gpc-ir to charaterize polymer mixtures--akron workshop

86
GPC-IR to Characterize Copolymer Compositions and to Deformulate Complex Polymer Mixtures Ming Zhou, PhD Director of Applications Engineering Spectra Analysis Instruments, Inc. Marlborough, MA Contact: [email protected] Tel. 508-281-6276 1 Advanced Polymer Characterization Akron Workshop -- 7/17/2012

Upload: mzhou45

Post on 11-Jan-2015

893 views

Category:

Documents


2 download

DESCRIPTION

GPC-IR technology to deformulate complex polymer systems and to characterize copolymer compositional variations

TRANSCRIPT

Page 1: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR to Characterize Copolymer Compositions and

to Deformulate Complex Polymer Mixtures

Ming Zhou, PhD

Director of Applications Engineering

Spectra Analysis Instruments, Inc.

Marlborough, MA

Contact: [email protected]

Tel. 508-281-6276 1

Advanced Polymer Characterization Akron Workshop -- 7/17/2012

Page 2: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

OUTLINE

Introduction: GPC-IR Technology & DiscovIR-LC System

GPC-IR Applications: Case Studies

Deformulate Complex Polymer Mixtures:

Adhesive, Lubricant Additives, Conductive Ink

Characterize Copolymer Composition Variations across MWD:

SBR, PVP/VAc, PMMA/BA/MAA/S/DAAM

Polymer Degradation Analysis: HPMCAS, PEA/MAA

2

Page 3: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Hyphenated Technologies & Major Applications

Liquid ChromatographyLiquid Chromatography

MassSpectroscopy

Infra RedSpectroscopy

Infra RedSpectroscopy

Separation

Applications Small Molecules Copolymer Compositions

Proteins Polymer Mixtures

Additive Analysis

LC = GPC / SEC or HPLC

Detection &

Data Analysis

LC-MS LC-IR

Page 4: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR Hyphenated System: Principle and Information Output

Infrared Spectroscopy for Compositional Information

GPC for the Separation of the Polymers by MW or Size

Page 5: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Principle of a GPC-IR Hyphenated System

•Chromatography eluant is nebulized and stripped of mobile phase in the Hyphen•Analytes deposited as a track on a rotating ZeSn disk.•Track passes through IR energy beam of built-in interferometer.•A time-ordered set of IR spectra are captured as a data file set.

GPC

DiscovIR-LC

Page 6: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

LC-IR Hyphenated System

HPLCor GPC

HyphenDesolvation

DepositionMicroscopic FTIR

System ControlData Processing

Page 7: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Schematic View of LC-IR System

GPC orHPLC

Page 8: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Hyphen: A Proprietary Desolvation Technology

CycloneEvaporator

Thermal

NebulizationFrom LC

N2 Addition

ChilledCondenser

Waste Solvent

Particle Stream to DiscovIR

Air CooledCondenser

Cyclone

Evaporator

Patent pending: PCT/US2007/025207

Page 9: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Desolvation Stage #1:The Thermal Nebulization

•The thin-wall stainless steel capillary tube nebulizer is regulated to evaporate approximately half the solvent (electric heating).

•Solvent expansion upon conversion to vapor increases the nebulizer back pressure and create a high-speed jet of micrometer-sized liquid droplets that contain all the solute.

•Gradients are acceptable as it is a self regulating system (gradient changes monitored by changes in electrical resistance).

Page 10: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Desolvation Stage #2:Inside the Cyclone Evaporator

•Centrifugal force holds the droplets (solute) near the cyclone wall. Just before the droplet goes to dryness, its volume to surface ratio becomes small enough that it is dragged out of the cavity by the exiting solvent vapor.

•Evaporative cooling protects the solute from both evaporation and degradation by limiting the maximum solute temperature to the solvent boiling point. The solvent boiling point is reduced by operating the cyclone in a vacuum.

Page 11: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

At the Condensers

• After ejection from the cyclone, solvent vapor is removed by diffusion to, and condensation on, the cooled condenser walls.

• Stokes drag from the nitrogen gas maintains the dried droplets in an aerosol suspension and limits their loss by diffusion to the condenser walls.

• The condenser consists of an air cooled stage followed by a Peltier cooled stage.

• The condensed solvent is collected in a waste bottle.

Series of Condensers

Page 12: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

ZnSe Sample Disk

Rotate at tunable speed

10-0.3 mm/min Unattended overnight runs/10h The yellow ZnSe disk is under

vacuum without moisture or CO2 interference

Disk Temp: - 50C ~ 100C Transmission IR analysis is

done on the solid deposit. Re-usable after solvent

cleaning Mid-IR transparent

12

Page 13: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

What is Direct Deposition FTIR?

Continuous Polymer Tracks (GPC-IR)Separated Dots from HPLC-IRSeparated Dot Depositing on Disk

Page 14: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Direct Deposition IR in Action

14

Page 15: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Features of DiscovIR-LC System

Real-Time On-line Detection

Microgram Sensitivity

All GPC/SEC Solvents: e.g. THF, TCB, HFIP, Chloroform, DMF

All HPLC Solvents, Gradients & Volatile Buffers

e.g. Water, ACN, Methanol, THF, DMSO …

High Quality Solid Phase Transmission IR Spectra

Fully Automated Operation: No More Manual Fractionation

Multi-Sample Processing: 10 Hr ZnSe Disk Time

Page 16: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR: Direct Deposition & Data Processing

ZnSe Disk

16

Page 18: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

OUTLINE

Introduction: GPC-IR Technology & DiscovIR-LC System

GPC-IR Applications: Case Studies

Deformulate Complex Polymer Mixtures:

Adhesive, Lubricant Additives, Conductive Ink

Characterize Copolymer Composition Variations across MWD:

SBR, PVP/VAc, PMMA/BA/MAA/S/DAAM

Polymer Degradation Analysis: HPMCAS, PEA/MAA

18

Page 19: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Characterizing Polymer Mixtures byGPC (Size) or IR (Composition)

0

.01

.02

.03

.04

2 4 6 8 10 12 14

GPC: Chromatographic Separation of Components

• Provides size distribution (MWD).• No identification of

polymers additives

IR: Fingerprinting of Chemical Compositions

• Unambiguous identification only practical for single species.• Compounded IR spectra for mixtures.

0

.05

.1

.15

.2

4000 3500 3000 2500 2000 1500 1000

GPC only: 2 or 3 peaks ? IR only: Compounded spectra

A

B?

C

Page 20: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Competitive study of an adhesive: for cost & margin comparison for technical evaluation

Case #1: Deformulate an Adhesive Polymer Mixture: GPC-IR 3D View

8

9

10

11

12

13

14

0

.01

.02

.03

.04

.05

4000 3500 3000 2500 2000 1500 1000

abso

rban

ce

1724

C=O

IR Wavenumber, cm-1

GPC ElutionTime, min

2929

Page 21: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR Deformulationof the Adhesive Polymer Mixture

ACB?

Max (Band) Chromatogram at 2929 cm-1

Selected Band Chromatogram at 1724 cm-1

A

B

Page 22: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

IR Database Search to Identify Peak A at 10 Min. as EVA Polymer

-CH2

2929

C=O1724

A

Page 23: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR to Identify Components C & B by Spectral Subtraction

Component C Paraffin

Component BGlycerol Rosin Ester

Page 24: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

A

C

B

CA

B

GPC Confirmation of the Identified Components with Known Stds A, B & C

Page 25: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Case #2: Deformulate Lubricant Additives in SAE 15W-40 Motor Oil

8

9

10

11

12

0

.05

.1

.15

4000 3500 3000 2500 2000 1500 1000

Identification of additives like stabilizers, viscosity modifiers, etc. Stability: ageing & failure analysis

Wavenumber, cm-1

GPC Elution Time(Min. & MW)

Additive X

Additive Y

Low MW mineral oil (~85%) diverted after 12.2 min

Page 26: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Deformulation of Motor OilAdditive X at RT 9.2 Minutes

IR database search: Styrene-Acrylate Copolymer

4000 3500 3000 2500 2000 1500 1000

wavenumber, cm-1

Shell Rotella T Heavy Duty 15W-409.2 minute eluant

Page 27: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Deformulation of Motor Oil Additive Y at RT 12 Minutes

IR database search: Polyisobutenyl Succinimide (PIBS)

4000 3500 3000 2500 2000 1500 1000

wavenumber, cm-1

Shell Rotella T Heavy Duty 15W-4012 minute eluant

Page 28: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Additive Deformulation in Motor Oil Lubricant by GPC-IR

• De-formulated polymeric additives X & Y in motor oil lubricant

• Additive X at retention time 9.2 minutes Narrow MW distribution ~ average 600K (GPC) Styrene-Acrylate copolymer (IR database search) Viscosity Index improver No Comonomer Compositional Drift Stable [700cm-1/1735cm-1] Band Ratio

• Additive Y at retention time 10-12 minutes Broad MW range: 8-30K (GPC) Polyisobutenyl Succinimide (PIBS) (IR database search) Dispersant for metal particles Small Comonomer Compositional Drift [dimethyl (1367 cm-1) / imide (1700 cm-1)] Ratio Change < 10%

• Polymer degradation study Analyze polymer breakdown or cross-linking by GPC Detect oxidized intermediates by IR Oil change schedule

Page 29: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Case #3: Deformulate a Flexible Conductive Ink by GPC-IR

Silver ink paste filled with Ag particles (~80% Wt)

• Designed to screen print flexible circuitry

such as membrane switches

• Extremely flexible after curing at 150°C for 30 minutes

• Very conductive even under 20x folding / crease stress tests (ASTM F1683). 5 times better than the next competitor

• Understand the unique formulation technology

• Deformulate the complex polymer system

Page 30: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Deformulating the Conductive Ink GPC-IR Chromatogram

Column: 2 x Jordigel DVB Mixed BedMobile Phase: THF at 1.0 ml/minSample Conc.:~5 mg/ml in THFInjection Volume: 60 μl IR Detector Res.: 8 cm-1

ZnSe Disk Temp.: -10°C

Cyclone Temp.: 130°C

Condenser Temp.: 15°CDisk Speed: 12 mm/min

Page 31: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Stacked IR Spectra of Components A, B, C at their MWD Apexes

NH

Page 32: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Commercial IR Database Search for Polymer A (Red): Polyester

Index % Match Compound Name Library

434 96.63 Amoco Resin PE-350 Polyester Coatings Technology (Thermo)

450 95.96 Dynapol LH-812 Polyester Coatings Technology (Thermo)

467 95.65 Vitel VPE-222F Polyester Coatings Technology (Thermo)

443 95.06 Dynapol L-411 Coatings Technology (Thermo)

466 94.45 Vitel PE-200 Coatings Technology (Thermo)

Page 33: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Commercial IR Database Search for Polymer B (Blue): Polyurethane

Index % Match Compound Name

503 88.13 Spensol L-53 UROTUF L-53 Polyurethane 949 87.51 Polyester Polyol 0305424 87.33 Polycaprolactone944 87.29 Polyester Polyol 0200212 86.86 UCAR Cyracure UVR-6351

NH

OH

Page 34: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Commercial IR Database Search for Component C (Red): Cross-linker

Index % Match Compound Name834 92.47 Desmodur LS-2800, CAS# 93919-05-2, MW 766, Cross-linking Agent3249 65.30 Caffeine; 1,3,7-Trimethylxanthine9302 64.76 Monophenylbutazone615 62.15 Betulinic acid; 3-Hydroxylup-20(29)-en-28-oic acid860 62.05 Spenlite M-27

N

N

N

(CH2)6(H2C)6

O

OO

(CH2)6

HN

NH

HN O

N

O

N

O

N

O

O

O

Page 35: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Reverse-Engineering the Conductive Ink by GPC-IR Deformulation

N

N

N

(CH2)6(H2C)6

O

OO

(CH2)6

HN

NH

HN O

N

O

N

O

N

O

O

O

• C: Desmodur LS-2800• Ketoxime blocked HDI trimer• Latent cross-linking agent

N

N

N

(CH2)6(H2C)6

O

OO

(CH2)6

N

NN C OCO

C

O

N

H

C O

N

H

C O

O

O

N

O

O

H

• De-blocked C cross-linking with Polymer B Chains• Interpenetrating with Polymer A• Lock Ag fillers in place to form conductive circuitry• Super flexibility & elasticity• Superior end-use properties

Curing (150oC / 30 min)

C

B

A

Page 36: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Summary: GPC-IR to Deformulate Complex Polymer Mixtures

• GPC-IR is well adapted for the de-formulation of complex polymer systems

Separation of all the components of a mixture (polymer and small molecules)

Detection of each component by IR (solid phase transmission)

Identification by IR database search (commercial & proprietary databases)

• Useful:

For competitive analysis / IP protection

To find specific raw material supplier

For problem solving / trouble shooting / contamination analysis

• Applicable to coatings, adhesives, inks, sealants, elastomers,

plastics, rubbers, composites, biopolymers …

Page 37: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

OUTLINE

Introduction: GPC-IR Technology & DiscovIR-LC System

GPC-IR Applications: Case Studies

Deformulate Complex Polymer Mixtures:

Adhesive, Lubricant Additives, Conductive Ink

Characterize Copolymer Composition Variations across MWD:

SBR, PVP/VAc, PMMA/BA/MAA/S/DAAM

Polymer Degradation Analysis: HPMCAS, PEA/MAA

37

Page 38: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Copolymers: Poly(A-B), Poly(A-B-C),…

Copolymers provide enhanced characteristics of individual

comonomer constituents.

In copolymers, important properties depend not only on MWD,

but also on the chemical composition distribution.

Compositional drift refers to small variations of the

concentration of the comonomers across MWD.

Copolymer product properties can be controlled/optimized by

controlling composition drift characteristics.

Page 39: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR to Characterize Compositional Variations of Copolymers Poly(A-B)

39

high MW low MW

mola

r m

ass

comonomer A

comonomer B

A/B compositionratio

polymer chains

Ab

sorb

ance

AB

GPC Time

IR Spectra

Page 40: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Case #4: GPC-IR to Characterize Composition Drifts of SBR Copolymers

SBS Block

Random

Monomers: S & B

Page 41: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR Spectrum Snapshot of Styrene/Butadiene Copolymer

The green filled band (968 cm-1) is generated by the butadiene comonomer.

There is no significant overlap of any of these bands by the other comonomer species.

Cove thisThe three bands filled in red arise from the styrene comonomer (1605, 1495, and 698 cm-1)

1605

1495

698

968

Page 42: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR Analysis of SBRIR Spectra at Different Elution Times

Compositional analysis of SBR based on characteristic IR absorbance bands for styrene (1495 cm-1) and butadiene (968 cm-1).

1495

968

B

S

Page 43: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Compositional Drifts across MWD for Styrene/Butadiene Copolymer

Compositional Changes with GPC Elution Time (MWD) for Comonomers Styrene (1495cm-1), Butadiene (968 cm-1) and their Ratios Styrene/Butadiene (1495cm-1 /968 cm-1)

Bulk Average – 10% Styrene

B

S

S/B Ratio

Page 44: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Compositional Drifts across MWD for Styrene/Butadiene Copolymer

Compositional Changes with GPC Elution Time (MWD) for Comonomers Styrene (1495cm-1), Butadiene (968 cm-1) and their Ratios Styrene/Butadiene (1495cm-1 /968 cm-1)

Bulk Average – 44% StyreneB

S

S/B Ratio

Page 45: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Compositional Variations for Various SBS Copolymers (Bimodal)

Dotted Curves:MWD

Solid Curves:S/B Ratios

Page 46: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR Spectrum of Copovidone Excipient - PVP/VAc Copolymer

Peak 1680 cm-1 from VP comonomer

Peak 1740 cm-1 from VAc comonomer

Page 47: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

0

.1

.2

.3

.4

.5

.6

106 104 103 102105Molecular Weight

Copovidone: sample A

30

35

40

45

50 % acetate com

onomer

Comonomer CompositionDistribution

sample B

sample C

0

.1

.2

.3

.4

.5

.6

106 104 103 102105

sample B

sample C

Bulk 40% VAc for All

ma

x. I

R

ab

sorb

an

ce Molecular WeightDistribution

Copovidone PVP/VAc Compositional Drifts from Different Manf. Processes

Copovidone A gave clear tablets while Copovidone C led to cloudy ones.

Page 48: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Case #5: GPC-IR to Characterize Compositions of MMA Copolymers

CH3

CH3

2

=O

C

Co-Monomers: S MAA BA MMA DAAM

17347041605

15361700

1366right peakof doublet

Sample S MAA BA MMA DAAM Ratios

A 5% 12.5% 10% 60% 12.5% A/E, S/EDAAM / E

B 15% 10% 75% Acid/Ester

C 25% 15% 10% 50% A/E, S/E

D (50:50 B/C Mix) 12.5% 15% 10% 62.5%

Acid/EsterS/Ester

1734

Peak Ratios: 704/1734 1700/1734 Total Ester 1734 Base 1536/1734, 1366/1734 E = Total (MMA+BA) 1536/1366 (Ratio Check)

Page 49: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

IR Spectrum Comparison (1800-1300cm-1) of All 4 Samples at 23.2 Min. (~MWD Center)

normalized to carbonyl peak height: Ester (Total MMA + BA)1734

DAAM1366

DAAM1536

Sample A: BlackSample B: BlueSample C: VioletSample D: Green

COOH1700

Styrene 1605

Page 50: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Styrene/Ester Ratios across MWD by IR Peak Ratios for MMA/BA/MAA Copolymer

704/1734 Peak Height Ratio, No Styrene

IR Spectrum at Red Marker

IR Spectrum at Blue Marker

Sample B

Page 51: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Styrene/Ester Ratios across MWD by IR Peak Ratios for MMA/BA/MAA/S Copolymer

704/1734 Peak Height Ratio

IR Spectrum at Red Marker

IR Spectrum at Blue Marker

Sample C

Page 52: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Styrene/Ester Ratios across MWD by IR Peak Ratios for Sample D = 50%B+50%C

704/1734 Peak Height Ratio

IR Spectrum at Red Marker

IR Spectrum at Blue Marker

Sample D

Page 53: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Sample B

MMA/BA/MAA

Terpolymer

Sample C

MMA/BA/MAA/S

Tetrapolymer

Sample D

50%B + 50%C

GPC-IR Chromatogram Comparison (B & C MWD Mismatch) of Samples B, C & D

No Styrene

Styrene Level Variation across MWD

Stable Styrene Level

Page 54: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

54

Sample S MAA(Acid)

BA(Ester)

MMA(Ester)

DAAM RESULTSRatios across

MWD

A 5% 12.5% 10% 60% 12.5% Stable S/E RatioA/E Small Drift

DAAM/E Small Drift

B 15% 10% 75% S/Ester = 0Acid/Ester Drifting

DAAM/Ester =0

C 25% 15% 10% 50% Stable S/E RatioA/E Small DriftDAAM/Ester =0

D (50:50 B/C Mix) 12.5% 15% 10% 62.5%

S/Ester DriftingAcid/Ester Drifting

DAAM/Ester =0

Summary: Characterizing MMA Copolymers by GPC-IR

Page 55: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

OUTLINE

Introduction: GPC-IR Technology & DiscovIR-LC System

GPC-IR Applications: Case Studies

Deformulate Complex Polymer Mixtures:

Adhesive, Lubricant Additives, Conductive Ink

Characterize Copolymer Composition Variations across MWD:

SBR, PVP/VAc, PMMA/BA/MAA/S/DAAM

Polymer Degradation Analysis: HPMCAS, PEA/MAA

55

Page 56: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

56

Excipient Degradation from Hot Melt Extrusion (HME) Process

Hot Melt Extrusion Process: To Make Solid Dispersions

for Low Solubility Drugs to Improve Bioavailability

Degradation Issues• Excipient & API Degradation at High Temp. (100-200C)• Discoloration / Residues• Degradant / API Interactions

Process Variables• Temperature• Time (Screw Speed)• Torque• Screw / Die Designs

Page 57: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Case #6: GPC-IR to Analyze HPMCAS Degradation from HME Processing

Unprocessed

Processed at 160C

Processed at 220C

Degradant ?

Polymer Change ?

Page 58: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Degradant ID from HPMCAS (220C) in Hot Melt Extrusion Process

IR Database Search Result: Succinic Acid

Page 59: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

HPMCAS Polymer Degradationin Hot Melt Extrusion Process

Functional Group Ratio Changes from High Temp Process (Sample C)

OH

-C=O

Page 60: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Matrix Study: HPMCAS Excipient Stability & Degradation from HME

60

Sample # ExtrusionTemp.

SampleColor

Sample in THF(~0.5%)

DegradantFormed ?

PolymerChange?

Ref. Not Processed

WhitePowder

ClearSolution

None None

A 180 C YellowishPowder

ClearSolution

B 200 C YellowishPowder

Some Residue

? ?

C 220 C BrownishPowder

Some Residue

? ?

Page 61: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Degradant Level Comparison of HPMCAS Samples after HME

Normalized to Additive Level

Additive at 14.1 Min.

Degradant at 14.6 Min.

Sample C: Violet (220C)Sample B: Brown (200C)Sample A: Aqua (180C)Sample R: Blue (Ref.)

Band Chromatograms at 1670 cm-1

Page 62: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Degradant Level Increases with Higher HME Processing Temp.

Ref. A B CSamples:

~190oC

Page 63: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

HPMCAS Matrix Study Summary: Degradation & Stability from HME

63

Sample # ExtrusionTemp.

SampleColor

Sample in THF(~0.5%)

DegradantFormed

PolymerChange

Ref. Not Processed

WhitePowder

ClearSolution

None None

A 180 C YellowishPowder

ClearSolution

Little Succinic

Acid

None

B 200 C YellowishPowder

Some Residue

Succinic Acid

C 220 C BrownishPowder

Some Residue

Succinic Accid

HigherOH/C=O

Ratio

Page 64: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR Analysis of HPMCAS Degradation in HME Process

Detected Degradants: Succinic Acid & Derivatives Detected Functionality Change: Ratio Hydroxyl Vs. Carbonyl Help Understand Polymer Degradation Mechanism Study Excipient / Drug API Interactions Define Safe Process Window: Quality by Design (QbD) Polymer Blends with Plasticizers and Additives

Figures: Schematic Structures of HPMC-AS Polymeric Excipient

CH3-C=O

HOOC-CH2-CH2-C=O

Page 65: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Case #7: GPC-IR to Analyze PEA/MAA Degradation from HME Process

65

Sample # ExtrusionTemp.

Screw Speed

SampleColor

Sample in THF(~0.5%)

DegradantFormed

?

PolymerChanged

?

S0 Not Processed

White ClearSolution

S1 130 C 250 rpm Off White

ClearSolution

S2 160 C 250 rpm OffWhite

ClearSolution

S3 190 C 250 rpm Brownish Some Residue

? ?

Note: Samples S1-S3 contain 20% plasticizer TEC to assist extrusion process.

Page 66: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

IR Spectra of PEA/MAA Samples at Polymer MWD Apex (ET ~9.4 Min.)

66

S0 – Green RefS1 – Violet 130CS2 – Blue 160CS3 – Black 190C

COOEt 1735

COOH 1705

CO-OH

NCE?1805 cm-1

Page 67: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

PEA/MAA Crosslinked to Anhydride from COOH at Higher HME Temp

67

COOEt 1735

COOH 1705

S0 – Green RefS1 – Violet 130CS2 – Blue 160CS3 – Black 190C

NCE?1805 cm-1

Page 68: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

PEA/MAA Matrix Study Summary: Degradation & Stability from HME

68

Sample # ExtrusionTemp.

Screw Speed

SampleColor

Sample in THF(~0.5%)

DegradantFormed

PolymerChange

S0 Not Processed

White ClearSolution

None None

S1 130 C 250 rpm Off White

ClearSolution

TraceAnhydrides

S2 160 C 250 rpm OffWhite

ClearSolution

Anhydrides Acid/Ester Ratio

Decreased

S3 190 C 250 rpm Brownish Some Residue

Anhydrides Acid/Ester Ratio

Decreased

Page 69: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Common Polymeric Excipients for Hot Melt Extrusion Studied by GPC-IR

69

COCH3

HOOC-CH2-CH2-C=O

NO

O

O

OH

O

O

OH

O

l

m

n

H - (OCH2CH2 )n - OH

HPMCAS ~ 190C

PEA/MAA ~ 160C

Copovidone > 200C

SoluPlus > 200CPEG

Excipient Combinations with Plasticizers and Additives

?

Page 70: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

IR Band Identifications of SoluPlus Copolymer

Peak 1642 cm-1 from VCap comonomer

Peak 1738 cm-1 from VAc comonomer

NO

O

O

OH

O

O

OH

O

l

m

n

Group VAc

VCap Note

C=O 1738 cm-1 1642 cm-1 Peak Ratios for Compositional Drifts w/ MWD

Acetyl 1244 cm-1 Internal Ratio Check vs. Peak 1738

CH3 1374 cm-1

Acetyl1244

Methyl1374

VCap

VAc

PEG

Page 71: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

SoluPlus Stability: VAc/VCap Ratios Drift Similarly across MWD after HME

71

R – Green Unprocessed ReferenceA – Black Processed at 120C @ 125rpmB – Blue Processed at 120C @ 250rpmC – Brown Processed at 180C @ 125rpmD – Violet Processed at 180C @ 250rpm

All VAc/VCap RatiosWithin Lot-to-LotVariations

Page 72: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR Matrix Study Summary: SoluPlus Stability in HME Processing

72

Sample # Temp. (C)

Screw Speed (rpm)

SampleColor

Solution in DMF(~2%)

DegradantFormed

?

PolymerChanged ?

R(Ref.)

Not Processed

WhitePowder

ClearSolution

Not Detected

VAc/VCap Ratio Drift w/

MWD

A 120 125 OffWhite

ClearSolution

Not Detected

Same VAc/VCap Ratio Drift

B 120 250 OffWhite

ClearSolution

Not Detected

Same VAc/VCap Ratio Drift

C 180 125 YellowishWhite

ClearSolution

Not Detected

Same VAc/VCap Ratio Drift

D 180 250 YellowishWhite

ClearSolution

Not Detected

Same VAc/VCap Ratio Drift

Page 73: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Summary: GPC-IR Applications in Polymer-Related Industries

DiscovIR-LC is a Powerful Tool for Polymers, Additives & Materials Analysis

Deformulate complex polymer mixtures: identify polymer components

Characterize copolymer composition variations across MWD

Characterize polymer changes: degradation or modification

Useful:

For competitive analysis / IP protection

To find specific raw material supplier or qualify a second supplier

For new copolymer R&D and process scale-up

To characterize polymer degradation: ageing study, failure analysis

For problem solving / trouble shooting as general analytical capability

Applicable to Coatings, Adhesives, Inks, Sealants, Elastomers,

Plastics, Rubbers, Composites, Biopolymers ……

Page 74: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Summary: GPC-IR to Deformulate Complex Polymer Systems

X? Y? Z?

IR Spectra

IR ID A-B Copolymer C Polymer Additive IR Database Product Name Product # Brand NameSearch & Supplier & Supplier & Supplier

Page 75: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Summary: GPC-IR to Characterize Copolymer Compositions across MWD

A-B C

IR Spectra

Composition Supplier-to-Supplier Built-in Feature/Difference for IDDrifts & Lot-to-Lot Variations Copolymer R&D / Process ControlVariations & Incoming QC for Users

A/B Ratios A

B

Page 76: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Summary: GPC-IR to Characterize Copolymer Degradation from Ageing / Processing

Degradation Loss of Functional Group A (Reduced A/B Ratios) Polymer Breakdown ( Lower MW Degradants) Cross-linking ( Higher MW with New Functional Groups)Confirm No Degradation / Stability

A-B C Degradants

A/B Ratios Degradation

Page 77: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

DiscovIR-GPC to Characterize Polymer Stability in Lubricant Oils

X3

X4

X1

X2

X0 ID: SEBS

Y0

Ageing @ 170CG0: 0 hrG12: 12 hrG24: 24 hrG36: 36 hrG48: 48 hr

Note: Base oil was diverted at 25 min.

Page 78: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

X3

X4

X1

X2

X0 ID: SEBS

Y0

Ageing @ 170CG0: 0 hrG12: 12 hrG24: 24 hrG36: 36 hrG48: 48 hr

DiscovIR-GPC to Characterize Polymer Degradation in Oils

OxidizingEthers (1000-1200 cm-1)Oxiranes (806 cm-1)

Page 79: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

X3

X4

X1

X2

X0 ID: SEBS

Y0

Ageing @ 170CG0: 0 hrG12: 12 hrG24: 24 hrG36: 36 hrG48: 48 hr

DiscovIR-GPC to Characterize Polymer Degradation in Oils

OxidizingEthersOxiranes

Oxidative BreakdownCarbonylsOxiranesEthers

Page 80: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

80

High MW Low MW GPC Elution

Time

A/B RatioA

B

Map out Copolymer Compositions (A/B Ratio) across MWD (Sizes) Study Lot-to-Lot or Supplier-to-Supplier Variations Characterize Polymer Degradation from Processing:

Loss of functional group (Reduced A/B) Cross-linking ( Higher MW) Break down ( Lower MW) & Detect low MW degradant

De-Formulate Complex Polymer Mixtures

IR Spectra

Break DownCross Linking

Summary: GPC-IR ApplicationsProfile Polymer Compositions = f (Sizes)

Page 81: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR Applications: Model Cases

• De-Formulate Complex Polymer Mixtures:

PolyX + Poly(A-B) + Additives

PolyX + PolyY + Poly(A-B-C) + Additives

• Characterize Copolymer Compositions across MWD:

Poly(A-B), Poly(A-B-C), Poly(A-B-C-D), …

• Polymer Blend Ratio Analysis across MWD: PolyX + PolyY

• Polymer Additive Analysis by HPLC-IR: Add. (SM or PolyX)

• Analyze Polymer Changes: Degradation or Modification

81

Page 82: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Comparison of Max Band (Black)& Selected Band Chromatograms

A

BC

Elution Time (Min.)

Band 1690 cm-1

Band 1510 cm-1

Band 730 cm-1

Max BandDefault At 1730 cm-1

Page 83: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Polymer & Small Molecule Analysis byGPC-IR for ABS Plastic w/ No Extraction Step

GPC-IR Chromatogram (Blue) for ABS Sample and Ratio Plot of

Nitrile/Styrene (2240 cm-1/1495 cm-1 in Green).

Small Molecules Additives Impurities Degradants

Polymers

Page 84: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

Polymer Additive AnalysisGPC-IR for ABS Plastic w/ No Extraction Step

IR spectra at different elution times across the low MW peak of the SEC analysis of ABS. Spectra indicate presence of multiple components.

Page 85: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

SEC-IR to Characterize Compositional Heterogeneity of Acrylate Copolymers

Ref.: Mark Rickard et al, FACSS2011, Dow Chemical Midland Corporate R&D Analytical Sciences

Page 86: GPC-IR To Charaterize Polymer Mixtures--Akron Workshop

GPC-IR to Characterize Compositional Heterogeneity of Acrylate Copolymers

10721026

11491168

PBMA_reference1PEA_referencePMMA_referencePBA_reference

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Abs

orba

nce

900 950 1000 1050 1100 1150 1200 1250 1300 1350

Wavenumbers (cm-1)

Monomer Monomer Frequency

Normalization Frequency

EA 1026 (cm-1) 1731 (cm-1)

BMA 1072 (cm-1) 1731 (cm-1)

MMA 1149 (cm-1) 1731 (cm-1)

BA 1168 (cm-1) 1731 (cm-1)

Compositional profiles for each monomer were constructed via intensity ratios at selected IR bands normalized to the ester carbonyl intensity.

Homopolymer FT-IR spectra

PBMA

PEA

PMMA

PBA1072

1026

11491168

PBMA_reference1PEA_referencePMMA_referencePBA_reference

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Abs

orba

nce

900 950 1000 1050 1100 1150 1200 1250 1300 1350

Wavenumbers (cm-1)

PBMA

PEA

PMMA

PBA1072

1026

11491168

PBMA_reference1PEA_referencePMMA_referencePBA_reference

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Abs

orba

nce

900 950 1000 1050 1100 1150 1200 1250 1300 1350

Wavenumbers (cm-1)

PBMA

PEA

PMMA

PBA