gerda horneck dlr, institut für luft- und raumfahrtmedizin ... · microorganisms • have existed...

44
Extrasolar Planets: Towards Comparative Planetology beyond the Solar System, 483. WE-Heraeus-Seminar / 06 – 08 June 2011 at the Physikzentrum Bad Honnef Folie 1 > Horneck Adaptation of life to extreme conditions Gerda Horneck DLR, Institut für Luft- und Raumfahrtmedizin, Köln [email protected]

Upload: others

Post on 20-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Extrasolar Planets: Towards Comparative Planetology beyond the Solar System, 483. WE-Heraeus-Seminar / 06 – 08 June 2011 at the Physikzentrum Bad Honnef

    Folie 1 > Horneck

    Adaptation of life to extreme conditions

    Gerda Horneck DLR, Institut für Luft-

    und Raumfahrtmedizin, Köln

    [email protected]

  • Extrasolar PlanetsFolie 2 > >Horneck

    Bada & Lazcano (Science, 2002)

    Steps to life on Earth

  • Extrasolar PlanetsFolie 3 > >Horneck

    Des Marais (Science, 2000)

    History of life on Earth: Fossil record

  • Extrasolar PlanetsFolie 4 > >Horneck

    Last Universal Common Ancestor

    History of life on Earth: Molecular biology record

    © Harald Huber, Uni Regensburg

    Hot springs as the cradle of life?

    Hyperthermophilic microorganisms

    Phylogenetic tree of life

  • Extrasolar PlanetsFolie 5 > >Horneck

    Hydrothermal vents

    Reducing environment:

    -H2

    , H2

    S, CO, CO2

    , CH4-Clays and minerals as catalysts

    -

    High temperature gradient (350 °C to 2 °C)

    -

    Amino acids were produced in the laboratory under simulated conditions

    History of life on Earth: Prebiotic

    evolution

  • Extrasolar PlanetsFolie 6 > >Horneck

    Black smokers

    Hyperthermophilic microorganisms

    grow up to 113 °C

    Karl Stetter

    History of life on Earth: Hyperthermophiles

    Optimum growth temperature: 80°C and aboveNo growth at 60°C or below

  • Extrasolar PlanetsFolie 7 > >Horneck

    Black smokers

    History of life on Earth: Hyperthermophiles

    Hyperthermophiles

    are chemolithotrophschemolithotrophs:They obtain energy by the oxidation of electron donors in their environments. These molecules are inorganic: H2

    , So, etc.

    Hyperthermophiles

    are chemoautotrophschemoautotrophs:In addition to deriving energy from chemical reactions, they synthesize all necessary organic compounds from carbon dioxide.

  • Extrasolar PlanetsFolie 8 > >Horneck

    History of life on Earth: HyperthermophilesMain Energy-yielding Reactions:

    CO2 Methane

    Fe(OH)3 Magnetite

    S°; SO42- Hydrogen Sulfide H2 NO3- Nitrogen (NH3)

    O2 (traces) Water

    S° (Pyrite) + O2 H2SO4 (+ FeSO4)

    Source of Cell Carbon: CO2

    Additional Growth Requirements:

    Heat (80 - 113 °C), Trace Minerals, Liquid Water.

  • Extrasolar PlanetsFolie 9 > >Horneck

    History of life on Earth: Hyperthermophiles

    Yellowstone National Park, USA

  • Extrasolar PlanetsFolie 10 > >Horneck

    History of life on Earth: The early atmosphere

    H.Holland

    Anoxic Oxygen rich

  • Extrasolar PlanetsFolie 11 > >Horneck

    Microbial mat, a community of organisms with cyanobacteria

    as primary producers

    History of life on Earth: The rise of photosynthesis

    Oxygenic Photosynthesis:

    Anoxygenic Photosynthesis: ´ = H2 S, H2 , ´ = Fe2+, NO2-,

  • Extrasolar PlanetsFolie 12 > >Horneck

    History of life on Earth: The rise of photosynthesis

    • Highly organized system of internal membranes (thylakoids) which function in photosynthesis.

    • Bluish pigment phycocyanin, which they use to capture light for photosynthesis.

    • Photosynthesis in cyanobacteria generally uses water as an electron

    donor and produces oxygen as a by-product ⇒

    oxygenic photosynthesis

    • Some cyanobacteria

    use hydrogen sulfide as electron donor

    � anoxygenic

    photosynthesis Cyanobacteria

  • Extrasolar PlanetsFolie 13 > >Horneck

    History of life on Earth: The rise of oxygen

    The ability of cyanobacteria

    to perform oxygenic photosynthesis is thought to have converted the early reducing atmosphere into an oxidizing one, which dramatically changed the composition of life forms on Earth by stimulating biodiversity and leading to the near-extinction of oxygen-intolerant organisms.

    H.Holland

  • Extrasolar PlanetsFolie 14 > >Horneck

    Wavelength (nm)

    180 200 220 240 260 280 300 320 340

    Irrad

    ianc

    e (W

    / m

    2 nm

    )

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101

    Bio

    logi

    cal s

    ensi

    tivity

    10-6

    10-5

    10-4

    10-3

    10-2

    10-1

    100

    101UVC UVB UVA

    Extraterrestrial

    early Earth

    DNAdamage

    Earthpresent

    Protection by the ozone layer

    History of life on Earth: The change in UV-climate

    The rise of oxygen has lead to the photochemical formation of the ozone layer in the stratosphere, thereby protecting life from harmful UVC and UVB radiation

  • Extrasolar PlanetsFolie 15 > >Horneck

    Distribution of chlorophyll in the biosphere on Earth (2002)

    Carbon bound in the biomass: 80

    1012

    kg per year (80 Gt/a)

    History of life on Earth: The spread of photosynthesis

  • Extrasolar PlanetsFolie 16 > >Horneck

    History of life on Earth: The spread of photosynthesis

    Absorption spectra Rate of PS: O2

    production

  • Extrasolar PlanetsFolie 17 > >Horneck

    History of life on EarthDuring life‘s evolution on Earthmicroorganisms • have existed since the emergence of life• are ubiquitous• inhabit “extreme“

    niches

  • Extrasolar PlanetsFolie 18 > >Horneck

  • Extrasolar PlanetsFolie 19 > >Horneck

    Mancinelli and Rothschild, Nature, 2001

    History of life on Earth: Life at extreme temperatures

    Hyperthermophiles

    Psychrophiles

  • Extrasolar PlanetsFolie 20 > >Horneck

    Permafrost in Sibiria

    Microorganisms in Permafrost•

    -

    10°C (Arctic),

    -

    25°C (Antarctic)

    • 92-97% frozen, 3-8 % liquid water

    ~ 105

    Mikroorganismen

    History of life on Earth: Life in permafrost

  • Extrasolar PlanetsFolie 21 > >Horneck

    Brine water lenses in permafrost sediments

    Permafrost

    •Temperature -10oC•Free water no•Ice content 25-30%•Unfrozen water 1.5-2%•Water extract salinity 1-10 %

    Overcooled water lenses within permafrost (cryopegs)

    •Temperature -10oC•Free water 100%•Salinity 170-300 %

    Gilichinsky

    et al., Astrobiology, 2003

    History of life on Earth: Life in permafrost

  • Extrasolar PlanetsFolie 22 > >Horneck

    1,0E+02

    1,0E+03

    1,0E+04

    1,0E+05

    1,0E+06

    1,0E+07

    -20 -10 0 10 20 30

    Temperature, оС

    срм

    carb

    acet

    carb

    acet

    Methane generation in permafrost sediments of different age

    from H14CO3-

    and

    14CH3

    CO2-

    From Rivkina

  • Extrasolar PlanetsFolie 23 > >Horneck

    History of life on Earth: Life at extreme ph

    Picrophilus

    oshimae Thermoplasma acidophilum1 µm

    Natronobacterium

  • Extrasolar PlanetsFolie 24 > >Horneck

    History of life on Earth: Life at extreme ph

    Mono Lake, USA: Alkaline salt-lake

  • Extrasolar PlanetsFolie 25 > >Horneck

    Halophiles live in brines or salt crystals

    salt-in-cytoplasm strategy: adapt interior protein chemistry to high salt concentrations (high K+

    or Na+)

    organic-osmolyte

    strategy: cell interior free of salts, but enriched withuncharged, highly water-

    soluble, organic compounds (sugars, polyols, amino acids)

    History of life on Earth: Life at high salt concentations

  • Extrasolar PlanetsFolie 26 > >Horneck

    IMC9 Edinburgh 1-6 August 2010

    History of life on Earth: Endolithic communities

  • Extrasolar PlanetsFolie 27 > >Horneck1 cm

    Colonized Antarctic sandstone

    The lichen dominated cryptoendolithic

    community(Friedmann, 1982. Science 215: 1045-1053)

    Reddish‐brown  crust Black zone: lichenized

    (symbiotic with algae) and  non lichenized

    black fungi 

    White zone: lichenized

    fungi and algae

    Green zone: non lichenized

    algae Accumulation zone

    VorführenderPräsentationsnotizenTranverse section of cryptoendolithic lichen dominated community. To test Lithopanspermia microorganisms living within rocks are good candidates

  • Extrasolar PlanetsFolie 28 > >Horneck

    Chemolithotrophs•

    Fraction of subsurface life still unknown

    SLIME (Subsurface Lithoautotrophic

    Microbial Ecosystem)

    “Stone eaters”

    History of life on Earth: Life in the subsurface

  • Extrasolar PlanetsFolie 29 > >Horneck

    Deep subsurface biosphere

  • Extrasolar PlanetsFolie 30 > >Horneck

    Limits of life for growth and metabolism

    • Temperature: -20°C to +113°C• Water stress: aw

    0.7

    • Salinity: Salt concentration

    30 %, salt crystals

    • pH:

    pH = 1-11

    • Nutrients: High metabolic versatility Autotrophic or heterotrophic organisms

    High starvation tolerance

    • Oxygen: Aerobic and anaerobic organisms

    • Radiation:

    60 Gy/hour

  • Extrasolar PlanetsFolie 31 > >Horneck

    B. stratosphericus B. subtilis „Heu-Bazillus)

    B. sonorensis

    B. simplex

    B. thermoterrestis

    B. anthracis B. thuringiensis

    B. pumilus SAFR

    B. cereus

    Food InsectsPathogens

    B. infernus

    Subsurface Clean roomrock

    DesertSoil

    Atmosphere

    History of life on Earth: Bacterial spores

  • Extrasolar PlanetsFolie 32 > >Horneck

    Sporulation of Bacillus subtilis

    1 m

    Survival of extreme conditions: Bacterial spores

  • Extrasolar PlanetsFolie 33 > >Horneck

    • Protective spore coats• Thick cortex• Low core water content• High mineral content (Ca2+)• Small acid soluble proteins at DNA• Repair of damage to

    macromolecules after germination• Easy dissemination of the species

    • Survival of severe environmental conditions -

    desiccation / intense radiation / heat

    -

    chemical aggressive agents (alcohol, acetone, acids)

    • Escape temporally and/or spatially from unfavorable conditions

    Anhydrobiosis

    Survival of extreme conditions: Bacterial spores

  • Extrasolar PlanetsFolie 34 > >Horneck

    Spores of B. subtilis

    Long Duration

    Exposure

    Facility (LDEF) : 6 years

    in space

    ~ 86 % of spores of Bacillus subtilis survived after 6 years in space (if protected from solar UV radiation)

    Survival of extreme conditions: Bacterial spores

  • Extrasolar PlanetsFolie 35 > >Horneck

    Limits of life for survival

    • Temperature:

    -263°C to +150 °C or even higher• Water stress: 0

    aw

    1.0 Spores survive in vacuum (10-6

    Pa)

    • Salinity: Salt crystals (endoevaporites)• pH:

    pH = 0 -

    12.5

    • Nutrients: not required, better without• Oxygen:

    not required, better without

    • Radiation:

    5 kGy of ionizing radiation Spores repair damage during germination

    • Time:

    25 -

    40 x 106 a

  • Extrasolar PlanetsFolie 36 > >Horneck

    “The Earth is the only planet known to harbour

    life“Carl Sagan, Pale Blue Dot, 1994

    Looking for habitble

    planets ?

  • Extrasolar PlanetsFolie 37 > >Horneck

    Life as a cosmic

    imperative

    Life emerges at a certain stage of either cosmic or planetary evolution,

    if the right environmental physical and chemical requirements are provided ”

    Christian De Duve, 1994

    Christian De Duve (born 1917) Nobel Price (1974) for his work on the structure and function of organelles in biological cells

  • Extrasolar PlanetsFolie 38 > >Horneck

    Life a cosmic phenomenon ?

    “The exploration of space has

    widened the horizon of the physical world: the concepts of mass and energy are valid throughout the universe

    led to generalization of chemistry: the spectra of the stars testify the universality of the concepts in chemistry

    has the potential to inspire biology: to build the foundations for the construction and testing of meaningful axioms to support a theory of life”

    Towards a universal definition of lifeJoshua Lederberg,1925-2008Nobel price in medicine 1959

  • Extrasolar PlanetsFolie 39 > >Horneck

    EUROPEAN ASTROBIOLOGY NETWORK ASSOCIATION

    http://www.astrobiologia.pl/eana/

  • Extrasolar PlanetsFolie 40 > >Horneck

    EUROPEAN ASTROBIOLOGY NETWORK ASSOCIATION

    http://www.eana2011.de/

    11. European Workshop on Astrobiology

    11.-14. Juli 2011

    Köln

  • Extrasolar PlanetsFolie 41 > >Horneck

  • Extrasolar PlanetsFolie 42 > >Horneck

    Hypothesis:Arsenate can replace phosphate in the nucleic acids of strain GFAJ-1)

    Geomicrobiologist

    Felisa

    Wolfe-Simon, collecting lake-bottom sediments in the shallow waters off Mono Lake’s 10 Mile Beach. Credit: ©2010 Henry Bortman

    History of life on Earth: Life at extreme ph

  • Extrasolar PlanetsFolie 43 > >Horneck

    +As/-P

    -As/+P

    +As/-P

    -As/-P

    Wolfe-Simon et al. Science, 2010GFAJ-1: Isolate

    from

    Mono Lake (200 μM AsO43-)

    History of life on Earth: Life at extreme ph

    Hypothesis:Arsenate can replace phosphate in the nucleic acids of strain GFAJ-1)

  • Extrasolar PlanetsFolie 44 > >Horneck

    Wolfe-Simon et al. Science, 2010

    Intracellular Distribution of radioactively labeled arsenate: 73AsO4-

    Sub-cellular fraction dissolved in (%)Phenol (Protein + metabolites) 80.3 ± 1.7Phenol:Chloroform (Proteins + Lipides) 5.1 ± 4.1Chloroform (Lipides) 1.5 ± 0.8Resid. Aqueous fraction (DNA/RNA) 11.0 ±

    0.1

    Conclusion: In GFAJ-1 phosphate in Sugar-phosphate back bone of DNA has been replaced by arsenateNASA: “Definition of Life must be newly defined”Warning: Exceptional statements require exceptional proofs.

    Zucker-Phosphat Rückgrat der DNA

    History of life on Earth: Life at extreme ph

    Hypothesis:Arsenate can replace phosphate in the nucleic acids of strain GFAJ-1)

    Adaptation of life to extreme conditions��Gerda Horneck�DLR, Institut für Luft- und Raumfahrtmedizin, Köln�[email protected] 2Foliennummer 3Foliennummer 4Foliennummer 5Foliennummer 6Foliennummer 7Foliennummer 8Foliennummer 9Foliennummer 10Foliennummer 11Foliennummer 12Foliennummer 13Foliennummer 14Foliennummer 15Foliennummer 16Foliennummer 17Foliennummer 18Foliennummer 19Foliennummer 20Foliennummer 21Foliennummer 22Foliennummer 23Foliennummer 24Foliennummer 25Foliennummer 26Foliennummer 27Foliennummer 28Foliennummer 29Foliennummer 30Foliennummer 31Foliennummer 32Foliennummer 33Foliennummer 34Foliennummer 35Foliennummer 36Foliennummer 37Foliennummer 38Foliennummer 39Foliennummer 40Foliennummer 41Foliennummer 42Foliennummer 43Foliennummer 44