ge’s esbwr

46
GE’s ESBWR by T. G. Theofanous

Upload: solana

Post on 11-Jan-2016

55 views

Category:

Documents


2 download

DESCRIPTION

GE’s ESBWR. by T. G. Theofanous. ESBWR SA Containment Highlights. UDW. EVE. LDW. BiMAC. +PCCS no LT failure. Not to scale. ESBWR SA Complexion. SA Threats and Failure Modes. Direct Containment Heating (DCH) Energetic Failure of UDW, Liner (thermal) Failure Ex-Vessel Explosions (EVE) - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: GE’s ESBWR

GE’s ESBWR

by T. G. Theofanous

Page 2: GE’s ESBWR

ESBWR SA Containment Highlights

BiMACNot to scale

UDW

LDW

+PCCS no LT failure

EVE

Page 3: GE’s ESBWR

ESBWR SA Complexion

CDF~10-8

I 90.2 %

III 1.3%

IV 0.6%

DCH

EVE

BMPRR

I Low Pressure SequencesII Very Late Core DamageIII High Pressure SequencesIV ATWS; 71% No RPV FailureV Containment Bypass

III E/S 1%

N/AN/A

L/NS 78%

I L 27%H: 0.9%, M : 0.1%, L: 99%

L/NS Late Melt, Sprays FailL/S Late Melt, Sprays AvailableE/S Early Melt, Sprays Available

II 7.9%

V 1%

L/S 2%E/S 20%

V, 71% of IV, and RRTreated in L-3 PRARR Residual Risk

V 1%

Page 4: GE’s ESBWR

SA Threats and Failure Modes

• Direct Containment Heating (DCH) Energetic Failure of UDW, Liner (thermal) Failure

• Ex-Vessel Explosions (EVE) Pedestal/Liner Failure, BiMAC-Pipes Crushing

• Basemat Melt Penetration (BMP) BiMAC Thermal Failure (Burnout, Dryout, Melt Impingement)

Page 5: GE’s ESBWR

Direct Containment Heating (DCH)

Page 6: GE’s ESBWR

Representative butnot to scale

DCH: Key features of the geometry

Highly non-uniformgas flow

Page 7: GE’s ESBWR

PSTF Vent Clearing Model

IET CLCH Model

1:1 Scale

DCH in suppression pool containments: model verification basis

and 1:40 scale

Page 8: GE’s ESBWR

Validation Basis: IET DCH Tests… GE PSTF Vent Clearing

CLCH model. Complete transient

Page 9: GE’s ESBWR

Actual blowdowns used as inputs for comparison

PSTF

IET

Page 10: GE’s ESBWR

Comparison to PSTF data

Page 11: GE’s ESBWR

Comparison to IET-1RR and -8 data

Page 12: GE’s ESBWR

Comparison to IET-1 data

Page 13: GE’s ESBWR

Quantification of Loads

0 1 2 3 4 5

2

4

6

8

10

12

Time,s

Pre

ssur

e, b

ar

Upper drywellLower drywellWetwell

0 5 10 15 201

2

3

4

5

6

Time,s

Pre

ssur

e, b

ar

Upper drywellLower drywellWetwell

Regime IHYPOTHETICAL

Regime IICreep Rupture, Bounding

Page 14: GE’s ESBWR

Case F

Case G

More DynamicsRegime III

Page 15: GE’s ESBWR
Page 16: GE’s ESBWR
Page 17: GE’s ESBWR
Page 18: GE’s ESBWR

More sensitivities run on condensation and gas-cooling efficiency, oxidation efficiency, composition of DW atmosphere, etc…

Page 19: GE’s ESBWR

Minimum (bounding) Margins to Energetic DCH Failure

Upper Bound Load

Fragility

Page 20: GE’s ESBWR

Ex-Vessel Explosions (EVE) Pedestal/Liner Failure, BiMAC-Pipes Crushing

Page 21: GE’s ESBWR

Sample SE calculations

• ~ 1 ton/s melt release• 1, 2, 5 m deep pools• Saturated and subcooled water• ~100 kPa s on the floor• 40-150 kPa s on the side walls

Page 22: GE’s ESBWR

Pedestal model in DYNA3D

Verified extensively in High Explosive work

Page 23: GE’s ESBWR

Pedestal damage in DYNA 3D

600 kPa s loading

Page 24: GE’s ESBWR

Pedestal Failure Margins to EVE1 to 2 m Subcooled Pools

Upper Bound Load

Lower Bound Fragility

Significant upwards revision of previously used failure criteria on pedestal walls

Page 25: GE’s ESBWR

BiMAC Structural Configuration

Ie Schedule 80 pipes

Page 26: GE’s ESBWR

DYNA3D model of BiMAC

Page 27: GE’s ESBWR

BiMAC damage in DYNA3D

200 kPa s loading

Page 28: GE’s ESBWR

BiMAC Failure Margins Due to EVE

1-2 m subcooled pools

Upper Bound LoadSaturated Low Level

Upper Bound LoadSubcooled 1-2 m

Page 29: GE’s ESBWR

Lower Drywell

Page 30: GE’s ESBWR

BiMAC Detail

Page 31: GE’s ESBWR

BiMAC Flow Path

Page 32: GE’s ESBWR

Natural convection patterns

Page 33: GE’s ESBWR

The Peaking at the Edge of Near-Edge Channels is the most Limiting

Page 34: GE’s ESBWR

Case No. qup qdn qs qup / qdn qmax / qdn or s

A 63 30 N/A 2.1 1.25

B 120 54 N/A 2.2 1.25

C 178 80 N/A 2.2 1.25

C-3D 238 68 N/A 3.5 1.2

M-3D 286 85 280 3.4 3.0 / 1.4

M 255 125 330 2.0 3.0 / 1.4

N 238 126 340 1.9 3.0 / 1.2

O 168 83 245 2.0 3.0 / 1.2

Summary of Power Split and Peaking Factor Results from the Direct Numerical Simulations (all fluxes in kW/m2 )

The 3D results were confirmed with further calculations that included refined meshes, and a 10-fold increase in viscosity due to addition of the sacrificial concrete.

Page 35: GE’s ESBWR

Sample calculations of turbulent natural convection

Page 36: GE’s ESBWR

Local peaking mechanism

Page 37: GE’s ESBWR

Bounding estimates of thermal loads

Central Channels:

Near-Edge Channels:

2max, /125 mkwq dn 2/100 mkwqdn

2/100 mkwqdn 2max, /300 mkwq dn

2/320 mkwqv 2max, /450 mkwq v

Page 38: GE’s ESBWR

The ULPU facility

Page 39: GE’s ESBWR

Coolability Limits for BiMACApplicability based on similarity of geometries and

flow/heating regimes

Page 40: GE’s ESBWR

Thermal Loads against Coolability Limits in BiMAC Channels

Page 41: GE’s ESBWR

Thermal Margins for BiMACLocal Burnout

1qqCHF

Page 42: GE’s ESBWR

Natural convection boiling in inclined channels: the SULTAN facility

•Vertical and 10 degrees inclination•Characteristic length: 3 and 15 cm•Channel length: 4 m•Pressure: 0.5 MPa•Power levels 100 to 500 kw/m2•Detailed pressure drop data•Top-heated plate, 15 cm wide

Page 43: GE’s ESBWR

Boiling in inclined channels:Sample comparisons for inclinationo10

Page 44: GE’s ESBWR

Natural convection in BiMAC: stable, self-adjusting flow

Page 45: GE’s ESBWR

Thermal Margins for BiMACno-Dryout due to water depletion or flow starvation

Page 46: GE’s ESBWR

Conclusion (3): Summary of containment threats and mitigative mechanisms or systems in place for responding

to them

Threat Failure Mode MitigationDCH Energetic DW Failure Pressure Suppression Vents

Reinforced Concrete Support

UDW Liner Thermal Failure Liner Anchoring System

LDW Liner Thermal Failure Reinforced Concrete BarrierGap Separation from UDW

EVE Pedestal/Liner Failure Dimensions and Reinforcement

BiMAC Failure Pipe Size and ThicknessPipes Embedded into Concrete

BMP&CCI

BiMAC Activation Failure Sensing & Actuation InstrumentationDiverse/Passive Valve Action

Local Burnout Natural Circulation

Water Depletion Natural Circulation

Local Melt-Through Refractory Protective Layer