goce, satellite gravimetry and a subjective view on … satellite gravimetry and a subjective view...

42
GOCE, satellite gravimetry and a subjective view on the role of satellite laser ranging Reiner Rummel Institute of Astronomical and Physical Geodesy Technische Universität München [email protected] International Laserworkshop, Wettzell, 16.5.2011

Upload: vuongdat

Post on 16-Mar-2018

230 views

Category:

Documents


4 download

TRANSCRIPT

GOCE,

satellite gravimetry

and a subjective view on the role

of satellite laser ranging

Reiner Rummel

Institute of Astronomical and Physical Geodesy

Technische Universität München

[email protected]

International Laserworkshop, Wettzell, 16.5.2011

• first principle of satellite gravimetry

• satellite gravimetry – a short history

• GOCE versus GRACE

• GRACE and GRACE follow-on

• GOCE gravity gradiometry and its sensor system

• GOCE and the role of its orbits

• satellite gravimetry and fundamental physics

How to connect to the theme of this workshop?

• laser tracking of GOCE?

• the connection of geometry and gravity?

• future gravimetric satellite missions and laser technology?

• …

I. Newton “De mundi systemate“ 1715

test mass in free fall

test mass in free fall

1957: Sputnik 1

today: LAGEOS I and II

test mass in free fall

Cox & Chao, Science, 297, 2002

steady decrease of earth flattening

change of trend in recent years

test mass in free fall

Dickey, Marcus, de Viron, Fukumori, 2002

temporal changes of the earth‘s flattening:

what are the causes?

candidates:

ocean masses

melting ice caps

atmospheric masses

hydrology

test mass in free fall

Ciufolini I, A Paolozzi, EC Pavlis, JC Ries, R König, RA Matzner,

G Sindoni, H Neumayer: Towards a One Percent Measurement

of Frame Dragging by Spin with Satellite Laser Ranging to

LAGEOS, LAGEOS 2 and LARES and GRACE Gravity Models

in: Probing the Nature of Gravity by Everitt CWF et al. (eds.) 2010

Ciufolini I: Phys. Rev. Lett. 56, 278–281 (1986)

Measurement of the Lense-Thirring drag on high-altitude,

laser-ranged artificial satellites

Bertotti B: Generation of geodesic motion by the twin probe method, 1974

test mass in free fall

alliance of geodesy and fundamental physics

observatories “see” onlyshort arc segments

test mass in free fall

285

330

400

500

670

1000

2000half w

avele

ngth

[km

]

Slm

← order → Clm

degre

e

EGM96s signal−to−noise spectrum

−60 −40 −20 0 20 40 60

0

10

20

30

40

50

60

70

significant digits0 1 2 3

test mass in free fall

many satellites, many orbit characteristics, many arcs

a new era: 1. uninterrupted tracking in 3D (GNSS)

2. low earth orbiters (LEOs)

3. ultra precise accelerometers

test mass in free fall

satellite-to-satellite tracking in high-low mode

-150 -100 -50 0 50 100 150

-80

-60

-40

-20

0

20

40

60

80

Longitude [°]

Latitu

de [

°]

Geoid height to WGS84 (LMax

= 70)

[m]

-100 -80 -60 -40 -20 0 20 40 60 80

geoid model derived from high-low satellite-to-satellite tracking

several test masses in free fall

from absolute to differential measurement

several test masses in free fall

baseline: 200km

concept:

GRACE

several test masses in free (?) fall

baseline: 50 cm

concept:

GOCE

400 200 130 100 80 65

half wavelength [km]

50 100 150 200 250 30010

−14

10−13

10−12

10−11

10−10

10−9

10−8

spherical harmonic degree

Deg

ree R

MS

SGG

SST − ll

SST − hl

GMs

Kaula

GOCEGOCE: maximum

resolution (s= 100 km)

GRACEGRACE: maximum

precision (geoid < µm)

GOCE versus GRACE

Degree

Me

an

Sig

na

lp

er

De

gre

e/

De

gre

eE

rro

rM

ed

ian

50 100 150 200

10-12

10-11

10-10

10-9

10-8

10-7

10-6

Mean Signal QL GOCE Model

Mean Signal Kaula Rule

Error Median QL GOCE Model

Error Median EIGEN-5S

Error Median EIGEN-5C

GOCE versus GRACE

degree variances (median) of signal and noise

temporal variations

285

330

400

500

670

1000

2000half w

avele

ngth

[km

]

Slm

← order → Clm

degre

e

EGM96s signal−to−noise spectrum

−60 −40 −20 0 20 40 60

0

10

20

30

40

50

60

70

significant digits0 1 2 3

GOCE versus GRACE

problem with degree/order zero, one, two and low harmonics

Tapley et al., Science, 2004

GRACE measures temporal gravitational changes

example: seasonal changes of continental hydrology

GOCE versus GRACE

geostrophic velocities up to d/o 180

GOCE versus GRACE

GOCE measures spatial details

of geoid

the future

see also, e.g.:

Bender PL, RS Nerem, JM Wahr: possible future use of

laser gravity gradiometers, Space Sci Rev 108, 2003

the future

Watkins, M, 2007

„how to make use of very high precision?“

GOCEGOCE

GGravity and steady-state

OOcean CCirculation

EExplorer

launched on 17 March 2009

first mission of

“Living Planet Programme”

of ESA

GOCE

GOCEGOCE

• inclination 96 degrees

(sun synchronous)

• circular orbit

• altitude 259 km

• duration > 18 months

mission objectives:

• spatial details (100km)

• gravity to 1 ppm

• geoid 1-2-cm

GOCE

single accelerometer

one axisgradiometer

three axesgradiometer

consisting of

6 accelerometers

GOCE gravitational gradiometry

ion thrusters

ion thruster

control unit

nitrogen tankxenon tank

gravitational

gradiometer

star sensor

GPS receiver

magneto-torquers

power supply

control unit

source: ESA

GOCE sensor system

orbit and gravity field determination from GPS

independent control via satellite laser ranging (SLR)

newly developed

European

space qualifiedGPS receiver

laser

retro-reflectors

GOCE sensor concept

comparison with satellite laser ranging

GOCE orbits

RMS differences 2cm

GOCE orbits

orbit validation with SLR

Jäggi et al., 2010

GOCE orbits

PSO: validation with SLRPSO: validation with SLR

w/o PCVs with PCVs

systematic cross-track orbit errors are directly observed by SLR

a novelty

SLR residuals, as derived from GOCE tracking

flight direction

nadir angle

Jäggi et al., 2010

mean sea surface

1992- 2010

from multi mission

radar altimetry

geoid

from six months

GOCE data

GOCE and oceanography

mean ocean topography (in m)

Gulf stream

ACC

Kuroshio

IAPG/ TUM

GOCE and oceanography

90oW

80oW

70oW 60oW

50oW

24 oN

30 oN

36 oN

42 oN

48oN

Min = 0.065; Max = 104.991;Mean= 11.668; RMS = 11.020

[cm/s]0

10

20

30

40

50

60

70

geostrophic velocities North Atlantic

from GOCE and satellite altimetry

GOCE and oceanography

IAPG/ TUM

Vzz-component from two months GOCE

GOCE and geophysics

the future

The alliance with

fundamental physics:

LISA pathfinder

LISA

STEP

Microscope,

Beppi Colombo…

The story of two ants walking

on an apple:

“They walk from two adjacent

points A und B,

each taking the shortest distance,

to two adjacent points A’ und B’.

We measure the distance

between them, while they are

walking.

From the measured distances

we derive the local curvature

of the apple”

Geodesic

[Misner, Thorne & Wheeler, 1973]

the future

gravity is geometry

concluding remarks

• SLR ties (geometric) co-ordinate system

to spherical harmonic expansion of the gravitational field

• growing importance of consistency between geometry and gravity

(think of studies of sea level rise, continental hydrology, ice mass

balance, dynamic ocean topography,…)

• SLR as validation tool

• strengthen alliance with fundamental physics

• LAGEOS-3 counter orbiting: should one study it?

• laser gradiometry (Bender et al.)

• laser link between free falling proof masses

Level 2 processing: High Level Processing Facility (HPF)

Ω

ΩΩ

ijIM

CONTROLM

× r

Attitude Control

C o Ma

+

+

Aacc

A B +

∆ x

Bacc

A

C O M D IF

ANTI

a

&ΩV + Ω Ω

+

S

SYM M

C o MX

x axis−

GRADIOM ETER

S T A R

S E N S O RGPS

Drag

Control

∫Ωdt&

Ω

( & )Ω Ω Ω ∆+ r

NON GRAVFCONTROLF G X( )

GOCEGOCE End-to-End Simulation Scheme