenby

k°Q —~— (k~— k~)sin0 sin 02 [k?2 + k~

2— k?k~(l— cosO2)+ k?(k? — k~)cos0 — k~(k?— k~)

4k?

X (sin 02 C05 02 sin 0 cos0 + sin 02 ~ 02 sin 0 sin 0 + cos02 cos9)_2] . (9.3)

meansthe sumover thepolarizationsof thephotonandthe ~grav 2 { statesof graviton} in-dicatesthe squaremodulusof theexpressionbetweencurly bracketsin (9.2) summedover gravitonpolarizations.Thereare four possibilitiesfor thephotonandhencefour amplitudesfor �~and�2

paralleland thenperpendicularto the (k1, ~2) plane.The explicit valuesof the polarizationvectorsare:

�111= (cos ~ sin 02, 0) , �~ = (sin 02, — cos 02, 0) (9.4a)

Page 53: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandS.R. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest 103

�211= (cos02 COS 02’ cos 02 S~fl02’ 5~02), �21 = (sin 02, —cos02,0). (9.4b)

The constantin (9.4) hasbeentakenas the averagemassof a galaxy. The crosssectionin cm2is of theorder of:

~ lO~~/lO~~10_i cm2 . (9.5)

If thetargetis a galaxy, the crosssectionis very smallandthe contributionto the red shift ofthelight coming from the distantstars is negligible.

If theenergyloss of a photonwhich emitsa gravitonis evaluated,with theuseof the standardformula

~ Nf p ~dp, (9.6)

N is the numberof galaxies/cm3 consideringa pathof the orderof theradiusof the universe,z~k

is foundto be:

—~ l0~°e v. (9.7)

Therefore,it follows thatthe red shift of light cannotbe explainedas a “tired light” phenomenon.

9.2. The processes of the type ‘y + e -~ e -1- g

The calculationsare basedon the interactionHamiltonianintroducedby Gupta[33]. The

P1/~k

(a) Cb) (ç)

Cd) (•)

Fig. 9.2. The process‘y + a e + g.

Page 54: Gravitations in Minkowski space-time interactions and results of astrophysical interest

104 G. Papini and SR. Valluri, Gravitons in Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

diagramsfor the processaregivenin fig. 9.2. The electronmaybe substitutedby otherfermions.Let E1,be the initial energyof the fermion,k01 is the energyof the photon,k02 is the gravitonenergy.

When

~‘k01 , ~ k02 (9.8)

the matrix elementhasthe form:

— ie\/7~ —+ (p

1k2)h(p1e)— (p1k1)e —(4it)2 ~02 u1/(p2) (p1k1)(p1k2) — u1/(p1) . (9.9)

The diagramsb andc give the main contributions.The effectivedifferentialcrosssectionof theprocesshasthe form:

~2 ~‘

02 2do=(2ir)

2 ~ ~lM(p1,p2)I2 d~. (9.10)

By squaring(9.9), averagingover initial andsummingoverthe final spins,oneobtains

do e2K2p6sin40 sin20 - k(~~( p

1(k2 — k1) \2 11)d~ 8(4it)2 E1 (E2 — p1 cos0) k01 \(p1 k1) (P1 ‘c2)i’

where0 is the angle between k1 andp1 and0 is theanglebetweenk2 and p1. In the relativisticcase,E -‘~ E1 —‘ E2 —. p1 —, p2 andby settingof k1 — k2 — k onegets

o—’e2K2E2/k2. (9.12)

For k extremelysmall, eq.(9.12) diverges.This infrareddivergenceis of the samenatureas thosepresentin electrodynamics.In quantumelectrodynamicsthe infraredcatastropheappearsandhencethe methodsof perturbationtheorywould be inapplicable.If it is assumedthat a significantnumberof gravitonsexist in outerspace,thenthe transformationsof gravitonsinto photonsmusttakeplacewhen fluxesof gravitonsinteractwith matter.

In particularthiseffect via the factor sin40 in (9.11)could enhancethe electromagneticradia-tion normally reachingearthfrom outerspaceif someobjectsmovedat right anglesto the radiusvector from the earthto the object. The measurementof the effect andof the Doppler redshiftwould thenmakepossiblea completeestimateof velocityanddirectionof motion of astrophysicalobjects(Vladimirov [79]).

9.3. Photoproduction in static electromagnetic fields

The quantizationof thelinearisedform of thegravitationalfield hasin its applicationsto weaksources,yieldedin generallow ratesfor gravitonemission.Strongextendedsourcesof electromag-neticradiation in theuniverselike quasars,pulsars,etc. could improveconsiderablythegravitonemissionrate.

The first orderdiagramfor the processis given in fig. 9.3. In fIg. 9.3, 1, q andk arethe four

Page 55: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowski space—time.Interactionsandresultsofastrophysicalinterest 105

‘.. I. ~

\

Fig. 9.3. The photon—photon—graviton vertex.

momentaof thegraviton,the incomingphotonandthephotonof the staticexternalfield. The �

quantitiesare the correspondingpolarizationtensors.Thereforethe interactionLagrangiancanbewritten as:

- 1/12

e1 — ~ [(�è) (q1211/ + q1/l12) — (�~)2q12q1/ — (qE)(e12l1/ + �p112 -— �12q1/—

— (�1) (q12è1/ + q1/E12) + (qi) (�Mep+ c~12)— ~ ~(�e)(ql) — (qE) (�l)}] . (9.13)

From it onederivesthe transitionmatrix

I(lIMIq>12 = (~,r~_~r~__)(-i) ~ Iè

1/12 ~(q~l1/+ q1/l12)(eE) — (c121p + �1/l12)(qe)

+ (e~ê1/÷e1/e12)(ql) — (è1/q12+ e~q1/)(�1)+ (q12e1/+ q1/e12) (lè)

— 2q12q1/(eè)— &,~1/((ql)(�E)— (�l)(qE))}0(K)I2 (9.14)

where0(K) is the potentialdueto the staticelectromagneticfield. The polarizationsum gives 16largesetsof termswhich resultsfrom the expansion.Using the expression

= 2(flpa~1pf3+ flvcst112P —

andconsideringthe threecases

l)va, p/32)v/3, pa3)pv, ct/3

the summationover polarizationsover all the 16 setsof termsis carriedout. The differentialcrosssectioncanthenbe written in the form:

do/do = (l/~./2l~2q0)2(~~)2 (2it)

2 4fd3l ~(q0 — l~) ~3(ql)

2(ee)2 — 4(ee)(ql)(qe)(lè)

— ~(el)(ql)(qE)(eE)+4(el)2(qe)2 +3(ql)2(ee)(êê)} I0(K)12 . (9.15)

Page 56: Gravitations in Minkowski space-time interactions and results of astrophysical interest

106 C. PapiniandSR.Valluri, Graaitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest

Since thevertex is covarianta convenientframeof referencecanbechosenin order to simplifythe calculations:q is chosenalong the±axis.Then:

q(q0,0,0,q); q2=0=q~—q2=l2—l~--12 q~.q2 l~=P (9.16)

1 = (la, Ill sin 0 cos0~Ill sin 0 sin 0~Ill cos0) (9.17)

1—q = (0,111 sin0 cos0,111 sin0 sin 0, IlI(cosO — 1)) (9.18)

qlq~(l —cos0). (9.19)

Since�12q

12= 0, two polarizationvectorssatisfyingthis condition arechosensuchthat:

(1) � = (0, 1, 0, 0)

(2) � = (0, 0, 1, 0). (9.20)

The static Coulomb field is considered first. Then

Ø(K) .Ze Ze (9.21)1K12 l—q12

andthe time like componentè doesnot vanish.Moreover

= 0 ; êè= —1 . (9.22)

Thus the total crosssectionis given by

o = d~= (2l~2q)(~~) (2it)2 fl~ dl0 ~(q0— l~) d~{—3q~(l — cos0)2

— ~ sin20(l ÷cos2Ø)— 4q~(cos0 — l)} (Ze)2/(Il— q12)2 (9.23)

where0 and0 specifytheorientationof the outgoinggravitonor equivalently:

o = 4it~GZ2/e2

r’’72/ 2—

4..JL~/eo — 4it (c.g.s.units). (9.24)

Themagneticfield is assumedto be that of a dipole. The potentialdue to the magneticfield canbe calculatedin momentumspacefrom the expressionfor the potentialin coordinatespaceby the useof the Fourier transformation.

Therefore(9.15) is evaluatedandon simplification gives:

— cos Q)2 (1 — 5 cos 0) . (9.25)

For the magneticfield of adipole, the potentialis given by

O 4irMcos0’ (9.26)i IkI

Page 57: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandSR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 107

whereM is the magneticmoment,0’ is the angleof inclination of the dipolewith thedirectionofthe incidentphoton.é canbe chosento havecomponents

E = (0, sin ~0 cos0, sin ~0 sin 0, cos~0). (9.27)

The total crosssectionis found to be given by

Om~ (4irM cos01)2 (211)2 3 (1 (1 —5cos 0) sin 0 dO dO2q0

= 256ir6GM2q~cos2O’ (q

0 = 2it/X = 2iw/c) (9.28)

= l024ir~GM~v2cos2O’ (c.g.s. units). (9.29)

Eqs.(9.24) and(9.29)agreein orderof magnitudewith thosepreviouslycalculatedby WeberandHinds [83] usingthe Hamiltonianformulationof thegeneraltheoryof relativity.

9.3.1. Higher order correctionsIn this sectionthe secondorderradiativecorrectionsarecalculated.The four point interaction

of the two fermions,photonandgravitonis known from the work of Pagels[62].Diagramsa andc of fig. 9.4give the samecontributionandareidentical. Also diagramsb andd

S.

S.

S.

x

~VJy

m~~~k

Fig. 9.4. The secondorder radiative corrections.

Page 58: Gravitations in Minkowski space-time interactions and results of astrophysical interest

108 G. Papini andSR.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

areidentical.Thereforethe polarizationtensor1112Vx0(~’ 1, q) canbe defined,

= 2(T

121/~0+ T121/0~) . (9.30)

Also (f I T121/~0Ii>andff1 T121/0~Ii)give the samecontribution.The crosssectionis calculatedinitiallyfor a screenedstaticCoulombfield. The transitionmatrix elementfor diagram(a) is given by

Ze(�121/IT121/~0(l, q, k, m)— I�~n0)=

(2it)8_Ne2~l611G(e121/lJ~(fd4pq12p~xp — m ~ p+~ q -- m ) ~ (9.31)hr

2 p2 — m2 (p + 1 — q)2 -— m2 IKI2After removalof the divergencesby chargerenormalisationoneobtains

~ l(�121/1T121/x0IexT?0)0(k)I

2=f 1 (9.32)

—~ (l28irG)Z2e2 40~-~ 1 — cos 0 — 4(1 — cos0)2 — l0O~—q~(1 — cos0 + A’)2 (1 — cos0 + A’)2 q~(1 — cos0 + A’)2

The total crosssectioncannow be written as:

o ~ I(flMIi)12 ~(q0 — l0)d

31 = (211)24en(l6irG)(2Z2e2)(2ir)

X 40~_(ln2 +A’ __~_~) —8 +8A’ ln 2 +A’ — 8X’ ~~00m4 1~ (9.33)q2

0 ~ 2+A A 2+A q~A’(2+A’)J

The correspoi~dingresult for a magneticdipolepotentialis

O(211)2(211)(1611G)4en(411~’bO50)2[8~~(2 — 2A’ +A’2 ln 2+A’)

~ . (9.34)

9.3.2. Thethird order radiativecorrectionsThe third orderradiativecorrectionscorrespondto the diagramsof fig. 9.5.

canbe calculatedby introducingthepolarizationtensorfor the closed loop with thecrossedphotonandgravitonlines. T

121/~0 hasa finite part anda part which hasa logarithmicdivergence.The tensorcanhowever,be regularised(Karplus andNeumann[50]). The calculationof T121/~0 is straightforwardbut very lengthy.After squaringthe matrix elementandsummingoverthe polarizationsoneobtainsthe total crosssectionin the low energyapproximationas:

(9.35)

Page 59: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandSR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 109

Ii II

4

4,J~Z\~JIQ p-q

x >~

P+I-q 0

k

Fig. 9.5. The third order radiative corrections.

In the relativistic approximationq0 ~‘ m and for a screenedCoulomb potential oneobtains

f ~~I(eMvIl T +1 T Xa1 1 I�~fl

0>I2d3112 vXo I)

Iq _1I2 +A~

I m2—~-~ ~ [J1~121/ ((l,

2~1/ + l1/q~)~ (q0 + l~)~ + 2g~0 I + ~ ) ~ (9.36)2 P01 L

m2~ ______

— (l12g1/~ + l1/g12~) (1 — —i-)

4(fl1)~~+ 2(d) (i + (l12g1/0 + lV~MO)?7O)~ — 1I~+ A~d

3 11,

IKI2=Il—qI2=2q~(1—cosO+A2), A2—A~/2q~. (9.37)

Integrationover theanglesandthe summationover theinitial polarizationsyield the crosssec-tion:

A2 m4 + 1 l+A

2 2+A2ln~3 —4

6o1a3~l +.~-( 2 2 +ln 2L 2\2+Aq

0 q~A2(2+A2) 18 36 A2

m2 2 A

2~ ~+ln2+A2] . (9.38)

Page 60: Gravitations in Minkowski space-time interactions and results of astrophysical interest

110 G. Papini and SR. Valluri, Gravitons in Minkowski space—time. Interactionsand resultsof astrophysicalinterest

a1 is the first ordercrosssectionanda is the fine structureconstant.For themagneticfield of adipole oneobtains

2 2 4 1 2+Au~=o~l62a2 -~-(2+A2)ln ~2 + l8m +8+4~———ln 2 (9.39)

q~ A2 q2

0 9 A2

10. Synchrotron radiation

PustovoitandGertsenshtein[3 11 haveconsideredtheproductionof gravitationalsynchrotronradiationfrom chargedparticlesspiralingin magneticfields. Gravitationalradiationis producednot only becauseof the quadrupolemomentof the particle in motion but alsobecauseof theelectromagneticstressescausedby the charge.The trajectoryof theparticleis completelydeter-minedby the electromagneticinteractionsincethe gravitationalinteractionis muchsmaller.Theratio of the powerdueto thegravitationallossesto thatof the electric lossesis independentofenergyin the ultra relativistic case

(dE~ /(dE\ l3l6itGM2 (101)

\dt /giav loss! \ dt /ekctric.loss ~ e2

M is themassandethe chargeof the particle.Anotherpossibilityof producinggravitonsashigh frequencyradiationis by collisionsbetween

atoms and particles. A good example is the Coulomb scattering of electronsin the interior of astar. Unfortunately, the rateof photonemissionis verysmallcomparednot only with the rateofphotonemission,but alsowith therateof neutrino—antineutrinopair emissioncalculatedbyGandelmanandPinaev[30].

Gravitationalsynchrotronradiationfrom particlesin stationaryexternalgravitationalfields hasbeenextensivelystudiedin recenttimes. It has in fact beensuggestedby Misner [55, 56] that agravitationalsynchrotroneffect might be responsiblefor theeventsobservedby the Maryland—Argonnegravitationalwavedetecto’rs.Becauseof the strongfocussingeffect andthe proximityof the solarsystemto thegalactic plane,the amountof radiationnecessaryto explainWeber’sobservationswould be reducedsubstantiallyif ahypotheticalsourceat the galacticcenteremittedgravitationalsynchrotronradiation into the galacticplane.Severalmodelshavebeendiscussedinthe literatureinvolving radiationfrom relativistic particlesin orbit aroundmassivesphericallysymmetricor rotatingblackholes.Noneseemsto yield a possibleastrophysicalsourceof synchro-tron radiation.A comprehensivereview of thesubjecthasbeenpublishedby Breuer[14].

11. Terrestrial sourcesof gravitational radiation

11.1. Induced emissionof gravitons

Weber [84] hasdescribedthe productionof gravitationalwavesby largevibrating piezoelectriccrystalsandfound that theproductionof gravitationalradiationby microscopicsystemsis insignifi-

Page 61: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest 111

cantly small. The gravitational decay of excited states of nuclei or molecules takes place at tooslowa rateto be of any significanceasa sourceof experimentin the terrestiallaboratory.It ishoweverpossiblein principle that thegravitationalradiation from suchsystemscanbe increasedgreatlyby using inducedemissionat resonance.This processhasbeenconsideredby HalpernandLaurent.

An apparatusworking on theprinciple of inducedemissionwould be the gravitationalcounter-part of the “laser” andhasbeencalled a “gaser”.The “gaser”conceivedby HalpernandLaurent[36] consistsof amaterialthemicroscopicalpartsof whichcanbe excitedby externalmeans.Be-sidestheproductionof gravitons,inducedemissionwouldproducean avalancheof photonsin thedirectionof the rod, which couldhoweverbe removed,by meansof mirrors. The inducedemissionwould thereforebe specific in the sensethatgravitonswould increasethe emissionof gravitonsandnot thatof photons.

The crosssectionfor the processof inducedemissionat resonanceis:

0geom ~2 , (11.1)

whereA denotesthe wavelengthof the emittedradiation.If thisconditioncould be realizedthegaserwould be as effectiveas the laser. However, the extremeweaknessof the gravitationalinter-actionandthe unavoidablecompetitionfrom perturbationspreventsucha possibility.More realisticlimits canbe obtainedas follows:

Let 6w1 denotethe line width due to theelectromagneticinteractionand6w2 the spreadin

frequencydueto all disturbances.The two effectscanroughlybe takeninto accountby writingthe crosssectionsas

a = X2/r6w

1 (6w1 > 6w2)

u=X2/r6w

2 (6w2>6w1). (11.2)

r is the lifetime of the excitedstateas calculatedfrom thegravitationalinteractiononly. For aquadrupoletransition

l/r~2w5d4M2 (11.3)

wherex2 - 2 . 8irG/c4 = 4.14 X 1048g1 cm’ s2. G is thegravitationalconstant,Mis the mass

of the radiatingparticleandd is a lengthof the orderof magnitudeof theorbit of the particle,wkc (11.4)

and

6w1 = w

5d4e2 6w2 = ~w , (11.5)

where~ is a measureof the frequencyspread.Also the meanfree pathis given by

11/aN, (11.6)

whereN is the numberof microscopicsystems/cm3.By usingthe expressionfor l/r, oneobtains

— e2 1 IX\4 e21= .~ when ~ <— (11.7)X2M2 ~ \dI ~

Page 62: Gravitations in Minkowski space-time interactions and results of astrophysical interest

112 G. Papini and SR. Valluri, Gravitons in Minkowski space—time. Interactionsand resultsof astrophysicalinterest

and

— z~ A2 IA\4 e21— when ~—j >— . (11.8)x2 Nd4M2 \d/ i~

The mean free path 1, the characteristiclengthof the gaser,is definedas the distanceover whichthe numberof gravitonsdouble.The minimum of 1 is given when

Amin =d(e2/~)’I4. (11.9)

This gives

lmin = e~/~/(k2M2Nd2). (11.10)

In naturalunits for nucleie 10~,M ~ cm1,N 1023 cm3,d 1012 cm, ~lO32 cm. Then

lmin l038..,/~cm. (11.11)

Sucha largenumberexcludesof coursenucleias thesourceof radiationin a gaser.The smallestvaluefor ~ is in fact similar to thatof the Mössbauerexperiment~ I 0—’~).

Therefore(11 .1 0) suggeststhatlargersystemsthannuclei should betried as sources.If big mole-culesor systemscomparableto our microscopicsystemsare used,the wavelengthof the radiationis of the orderof that for vibrationaltransitions(Schiff [71]),

X~c(mM)1!2 d2 (11.12)

wherem is the electronmass.Also

M pd3 , p 1036 cm4 (correspondingto I g cm—3). (11.13)

Therefore:

X~..~/pmd~. (11.14)

Comparisonof(1 1.14)and(11.9)gives:

X > ~ if d ~ (e/mp)’15 (1 /~)1/10 (11.15)

If lO_14, p 1036 cm4

X>Xmin if d~’108cm. (11.16)

The aboveconditionfor d is fulfilled for all molecules.The condition-~ A2 2

1= — if (d/Xy~>~— (11.17)x2 Nd4M2

can thereforebe used.Insertion of (11.14)and the approximaterelationN~ad3 into (11.17) gives

1038 ~ cm (formolecules). (11.18)x2 ~

Page 63: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest 113

This excludesalsovibrationalandrotational transitionsin moleculesas sourcesfor the radiationin a gaser.For moleculesthe attainable~, is of course, much greater than it is for nuclei.

11.2. Superradiatingstates

NagibarovandKopvillem [57] discussthe possibilityof creatingasuperradiatinggravitationalstate(SGS)from quantumsystemsthat alreadyarein a supernon-radiatingelectromagneticstate(NES). The ratio of gravitationalandelectromagneticpowerJ(~)andj(e) radiatedby free particlesin free spacein interatomicandinternucleartransitionsarerespectively

= jg~je ,.~ l042 (interatomictransitions) (11.19)

17 = jg/je ,~, 10_36 (internucleartransitions). (11.20)

It is shownby Dicke [94] that the useof lasersincreasesi~by a factorNCA3Q as a resultof a

decreasein the spontaneouselectromagneticradiationin the resonator;andby a factor r~r1Nas a resultof retainingthephotonsin the resonatorwhereN~is thenumberof resonatormodes,Q is the resonatorfigure of merit, A is thephotonwavelength,r~and‘r arethephotonlifetime inresonatoranddurationof particlephosphorescencein free spaceandN is the total numberofparticles.Thereforei~could be increasedby 1015_.lo2o times. In addition,I~ increasesby aboutN’times becauseof the coherenceof the gravitationalwaves.A further increasein 17 canbe obtainedby usingthe directionalpropertyof radiationfrom largesystems.The intensityof the coherentpartof thespontaneousemissionof suchsystemsis

jg = fI~(K) ~ [ex~fi (k — ~ a~ok~o)- r~} exP(_i(k — ~ a~0k~0). rq)]~ (11.21)

wherei~~~(K)is the spontaneousemissionintensityin a unit solidangledf2 in the directionof thewavevectorK; r~andrq arethe radiusvectorsof the radiatingparticles,a~0are 1, and arethewavevectorsof the exciting electromagneticpulses(~is the serialnumberof pulsesequence,and0 numbersthe wavevectorswithin the limits of onepulsein the caseof multi quantumexci-tation).To satisfythe equalityK = ~ in the exponentialof (11.21), two quantumexcita-tion hasto beused.

It is possibleto excitethe systemssimultaneouslyby two laserpulseswith:

k11(e) = k~1n0, k12(e)= —k~2n0 (11.22)

with carrier frequencies

— v0 — 0 1123- 2(1 + l/~)’ ~l2 - 2(1 — l/~) ( • )

Two quantumelectromagneticexcitationis physicallyequivalentto a certaineffective frequency

= + ~12 ku0= k~. (11.24)

From (11.21)it follows that

j(i)..... I(i)k(i)pN2(IILV)2 sin20 (11.25)

Page 64: Gravitations in Minkowski space-time interactions and results of astrophysical interest

114 G. Papini and SR. Valluri, Gravitons in Minkowski spa ce—time. Interactionsand resultsof astrophysicalinterest

0’~-’v~’E11E12ji2z~t (11.26)

whereE11 andE12 arethe electricfield intensitiesof the electromagneticwave,/1 thedipolema-

trix element,z~tthedurationof the exciting pulse,andL the length of the samplein then0 direc-tion.

The equation(11.25)is similar in form to (11.21),but is obtainedtaking into accountthedif-ferencebetweenphotonandgravitonvelocitiesin matterwith the superradiating electromagneticstate(SES)completelyexcluded,thusincreasing17 further.by

N(l/L~0)2times(forN= 1019,L = 1 cm, t’

0 = 310sec’) , 77 = l0~times. (11.27)

Thereis no electromagneticradiationat frequency~ atall in then0 direction.The occurrenceof superradiatingelectromagneticgenerationis avoidedby the excitationof

gravitationalechoesin the two quantummode.The problemof receptionhasalsobeendiscussedby NagibarovandKopvillem. It is bestto receivepulsesof coherentgravitationalwaveswith theaid of analogousquantumsystems.An SESis first excitedwhich decaysafter atime T ~ T2 asa resultof the inhomogeneitiesof thelocal fields. In thesameway asystemis obtainedin whichenergyandinformationon thephaseandon the wavevectorsof the exciting pulsearestoredandthis makesdirectionalreceptionpossible.At an instantof time T < t < T2 this systemis subjectto pulsesof gravitationalandlaserbeams,in which the directionsof the wavevectorsandthe fre-quenciesare suchthat an SESis producedin the system.After a time 2t the systembeginstogenerate,in the requireddirection,coherentelectromagneticwaves. In sucha methodof reception,the gravitationalpulseservesas themeansthatpermitsat the requiredinstantof time andin therequireddirection,the releaseof the energystoredin thereceiver.Thoughthereis a differenceinthe angulardistributionsof theradiationintensitiesof the massand electricquadrupoles,it is stillpossibleto excitehigh frequencyradiationby meansof an alternatingelectricfield. In regularlattices containingexcitednuclei, SESandNEScanspontaneouslyoccurfor ~yquantaandconse-quentlySGS canoccuratthe frequencyof the y quantarelativeto the nucleonicmassquadrupoles.The massquadrupolecanbe excitedby meansof anelectricdipole transition,making it possibleto let themassquadrupoleto emit at maximumintensity.

11.3. Continuous generation of a gravitational beam

NagibarovandKopvillem [58] haveconsideredthe useof superradiantstatesof quantumsys-temsfor thegenerationof coherentgravitationalcontinuouswavesin the optical region.It is thegravitonanalogof stimulatedopticalandacousticemission.

It is well knownthat in order to generategravitationalwavesit is necessaryto exciteoscillationsof massquadrupolemoments.The intensityof theradiationof the gravitationalwavesby an iso-latedquadrupoleis proportionalto the sixth power of the circular frequencyof the oscillations

Ig~wg6. (11.28)

Excitationof oscillationsof electricmultipolesby an externalelectromagneticfield leadsalsoto oscillationsof themassmultipoles.Therefore,laserscanbe usedfor the excitationof massquadrupolesin the stimulatedemissionregime.To excitegravitationalwavesin the range 1012 ~

wg ~ 1014 rad/sec,the rotationalandvibrationallevelsof the moleculeareused.In the range

Page 65: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand S.R.Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest 115

1 ~14 ~ wg ~ 1 ~ rad/sectheelectroniclevelsof atomsandmoleculesare usedandin the 7-rayfrequenciesinternucleartransitionsareused.

The generationof gravitationalradiation,in the consideredrangeof frequencieswg, is effectedby a systemof N ~‘ I massquadrupoles,the linear dimensionsof the systembeing~ Ag (wave-lengthof thegravitons).Due to interferenceeffects;

‘g’•~~A~w~. (11.29)

Since for thereceptionof GR it is necessaryto record at least onequantum,the efficiencyof the discussedmethodof generationof receptionof GR increaseswith frequencylike w~.

In mediain whichn (the refractiveindex for e.m. waves)>I, uponexcitationof GRin the singlequantumregime

A~w~ (11.30)

becauseof thedifferencebetweenthe wavevectorske of thephotonsandkg of thegravitonswiththe samefrequency.To avoid an additionaldecreaseof ‘g by a factorA~,it is necessaryto excitetheemissionof GRin the two quantumregimeby usingtwo lasers,which gives

k~~= kg . (11.31)

The aboveequality in singlequantumexcitationscanapparentlyalsobe attainedin invertedsystems.In densegases,n = 1, ke = kg.

A seriousobstacleto the experimentalrealizationof GRgenerationis thepowerfule.m. radia-tion which necessarilyaccompaniesGR.

To decreasethe intensity I~ of the electromagneticradiation the following prescriptionsareuseful.

1) The systemshould be excitedwith the helpof two lasersfor which effectively ke= kg; thenthe intensityof e.m. radiationat frequencyw~decreasesby a factor A2 comparedwith the caseof single quantumexcitations.

2) Oneshouldexcitesystemsin electromagneticresonatorswhichhaveno modeat frequencywg, at least in the directionof kg; this in generalsuppressesthe coherentspontaneouse.m. radiationwith ke = kg.

3) The directionof effectiveke= kg should coincidewith oneof theminima of theintensity ofthe spontaneousemissionof the isolatedelectricquadrupole.The methodfor the receptionof GRis the inverseof thatproposedabove.A quantumstatisticaltheory canalsobe developedfor thegenerationof GR with the aid of lasersatthe electroniclevelsof atomsandmolecules,at the rota-tional andvibrational levelsandat the Landaulevels. ‘g arelisted in table 11 . 1. The parameterofthe receiversandthe intensitiesof thelight ray atthe receiveroutputarelisted in table 11.2.

Table 11.1.GR generationpower in the stimulated induction regime (from Nagibarov and Kopvillem [581).

Nature of levels m0 V V

11V S Icoh(wg)/sin

2eI 1) and 12> (rad/sec) (g) (cm2) (cm3) (cm3) (cm2) (erg/sec)

1016 10_27 iO_16 106 1021 io31013 iO_22 iO_iS 106 1023 1o3 io~°

Page 66: Gravitations in Minkowski space-time interactions and results of astrophysical interest

116 G. Papini and SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

Table 11.2Powerat thereceiveroutput in thederectionof a gravitationalray in variousreceptionmethods(from NagibarovandKopvillern[58].

Methodsof Natureof levels Receiverparameters PoweratGR reception Ii> and 12) . * receiver

G(erg) ‘~S,t Wph _~~)ph+1I~ T2 out ut

of ~ p(erg/sec)

1) With photon rIel 1016 10—10 iO~ loll 1O~ 1O~ 106 ~O’~pumping

t1rv 1013 1010 iO~ 108 iO~ 10~ i0~ 10h1

2)Withphoton ~eI 1016 1016 i0~ 10—18 lO~pumping ~rv 10~ 1013 — iO~ 1018 — 1O~

W2 &~)2 T Wc~Wph ~-‘~~~pr Icoh(Wph)

3) Phonon 11e1 5X1015 10~ 108 io~ 1015 1018 l0~~graviton 11rv 5X1012 i0~ 108 102 1012 10_18 i05

11.4. Stimulatedgenerationofcoherentgravitationalradiation

A systemof N identicalparticleswith a discretespectrumis considered.Il> is the groundstateof the isolatedparticle. 12> is oneof its excitedstateswith energyE

2 — = w0. The unperturbedspectrumof sucha subsystemis describedby theoperator

~ =w0~ R’~. (11.32)

Its interactionwith the externalgeneratorswith effectivewavevector k and effectivefrequencyw canberepresentedin the form:

~r =AkR k~+A~Rk (11.33)

Rk = ~ R’,. =R~+iR’2 [R’,.,R1] 2R’

3 (11.34)

[R3,R’] =—R’ . (11.35)

R’~is thecomponentof theoperatorof the effectivespinR = ~, r1 is the radiusvectorof particlej. A,,~ is an operatordescribingtheinteractions.withthe externalgenerator.

The intensityof the stimulatedgravitationalemission(SGI) is given by:

I(Wg) = ,•fI(kg)d~ (11.36)

I(kg) = 10(k8)~ [i — cos01 tanh2kBT + ~ tanh2 (2~T)~1 ~ exp{i(kg—k

1_k2).rj,}]

(11.37)

whered~is the solid angleelement,r1, = r1 — r1, kB is Boltzmann’sconstant,T is the temperature,

Page 67: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsofastrophysicalinterest 117

cosO1 =(I +(T2z~w)2+w~T

1T2)1(1 +(T

21~w)2) (11.38)

sinO2(l+(T2~w)

2+w~T1T2Y

1Iw~IT2

2~w (11.39)

= W0— IWgI ; IWgI = 1w1 ±w21 (11.40)

Wr = IUI9~’rI2>I ‘ ~r = ~ (11.41)

Io(kg)=i:[~~D ~

—~ ~ ~ (11.42)12,8

= \/~(D~ + Dm

2) — , D~= (11.43)

~ = —~~/~(D~+ Dm

2) — ; D~,= ~ = ~(D~ — Dm

2) (11.44)

~ D~=D~.=*(DmI_Dr)

Dg’ = ~a[3L~ — L1(L1+ 1)] , a

0 = m0Q0(L1(2L1— l))’ (11.45)

m0Q0 = (L~~L~Ifpj(3z’2— r’

2)dv’IL1L1 , L~,= + iL~,,; (11.46)

k1 is the gravitationalconstant;j.i, 6, x = x, y, z; ~12 arethe directioncosinesof the vectorkg, dv’

= dx’ dy’ dz’, Pg ~S thedensityof the electronmassat pointx’, y’, z’ of the electronshellof theparticle/, m0 the electronmass,L~.arethe componentsof the effectiveorbital motion of theparticle.

In (11 .37)the coherentpart of the gravitationalradiation describesthefactorcontaining

~-exp{i(kg_k1 —k2),~1}

1*!

At kg = k1 ÷k2, this functionhasa sharpmaximum.To obtain themaximumpossibleI(Wg) itis necessarythat this directioncoincideswith oneof the maximaofJ~(kg). The powerof thecoherentpart of the SGI is given by

Icoh(wg) = 1o(n0kg)(A~N2/4S)sin2O

2 tanh2(wg/2kBT) (11.47)

4Sis the areaof the faceperpendicularto k1 + k2 = n0 1k1 + k2I, S/Agl0 ~ I (l~= lengthof sample,

Ag = wavelengthof the generatedgravitons,n0 coincideswith oneof themaximaof I(kg)),

= (wg/2n)(n + 1); w

2 = (wgI2n)(n— 1) (11.48)

Page 68: Gravitations in Minkowski space-time interactions and results of astrophysical interest

118 G. Papiniand SR. Valluri, Gravitonsin Minkowskispace—time.Interactionsand resultsof astrophysicalinterest

(sin 02)max = IWrI T2 (1 + w~T1T2Y

112 (when ~.w = (1 + w~T1 T2)

112 /1’2) . (11.49)

If thegeneratorpower is suchthat

I~t’rI~ 1/~,/T~T2, (sin02)max =~/72/T1. (11.50)

The transitionIi> —* 12> is realizedas a resultof absorptionof two quanta,when

W1 + W2 = We . (11.51)

Thenit follows that

(2t9((Ia>(aI9(~ll) ~

114’rI = ~. + —---——-— . (11.52)0 w

0 -- w2 + iF0 w0 — w1 + iF0

and ~ arerespectivelythe Hamiltoniansof theinteractions’ofthe first andsecondelectro-magneticgeneratorswith impurity I, andF0 is the width of level a.

If the transitionI1>-÷12> is a resultof absorptionof a quantumw1 andcreationof a quantumw2 (w8 = w1 — w2), then

(lI9t~_a>(aI9~~I2> (2I~’~Ia>(aI~~_II>

IWrI= ~ —~—---——+ —~ . . (11.53)& w

0 + + iF0 w0 — w1 + iF0

Also in this case

sin &~/sin13 = (w1 — Wg)IWi . (11.54)

& is the angle betweenn0 and k1 f3 the angle between n0 andk2

Wg +-~(w1 +w )1 (11.55)L

2(W1 — w8)

2Wg g

1W —WT

—tan~, &sinh(~~_~ sin13). (11.56)\ W

1 /

If the GR is excitedby a systemwith an equidistantspectrumandan effectivespinR> ~

+ 1)2 çsin2o2 tanh2(~‘~). (11.57)

WhenR = ~, (11.47)is obtained.For the caseof GR generationusingLandaulevels

sin202 = ~ T22z~w) (1 + (T2 ~w)

2 + (~!~)2 ) -2 , p0 = (411ce/H~)

1I2 . (11.58)

e is the electronchargeandH~is the Z componentof theconstantexternalmagneticfield. Thematrix elementsof the quadrupolemomentbetweenthestateswhoseLandauquantumnumbersn, differ by 1, are

Page 69: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandSR. Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsof astrophysicalinterest 119

+ 1)(n1 + 1+ 1)}h/2 (11.59)eH~

where1 is the orbital quantum number and E the intensityof the alternatingelectric field.The Brans—Dicketheory [131 predictsthat the pulsationsof the massdensityshouldleadto

generationof scalargravitationalwaves.For a systemof N particlespulsatingcoherentlywith fre-quencyWg,

4k1 xIAI2w~ A~N2

‘coh(Wg) = 9 1 +6x 4S sin 02 tanh2(wg/2kBfl (11.60)

kg=ki +k2 k2 k1(1 +4x)/(1 +6x) (11.61)

A = (11 fdv’r’2ipg12> . (11.62)

k2 is the gravitationalconstantwith allowancefor the scalarfield. kcanbe either> 0 or <0, orIkI —~ I (Sexl [72], Dicke andGoldenberg[34]). The oscillationsof thequantityA can alsobeexcitedby lasersthroughoscillationsof the chargedensityof the electroncloud,of the nuclei inthemolecule,or of the nucleonsin the nucleus.

NagibarovandKopvillem discussalso methodsof detectingraysof coherentGR.

11.5. Lattice vibrations in solids

The quantizedmodelof a simplecubic latticeservesto studythegravitationalradiation resultingfrom lattice vibrations.The interactionof electromagneticradiation with solid provesthe existenceof optical transitionsandthe Brillouin effect. In bothcasesan extendedcrystalcontributesco-herentlyto theemission.The gravitationalanalogof theseprocesseswerenot consideredin theworksof Mironowsky [54] andWeber [82]. Mironowsky apparentlydid not takeinto accountthe conservation of crystal momentum, which applies even to a continuum as the limiting case ofa crystallattice,andhis resulthasto be modified.

HalpernandDesbrandes[35] have considered a simplemodelof a crystallatticeandinvestigatedits gravitationalradiation.The lattice is quantizedbut thegravitationalTield remainsclassical.Thework is closelypatternedon thatof HalpernandLaurent [36]. The emitting bodieshaveextensionsthat arelargecomparedwith the wavelengthandhencethe multipole approximationcannotbe ap-plied. The gravitationalradiationemittedby the quantumtransitionsof solidshasbeenconsideredby Halpernin thesemiclassical,linearapproximationand the procedureusedis analogousto thatof the transitionsof microscopicsystemsdiscussedby HalpernandLaurent [36].

The linearizedtheoryrelatesthe classicalgravitationalfield G°12to theenergymomentum

densityof matter T&12(x) as;

= l6irGT°12

where

G&12\/T~g&12, gdet(g012). (11.63)

Page 70: Gravitations in Minkowski space-time interactions and results of astrophysical interest

120 G. Papini and SR.Valluri, Gravitons in Minkowski space—time. Interactionsand resultsof astrophysicalinterest

Whenr = Ix -- x’l ~ A, the wavelengthof the GR, as well as the extensionof the source,thenterms of higher powers in 1 /r can be neglected and the following result is obtained,

x’ x’

G°12(x)= 77012 + 2Gf 12 T~°00(x’)d

3x’. (11.64)

T~°denotesthevalue of T°°(x’)retardedwith respectto thepoint x’. Thereforethequadrupoleapproximationcanbe replacedby theretardedquadrupoleapproximation.

ThereareN atomsper periodocityinterval for the lattice.For the nth particlethe meandisplace-ment is

X~(=Rn+ü(n). (11.65)

Assumingcentralforces,

V(x1 N)~ ~ U&12(Rn_Rm)u

0(n)u12(m),

— — n,m (11.66)

U&12(Rm —R12)—F12(n),

whereF12 (n) is the iz componentof the forceactingon the nth particleas a resultof a unit dis-placementfrom equilibrium positionof the mth particlein theadirection.The equationof motionof thesystemis given by

mu’~(n)—�I~U&12(Rn—Rm)u12(m). (11.67)

The solutionsof (11.67)constitutelatticewaves.The angularfrequenciesof the normalmodesof the systemaregiven by

w(A) = w0 sin (air/A), w0 =

a is the latticeconstant,

U00’(cp/t)= —76006120 . (11.68)

pIt (p = 1, 2, 3) arethreemutually perpendicularvectorsparallelto an equalin lengthto eachoneof the edgesof an elementarycubeof the latticeandc = ±I. The gravitationalwavespropagateevenin the crystalwith a velocity almostequalto thatof light becausetheir interactionwithmatteris extremelyweak.

The Hamiltonian for thequantizedsystemcanbe expressedin termsof Hermitianoperatorsa~anda~as:

H = ~ w~(k) {a~(k) a~(k) + ~}(IkI = I~+ ~‘l = w + W = w”). (11.69)

A normalized state of n quanta(phonons)of polarizationA andmomentum~ as well asn’ phononsof polarization~.‘ andmomentum~‘ is representedby

(n! n’!Y112(a~(~)Y~(a~,(p)y1’I0>= In(A~)n’(A’P)>, (11.70)

whereI 0> is the stateof zerophonons.The contributiondue to the restmassesis m(~~x

0(n)x12(n)Ir)R 00 andthe matrixelement

Page 71: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. PapiniandSR.Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsof astrophysicalinterest 121

thenbecomes

u0(n)u12(n)((n — I) (A~)(n’— 1) (A’~’) ~ — n(A,~5)n’(A’~’)>. (11.71)

n r

x0(n) can be replaced by 110(n) in (11.71) because only the displacements i~contributeto (11.65)after the time derivatives are taken. Also hr can be replaced by R the constant distance betweenthe field point and the centre of the crystal. Therefore (11 .71) becomes

(nn’)112 (w(~)w’(p’))1/2~ ~ exp{i(~+~’)~Rn — i(w + w’)t}. (11.72)

The crystal momentum is conserved for the factor exp ~i(~ + fl’) . R} compensates the retardationeffect.The wholecrystal cancontributeto the emission.The flux densityin theneighborhoodofthe Z axis is

t3( ) G(w+w’)6nn’ 2GEE’w2 (11 73)0 32irR2w’2 irR2

with E = nw, E’ = n’w’ n’w.The total rate of radiation emitted is

R21i2t~ GEE’ w/L Gpp’wq2L (11.74)

where p = E/ V is the energy density and V = qL whereL is the lengthof the crystal in Z direction.i/i is the solid angle and is s4ir. w”L. The aboveresultsarevalid in the harmonicapproximation.

12. Resultsof astrophysicalinterest

In this sectionarecollectedthoseresultswhicharemoreinterestingfrom the astrophysicalpoint of view. They aremainly classifiedaccordingto the particularastrophysicalobject to whichtheyrefer. It might be worth mentioningthatthe resultsobtainedby PapiniandValluri [64—66]areobtainedfrom applicationof the resultsobtainedin section9.3.

a) TheSunThe emissionpowerof gravitonsby photoproductionfrom the Sun in the infraredregionhas

beencalculated(PapiniandValluri [64—67]) to be 5 X 1012 erg/seccorrespondingto a flux at theEarthof 1.7 X 10—2 gravitons/cm2sec.Sucha valueis subjectto variation dependingon the dataavailablefor the sizesof the chromosphere,the coronaandthe magneticfield. Thisresultdoesnotdiffer very muchfrom the values6 X 1014 erg/sec and 5 X 1015 erg/secgiven by WeinbergandCarmelias indicatedby eqs.(5.42)and(5.50)respectively.Bremsstrahlungandphotoproductionin the sunthereforeconstitutethestrongestsourceof GR in our planetarysystem.Classicalquadrupoleradiationfor theJupiterSunsystemfollows in intensitywith 7.6 X 1011 erg/secin anentirelydifferent frequencyrange.Quite in general,thermalcollisionsmayprovidethe mostim-portantsourceof gravitationalradiationin theuniverse.

b) QuasarsEstimatesfor emissionpowerfrom bremsstrahlungarenot yet availableandmight be difficult

Page 72: Gravitations in Minkowski space-time interactions and results of astrophysical interest

122 G. Papini and SR. Valluri, Gravitons in Minkowski space—time. Interactions and results of astrophysical interest

to make since quasars are still not well understood objects. Estimates for photoproduction by3C273 in particular have been given by Papini and Valluri [67] for various regions of the spectrum.They depend on presently available data for the quasar’s magnetic field and suffer from the sameuncertainties.Again emissionpeaksat infraredfrequencieswith an upperlimit of 5 x 1032 erg/sec.The corresponding flux at Earth, assuming the distance of 3C273 to be 500 Mpc, is --3 X 10—26

erg/cm2sec, indeed negligible, and much smaller than the fluxes of —. 1012 erg/cm2 sec due tobroad band bursts produced by large explosions in quasar and galactic nuclei as conjectured byPressand Thorne [691. A considerable amount of GR, perhaps — 1 028 erg/sec,could alsobeemitted by photoproduction in the gravitational field of a quasar (Boccaletti et al. [10]). Thisfigure is considerably higher than the gravitational luminosity, 1025 erg/sec, of iO~supernovae(Vladimirov [791). 3C273 in the above optical range would emit at the rate of—5.5 X l0~~erg/sec(Papini and Valluri [671). Since there may be one quasar every 100 galaxies, the quasar contribu-tion to the overall graviton density in the universe may be non negligible.

c) Seyfertgalaxiesand galacticcentrePhotoproduction in the infrared can account for up to — 3 X 1025 erg/secfor NGC1068 and

—8 x 1022 erg/secfor the galactic centre (Papini and Valluri [67]). The correspondingfluxesatEarth amountto —2 X 10— 27 erg/cm2secand—2 X lO_27 erg/cm2 secrespectively,againsmallerthan the outburstspredictedby PressandThorne[69]. Over long periodsof time their contribu-tion to the graviton background in the universe may be sizeable. Much higher is the estimate1038 erg/sec given by Mironovskii [53,54] for gravitational luminosity of a galaxy due to the motionof its double stars. The gravitons in this case have extremely low frequencies. Graviton photo-production in static external gravitational fields cannot explain the red shift of light as a “tiredlight” phenomenon. As shown in section 9.1, the results of Boccaletti et al. [8] indicate that evenif the external gravitational field is that of a galaxy the cross section for the process is only10_i cm2 and the energy loss of a photon is only _~l0_50 eV.

d) Pulsars and neutron starsUnlike the classical problem that admits radiation only if the axis of the magnetic dipole moment

of the star and its rotation axis are at’an angle, in the quantum problem there can be emission ofGRalsowith completealignment.Estimatesfor NP0532havebeengivenby PapiniandValluri[65], for photo-production in the magnetosphere of the star, in different frequency ranges. Theyfind P P—’ 3.6 X 1020 erg/secfor radio frequencies,P — 3 X 10~’erg/sec in the optical rangeand4.1 X 1025 erg/sec in the infrared region and estimates for X-ray and 7-ray regionsare6.2x 10~erg/secand4.1 X l0~’erg/secrespectively.

Shortlyafter birth pulsarspossessexternalelectricfieldswhich are thengraduallyneutralizedby the nearplasmacharge separation (Pacini [61]). For hot neutron stars the surface luminositycanbe —. 1038 erg/sec(TsurutaandCameron[751) andis peakedin the soft X-ray region. Byassuming an electric field at the surface 1012 V/cm, one obtains

P— 2.8 X 1021 erg/sec.

Magneticfields of intensityupto 1015 gausscanexistwithin neutronstars(Vandakurov[781).The poweremittedby a pulsarwith L~ 1038 erg/secisP— 6.2 X l0~~erg/secandpossiblyhighervaluessoonafter birth andthe radiationis peakedin the soft X-ray range.The power emittedvia

Page 73: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand SR.Valluri, Gravitonsin Minkowskispace—time.Interactionsandresultsof astrophysicalinterest i 23

photoproductioncanthereforeexceedthe quadrupolecontributionfor pulsarsof ellipticity< l0~. It is interesting to speculate that photons produced in the interior of the star in thepresence of strong magnetic fields may also be converted into gravitons that could then escapeand therefore play a role in the cooling of the star. It also appears that the gravitational luminosityof a neutron star can be larger than both gravitational (1015 erg/sec) and electromagnetic(1 O~erg/sec)luminositiesof our sun.Comparablein efficiency with photoproductionis gravita-tional bremsstrahlungin neutron-neutronscattering.Boccalettiestimatesinfact P — 1027 erg/secat frequencies1022 Hz for acanonicalneutronstaras indicatedin eq. (5.56). Oneshouldthere-fore expectthepresencein theuniverseof abackgroundof GR distributedover the completespectrum and due to the overall population of neutron stars. It is difficult at this stage to gain aperspective on the general graviton density in the universe. Attempts to estimate it have been madeby Boccaletti et al. [10] taking into account various processes that can both produce and annihilategravitons. For an universe with an age of 1018 sectheyfind that the situation is far from equilibriumand that the gravitons are still accumulating. They conclude that the mean density of gravitons inthe universe may be 10—19 erg/cm3,smallerthereforethanthe cosmologicalbackgroundofelectromagnetic radiation (_~l0_14 erg/cm3). This conclusion may however be premature not onlybecauseinformationas to thenumber,distributionandefficiencyof strongsourcesin theuniverseis still missing, but also because the efficiency of the quantumlinear processesso far studiedcanindeedbe atleast as high as thatof the classicalones.Bremsstrahlungandphotoproductioninparticularmaysignificantly increasethe estimatesgiven in the literature.

References

[1] A. Ashtekar and R. Geroch, Rep. Progr. Phys. 37(1974)1211.[2] R.D. Amado, Phys. Rev. 132 (1963)485.

[3] B.M. Barker, MS. Bhatia and SN. Gupta, Phys.Rev. 182 (1969)1387.[4] B.M. Barker, RD. Haracz and S.N. Gupta, Phys.Rev. 149 (1966) 1027.[5] B.M. Barker, RD. Haracz and S.N. Gupta, Phys. Rev. 158 (1967) 1498.[6] B.M. Barker, RD. Haracz and S.N. Gupta, Phys. Rev. 162 (1967) 1750.[7] AM. Bincer, Phys.Rev. 118 (1960)855.[8] D. Boccaletti, V. Dc Dabbata, C.Gualdi and P. Fortini, N. Cim. A48 (1967)58.[9] D. Boccaletti, V. De Dabbata, C. Gualdi and P. Fortini, N. Cim. B60 (1969)320.

[101 D. Boccaletti, V. De Sabbata,C. Gualdi and P. Fortini, N. Cim. B54 (1968) 134.[ill D. Boccaletti, V. De Sabbata,C. Gualdi and P. Fortini, N. Cim. BI 1 (1972) 289.[12] D. Boccaletti, Lett. N. Cim. 4 (1972)927.[13] C. Brans and RH. Dicke,Phys. Rev. 124 (1961)925.[14] R.A. Breuer, Gravitational Perturbation Theory and Synchrotron Radiation (Springer-Verlag, 1975).[15] M. Carmeli, Phys.Rev. 158 (1967) 1248.[161M. Davis, R. Ruffini, W.H. Pressand R.H. Price, Phys. Rev. Lett. 27 (1971) 1966.[17] 5. Deserand P. van Nieuwenhuizen,Phys. Rev. Lett. 32 (1974)245.[181 5. Deser and P. vanNieuwenhuizen,Phys. Rev. D10 (1974)401.[19] 5. Deserand P. van Nieuwenhuizen,Lett. N.Cim. 11(1974)218.[20] 5. Deserand P. van Nieuwenhuizen,Phys. Rev. D10 (1974)411.[21] B.S. DeWitt, Phys.Rev. 162 (1967)1239.[221 B.S.DeWitt, Phys.Reports 19C (1975)295.[23] S.D. Drell and H. Pagels,Phys. Rev. B140 (1965) 397.[24] I. Duck, Nuci. Phys.Bi (1967)96.[25] F.J. Dyson,Phys.Rev. 75 (1949)1736.[261 L. Fadeevand V. Popov,Phys.Lett. 25B (1967)29.

Page 74: Gravitations in Minkowski space-time interactions and results of astrophysical interest

124 G. Papini and SR.Valluri, Gravitons in Minkowski space—time. Interactions and results of astrophysical interest

[27] M. Fierz, Helv. Phys. Acta 12 (1939)3.[28] M. FierzandW. Pauli,Proc.Roy. Soc. 173 (1939) 211.[29] V.A. Fock andD. Ivanenko,Compt.Rend. 188 (1929) 1470.[301 G.M. GandelmanandV. Pinaev,Soy. Phys.JETP 10 (1960)764.[311 M.E. GertsenshteinandWI. Pustovoit,Soy.Phys.JETP 14 (1962)84.[32] D. Grossand R. Jackiw, Phys.Rev. 166 (1968) 1287.[33] SN. Gupta,Proc. Phys.Soc. 65A (1952) 161, 608.[34] H.M. GoldenbergandR.H. Dicke, Phys.Rev. Lett. 18 (1967) 313[35] L. HalpernandR. Desbrandes,Ann. Inst. Henri Poncaré11(1969)309.[36] L. HalpernandB. Laurent,N. Cim. 33(1964)728.[37] L. Halpern,N. Cim. 25 (1962)1239.[38] M.G. HareandG. Papini, Nucl. Phys.B34 (1971)200.[39] MG. HareandG. Papini, Phys.Rev. D4 (1971)684.[40] SW. Hawking,Phys.Rev. Lett. 26 (1971)1344.[41] S.W. Hawking,Comm.Math. Phys.43(1975)199.[42] D. Ivanenkoand A. Sokolov,Vestnik. MoscowStateUniv. 8 (1947) 103.[43] D. Ivanenkoand A. Sokolov, QuantumField Theory (1952)p. 678.[44] D. Ivanenko,TheoriesRelativ. Gravit. (Royamont,1959).[45] D. IvanenkoandA. Brodsky,Acad. Nauk.92 (1953)731.

[46] R. Jackiw, Phys. Rev. 168 (1968) 1623.[47] J.M. JauchandR. Rohrlich, The theory of PhotonsandElectrons(Cambridge,Mass.,1955) p. 330[481 l.Y. KobzarevandLB. Okun, Phys.JETPLett. 16 (1963)1343.[49] M.P. Korkina, Ukr. Fiz. Zh. 5 (1960) 762.[50] R. KarplusandM. Neumann,Phys.Rev. 80 (1950) 380.[51] L.D. Landau and EM. Lifshitz, The Classical Theory of Fields (Addison-Wesley, 1962)Sect. 66—71, 104.[52] S. Mandelstam,Ann. of Phys.19 (1962) 25.[53] V.N. Mironowskii, Soy.Astron.9 (1966) 752.[54] V.N. Mironowskii, Astron. Zh. 42 (1965) 977.[55] C.W. Misner, Phys. Rev. Lett. 28 (1972)996.[56] C.W. Misner, Bull. Am. Phys. Soc.17 (1972)472.[57] yR. Nagibarov and U.Kh. Kopvillem, Sov.Phys. JETP Lett. 5 (1967) 360.[58] V.R. N~gibarovandU.Kh. Kopvillem, Soy.Phys.JETP29 (1969)112.[59] yR. NagibarovandU.Kh. Kopvillem, Soy.Phys.JETPLett. 2 (1965)329.[601 V.R. NagibarovandU.Kh. Kopvillem, lzv. Vuzov. Fiz. 9 (1967)66.[61] F. Pacini,Riv. B. Cim. 2(1972)498.[62] I-I. Pagels,Phys.Rev. B144 (1966) 1250, 1261, 1268.[63] A. PapapetrouandE. Corinaldesi,Proc.Roy. Soc. A209 (1951) 248, 259.[64] G. PapiniandSR.Valluri, Can. J. Phys.53(1975)2306.[65] G. PapiniandSR.Valluri, Can. J. Phys.53 (1975)2312.[66] G. PapiniandSR.Valluri, Can. J. Phys.53 (1975)2315.[67] G. Papini and SR. Valluri, Can. J. Phys.54 (1976) 76.[681 R.G. Parson, Phys. Rev. 168 (1968)1562.[691W.H. PressandKS. Thorne, Ann. Rev. Astron.Astroph. 10 (1972)344.[70] L. Rosenfeld,Ann. of Phys.5 (1930) 113.[71] L.I. Schiff, QuantumMechanics(N.Y., 1949)p. 289.[72] R.U. SexI, Phys.Lett. 20 (1966) 376.[73] L. Spitzer Jr.; Physicsof Fully Ionized Gases(IntersciencePublishers, 1956) Chap. 5.[741G. ‘t 1-looft andM. Veltman,Ann. Inst. HerniPoincaré20A (1974)69.[75] S. TsurutaandA.G.W. Cameron,Can. J. Phys.44 (1966) 1863.[76] W.G. Unruh,Phys.Rev.Di0 (1974) 3194.[77] P. Van Nieuwenhuizen,M. GrossmannMeeting,ICTP, Trieste(1975).[78] Y.N. Vandakurov,Ap. Lett. 5 (1970) 267.

[791Y.S. Vladimirov, Soy. Phys.JETP 18 (1964) 176.[80] Y.S. Vladimirov, Soy. Phys.JETP 16 (1963) 65.[81] J.C. Ward, Phys.Rev. 77,78 (1950) L293, L182.[82] J. Weber,Relativity, GroupsandTopology, eds.C. DeWittand B.S. DeWitt (N.Y., 1964).[83] J. WeberandH. 1-linds, Phys.Rev. 128 (1962)2414.

Page 75: Gravitations in Minkowski space-time interactions and results of astrophysical interest

G. Papiniand S.R. Valluri, Gravitons in Minkowski space—time.Interactions andresuIts of astrophysicalinterest 125

[84] J. Weber, General Relatively and Gravitational Waves(London, 1961).[85] S. Weinberg, Phys. Rev. B133 (1964) 1318.[861 S. Weinberg,Phys.Rev. B134 (1964)882.[871 S. Weinberg,BrandeisLectures(1964)409—48.[881 S. Weinberg, Phys.Rev. B140 (1965)516.[89] J.A.Wheeler,Relativity SpaceTimeandGeometrodynamics(Princeton,1961).[90] J.A.Wheeler andD. Brill, Rev.Mod. Phys.29 (1957)465.[91] J.A. Wheeler and D. Brill, Rendiconti Scuola,Varenna, Corso No. 12 (1960).[92] DR. Yennie, H. SuuraandS.C. Frautschi,Ann. of Phys.13(1961)379.[93] F.J. Zerilli, Phys. Rev. D2 (1970) 2141.[94] R.H. Dicke, Phys.Rev. 93 (1954)99.