geoelectrical insitu test

Upload: dewirach

Post on 24-Feb-2018

225 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/24/2019 Geoelectrical Insitu Test

    1/33

    CO2 Storage:

    4D Geophysical Monitoring

    Geoelectrical Measurements

    Conny Schmidt-Hattenberger

  • 7/24/2019 Geoelectrical Insitu Test

    2/33

    OUTLINE:

    Brief description of the method & practicalworkflow.

    How it works for monitoring of CO2 storage ?

    Practical example: Geoelectrical measurementsat the Ketzin test site.

  • 7/24/2019 Geoelectrical Insitu Test

    3/33

    Resistivity method and its application

    The method is based on the

    resistivity contrasts of subsurface

    materials.

    R of the material depends on:

    Horizontal and vertical discontinuities can be studied in a variety offields:

    Hydrogeology and underground water prospection

    Engineering & construction site investigation

    Waste and pollutant investigations Glaciology, permafrost

    Archaeological investigations

    Underground storage operations CO2 storage

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    4/33

    Background theory of DC resistivity

    method (I) employs very low-frequency alternating currents as source signals

    magnetic properties can usually be ignored

    displacement currents and induction effects are negligible Maxwells equation reduce to

    Poisson equation for electrostatic fields

    Ohms law

    Potential due to single point source forthe homogeneous half-space

    E-field

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    5/33

    Background theory of DC resistivity

    method (II)

    r1r4 distances between A, B, M and N

    K geometric factor

    Four-electrode measurement:

    apparent resistivity

    Schematic illustration of a four-electrode arrangement afterKndel et al., (1997). Current flow lines (solid) andequipotential lines (dashed) are given for a two-layer casewith higher resistivity in the first layer.

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    6/33

    Rock texture has influence on resistivity

    (Ward, 1990)

    Basalt is a typicalexample of a highporosity rock withlow conductivity dueto its lowpermeability(unconnected or

    dead-end porespace).

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    7/33

    Resistivity of different materials in nature

    (Ward, 1990)

    destilled water > 104 m

    sea water ~ 0.25 m

    brine

  • 7/24/2019 Geoelectrical Insitu Test

    8/33

    SurveysDesign:

    Depth of investigation characteristic:

    Experimental techniques :

    electric profiling or areal mapping

    vertical electric sounding (VES)

    2D and 3D imaging

    (after Szalai et al., 2009)

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    9/33

    Geoelectric modeling

    Forward modeling

    Inversion

    CurrentVoltage

    MODEL DATA

    (modified after Marescot, 2010)

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    10/33

    Sensitivity analysis

    The sensitivity matrixSijindicates how changes in themodel domain elementmj do change the data domainelementfi .

    Examples of 2D sensitivity distributions of a homogenoushalf-space for various arrays (modified after Friedel, 2000):

    Asymmetric Schlumberger Wenner

    Measurement i Cell j

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    11/33

    Which steps form our workflow?

    &

    &

    &

    &

    &

    .

    &

    ()

    ()

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    12/33

    How to apply ERT for CO2 storage

    monitoring?

    at intermediate and high gassaturation (above 20 %) geoelectricalmethods are more sensitive thanseismic methods

    geoelectrical measurements arerelatively easy to deploy

    higher repetition rates and cost-efficiency,

    but: lower structural resolution

    P-wave velocity and resistivity

    versus CO2 saturation- measured at Nagaoka test site (Japan)by X. Zue et al., SPE 126885, Nov. 2009.

    Our motivation:

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    13/33

    Available reservoir data support feasibilitystudy

    Reservoir properties:The aquifer resistivity is calculated using Archies law (Archie, 1942)and assuming:

    -Salinity of formation water ~ 230 g/l-Reservoir temperature of about 36 C (from T-logs)-Resistivity of 20 wt-% brine @ 36C = 0.05 m-Mean porosity of 23 %

    = A w -m Sw

    -n

    (SCO2 = 1-Sw)

    - Archie parametersA = 1.0 and m, n = 2.0 assumed in a first rough model.

    - Typical CO2 saturation scenario of 50% ( 2.8 m).

    }Ketzin data

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    14/33

    Lab data

    before CO2

    Lab data

    after CO2

    difference

    Ktzi202_B2-3b

    [m] 0.52 1.75 +240%

    Ktzi202_B3-1b

    [m] 0.47 1.40 +200%

    Available lab data indicate a bulk

    CO2 saturation of 50% which

    corresponds to a resistivity increase

    of +200% to +240% (~ factor 3).

    Results from laboratory

    flow-through experiments:

    (Kummerow et al., 2011)

    CO2formation fluid

    formation fluid ~ 0.52 m formation fluid

    t [h]

    CO2 ~ 1.7 m

    Laboratory experiments

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    15/33

    The Ketzin project Europes longest-operating

    on-shore CO2 storage site Located in the North East German Basin

    ~ 25 km west of Berlin, at the SE flank

    of a double anticline

    Storage reservoir: saline aquifer of the

    Stuttgart Fm.

    Project start 2004, well completion 2007,

    start of injection 2008

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    16/33

    An interdisciplinary monitoringconcept is applied @ Ketzin site

    Start of CO2 injection:

    30.06.2008

    CO2 sources and quality:Primary source: food-gradeCO2 (Linde), purity > 99.9 %

    Secondary source (limitedtime): Schwarze Pumpe pilotplant (Vattenfall),purity > 99.7 %

    Injection rates:

    24 to 77 t/day(currently ~ 1 kt CO2/month)

    03.06.2012: 61,402 t CO2injected

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    17/33

    Electrical Resistivity Tomography (ERT) systems

    in CCS projects Nagaoka

    (logging tool /non-permanent )

    Regular induction logs

    as alternative solution

    Cranfield(permanent array)

    Deepest ERT array in

    CCS operationworld-wide

    Ketzin(permanent array)

    First ERT array in

    CCS operationworld-wide

    ., 2010 ., 2010 ., 200

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    18/33

    The Ketzin ERT concept: combination ofcrosshole & surface-downhole measurements

    Permanent installation of Vertical Electrical ResistivityArray (VERA) in the three Ketzin wells (at insulatedcasing)

    Concentric circles with 16 surface dipoles & crossedprofiles for enlargement of observation area, dipolelength: 150 m, r1 = 800 m, r2 = 1500 m )

    In cooperation with:

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    19/33

    Design details of the Ketzin permanent ERT array

    (1) Stainless steel ring-shaped electrodeswith multi-conductor cables (15 wires)

    (2) Centralizer & Protector Tool(3) Casing: 5.5steel casing, coated with

    insulating layer along the ERT array area

    (1) (2)

    (3)

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    20/33

    (Photos: Courtesy of University Leipzig)

    (Photos: Courtesy of GFZ)

    current: 2.5 A max. channels: 15

    (for potential registration) measured voltage: 50 V to 100 mV

    signal period: 8 s

    current: 4 10 Avoltage: 500 1300 V

    signal period: 16 sLength of time series ~ 1 h

    Insulated casing

    Stainless-steelelectrode

    MeasurementUnit (ZONGE)

    Electric power sourceTSQ-4 (SCINTREX)

    Electrode ensemblefor current injection

    Data logger (TEXAN-125)

    Site-specific Customization ofSurface and Downhole

    Equipment.

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    21/33

    Field installation: Casing assembly

    Photos: Silvio Mielitz

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    22/33

    Field installation: Casing assembly

    Photos: Silvio Mielitz

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    23/33

    Field installation: Cable management

    Photos: Silvio Mielitz

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    24/33

    Field installation: Sensor mounting

    Photos: Silvio Mielitz

    electrode

    centralizer

    cable

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    25/33

    Data QC and PreProcessing of the field data

    Due to time constraints bythe acquired manifold ofelectrode configurations andto obtain transient effects

    Only two signal cycles havebeen recorded

    (each cycle T= 8s).

    No regular reciprocialmeasurements, but forindividual data sets only.

    Individual error estimation

    from the cycles, and RMSestimation from the adaptedpreprocessing scheme.

    QC

    PP

    EE

    Day of injection

    ABMN: 3-2-18-17

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    26/33

    Inversion Strategy

    Test of various program codes :EarthImager, ERTLab, BERT

    Deployment of constraints,e.g. resistivity logs andlaboratory results

    Predefinition of most essentialparameters:-regularization ,z- geometrical weight,E- error weight

    Separate investigation of 2D inversion results for two observation planes.

    0.5 - 5 m low-res. environment small resistivity contrasts moderate resistivity changes thin target reservoir zone

    (Gnther & Rcker, 2006)

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    27/33

    2D Time-lapse results Gravity driven upward

    migration (funnel-likeshape) was observedsince middle of August2008.

    steady-state situation

    reached in December2008.

    Attenuated resistivityprofiles in the

    observation planeKtzi200-Ktzi201for phases of significantreduced injection rate(March August 2010).

    Good coverage of theinjection start phase byfrequently measureddata sets given.

    Ktzi201 Ktzi200 Ktzi201 Ktzi200 Ktzi201 Ktzi200 Ktzi201 Ktzi200

    August 18, 2008 December 03, 2008 March 15, 2010 April 02, 2011

    Ratio

    (monitor/baseda

    ta)

    Inversion(

    monitordata)

    (Schmidt-Hattenberger et al., 2012)

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    28/33

    3D Time-lapse results

    Consistent results of the 2D inversion and the full 3D inversion for the individualobservation planes Ktzi200-Ktzi201 and Ktzi200-Ktzi202.

    Significant volume effectnecessary in order to detect the CO2 arrival at both

    observation wells (Ktzi200 / Ktzi202) in the inverted data.Assumption: limited 3D effect since Nov 2009 (degradation detected by contact

    resistance checks) critical electrodes: some of them have to be excluded frominterpretation, and some of them even from the inversion procedure.

    3D ViewZ-slice @ 630 m

    Ktzi201 Ktzi200

    z=620 m

    201 200

    202

    z=635 m

    201 200

    202 z=640 m

    201 200

    202

    201200

    202

    Data set from July 2010

    GeoEn Summer School, Potsdam, 24-28 September 2012

    C h ki f t d i d li

  • 7/24/2019 Geoelectrical Insitu Test

    29/33

    Cross-checking of measurements and inverse modelingensures data reliability

    Zonge Engineering equipment

    Multi-Phase Technologies equipment

    Data inversion byopen-source codeBERTwith unstructured

    tetrahedral grids.www.resistivity.net

    Data inversion byERTLabwhich providedvery fast on-siteresults.www.ertlab.com

    Survey: April 2011

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    30/33

    Surface-downhole results

    Operating range: extended wellbore area

    (Bergmann et al., 2012)

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    31/33

    ()

    CO2 signature has been detectedwith sufficient spatial resolution.

    Data sets are consolidated now,

    updated petrophysical results areavailable.

    Evaluation & Outlook

    Contribution to data integration.(in progress)(Lth et al., 2011)

    , , 242 2012

  • 7/24/2019 Geoelectrical Insitu Test

    32/33

    Electrical and electromagnetical monitoring

    on various scalesRegional scale

    Magnetotellurics (MT) &

    Controlled-SourceElectromagnetics (CSEM)

    see presentation by K.M.Bhatt

    Sub-regional scale

    Electromagnetics (EM)

    Local scaleElectrical ResistivityTomography (ERT)

    GeoEn Summer School, Potsdam, 24-28 September 2012

  • 7/24/2019 Geoelectrical Insitu Test

    33/33

    References:

    Archie, G.E. (1942). The electric resistivity log as an aid in determining some reservoir characteristics. Trans. Am. Inst. Miner.

    Met. 146,5462.Bergmann, P. et al. (2012). Surface-downhole electrical resistivity tomography applied to monitoring of CO2 storage atKetzin, Germany. Geophysics 77 (2012), B253-B267.Carrigan, C. R. et al. (2009). Application of ERT for tracking CO2 plume growth and movement at the SECARB Cranfield site.8th Annual Conference on Carbon Capture & Sequestration, Pittsburgh, PA, United States, 4-7 May, 2009.Friedel, S. (2000). ber die Abbildungseigenschaften der geoelektrischen Impedanztomographie unter Bercksichtigung vonendlicher Anzahl und endlicher Genauigkeit der Medaten. Ph.D. thesis, Fakultt fr Physik und Geowissenschaften, UniversittLeipzig, Germany.Gnther et al. (2006). Three-dimensional modelling and inversion of dc resistivity data incorporating topographyII.Inversion. GJI 166, 506517.Kiessling, D. et al. (2010). Geoelectrical methods for monitoring geological CO2 storage, First results from crosshole andsurface-downhole measurements from the CO2SINK test site at Ketzin (Germany). International Journal of Greenhouse GasControl 4 (2010), 816-826.Kndel, K., Krummel, H., Lange, G. (1997). Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Band 3- Geophysik. Bundesanstalt fr Geowissenschaften und Rohstoffe, Springer Verlag, 1063 S.Kummerow and Spangenberg (2011). Experimental evaluation of the impact of the interactions of CO2-SO2, brine, andreservoir rock on petrophysical properties: A case study from the Ketzin test site, Germany: Geochemistry Geophysics

    Geosystems, 12, 5, Q05010.Lth et al. (2011). Time-lapse seismic surface and down-hole measurements for monitoring CO2 storage in the CO2SINKproject (Ketzin, Germany). Energy Procedia, Volume 4, 3435-3442.Marescot, L. (2010). http://tomoquest.com/attachments/File/Marescot_Intro_to_Inversion_UNIFR_19042010.pdf, Script onIntroduction to Inversion in Geophysics.Xue, Z. et al. (2009). Detecting and monitoring CO2 with P-wave velocity and resistivity from both laboratory-and field scales.In:SPE126885,SPE International Conference on CO2 Capture, Storage, and Utilization, SanDiego, CA, USA, November24.Schmidt-Hattenberger, C. et al. (2012). A modular geoelectrical monitoring system as part of the surveillance concept inCO2 storage projects. Energy Procedia 23 (2012), 400-407.

    Szalai, S. et al. (2009). Depth of Investigation and Vertical Resolution of Surface Geoelectric Arrays, Journal of Environmental& Engineering Geophysics, 14, 15-23.Ward, S. H. (1990). Geotechnical and Environmental Geophysics, Chapter Resistivity and Induced Polarization Methods,pages 147189. Investigations in Geophysics No. 5. Soc. Expl. Geophys.

    GeoEn Summer School, Potsdam, 24-28 September 2012