geochronological and sedimentological constraints of the ...€¦ · sequences (dharwar group) and...

86
Geochronological and Sedimentological Constraints of the Srisailam Formation, S.E. India Ryan Gore a1148570 October 2011 Centre for Tectonics, Resources and Exploration School of Earth and Environmental Sciences The University of Adelaide, South Australia [email protected]

Upload: others

Post on 27-Sep-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

Geochronological and Sedimentological Constraints of the Srisailam

Formation, S.E. India

Ryan Gore

a1148570

October 2011

Centre for Tectonics, Resources and Exploration

School of Earth and Environmental Sciences

The University of Adelaide, South Australia

[email protected]

Page 2: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

2

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

TABLE OF CONTENTS 1. INTRODUCTION ................................................................................................................................... 5

2. GEOLOGICAL SETTING ......................................................................................................................... 6

3. SAMPLING AND ANALYTICAL METHODS ........................................................................................... 10

3.1 Sequence Stratigraphy ................................................................................................................ 10

3.2 Sample Descriptions .................................................................................................................... 10

3.2.1 SAMPLE RG-01 ..................................................................................................................... 10

3.2.2 SAMPLE RG-02 ..................................................................................................................... 11

3.2.3 SAMPLE RG-04 ..................................................................................................................... 11

3.2.4 SAMPLE RG-15 ..................................................................................................................... 11

3.3 Facies Descriptions ...................................................................................................................... 12

3.3.1 MARINE SANDSTONE ........................................................................................................... 12

3.3.1.1 Depositional Processes and Paleoenvironment Interpretation ........................................ 12

3.3.2 INTERBEDDED FINE SANDSTONE AND SHALE ...................................................................... 13

3.3.2.1 Depositional Processes and Paleoenvironment Interpretation ........................................ 13

3.3.3 FERRUGINOUS GLAUCONITIC SANDSTONE ......................................................................... 14

3.3.3.1 Depositional Processes and Paleoenvironment Interpretation ........................................ 14

3.3.4 MUD FLAKE BRECCIA ............................................................................................................ 14

3.3.4.1 Depositional Processes and Paleoenvironment Interpretation ........................................ 15

3.3.5 SHALES ................................................................................................................................. 15

3.3.5.1 Depositional Processes and Paleoenvironment Interpretation ........................................ 15

3.3.6 SANDSTONE WITH RIP UPS .................................................................................................. 16

3.3.6.1 Depositional Processes and Paleoenvironment Interpretation ........................................ 16

3.3.7 FERRUGINOUS SANDSTONE INTERBEDDED WITH SHALE .................................................... 16

3.3.7.1 Depositional Processes and Paleoenvironment Interpretation ........................................ 17

3.4 LA-ICP-MS U-Pb Geochronology ................................................................................................. 17

3.5 LA-MC-ICP-MS Hf Isotope analysis of zircon ............................................................................... 18

3.6 LA-ICP-MS Trace Element Analysis.............................................................................................. 20

3.6.1 DATA REDUCTION AND TRACE ELEMENT ANALYSIS ............................................................ 20

3.6.2 TRACE ELEMENT THERMOMETRY ........................................................................................ 21

3.7 Geophysical Logs ......................................................................................................................... 22

5. RESULTS ............................................................................................................................................. 22

Page 3: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

3

R. GORE

5.1 GRS Results ................................................................................................................................. 22

5.2 Paleocurrent Results ................................................................................................................... 23

5.3 U-Pb Zircon Geochronology Results ........................................................................................... 23

5.3.1 SAMPLE RG-01 ..................................................................................................................... 23

5.3.2 SAMPLE RG-15 ..................................................................................................................... 24

5.3.3 SAMPLE RG-04 ..................................................................................................................... 24

5.3.4 SAMPLE RG-02 ..................................................................................................................... 24

5.4 LA-ICP-MS Trace Element Analysis Results ................................................................................. 24

5.4.1 ZIRCON REE CHEMISTRY ...................................................................................................... 24

5.4.2 ZIRCON TEMPERATURE ESTIMATES ..................................................................................... 25

5.5 Hf Isotope Results ....................................................................................................................... 25

6. DISCUSSION ....................................................................................................................................... 26

6.1 Age Constraints of Sedimentation in the Srisailam Sub-Basin .................................................... 26

6.2 Provenance of the Srisailam Sediments ...................................................................................... 27

6.2.1 SIMILARITIES BETWEEN THE SRISAILAM FORMATION AND NALLAMALAI GROUP ............. 30

6.3 Depositional Environment of the Srisailam Formation............................................................... 31

6.4 Basin Evolution ............................................................................................................................ 32

7. CONCLUSION ..................................................................................................................................... 33

8. ACKNOWLEDGEMENTS ..................................................................................................................... 33

9. REFERENCES ...................................................................................................................................... 33

10. LIST OF TABLES ................................................................................................................................ 37

11. FIGURE CAPTIONS ........................................................................................................................... 38

12. TABLES ............................................................................................................................................. 41

13. FIGURES ........................................................................................................................................... 43

Page 4: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

4

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

ABSTRACT

The Proterozoic Cuddapah Basin contains the poorly constrained Srisailam Formation, which

presumably lies unconformably over the Nallamalai Group. The Cuddapah Basin is thought to have

initiated as a rift basin > 1900 Ma before developing into a foreland basin due to uplift of the Eastern

Ghats Belt (EGB) at ~1600 Ma. U-Pb geochronology indicates deposition of the Srisailam Formation

commenced after 1660 Ma and ceased prior to the deposition of the Kurnool Group which was

deposited < 1090 Ma. The Srisailam Formation was deposited in a tidal flat/shallow marine

environment as it contains tidal and storms influences, glauconitic sandstones, along with bimodal

east-west paleocurrents, which suggest links with an open seaway. Detrital zircon Hf isotope data

combined with detrital zircon U-Pb data suggest the Dharwar Craton as a dominant source region

with a mixed crustal evolution (ɛHf -11 to +8). Detrital zircon age peaks at ~3200 Ma, ~2700-2400 Ma

and ~2300 Ma imply that sediments are dominantly sourced from 3400-3000 Ma tonalite-

trondhjemite-granodiorite (TTG), 3000-2500 Ma volcanosedimentary greenstone belts and 2600-

2500 Ma calc-alkaline to K-rich granitic intrusions. Trace element data suggests zircon grains are

sourced from granitoids with zircon crystallisation at ~860˚C. This study reveals that the Srisailam

Formation is quite possibly a lateral equivalent of the Nallamalai Group.

Key Words: Cuddapah Basin, Srisailam Formation, Eastern Dharwar Craton (EDC), unconformably,

Eastern Ghats Belt (EGB), sedimentary, geochronological, Nallamalai Group.

Page 5: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

5

R. GORE

1. INTRODUCTION

Sedimentary basins are key to unlocking the evolution of tectonic settings over geological time as

they preserve the nature of the Earth’s surface. India is host to numerous Paleoproterozoic through

to Neoproterozic basins which can assist in the reconstruction of past tectonic environments during

the evolution of a number of Proterozoic supercontinents (Saha 2002). The Cuddapah Basin (Figure

1) is located in the south east of India in the state of Andhra Pradesh (Kaila & Tewari 1985). The area

of the basin (Figure 2) is approximately 44, 500 km2 and is crescent shaped with a convex western

margin almost 440 km long (Kaila & Tewari 1985; French et al. 2008; Chakraborty et al. 2010; Meert

et al. 2010). It is one of the largest intracratonic basins in India and nonconformably overlies the

eastern Archean Dharwar Craton (French et al. 2008). The Cuddapah Basin is bounded on the east by

the Eastern Ghats Belt (EGB). Ages of the basin are not well constrained as there has not been any

major geochronological studies on the full 12 km sedimentary pile. There are few intrusives (besides

the western edge) within the basin unfortunately as they are useful as reference points and make for

good age constraints. Further work on age constraints, provenance of sediments, and depositional

environments in the Cuddapah Basin are necessary to help reconstruct the evolution of its tectonic

history.

The relatively unstudied Srisailam Formation is situated in the northern Cuddapah Basin and is

interpreted to unconformably overlie the Nallamalai Group. However, its stratigraphic position

within the Cuddapah Basin is still uncertain. This study was conducted in the Srisailam Formation

(Figure 3) and uses sequence stratigraphy, LA-ICP-MS dating of detrital zircon, Hf isotope analysis,

trace element thermometry and REE analysis to investigate the sedimentary evolution of the

Srisailam Formation. This will provide greater information on the paleoenvironment, depositional

age constraints and the source of sediments and help place the Srisalam Formation in its

stratigraphic, paleoenvironmental and tectonic context.

Page 6: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

6

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

2. GEOLOGICAL SETTING

The Dharwar Craton lies to the north, west and south of the Cuddapah Basin and the Srisailam

Formation unconformably overlies it at its northern boundary. The Dharwar Craton evolved over a

time period ranging from 3400–2500 Ma (Figure 4; Naha et al. 1993). Chadwick (2000) and

Dobmeier (2002) describe an N-S trending crustal scale sinistral shear zone that separates the

Dharwar Craton into two distinct parts. The western side is comprised of high grade belts of

greenstone volcanosedimentary sequences (Sargur Group), low grade volcanosedimentary

sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-

trondhjemite-granodiorite (TTG) associations (Dobmeier & Raith 2002). The eastern side is

dominated by late Archean granitic rocks and minor TTG (Jayananda 2000; Mohanty 2011). Thin

elongate, low to medium grade greenstone-type schist belts are interspersed throughout the area

and are thought to be intra arc volcanosedimentary sequences similar to the Dharwar Group

(Chadwick et al. 1997; Chadwick et al. 2000; Dobmeier & Raith 2002). However there is some

discrepancy between Dobmeier (2002) and other authors over the precise timing of these events.

Jayananda (2000) describes the Dharwar Craton as having three main terranes. From west to east:

- Early to middle Archean TTG basement (3400-3000 Ma, Peninsular Gneiss; Jayananda

2000)

- Two generations of volcanosedimentary greenstone belts: an older generation at 3580-

3200 Ma (Sargur Group) and a younger one at 3000-2500 Ma (Dharwar Supergroup)

(Jayananda 2000).

- Late Archean (2600-2500 Ma) calc-alkaline to K-rich granitic intrusions. This is regarded

as the latest magmatic event in the craton (Jayananda 2000).

Page 7: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

7

R. GORE

The majority of intrusions have taken place in the Eastern Dharwar Craton (EDC) as large dyke

swarms (Meert et al. 2010).

The EGB is a Meso- to Neo-proterozoic granulite terrane comprising of felsic and mafic intrusives as

well as granulite facies meta-sedimentary rocks (Dobmeier & Raith 2003). The EGB is bound to the

west by the Bastar and Dharwar cratons, the Nellore Schist Belt and to the north by the Singhbhum

Craton. The EGB disappears into the Indian Ocean south of Ongole. The Krishna Province (Nellore-

Khammam Schist Belt and Ongole Domain) is one of 4 provinces of the EGB and lies directly to the

east of the Cuddapah Basin while the remaining provences lie north-east of the basin. High to ultra-

high temperature metamorphism took place in the Ongole Domain at ~1610 Ma (Upadhyay et al.

2009). Ductile-brittle deformation and hydration is associated with Mesoproterozoic rifting along

the south-eastern margin of Proto-India (Upadhyay et al. 2009). Further north-east, the EGB was

involved in an orogenic event at ~1100 Ma which was associated with the assembly of the

supercontinent Rodinia (Upadhyay et al. 2009). Two more deformational events followed with the

latter at ca. 550-600 Ma (Crowe et al. 2003; Dobmeier & Raith 2003) which is linked to Pan-African

tectonics (collision of East and West Gondwana; Rai et al. 2009).

A number of interpretations have been proposed to determine the tectonic setting of the Cuddapah

Basin. Many authors have suggested that it represents a peripheral foreland basin, where eastward

subduction of the Dharwar Craton created a collision and caused deformation of the Nallamalai Fold

Belt, which is somewhat similar to the Phanerozoic Himalayan orogeny (Singh & Mishra 2002;

Chakraborty et al. 2010; Meert et al. 2010). A foreland-basin origin is further supported by a

successively easterly (orogen-ward) migrating depocenter. Chatterjee and Bhattacharji (2001)

proposed that a mantle induced thermal trigger formed the basin. However the Cuddapah basin is

believed to be controlled by pre-existing sutures or weak zones and evidence of these zones come

from Bouguer anomaly interpretations and seismic studies (Kaila & Bhatia 1981; Kaila & Tewari

1985; Meert et al. 2010). Chaudhuri et al (2002) and Hou et al (2008) believe the basin initiated as a

Page 8: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

8

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

continental rift, which never fully opened up and the occurence of marine transgressions suggest the

existance of an open seaway toward the east (Chaudhuri et al. 2002). The Srisailam Formation may

have been deposited in the late Proterozoic in the Srisailam sub-basin which is thought to be

controlled by downfaulting of these deep margin faults (Kaila & Tewari 1985).

The development of a large number of intracratonic sedimentary basins in southern peninsular India

(including the Cuddapah Basin) occurred from the late Paleoproterozoic to Neoproterozoic times

(Chaudhuri et al. 2002). These are collectively referred to as Purana basins. The depositional ages of

the sediments are not well constrained within the Cuddapah Basin despite being one of the most

studied basins in India (Meert et al. 2010). The Srisailam Formation demonstrates this as it has not

been dated and its depositional age has only been estimated via the law of superposition and

surrounding ages.

The lithostratigraphy of the Cuddapah Basin is divided into two major divisions: 1 - the Cuddapah

Supergroup and 2 - the unconformably overlying Kurnool Group (Meijerink et al. 1984; Chakraborty

et al. 2010). The Cuddapah Supergroup is comprised of lower and upper successions with the former

containing the Papaghni and Chitravati Groups and the latter comprised of the Nallamalai Group and

the Srisailam Formation (in order from presumed oldest deposited to youngest; Singh & Mishra

2002; Ramakrishnan & Vaidyanadhan 2008). These four stratigraphic packages are separated by

unconformities or tectonic boundaries (Figure 5). Sedimentary rocks of the Cuddapah Supergroup

are composed of mainly argillaceous and arenaceous sequences with minor calcareous rocks (Singh

& Mishra 2002). On the western periphery of the basin are mafic/ultramafic sills, intercalations of

alkali to sub-alkali basaltic flows and ashfall tuffs (French et al. 2008). The west of the basin is

generally undeformed (Mathur 1982; Saha 2002), while the eastern part consists of the Nallamalai

Group that is moderately metamorphosed (Mathur 1982; Singh & Mishra 2002). The upper

Cuddapah Supergroup is host to the relatively unstudied Srisailam Formation which attains a

Page 9: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

9

R. GORE

maximum thickness of between 600-300 meters (Kaila & Tewari 1985; Sinha et al. 1995;

Ramakrishnan & Vaidyanadhan 2008).

The age of the Kurnool Group which unconformably overlies the Srisailam Formation (as well as the

basement) is not constrained by radiometric or paleontological data. However, at the base of the

Kurnool Group, diamondiferous conglomerates suggest a maximum depositional age of ca. 1090 Ma

(Dobmeier & Raith 2003). This is the emplacement age of kimberlite pipes in the EDC (Chalapathi

Rao et al. 1996; Dobmeier & Raith 2003) that are regarded as potential source rocks. The underlying

Nallamalai Group was intruded by the Chelima lamporites that intrude the underlying Cumbum

Formation and are dated at ~1418 Ma from Ar-Ar phlogopite separates (Chakraborty et al. 2010). It’s

also intruded by the Vellaruru Granite at ca. 1575 Ma (Rb – Sr model age; Saha 2002). These

constrain the lower age limit of most of the Cuddapah Supergroup (Chakraborty et al. 2010; Saha &

Tripathy In submission). The Srisailam Formation is usually regarded as the upper-most part of the

Cuddapah Supergroup.

Currently in the literature there are no known intrusive bodies that penetrate the Srisailam

Formation therefore making it hard to put any depositional constraints on the formation. The

Srisailam Formation is mainly composed of horizontally bedded quartzite’s and minor shale

intercalations (Meijerink et al. 1984; Ramakrishnan & Vaidyanadhan 2008) that have been

interpreted to overlie the Nallamalai Group above an angular unconformity (Sinha et al. 1995).

According to Saha (2002) and Dasgupta (2005) the formation is dominated by fluvial and aeolian

sandstone and shale. The Srisailam Formation forms a prominent plateau which extends over 3000

km2 (Sinha et al. 1995).

Page 10: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

10

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

3. SAMPLING AND ANALYTICAL METHODS

3.1 Sequence Stratigraphy

Field work took place over a period of 3 weeks in January 2011. During this period numerous

samples of sandstones (4 of which were chosen for geochronological analysis) were collected.

Locations of samples are presented in Table 1 and Figure 3. Accompanying this are sedimentary logs

and GRS data of the Srisailam area.

Two stratigraphic sections were logged within the Srisailam Formation with the smaller of the two

(Figure 6) being logged higher up in the formation. The main focus of the stratigraphic study was at

an exposure on the edge of the Krishna River, just below the Srisailam Dam (Figure 7). This along

with gamma ray logs and paleocurrents will help in the interpretation of the Srisailam sub-basins

environment and potentially its evolution.

3.2 Sample Descriptions

3.2.1 SAMPLE RG-01

This sample was taken on a road side cutting in the hills to the south above Srisailam (16˚ 02.770’N,

78˚ 54.408’E). Its stratigraphic location is included on the stratigraphic log in Figure 6.

Stratigraphically it was the uppermost sample analysed. The sample was taken from a fine sandstone

bed that was massive at the base and laminated toward the top. Grains were sub-rounded to

rounded and the bed contained hummocky cross stratification.

Page 11: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

11

R. GORE

3.2.2 SAMPLE RG-02

This sample was taken from a road side cutting further to the north than the other 3 dated samples.

It is approaching the edge of the Srisailam sub-basin and in close contact to the underlying Dharwar

Craton. The sample was taken from a medium grained, planar, cross-bedded, quartz arenite (16˚

18.386’N, 78˚ 43.981’E).

3.2.3 SAMPLE RG-04

Sample RG-04 was collected from the lower portion of the sedimentary log in a quarry next to the

Krishna River (16˚ 05.506’N, 78˚ 54.617’E). The sample is comprised of sub-rounded medium to

coarse grained sandstone with shallow planar cross bedding. Many of the coarse grains are aligned

within the foresets. There was also evidence of syn-sedimentary folding within the sampled bed. The

top of the bed contains straight crested symmetrical ripples which were mantled by coarse grains

and granules.

3.2.4 SAMPLE RG-15

This sample was collected from the very upper part of the sedimentary log (16˚ 05.090’N, 78˚

54.120’E) not far from Sundipenta which is stratigraphically below sample RG-01. This sample was

taken from a homogeneous, medium grained ferruginous, glauconitic sandstone bed that contains

planar and trough cross stratification.

Page 12: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

12

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

3.3 Facies Descriptions

3.3.1 MARINE SANDSTONE

This facies group makes up a large majority of the sedimentary rocks logged. It is composed of thin

and thick amalgamated massive sandstone beds of mature quartz arenite that occur as laterally

persistent sheet-like bodies. They are predominately medium grained with the occasional coarser

sandstone layers. Beds that contain cross stratification (Figure 8d) have shallow to steep foresets

and they usually contain coarser sand–grade material within the foresets. These beds often formed

bed sets 7-8 m thick or alternate with thin bedded rippled sandstone with a muddy interval. The

thinner beds (usually < 5 cm) were generally sub mature medium grained quartz arenite with well

preserved bimodality. Grains are rounded to subrounded with all beds containing pinch and swell

geometry. The ripples (Figure 9a) throughout are symmetrical to slightly asymmetric and often have

half amplitudes and wavelengths of between 0.5-2.5 cm and 2-5 cm respectively. Occasional

slumping was identified (Figure 9c) and heavy minerals laminations sporadic. Beds are dipping very

gently toward the north east and variations in the direction of cross beds suggest different flow

directions.

3.3.1.1 Depositional Processes and Paleoenvironment Interpretation

Symmetric to slightly asymmetric ripples (Figure 9a) found at the top of beds implies a bimodal flow

regime. Also grains are very mature and it’s quite possibly due to wave reworking. Some less mature

channel fill sandstones are found in different places. The majority of beds contain cross stratification

indicating tractional deposition during periods of high flow velocity and is likely to be produced in a

tidal regime. Other features reflecting the ebb and flood currents are visible. These include

herringbone cross stratification (Figure 8a) and back flow ripples (Figure 8c) which can be from

current reversals and storm effects. Hummocky cross bedding (Figure 8b) is present in the small

Page 13: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

13

R. GORE

sedimentary log (Figure 6) which is thought to form between fair weather and storm wave base. This

may have been deposited in slightly deeper water. The presence of fluid escape structures and ball

and pillow structures (Figure 8e) implies rapid sedimentation. This is due to the oscillatory or

combined flows produced by storms (Tucker 2001). Convoluted bedding (Figure 9e) may have

formed due to differential liquefaction, lateral vertical intrastratal flow (dewatering process) and

shearing of the sediments by surface currents (Tucker 2001). These processes and bedforms point to

a high energy environment with laminar and often turbulent flows. It may represent a bar – interbar

sequence. From field observations it is evident that this facies is from a shore face environment from

intertidal to shallow marine origin.

3.3.2 INTERBEDDED FINE SANDSTONE AND SHALE

This lithological unit is defined by thin beds of well rounded and well sorted, fine sandstone beds (1-

5 cm thick) and is therefore compositionally mature. Sandstones are interbedded with green to

reddish/brown shaley layers (4-10 cm thick). The green shales dominate the lower half of the log

while the reddishy/brown shales are found in the top half. Both the shale and sandstone contain fine

laminations, wavy bases and in some cases symmetrical ripples (Figure 9a). Straight crested

symmetrical ripples from a shaley bed have ripple crest orientations of 215˚ - 035˚, 230˚ - 050˚, 250˚

- 070˚. All the rippled beds contain either planar or trough cross stratification (Figure 8d and 8a)

inside and slumping (Figure 9c) is rare. There are occasional lenses of fine sands within the shaley

layers and all beds contain pinch and swell geometry.

3.3.2.1 Depositional Processes and Paleoenvironment Interpretation

This facies assemblage may have been deposited by fallout of suspended particles and tractional

processes. The presence of laminated beds and small ripples suggests that it is a relatively low

energy environment. Symmetric ripples suggest bimodal flow and the lenses of fine sands quite

Page 14: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

14

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

likely represent small channels during periods of lower flow velocity. Red to brown muds are due to

the result of ferric oxide and hematite occurring as grain coatings and intergrowths while the green

colour comes from ferrous iron within the lattices of illite and chlorite (Tucker 2001).

3.3.3 FERRUGINOUS GLAUCONITIC SANDSTONE

Beds are generally between 1-1.5 m thick of ferruginous sub-mature to mature glauconitic

sandstone (Figure 9d). However higher up in the sequence the beds tend to be between 15-50 cm

thick. It is generally medium grained with planar and trough cross stratification and small pockets

and lenses of coarser sandstone. It is purple in appearance and coarser sands are aligned in the cross

strata.

3.3.3.1 Depositional Processes and Paleoenvironment Interpretation

The ferruginous glauconitic sandstone (Figure 9d) predominately occurs in the upper sequence in

the stratigraphic log (Figure 7). Medium grained sands are dominant along with cross stratification

which leads to tractional deposition. The presence of glauconite can constrain its depositional

environment quite well. In modern day environments, glauconitic minerals usually occur in water

depths of midshelf to the upper slope (Conrad et al. 2011) and it is a very reliable indicator of low

sedimentation rates in marine settings (Amorosi 1995).

3.3.4 MUD FLAKE BRECCIA

The mud flake breccia (Figure 9h) is only found in one bed located close to the bottom of the

sedimentary log (Figure 7). The clast supported matrix contains sub-rounded, fine to medium

grained sands with an abundance of muddy (reddish colour) rip up clasts all throughout the bed. The

Page 15: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

15

R. GORE

clasts that are randomly distributed and range from < 0.5 - 3 cm in diameter. The clasts were not

imbricated so no sense of flow could be detected.

3.3.4.1 Depositional Processes and Paleoenvironment Interpretation

This facies contained no visible structures and would have carried sediment via suspension. The rip

up clasts (Figure 9g) are indicative of turbulent flow and therefore formed in a high energy

environment. The fact that there is no shale layer underlying this facies means that they could be

intraformational clasts as beds in the area can often pinch in and out. Mud flakes are usually formed

by dessication due to aerial exposure, possibly in a tidal flat, or overbank environment (Tucker

2001). Clasts by their angular appearance, show little transport.

3.3.5 SHALES

The shale facies is comprised of green to reddy brown, laminated silty thin shales with trough cross

bedding, occasional ripples on the upper surface and minor mud cracks (Figure 9f). Laminations are

generally between 1-3 mm and beds show pinch and swell geometry. Shale beds have dip/dip

directions similar to 08/057. The greener shales toward the bottom of the log contain chlorite while

the shales higher up are predominately reddy brown. Mud cracks are only found toward the bottom

off the stratigraphic log and are polygonal in nature with medium sands filling in the cracks.

3.3.5.1 Depositional Processes and Paleoenvironment Interpretation

Desiccation cracks (Figure 9f) at the bottom of the log imply aerial exposure, possibly in a tidal flat,

or overbank environment (Tucker 2001). The majority of the muds were deposited by fallout of

suspension in progressively deeper, lower energy environments. The colour of the muds are due to

hematite coating grains and ferrous iron within chlorite and illite lattices (Tucker 2001).

Page 16: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

16

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

3.3.6 SANDSTONE WITH RIP UPS

This facies is somewhat similar to the marine sandstone as it has mature medium grained sandstone

with planar and trough cross stratification. Ripples are also found on the top of bedding planes. The

difference is that the beds contain greeny brown rip up clasts (Figure 9g) of shale that appear to

cluster along the trend of the laminations. However some clasts are more randomally distributed

throughout the beds. Clasts range in size from < 0.5 – 8 cm and are more prolate than oblate.

Smaller clasts are more abundant than the larger ones. All beds contain wavy bases and the

occasional bed fines up from coarse to medium grained.

3.3.6.1 Depositional Processes and Paleoenvironment Interpretation

The presence of pervasive rip up clasts is indicative of a high energy environment as the underlying

muds have been eroded and sent into suspension. These clasts of mud were likely formed by

dessication in a tidal flat or overbank environment.

3.3.7 FERRUGINOUS SANDSTONE INTERBEDDED WITH SHALE

This facies consists of fine ferruginous, glauconitic sandstone interlayered with laminated (1 mm)

shales (Figure 9b). It has cross stratified beds and is predominately purple in colour. Beds are

generally < 9 cm and some beds contain fining up sequences. It is somewhat similar to the

interbedded Fine Sandstone and Shale, although no ripples could be found.

Page 17: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

17

R. GORE

3.3.7.1 Depositional Processes and Paleoenvironment Interpretation

The fine grained nature of the sandstone coupled with interlayers of muds suggests a low energy

environment. Muds and sand were deposited by suspension and tractional processes. The presence

of glauconite indicates low sedimentation rates (Amorosi 1995). The fine sediments and the

presence of glaucony imply a deepening marine environment.

3.4 LA-ICP-MS U-Pb Zircon Geochronology

The following geochronological processes were carried out at the University of Adelaide. Samples

were cleaned and all weathered material was removed before undergoing cutting, crushing and

milling. After this samples were cleaned, panned and dried in preparation for magnetic separation.

Heavy liquids were used for further separation before being handpicked under microscope. Once

mounted in epoxy resin, the mounts were polished so zircon grains were exposed for carbon coating

in preparation for imaging on the Philips XL20 Scanning Electron Microscope. Images were obtained

using backscattered electron and Gatan Cathodoluminesence (CL) detector to identify zonation

within the zircons. To obtain the backscatter and CL images, the operating voltage was set to 15 kV

and the spot size set between 5 and 7.

U – Pb geochronology of zircon was conducted by Laser Ablation Inductively Coupled Plasma Mass

Spectrometry (LA-ICP-MS) at Adelaide Microscopy, University of Adelaide. The LA-ICP-MS procedure

is similar to Payne et al (2006). The analyses were performed using an Agilent 7500cs ICP-MS

coupled to a New Wave 213 nm Nd-YAG laser. Ablation of zircon was conducted in a helium

atmosphere with a repetition rate of 5 Hz, beam diameter of 30 μm and a laser intensity of ~8-

10J/cm2. Data acquisition time for the analysis is 100 seconds including 30 seconds of gas

background followed by 65 seconds of zircon ablation and the final 5 seconds without the laser firing

to monitor cell washout. The GEMOC GJ-1 standard (normalisation data: 207Pb/206Pb = 608.3 Ma,

206Pb/238U = 600.7 Ma and 207Pb/235U = 602.2 Ma; Jackson et al. 2004) was used to correct ablation

Page 18: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

18

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

and instrumental fractionation. This was then further monitored by using an internal standard

Plesovice (337.13 ± 0.37 Ma; Sláma et al. 2008). In this study the total GJ-1 analyses yielded a mean

206Pb/238U age of 600.44 ± 0.92 Ma (n = 244, MSWD = 0.63) and Plesovice gave a mean 206Pb/238U age

of 339.2 ± 2.3 Ma (n = 28, MSWD of 2.1). GLITTER software was used for data reduction (Griffin et al.

2008) and final ages, concordia diagrams, probability distribution diagrams and mean weighted

averages of zircon populations were constructed using Isoplot 4 (Ludwig 2000). The 206Pb/238U age

was used for zircons younger than 1000 Ma and zircon grains older than this used the 207Pb/206Pb

age. This is due to the 207Pb/206Pb age being a better determinant in older grains and the 206Pb/238U

age being the main determinant in younger grains (Ireland et al. 1998; Collins et al. 2007). Data was

processed using a 90 – 110 % concordancy threshold.

3.5 LA-MC-ICP-MS Hf Isotope Analysis of Zircon

The Hf isotope data were collected at a joint University of Adelaide/CSIRO facility. The Hf isotope

analyses were conducted on zircons that were previously analysed for U-Pb age data. Zircon that

gave concordant ages between 90-110% were targeted. Laser spots were placed as close as possible

to concordant U-Pb LA-ICPMS spots, within the same zone. The analyses were performed with a

Thermo-Scientific Neptune Multi Collector ICP-MS coupled to a New Wave UP-193 Excimer laser

(193 nm). Zircons were ablated in a helium atmosphere, which was mixed with argon upstream of

the ablation cell. Pulse lengths of 4ns with repetition rates of 5 Hz and a 50 µm spot diameter were

applied (~10J/cm2). Measurements were made using a Thermo-Scientific Neptune Multi Collector

ICP-MS equipped with Faraday detectors and 1012Ω amplifiers. Analyses used a dynamic

measurement routine with: Ten 0.524 second intergrations on 171Yb, 173Yb, 175Lu, 176Hf, 177Hf, 178Hf,

179Hf, and 180Hf; one 0.524 second integration on 160Gd, 163Dy, 164Dy, 165Ho, 166Er, 167Er, 168Er, 170Yb and

171Yb, and, one 0.524 second integration of Hf Oxides with masses ranging from 187 to 196 amu.

Page 19: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

19

R. GORE

An idle time of 1.5 seconds was included between each mass change to allow for magnet settling

and to negate any potential effects of signal decay. This measurement cycle is repeated 15 times to

provide a total maximum measurement time of 3.75 minutes including an off-peak baseline

measurement. This dynamic measurement routine is used to allow for the monitoring of oxide

formation rates and REE content of zircon and provide the option to correct for REE-oxide

interferences as necessary.

Hf mass bias was corrected using an exponential fractionation law with a stable 179Hf/177Hf ratio of

0.7325. Yb and Lu isobaric interferences on 176Hf were corrected for following the methods of

Woodhead et al. (2004). 176Yb interference on 176Hf was corrected for by direct measurement of Yb

fractionation using measured 171Yb/173Yb with the Yb isotopic values of Segal et al. (2003). The

applicability of these values were verified by analysing JMC 475 Hf solutions doped with varying

levels of Yb with interferences up to 176Yb/177Hf= ~0.5. Lu isobaric interference on 176Hf corrected

using a 176Lu/175Lu ratio of 0.02655 (Vervoort et al. 2004) assuming the same mass bias behaviour as

Yb.

Set-up of the system prior to ablation sessions was conducted using analysis of JMC475 Hf solution

and an AMES Hf solution. Confirmation of accuracy of the technique for zircon analysis was

monitored using a combination of the Plesovice, Mudtank and QGNG standards. The average value

for Plesovice for the analytical session was 0.282479 (2SD=0.000022, n=27). This compares to the

published value of 0.282482 +/- 0.000013 (2SD) by Slama et al. (2008).

TDM and TDM crustal were calculated using 176Lu decay constant after (Scherer et al. 2001). TDM

crustal was calculated using the methods of Griffin et al. (2002) with an average crustal composition

of 176Lu/177Hf=0.015.

Page 20: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

20

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

3.6 LA-ICP-MS Trace Element Analysis

Trace element data was collected from zircon samples for the purpose of thermometry and rare

earth element (REE) chemistry. Trace elements in igneous zircons are shown to be sensitive to

source rock type and crystallisation environment (Belousova et al. 2002). The Ti content in zircon has

a strong dependence on temperature of zircon crystallisation (Ferry & Watson 2007). Trace element

analysis was undertaken only on sample RG-15.

3.6.1 DATA REDUCTION AND TRACE ELEMENT ANALYSIS

Zircon mineral chemistry was obtained on a Cameca SX51 electron microprobe at Adelaide

Microscopy, University of Adelaide. An acceleration voltage of 15 kV and a beam current of 20 nA

was used. Hf data collected from the Electron Microprobe analysis (EMPA) is then used on the LA-

ICP-MS as an internal standard for zircon.

Trace element analysis of zircon was undertaken at Adelaide Microscopy using an Agilent 7500cs

ICP-MS equipped with a New Wave 213 nm Nd-YAG laser. Zircon analyses were conducted using a

55 μm beam diameter with a repetition rate of 5 Hz and a beam intensity of ~10J/cm2. The beam

was fired overlapping previous U-Pb LA-ICP-MS pits. The total acquisition time per analysis was 100

seconds. A background measurement of 40 seconds was followed by 60 seconds of sample ablation.

Calibration was performed against the NIST 610 glass standard using coefficients of Pearce et al

(1997). Uncertainty was monitored by repeat measurements of the NIST 610 glass standard. NIST

610 glass standard was run twice at the beginning and followed by 13 unknowns. 178Hf was used as

the internal standard for zircon, applying the previously determined values from the microprobe

analysis. Data reduction was performed using GLITTER software (Griffin et al. 2008).

Page 21: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

21

R. GORE

REE all have similar chemical and physical properties and typically the lower atomic numbers are

termed light rare earths (LREE) while higher atomic numbers are heavy rare earths (HREE). Elements

were normalised by values from Taylor and McLennan (1985) to create a spiderplot. The slope of the

LREE and HREE is determined by Smn/Lan and Lun/Smn, respectively (n is chondrite normalised).

Belousova et al (2002) have created plots that constrain zircon composition into different fields for

different rock types (Figure 10). Zircon data from RG-15 has been overlain on these figures using

methods from Belousova et al (2002) to help determine the zircon grains host rock. In figure 8a, Y

(ppm) is plotted against U (ppm), while Figure 8b has Y (ppm) plotted against Yb/Sm. Figure 8c and

8d have Y (ppm) plotted against Ce/Ce* and Ce/Ce* against Eu/Eu* respectively. The Ce anomaly is

given by Ce/Ce*, where Ce* is the average of the chondrite normalised La and Pr concentrations. Eu

is calculated as Eu/Eu*, whereby Eu is the chondrite normalised Eu value and the Eu* is the average

chondrite normalised value of Sm and Gd concentrations.

3.6.2 TRACE ELEMENT THERMOMETRY

Titanium trace contents in zircon were collected from the LA-ICP-MS and are used to calculate

crystallisation temperatures of zircon. Temperatures estimated from trace element concentrations

in accessory minerals utilise the Ti in zircon thermometer from Ferry and Watson (2007). Trace

element thermometers are based on the limited and temperature dependant exchangeability

between the structural constituents of zircon. A log linear relationship between Ti content (in ppm

by weight) in zircon and absolute temperature (K) is provided below. The zircon thermometer is

independent of pressure.

log (ppm Ti in zircon) = (5.711 ± 0.072) – (4800 ± 86) / (15) T (K) – logaSiO2 + logaTiO2

The zircon thermometer is based on Ti content. The error is based on the concentration range of Ti

measured across each sample which then provides a minimum and maximum temperature range.

Page 22: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

22

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

However uncertainties in temperature may be due to unidentified activities. Values of aTiO2 in silicic

melts are rarely below ~0.5 and a typically between 06.-0.9. So the assumption is that aTiO2 = 0.6

and aSiO2 = 1. Temperature ranges are displayed in Appendix Table A1. (Refer to Ferry and Watson

(2007) for more details).

3.7 Geophysical Logs

A transect was undertaken through a section of the Srisailam Formation and is displayed in Appendix

Table A2. Measurements from the hand held Gamma Ray Spectrometer (GRS) were taken

sporadically. All the data retained were collected from areas of rock that were homogenous.

Weathered areas were not measured. GRS data was collected during stratigraphic logging and U, Th

and K values were recorded.

5. RESULTS

5.1 GRS Results

The GRS data correlates well with the sedimentary log (Figure 7), as high K values are shown in areas

dominated by shales. Throughout the log the highest K, U and Th value was 4.6 %, 4.5 ppm and 20.9

ppm respectively. These values are found within a shaley layer from the same location higher up

within the log. This also recorded the highest value for heat production (3.5 mW/m3). The K, U, Th

and heat production values are very low toward the bottom of the log and these values increase up

section as shale increases. Unconformable U deposits occur in the Srisailam Formation (Banerjee

1999; Verma et al. 2009) however no high U values or anomalies were detected within the GRS log.

Page 23: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

23

R. GORE

5.2 Paleocurrent Results

The paleocurrent direction in the Srisailam Formation is bimodal. Symmetrical ripples at the base of

the sedimentary log show an initial north/south trend which swings around to approximately an

east/west trend for the remained of the log (Figure 7). The majority of the foresets trend roughly in

an east-westerly direction.

5.3 U-Pb Zircon Geochronology Results

All samples for detrital zircon geochronology were collected from the Srisailam Formation from

within the Cuddapah Supergroup. Cores were targeted to give the best likelihood in determining the

initial age of crystallisation. Zircon grains without smooth signals or grains that contained large

amounts of common lead were excluded. U-Pb detrital zircon data is displayed in Figures 11-19 and

raw data is displayed in Appendix Table A3. Zircon morphologies and a summary of detrital zircon

age peaks are displayed in Table 1 and 2 respectively.

5.3.1 SAMPLE RG-01

One hundred and forty two analyses were obtained from 142 zircon grains and of these 69 recorded

90-110% concordance. Small age peaks occur at 3221 ± 22 Ma (n=2) and 2730 ± 24 Ma (n=3). The

main population of zircon grains occur at 2543 ± 8 Ma (n=35). The youngest population of zircon

grains yielded an age of 2307 ± 27 Ma (n=6). Single zircons yielded ages of 3104 ± 16 Ma, 1984 ± 23

Ma and 1875 ± 19 Ma. The youngest 90-110% concordant analysis yielded a 207Pb/206Pb age of 1787

± 22 Ma (99% concordant).

Page 24: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

24

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

5.3.2 SAMPLE RG-15

Of the 105 zircons analysed 38 were between 90-110% concordant. The youngest and major age

population occurs at 2510 ± 11 Ma (n=30) with the youngest 90-110% concordant grain at 2374 ± 19

Ma.

5.3.3 SAMPLE RG-04

A total of 62 zircon grains were analysed, of this 19 were between 90-110% concordant. The

youngest and major age peak in the data occurs at 2507 ± 12 Ma (n=17). A single grain older than

the major peak was 2666 ± 18 Ma, while the youngest grain in this sample yielded an age of 2062 ±

20 Ma (90% concordant).

5.3.4 SAMPLE RG-02

Of the 47 zircon grains analysed, only 9 were between 80-120% concordant. The youngest zircon

population lies at 2498 ± 12 Ma (n=8), while the remaining single 80-120% concordant zircon grain

yielded an age of 2555 ± 17 Ma. Three of these 9 zircon grains were between 90-110% concordance.

5.4 LA-ICP-MS Trace Element Analysis Results

5.4.1 ZIRCON REE CHEMISTRY

Chrondrite normalised zircon REE analyses are presented in Appendix Table A4. Sample RG-15

(Figure 20) has zircon grains with ΣREE = ~ 285 – 6350 ppm. Chondrite normalised REE patterns for

the zircon cores are characterised by moderate LREE slopes (Smn/Lan = 0.93-234.17) and HREE

(Lun/Smn = 1.07-23.68). It has a positive Ce anomaly (Ce/Ce* = 1.17-70.63) and a negative Eu

Page 25: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

25

R. GORE

anomaly (Eu/Eu* = 0.22-0.82), whereby Ce/Ce* =𝐶𝑒𝑛

(𝐿𝑎𝑛 𝑥 𝑃𝑟𝑛 ) and Eu/Eu* =

𝐸𝑢𝑛

(𝑆𝑚𝑛 𝑥 𝐺𝑑𝑛 ) (Rollinson

1993). The n denotes that the element has been chondrite normalised.

The data are plotted on the discrimination diagrams of Belousova et al (2002) in Figure 10. In the Y

vs U plot (Figure 10a) the majority of zircon data plot in the granitoid field and some in the

overlapping syenite pegmatite field. In the Y vs Yb/Sm plot (Figure 10b) the data plots in the third

granitoid field with some data points entering the syenite pegmatite field and one in the carbonatite

field. In the Y vs Ce/Ce* plot (Figure 10c) the zircon data plot much like Figure 10a and 10b, with the

majority of data plotting in the granitoid field. One point remains in the carbonatite field while some

data plot without a field. In the Ce/Ce* vs Eu/Eu* plot (Figure 10d) the majority of data plot within

or on the edge of the granitoid field. Some data points enter the lamporite, carbonatite, syenite and

kimberlite fields.

5.4.2 ZIRCON TEMPERATURE ESTIMATES

Temperature estimates for the zircon grains in RG-15 vary from 723˚C to 1108˚C. The majority of the

temperature values range between the upper 700˚C mark to the low 900˚C mark, with just one

zircon grain recording a value higher than 1000˚C. The mean weighted average temperature of

sample RG-15 is 861 ± 26˚C (1σ error). No correlation between temperature and age was found

(Figure 21).

5.5 Hf Isotope Results

Two samples from the Srisailam Formation were selected for in-situ zircon Hf isotope analysis. Hf

isotope data is displayed in Appendix Table A5. Fifteen grains with a 100 ± 10% age concordance

were analysed from sample RG-01 and RG-04 (Figure 22). Any grains with a 176Yb/177Hf ratio above

0.17 were eliminated and couldn’t be corrected properly due to high Yb.

Page 26: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

26

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

The initial Hf values of Hf isotropic compositions for both samples range between 0.280886 to

0.281539. The U-Pb ages of the detrital zircons used ranged from 1787 Ma to 2670 Ma. Older grains

> 3000 Ma were analysed but the obtained signal was too short and of poor quality so has not been

used. Between the two samples the ɛHf values ranged from +13.95 to -11.08.

Initial Hf in zircon grains from sample RG-04 range from 0.280886 (RG-04 Spot 02) to 0.281448 (RG-

04 Spot 50). The ɛHf value of the zircons range between -11.08 (RG-04 Spot 02) to +6.79 (RG-04 Spot

52 (2)), while the 207Pb/206Pb ages vary from 2062 to 2556 Ma. The TDM model ages in this sample are

between 2600-3630 Ma. The main ages clustered around 2500 Ma, while the only outlier was at

2062 Ma. It has ɛHf values of -0.80 and 176Hf/177Hf values of 0.281448.

In sample RG-01 the initial Hf values had a similar range (0.281034 to 0.281538) to that of sample

RG-04. The ɛHf value also varied greatly with a minimum of -10.34 and a maximum of +7.85. The

207Pb/206Pb ages had a large spread from 1787 to 2670 Ma, while the TDM model age was between

2560-3210 Ma. These data contained two populations around 2500 Ma and 2300 Ma and three

individual zircon ages. Age populations ~2500 Ma and ~2300 Ma had TDM values between 2560-3320

Ma and 2880-2990 Ma respectively.

6. DISCUSSION

6.1 Age Constraints of Sedimentation in the Srisailam Sub-Basin

The Srisailam Formation is thought to be the youngest formation in the Cuddapah Supergroup as it

has been interpreted to unconformably overlie the northern part of the Cumbum Formation,

(Nallamalai Group; Sinha et al. 1995).

Page 27: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

27

R. GORE

U – Pb detrital zircon dating of the Srisailam Formation has revealed a dominant age population in all

samples at ~2500 Ma. The youngest population of detrital zircons occur at 2307 ± 27 Ma. However

the formation contains five individual concordant zircon ages which are younger than this and range

in age between ca. 2160 Ma and 1785 Ma. The youngest concordant zircon grain in this study yields

an age of 1787 ± 22 Ma which is interpreted as the maximum depositional age for the Srisailam

Formation. The timing of deposition of the Srisailam Formation can be further constrained to < 1660

Ma, as the depositional interval of the interpreted underlying Nallamalai Group is between 1661 ±

20 Ma (zircon based maximum depositional age) and ca. 1575 (the Rb-Sr crystallisation age of the

crosscutting Vellaruru Granite; Alexander 2011).

The timing of deposition of the Kurnool Group, which unconformably overlies the Srisailam

Formation, is poorly constrained. Detrital zircon dating show that it has a maximum depositional age

of 2516 ± 19 Ma (Bertram 2010). The diamondiferous conglomerates at the base of the Kurnool

Group are interpreted to be sourced from the 1090 Ma kimberlite pipes in the EDC (Dobmeier &

Raith 2003) suggesting that the Kurnool Group is younger than 1090 Ma.

6.2 Provenance of the Srisailam Sediments

The provenance of the Srisailam Formation is addressed using a combination of detrital zircon U –Pb,

REE and Hf isotope analyses.

The U-Pb detrital zircon data suggest a dominant source region capable of supplying ca. 2500 Ma

zircon grains contributed sediment to the Srisailam sub-basin. The remainder of the U-Pb zircon data

have a large spread of ages between 3225 - 1785 Ma. Given the proximity of the Cuddapah Basin to

the Dharwar Craton it is worth assessing this terrain as a potential source of sediment for the

Srisailam Formation.

Page 28: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

28

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

The oldest detrital zircon grains within the Srisailam Formation (> 3000 Ma) may be sourced from

the 3400- 3000 Ma TTG basement (Peninsular Gneiss) and or the 3580 – 3200 Ma Sargur Group of

the Western Dharwar Craton (WDC). The ~2.7-2.4 Ga zircon age peak is consistent with being

sourced from the 3000 – 2500 Ma volcanosedimentary greenstone belts of the EDC, however it is

also possible that they were sourced from the ~2720 Ma Mulaingiri Formation (Dharwar

Supergroup) in the WDC (Trendall et al. 1997). This zircon age peak is also consistent with being

sourced from the late Archean (2600-2500 Ma) calc-alkaline to K-rich granitic intrusions. In addition,

the Salem Block located in the southern Dharwar Craton and the (2482 ± 70 Ma to 2268 ± 32 Ma)

northern EDC, Archean basement gneisses and younger Mahboobnagar granite (Sinha et al. 1995),

are probable sources for ~2400 Ma zircon grains. Clark et al (2009) produced ages from the Salem

Block between ca. 2560 Ma and 2400 Ma with a peak at 2473 ± 8 Ma for a charnockite.

Another noticeable detrital zircon age peak is at ~2300 Ma which may correspond to the ca. 2360

Ma Bangalore and ca. 2190-2270 Ma Mahboobnagar dyke swarms, located in the EDC.

French (2008) obtained a U-Pb geochronological age of 1885 ± 3 Ma for the mafic-ultramafic sill

complex located in the lower Cuddapah Basin which could be a possible source of ~1900-1770 Ma

detrital zircon grains. However, these ca. 1900-1770 Ma zircon grains may also have been sourced

from the Nellore Schist Belt, positioned to the present day east of the Cuddapah Basin, which

experienced 1868 ± 6 Ma and 1771 ± 8 Ma felsic magmatism (Vasudevan et al. 2003). Recent detrital

zircon U-Pb geochronology by Henderson (2011) yielded ages between 1960 Ma and 1810 Ma in the

Ongole Domain, meaning that it may be an alternate source region for the ~1900-1770 Ma zircons.

Up stratigraphy, the samples contain greater amounts of younger zircons that may imply a shift in

the source of sediment. However, this also may be due to the greater number of analyses conducted

on the samples collected higher up stratigraphy compared to samples collect toward the base of the

Page 29: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

29

R. GORE

formation. This change correlates with a marked change in facies with more distal, deeper water

sedimentary rocks being found at the top of the formation.

Weak Ce/Ce* anomalies (from 1 to 10, Appendix Table A6) are typical of kimberlite, carbonatite and

granitoid zircons (Belousova et al. 2002). Almost all values are < 10 implying a granitoid source, as

there are no kimberlites in the EDC older than the maximum depositional age of the Srisailam

Formation and carbonatites are very rare. The accuracy of this method is not known, although the

common feature in all these plots is that the majority plot in the granitoid fields. From this method it

is evident that the majority of the zircons were produced from granites. Weighted average

temperature estimates for the crystallisation of zircon also confirm that the majority of zircons were

likely sourced from granites (Payne, Pers. Comm. 2011). The chondrite normalised zircon REE

patterns are very similar to REE patterns presented in Hoskin & Ireland (2000). However REE

chemistry of zircons from different crustal rock types is generally not a good indicator of sediment or

inherited zircon provenance (Hoskin & Ireland 2000).

The importance of Hf in conjunction with U-Pb geochronological data has been stated in Howard et

al (2009). Half of the data at ~2500 Ma is juvenile, while the remaining half favours sources with

older crustal components with a range of between -11 to +8. Hf data on the Dharwar Craton is rare

and due to this, the following equation has been used to convert ɛNd values to ɛHf values (ɛHf =

1.36ɛNd + 2.95; Vervoort et al. 1999). Jayananda (2000) reports ɛNd values of -8 to +3 from ages

~2500 Ma zircons from the volcanosedimentary greenstone belts of the EDC, which equates to ɛHf

values of -8 to +7, which matches well with the ranges seen in the Srisailam Formation. Anand

(2003) has dated the mafic-ultramafic sill from within the Tadpatri Formation at ~1900 Ma, that

contain ɛNd values between -10 and +1. This equates to ɛHf results between -10 and +4. The few

zircon ages at ~1900-1800 Ma fall within these ɛHf values, which suggests that this could be a

potential source but further analysis is needed due to the limited data set at this age. However,

Page 30: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

30

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Henderson (2011) produced ɛHf results from of similar aged metasedimentary rock in the Ongole

Domain which yield values of between -9 to -2. The 1900 – 1800 Ma zircon grains from the Srisailam

Formation fell within these values which implies the Ongole metasediments are a suitable source.

However further analysis would be required due to the very limited data at these ages.

The Hf isotope data collected from the Srisailam Formation supports the EDC as a likely source

region. However, it is also possible that zircon grains were sourced from the Ongole Domain (EGB)

based on data from Henderson (2011) and less likely originated from the mafic-ultramafic, Tadpatri

sill as zircons are rare in mafic-ultramafic rocks.

6.2.1 SIMILARITIES BETWEEN THE SRISAILAM FORMATION AND NALLAMALAI GROUP

Detrital age peaks from the Srisailam Formation are very similar to those from the Nallamalai Group

(Figure 19; Alexander 2011). However, the Nallamalai Group comprises of a more prominent

younger source at ~1900-1700 Ma, which may be related to its geographical location in relation to

the EGB. The Srisailam Formation may have yielded a greater number of younger grains if a larger

set of data was analysed. The Srisailam Formation and Nallamalai Group may have been deposited

within a short time of one another, as they are thought to lie stratigraphically above one another

(Sinha et al. 1995; Saha 2002; Meert et al. 2010). Their lithology and sedimentary structures are also

quite similar as they both contain pervasive sandstones, along with shales, glauconitic sandstone,

wavy beds, storm structures, straight crested ripples and minor desiccation cracks (Saha & Tripathy

In submission). It is quite possible that the unconformity between the two formations has been

misidentified and is actually a thrust as Saha & Tripathy (In submission) have suggested. This along

with the majority of other evidence suggests that the Srisailam Formation is quite possibly a lateral

equivalent of the Nallamalai Group.

Page 31: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

31

R. GORE

6.3 Depositional Environment of the Srisailam Formation

The Srisailam Formation was deposited at some time after ~1660 Ma in a shallow marine/tidal flat

environment. Ramakrishnan & Vaidyanadhan (2008) reported that the Srisailam Formation contains

a basal conglomerate at the proposed unconformity.

Toward the base of the sequence, many episodes of high energy events which contain rip up clasts

of muds that are believed to have originated from a tidal flat environment. Between these high

energy events is evidence of subaerial exposure. This could be caused by storm events during high

tides where sea water penetrates sediment barriers and proceeds to rip up muds from the tidal flats.

Possible evidence of a tidal flat environment was suggested from the presence of dessication cracks

and interference ripples found laterally in relation to the sedimentary log. It is also possible that a

number of small transgressional events occurred, which breached barriers to the tidal flats. The

migration of sand bars may have occurred following the deposition of these sandstones containing

rip up clasts.

Sandstones of the Srisailam Formation with amalgamated cross stratified sandstone beds with

mudstone drapes and interlaminated sandstone-mudstone are products of flows modified by

various tidal couplets (Eriksson et al. 2006). Sand was transported during the ebb and flood stages

while the mud accumulated during the slack water phases.

The presence of glauconite is very common toward the top of the stratigraphic log. This, interlayered

with muds, implies that the environment is of a shallow marine nature. Glauconite forms in waters

between 10 meters to a few hundred meters in depth, and implies low sedimentation rates

(Amorosi 1995; Tucker 2001). The presence of muds also implies a deepening environment.

The Srisailam sub-basin underwent an overall transgressional event from tidal flats to a shallow

marine environment. Signs of the basin deepening occurred in the form of finer grained sediments,

Page 32: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

32

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

glauconite and storm events which gave rise to hummocky cross stratification. Ball and pillow

structures along with fluid escape structures implies rapid sedimentation which is likely due to these

storm events.

Reports of extensive aeolian sand sheets in the Krishna Gorge area have been published by Biswas

(2005). However no aeolian deposits were discovered during this study which casts doubt on the

aeolian interpretation of Biswas (2005). One particular bed in the Srisailam area that was previously

thought to be aeolian has now been interpreted to be of shallow marine origin as no reverse grading

was evident and it contains backflow ripples at the base, indicating a tidal origin.

6.4 Basin Evolution

The Cuddapah Basin is interpreted to have initiated as a rift basin (Chaudhuri et al. 2002; Falster

2011), which in turn developed into a passive margin (Falster 2011) before a collision event at ca.

1600 Ma which created a foreland basin. The lowermost stratigraphic unit in the Cuddapah

Supergroup is the Gulcheru Formation, which has been interpreted by Falster (2011) as being

deposited in a rift setting. Falster (2011) also interpreted that the Vempalle and Tadpatri formations

were deposited on a passive margin. Due to the intrusion in the Tadpatri Formation ~1900 Ma, it can

be proposed that the basin formed prior to ~1900 Ma. After the collisional event at ca. 1600 Ma an

open seaway may have formed in which the Srisailam Formation was deposited. The Srisailam

Formation and the Nallamalai Group were probably deposited as foreland sediments. The initial

foreland sediments (Srisailam Formation) are predominately from the Dharwar Craton and

sometime after collision, orogenic sources from the EGB were deposited with sediment from the

Dharwar Craton (Nallamalai Group). Paleocurrent analysis suggests biomodal flow in roughly an east

westerly direction, which supports an open seaway to the east.

Page 33: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

33

R. GORE

7. CONCLUSION

This study concludes that the Srisailam sub-basin was likely deposited in a foreland basin linked to an

open seaway. It was deposited in a tidal flat/shallow marine environment, as supported by

sequence stratigraphy. It is mainly composed of well sorted, medium grained purple subarkose to

quartz arenite with muddy, ferruginous and glauconitic places. The Srisailam Formation was

deposited after ~1660 Ma and the overlying Kurnool Group was deposited < 1090 Ma. The Srisailam

Formation is largely sourced from the granitic EDC at temperatures of ca. 860˚C. Evidence suggests

the Srisailam Formation is likely to be a lateral equivalent of the Nallamalai Group.

8. ACKNOWLEDGEMENTS

Thanks to my supervisors, Alan Collins and Justin Payne. Thank you to Sarbani Patranabis-Deb and

Pratap Dhang along with the hospitality of the National Geophysical Research Institute of India.

Thank you to Ben Wade, Angus Netting, Ken Neubauer and all the staff from Adelaide Microscopy. I

would like to thank the Australian Government for supporting this work as an Australia-India

Strategic Research Fund and also thanks to Katie Howard for all her support throughout the year. A

final thanks to the honours group, India crew, my family and Ana-Marija Gal.

9. REFERENCES

ALEXANDER E. 2011. A geochronological and structural analysis of the Nallamalai Fold Belt, S.E. India. AMOROSI A. 1995. Glaucony and sequence stratigraphy; a conceptual framework of distribution in

siliciclastic sequences. Journal of Sedimentary Research 65, 419-425.

Page 34: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

34

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

ANAND M., GIBSON S. A., SUBBARAO K. V., KELLEY S. P. & DICKIN A. P. 2003. Early Proterozoic Melt Generation Processes beneath the Intra-cratonic Cuddapah Basin, Southern India. Journal of Petrology 44, 2139-2171.

ANIL KUMAR, GOPALAN K., RAO K. R. P. & NAYAK S. S. 2001. Rb–Sr ages of kimberlites and lamproites from eastern Dharwar craton, south India. 135–142.

BANERJEE C. C. 1999. Uranium Exploration in teh Proterozoic Basins in India - Present Status and Future Strategy, India. Atomic Minerals Directorate for Exploration and Research Department of Atomic Energy.

BELOUSOVA E. A., GRIFFIN W. L., O'REILLY S. Y. & FISHER N. I. 2002. Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology 143, 602-622.

BERTRAM C. N. 2010. Sedimentology, Age and Stable Isotope Evolution of the Kurnool Group, Cuddapah Basin. Unpublished.

BISWAS A. 2005. Coarse aeolianites: sand sheets and zibar-interzibar facies from the Mesoproterozoic Cuddapah Basin, India. Sedimentary Geology 174, 149-160.

CHADWICK B., VASUDEV V. & HEGDE G. 1997. The Dharwar craton, southern India, and its Late Archaean plate tectonic setting: current interpretations and controversies. Journal of Earth System Science 106, 249-258.

CHADWICK B., VASUDEV V. N. & HEGDE G. V. 2000. The Dharwar craton, southern India, interpreted as the result of Late Archaean oblique convergence. Precambrian Research 99, 91-111.

CHAKRABORTY P. P., DEY S. & MOHANTY S. P. 2010. Proterozoic platform sequences of Peninsular India: Implications towards basin evolution and supercontinent assembly. Journal of Asian Earth Sciences 39, 589-607.

CHALAPATHI RAO N. V., MILLER J. A., GIBSON S. A., PYLE D. M. & MADHAVAN V. 1999. Precise 40Ar-39Ar age determinations of the Kotakonda kimberlite and Chelima lamproite, India: implication to the timing of mafic dyke swarm emplacement in the Eastern Dharwar Craton. Journal of the Geological Society of India, 425---432.

CHALAPATHI RAO N. V., MILLER J. A., PYLE D. M. & MADHAVAN V. 1996. New Proterozoic K---Ar ages for some kimberlites and lamproites from the Cuddapah Basin and Dharwar Craton, South India: evidence for non-contemporaneous emplacement. Precambrian Research 79, 363-369.

CHATTERJEE N. & BHATTACHARJI S. 2001. Petrology, geochemistry and tectonic settings of the mafic dikes and sills associated with the evolution of the Proterozoic Cuddapah Basin of south India. Journal of Earth System Science 110, 433-453.

CHAUDHURI A. K., SAHA D., DEB G. K., PATRANABIS DEB S., KANTI MUKHERJEE M. & GHOSH G. 2002. The Purana Basins of Southern Cratonic Province of India - A Case for Mesoproterozoic Fossil Rifts. Gondwana Research 5, 23-33.

CLARK C., COLLINS A. S., TIMMS N. E., KINNY P. D., CHETTY T. R. K. & SANTOSH M. 2009. SHRIMP U–Pb age constraints on magmatism and high-grade metamorphism in the Salem Block, southern India. Gondwana Research 16, 27-36.

COLLINS A. S., SANTOSH M., BRAUN I. & CLARK C. 2007. Age and sedimentary provenance of the Southern Granulites, South India: U-Th-Pb SHRIMP secondary ion mass spectrometry. Precambrian Research 155, 125-138.

CONRAD J. E., HEIN J. R., CHAUDHURI A. K., PATRANABIS-DEB S., MUKHOPADHYAY J., DEB G. K. & BEUKES N. J. 2011. Constraints on the development of Proterozoic basins in central India from 40Ar/39Ar analysis of authigenic glauconitic minerals. Geological Society of America Bulletin 123, 158-167.

CRAWFORD A. R. & COMPSTON W. 1973. The age of the Cuddapah and Kurnool systems, southern India. Journal of the Geological Society of Australia 19, 453-464.

Page 35: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

35

R. GORE

CROWE W. A., NASH C. R., HARRIS L. B., LEEMING P. M. & RANKIN L. R. 2003. The geology of the Rengali Province: implications for the tectonic development of northern Orissa, India. Journal of Asian Earth Sciences 21, 697-710.

DASGUPTA P. K., BISWAS A. & MUKHERJEE R. 2005. 11. Cyclicity in paleoproterozoic to neoproterozoic cuddapah supergroup and its significance in basinal evolution. In: Jannes M. M. & Virgnio H. N. eds., Developments in Sedimentology, Vol. Volume 57, pp 313-354, Elsevier.

DEWASHISH U. 2008. Alkaline magmatism along the southeastern margin of the Indian shield: Implications for regional geodynamics and constraints on craton–Eastern Ghats Belt suturing. Precambrian Research 162, 59-69.

DOBMEIER C., LÜTKE S., HAMMERSCHMIDT K. & MEZGER K. 2006. Emplacement and deformation of the Vinukonda meta-granite (Eastern Ghats, India)—Implications for the geological evolution of peninsular India and for Rodinia reconstructions. Precambrian Research 146, 165-178.

DOBMEIER C. J. & RAITH M. M. 2002. Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. Proterozoic East Gondwana: Supercontinent Assembly and Breakup 206, 145-168.

DOBMEIER C. J. & RAITH M. M. 2003. Crustal architecture and evolution of the Eastern Ghats Belt and adjacent regions of India. Geological Society, London, Special Publications 206, 145-168.

ERIKSSON K. A., SIMPSON E. L. & MUELLER W. 2006. An unusual fluvial to tidal transition in the mesoarchean Moodies Group, South Africa: A response to high tidal range and active tectonics. Sedimentary Geology 190, 13-24.

FALSTER G. 2011. Geochronological and sedimentological constraints on the evolution of the lower Cuddapah Basin, India.

FERRY J. & WATSON E. 2007. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology 154, 429-437.

FRENCH J. E. & HEAMAN L. M. 2010. Precise U-Pb dating of Paleoproterozoic mafic dyke swarms of the Dharwar craton, India: Implications for the existence of the Neoarchean supercraton Sclavia. Precambrian Research 183, 416-441.

FRENCH J. E., HEAMAN L. M., CHACKO T. & SRIVASTAVA R. K. 2008. 1891-1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: A newly recognized large igneous province. Precambrian Research 160, 308-322.

GRIFFIN W., POWELL W. & PEARSON N. 2008. Glitter: data reduction software for laser ablation ICP-MS (In: Sylvester, P. (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues: , Vol. 40). Mineral. Assoc. Canada Short Course.

GRIFFIN W. L., WANG X., JACKSON S. E., PEARSON N. J., O'REILLY S. Y., XU X. & ZHOU X. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237-269.

HENDERSON B., J. 2011. The tectonic evolution of the Ongole Domain, India: A geochronological and metamorphic approach.

. HOSKIN P. W. O. & IRELAND T. R. 2000. Rare earth element chemistry of zircon and its use as a

provenance indicator. Geology 28, 627-630. HOU G., SANTOSH M., QIAN X., LISTER G. S. & LI J. 2008. Configuration of the Late Paleoproterozoic

supercontinent Columbia: Insights from radiating mafic dyke swarms. Gondwana Research 14, 395-409.

HOWARD K. E., HAND M., BAROVICH K. M., REID A., WADE B. P. & BELOUSOVA E. A. 2009. Detrital zircon ages: Improving interpretation via Nd and Hf isotopic data. Chemical Geology 262, 277-292.

IRELAND T. R., FLOTTMANN T., FANNING C. M., GIBSON G. M. & PREISS W. V. 1998. Development of the early Paleozoic Pacific margin of Gondwana from detrital-zircon ages across the Delamerian orogen. Geology 26, 243-246.

Page 36: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

36

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

JACKSON S. E., PEARSON N. J., GRIFFIN W. L. & BELOUSOVA E. A. 2004. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chemical Geology 211, 47-69.

JAYANANDA M. 2000. Late Archaean (2550-2520 Ma) juvenile magmatism in the Eastern Dharwar craton, southern India: constraints from geochronology, Nd-Sr isotopes and whole rock geochemistry. Precambrian Research 99, 225-254.

KAILA K. L. & BHATIA S. C. 1981. Gravity study along the Kavali-Udipi deep seismic sounding profile in the indian peninsular shield: Some inferences about the origin of anorthosites and the eastern ghats orogeny. Tectonophysics 79, 129-143.

KAILA K. L. & TEWARI H. C. 1985. Structural trends in the Cuddapah Basin from deep seismic soundings (DSS) and their tectonic implications. Tectonophysics 115, 69-86.

LUDWIG K. R. 2000. Decay constant errors in U-Pb concordia-intercept ages. Chemical Geology 166, 315-318.

MATHUR S. M. 1982. Precambrian sedimentary sequences of India: Their geochronology and correlation. Precambrian Research 18, 139-144.

MEERT J. G., PANDIT M. K., PRADHAN V. R., BANKS J., SIRIANNI R., STROUD M., NEWSTEAD B. & GIFFORD J. 2010. Precambrian crustal evolution of Peninsular India: A 3.0 billion year odyssey. Journal of Asian Earth Sciences 39, 483-515.

MEIJERINK A. M. J., RAO D. P. & RUPKE J. 1984. Stratigraphic and structural development of the Precambrian Cuddapah basin, S.E. India. Precambrian Research 26, 57-97, 99, 101-104.

MOHANTY S. 2011. Palaeoproterozoic assembly of the Napier Complex, Southern India and Western Australia: Implications for the evolution of the Cuddapah basin. Gondwana Research 20, 344-361.

NAHA K., SRINIVASAN R., GOPALAN K., PANTULU G. V. C., RAO M. V. S., VREVSKY A. B. & BOGOMOLOV Y. S. 1993. The nature of the basement in the Archean Dharwar Craton of Southern India and the age of the Peninsular Gneiss. Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences 102, 547-565.

PAYNE J. L., BAROVICH K. M. & HAND M. 2006. Provenance of metasedimentary rocks in the northern Gawler Craton, Australia: Implications for Palaeoproterozoic reconstructions. Precambrian Research 148, 275-291.

PEARCE N. J. G., PERKINS W. T., WESTGATE J. A., GORTON M. P., JACKSON S. E., NEAL C. R. & CHENERY S. P. 1997. A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter-the Journal of Geostandards and Geoanalysis 21, 115-144.

RAI A., GAUR V. K., RAI S. S. & PRIESTLEY K. 2009. Seismic signatures of the Pan-African orogeny: implications for southern Indian high-grade terranes. Geophysical Journal International 176, 518-528.

RAMAKRISHNAN M. & VAIDYANADHAN R. 2008. Geology of India (Vol. 1). Geological Society of India. ROLLINSON H. 1993. Using Geochemical Data: Evaluation, Presentation, Interpretation. Pearson

Education Limited. SAHA D. 2002. Multi-stage deformation in the Nallamalai Fold Belt, Cuddapah basin, South India -

Implications for Mesoproterozoic tectonism along southeastern margin of India. Gondwana Research 5, 701-719.

SAHA D. & TRIPATHY V. In submission. Palaeoproterozoic Sedimentation in the Cuddapah Basin, south India and Regional Tectonics - a Review.

SCHERER E., MUNKER C. & MEZGER K. 2001. Calibration of the Lutetium-Hafnium Clock. Science 293, 683.

SEGAL I., HALICZ L. & PLATZNER I. T. 2003. Accurate isotope ratio measurements of ytterbium by multiple collection inductively coupled plasma mass spectrometry applying erbium and

Page 37: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

37

R. GORE

hafnium in an improved double external normalization procedure. Journal of Analytical Atomic Spectrometry 18, 1217-1223.

SINGH A. P. & MISHRA D. C. 2002. Tectonosedimentary evolution of Cuddapah basin and Eastern Ghats mobile belt (India) as Proterozoic collision: gravity, seismic and geodynamic constraints. Journal of Geodynamics 33, 249-267.

SINHA R. M., PARTHASARATHY T. N. & DWIVEDY K. K. 1995. On the Possibility of Identifying Low Cost, Medium Grade Uranium Deposits Close to the Proterozoic Unconformity in the Cuddapah Basin, Andhra Pradesh, India. Department of Atomic Energy.

SLÁMA J., KOŠLER J., CONDON D. J., CROWLEY J. L., GERDES A., HANCHAR J. M., HORSTWOOD M. S. A., MORRIS

G. A., NASDALA L., NORBERG N., SCHALTEGGER U., SCHOENE B., TUBRETT M. N. & WHITEHOUSE M. J. 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology 249, 1-35.

TAYLOR S. R. & MCLENNAN S. M. 1985. The Continental Crust: it's Composition and Evolution. Blackwell, Oxford.

TRENDALL A. F., LAETER J. R. D., NELSON D. R. & MUKHOPADHYAY D. 1997. A precise zircon U–Pb age for the base of the BIF of the Mulaingiri Formation (Bababudan Group, Dharwar Supergroup) of the Karnataka Craton. Journal of the Geological Society of India, 161–170.

TUCKER M. E. 2001. Sedimentary Petrology. Blackwell Science Ltd. UPADHYAY D., GERDES A. & RAITH MICHAEL M. 2009. Unraveling Sedimentary Provenance and

Tectonothermal History of High‐Temperature Metapelites, Using Zircon and Monazite Chemistry: A Case Study from the Eastern Ghats Belt, India. The Journal of Geology 117, 665-683.

VASUDEVAN D., KRONER A., WENDT I. & TOBSCHALL H. 2003. Geochemistry, petrogenesis and age of felsic to intermediate metavolcanic rocks from the Palaeoproterozoic Nellore Schist Belt, Vinjamur, Andhra Pradesh, India. Journal of Asian Earth Sciences.

VERMA M. B., MAITHANI P. B., CHAKI A., RAO P. N. & KUMAR P. 2009. Srisailam sub-basin, an uranium province of unconformity-related deposits in Andhra Pradesh - case study of Chitrial uranium exploration, Nalgonda District. Current Science 96, 588-591.

VERVOORT J. D., PATCHETT P. J., BLICHERT-TOFT J. & ALBARÈDE F. 1999. Relationships between Lu–Hf and Sm–Nd isotopic systems in the global sedimentary system. Earth and Planetary Science Letters 168, 79-99.

VERVOORT J. D., PATCHETT P. J., SÖDERLUND U. & BAKER M. 2004. Isotopic composition of Yb and the determination of Lu concentrations and Lu/Hf ratios by isotope dilution using MC-ICPMS. Geochem. Geophys. Geosyst. 5, Q11002.

10. LIST OF TABLES

Table 1. Description of detrital zircon morphologies and sample locations.

Table 2. Summary of analyses conducted on samples including age peaks and maximum deposition

ages for each sample.

Page 38: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

38

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

11. FIGURE CAPTIONS

Figure 1. Location map showing the Cuddapah Basin in relation to the Dharwar Craton, Eastern

Ghats and the Indian Sub-Continent, modified after French et al (2008).

Figure 2. The Cuddapah Basin and its various sub-basins, modified from French & Heaman (2010).

Star denotes the study area next to Srisailam.

Figure 3. A regional map of the Srisailam area and the main study area adjacent the Srisailam Dam.

It shows the locations of samples used for geochronology and the logging area.

Figure 4. Space-time plot showing major tectonothermal events affecting the Cuddapah Basin,

Krishina Provenance and the Dharwar Craton. Many of these are potential source rocks of the

Cuddapah Basin: (1) Meert et al (2010); (2) Chadwick et al (1997); (3) Jayananda (2000); (4) French et

al (2008); (5) Crawford & Compston (1973); (6) Chalapathi Rao et al (1999); (7) (Anil Kumar et al

(2001); (8) Dewashish (2008); (9) Dobmeier et al (2006); (10) Dobmeier & Raith (2003); (11)

(Chalapathi Rao et al (1996).

Figure 5. Current stratigrapic succession of lithologies in the Cuddapah Basin. Unconformities are

represented by teeth like lines. The Gandikota Quartzite sits alone unconformably due to recent U-

Pb geochronological studies from Falster (2011), who has suggested it to be part of the Kurnool

Group. The Kurnool Group sits unconformably above the Srisailam Formation. Modified from Anand

et al (2003).

Figure 6. Stratigraphic log in the upper Srisailam Formation above Srisailam. The position of

geochronological sample RG-01 is shown along with paleocurrent and GRS data.

Figure 7. Stratigraphic log of a section of the Srisailam Formation next to the Srisailam Dam. It

displays the position of samples used for geochronology as well as paleocurrent and GRS data.

Page 39: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

39

R. GORE

Sections missing in the stratigraphic log contained no exposure. Abbreviations are: TST –

transgressive system tract; HST – highstand system tract; MFS – maximum flooding surface.

Figure 8. Photographs of sedimentary structures within the Srisailam Formation. (a) herringbone

cross stratification and trough cross bedding in a medium grained sandstone; (b) hummocky cross

stratification within a fine grained sandstone; (c) backflow ripples at the toe of a large cross planar

bed; (d) large scale planar cross stratification; (e) ball and pillow structures with upside down and

inside out ripples (a result of recording the imprint of ripples below); (f) interference ripples.

Figure 9. Photographs of sedimentary structures in the Srisailam Formation. (a) straight crested

ripples; (b) fine ferruginous, glauconitic sandstone interlayered with shale; (c) slumping of

sandstone; (d) fine glauconitic sandstone; (e) convoluted bedding from a medium grained

sandstone; (f) medium grained sands filling in mudcracks; (g) rip up clasts of shale imbedded in a

medium grained sandstone; (h) mud flake breccia with a clast supported sandstone matrix.

Figure 10. Zircon trace element data: REE data plotted on discrimination diagrams from Belousova et

al (2002). (a) Y plotted against U; (b) Y plotted against Yb/Sm; (c) Y plotted against Ce/Ce*; (d)

Ce/Ce* plotted against Eu/Eu*. Granitoid field includes: (1) aplites and leucogranites; (2) granites; (3)

granodiorites and tonalities.

Figure 11. LA-ICP-MS U-Pb geochronological data of detrital zircon grains. Concordia plot of sample

RG-01 displaying the maximum depositional age for the Srisailam Formation. Inset:

Cathodoluminescence image of a representative zircon grain from sample RG-01.

Figure 12. Sample RG-15 LA-ICP-MS U-Pb geochronological data for detrital zircons. Inset:

Cathodoluminesence images representative of zircon grains extracted from Sample RG-15.

Figure 13. Sample RG-04 LA-ICP-MS U-Pb geochronological data for detrital zircons. Inset:

Cathodoluminesence images representative of zircon grains extracted from Sample RG-04.

Page 40: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

40

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 14. Sample RG-02 LA-ICP-MS U-Pb geochronological data for detrital zircons. Inset:

Cathodoluminesence images representative of zircon grains extracted from Sample RG-02.

Figure 15. Sample RG-01, probability density distribution plot of concordant zircon grains (orange)

between 90-110% and discordant zircon grains (green).

Figure 16. Sample RG-15, probability density distribution plot of concordant zircon grains (orange)

between 90-110% and discordant zircon grains (green).

Figure 17. Sample RG-04, probability density distribution plot of concordant zircon grains (orange)

between 90-110% and discordant zircon grains (green).

Figure 18. Sample RG-02, probability density distribution plot of concordant zircon grains between

80-120% (blue) and discordant zircon grains. Three zircon grains were between 90-110% (orange)

concordant.

Figure 19. Probability density distribution plot of all 90-110% concordant zircon grains from the

Srisailam Formation and the Nallamalai Group. The Nallamalai Group sources a larger number of

younger grains than the Srisailam Formation. Both contain a dominant age peak at ~2.5 Ga.

Figure 20. Chondrite normalised REE patterns for zircon grains from sample RG-15. Elements were

normalised by values from Taylor and McLennan (1985)

Figure 21. Crystallisation temperatures of zircon grains from sample RG-15. There is no obvious

temperature correlation with age.

Figure 22. Model age plot and ɛHf plot of samples RG-01 and RG-04 displaying a mix of juvenile and

evolved crustal sources, especially at ~2500 Ma. Abbreviations: DM - depleted mantle; CHUR

Chondrite normalised uniform reservoir.

Page 41: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

41

R. GORE

12. TABLES

Table 1.

Sample Location Formation Size (µm) Colour Shape CL Description

RG-01 16˚ 02.770’N,

78˚ 54.408’E

Srisailam 30-110 Pink to

colourless

Subrounded

to rounded

Predominately

oscillatory zoning and

some convoluted

zircons.

Few metamict zircons,

complex oscillatory

zoning and thin

metamorphic rims.

RG-02 16˚ 18.386’N,

78˚ 43.981’E

Srisailam 40-150 Pink to

colourless

Subrounded

to rounded

Mainly oscillatory

zoned and

convoluted zircons

Some metamict

zircons and very few

thin metamorphic

rims.

RG-04 16˚ 05.506’N,

78˚ 54.617’E

Srisailam 50-200 Pinky yellow

to colourless

Subrounded

to rounded

Mainly oscillatory

zoining, plus

convoluted zircons

and some Xenocrystic

cores.

Few metamict zircons.

RG-15 16˚ 05.090’N,

78˚ 54.120’E

Srisailam 35-190 Pink to

colourless

Subrounded

to rounded

with some

Oscillatory zoned and

convoluted zircons.

Some thin

Page 42: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

42

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Table 2.

Sample U-Pb

Geochronology

Hf Isotope Trace

Element

Major Age

Peak (Ma)

Minor Age

Peaks (Ma)

Maximum

Depositional

Age (Ma)

RG-01 Yes Yes No 2509 ± 7.7 3221 ± 22

2730 ± 24

2307 ± 27

1787 ±22

RG-15 Yes No Yes 2510 ± 11 2374 ± 19

RG-04 Yes Yes No 2507 ± 12 2062 ± 20

RG-02 Yes No No 2488 ± 24 2479 ± 17

elongate metamorphic rims

present and limited

sector zoning.

Page 43: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

43

R. GORE

13. FIGURES

Page 44: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

44

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 1.

Page 45: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

45

R. GORE

Figure 2.

Page 46: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

46

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 3.

Page 47: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

47

R. GORE

Figure 4.

Page 48: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

48

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 5.

Page 49: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

49

R. GORE

Figure 6.

Page 50: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

50

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 7.

Page 51: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

51

R. GORE

Figure 7. (Continued)

Page 52: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

52

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 7. (Continued)

Page 53: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

53

R. GORE

Figure 7. (Continued)

Page 54: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

54

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 7. (Continued)

Page 55: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

55

R. GORE

Figure 7. (Continued)

Page 56: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

56

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 8.

Page 57: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

57

R. GORE

Figure 9.

Page 58: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

58

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 10.

Figure 11.

Page 59: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

59

R. GORE

Figure 12.

Figure 13.

Page 60: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

60

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 14.

Figure 15.

Page 61: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

61

R. GORE

Figure 16.

Figure 17.

Page 62: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

62

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure 18.

Page 63: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

63

R. GORE

Figure19.

Page 64: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

64

GEOCHRONOLOGICAL AND SEDIMENTOLOGICAL CONSTRAINTS OF THE SRISAILAM FORMATION,

S.E. INDIA

Figure20.

Figure 21.

0.1

1

10

100

1000

10000

Zirc

on

/Ch

on

dri

te n

Elements

Sample RG-15RG15_602RG15_04RG15_63RG15_65RG15_66RG15_46RG15_45RG15_50RG15_53RG15_59RG15_29RG15_32RG15_34RG15_36RG15_38RG15_39RG15_40RG15_41RG15_432RG15_02RG15_06RG15_072RG15_07RG15_16RG15_20

Page 65: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

65

R. GORE

Figure 22.

-20

-15

-10

-5

0

5

10

15

20

0 1000 2000 3000

ep

sil

on

Hf

Age (Ma)

Srisailam Formation

CHUR

Depleted mantle

RG-04

RG-01

DM

CHUR

Page 66: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

APPENDIX A A1.

Sample No. Ti49 Error T (K) T (C) σd σT

RG15_40 17.55 3.42 1074.391 801.3915 0.253091 63.84758

RG15_41 26.42 3.86 1118.903 845.9026 0.185751 52.4404

RG15_43 19.47 3.96 1085.35 812.3497 0.246108 63.46324

RG15_06 70.79 18.16 1242.97 969.9704 0.156197 54.99474

RG15_07 22.48 5.01 1100.897 827.8967 0.240305 63.81284

RG15_09 7.83 2.72 996.1997 723.1997 0.490311 102.9548

RG15_16 16.27 2.94 1066.537 793.5367 0.253118 62.96584

RG15_20 79.59 11.54 1259.574 986.5739 0.121831 46.16699

RG15_22 35.13 5.66 1152.15 879.1501 0.171756 51.7994

RG15_25 26.4 5.16 1118.817 845.8168 0.210801 58.52391

RG15_27 47.28 10.48 1188.979 915.9795 0.173322 55.3213

RG15_02 40.41 7.53 1169.223 896.2231 0.17214 53.32366

RG15_60 21.95 5.54 1098.286 825.2855 0.257192 67.57352

RG15_61 19.75 4.69 1086.874 813.8743 0.26255 67.49764

RG15_65 33.68 7.64 1147.108 874.1077 0.202221 59.13334

RG15_66 172.03 37.86 1380.916 1107.916 0.109392 50.01437

RG15_46 44.59 10.66 1181.531 908.5311 0.18333 57.377

RG15_45 12.07 3.02 1036.654 763.6536 0.33925 78.20695

RG15_50 22.4 6.69 1100.506 827.5057 0.275453 72.25733

RG15_53 20.23 4.76 1089.448 816.448 0.258554 66.85845

RG15_59 11.37 3.2 1030.874 757.8744 0.369354 83.85062

RG15_29 25.51 6.31 1114.945 841.9448 0.237893 64.77867

Page 67: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG15_32 20.26 4.77 1089.607 816.6072 0.258451 66.85276

RG15_34 21.11 5.67 1094.042 821.0417 0.269523 70.02144

RG15_36 19.77 4.72 1086.983 813.9825 0.263079 67.63523

RG15_38 18.24 5.11 1078.436 805.4359 0.294308 73.89545

RG15_39 20.63 5.47 1091.556 818.5555 0.270789 70.01784

2RG15_13 26.71 2.72 1120.141 847.141 0.159368 46.24818

2RG15_26 30.34 3.18 1134.802 861.8024 0.153297 45.88589

2RG15_12 24.07 3.23 1108.445 835.4451 0.186393 51.68795

2RG15_11 25.36 2.73 1114.282 841.2816 0.166403 47.4559

2RG15_02 18.19 2.22 1078.147 805.147 0.201883 52.57662

2RG15_04 35.18 4.51 1152.321 879.321 0.156539 47.98129

2RG15_07 13.32 2.28 1046.329 773.3288 0.270771 64.55373

Average 845.7124 Average 61.82279

A2.

Location Assay # Assay time (s) K [% ±1s] U [ppm ±1s] Th (ppm ±1s) A [mW/m3 ±1s]

Srisailam Fm/Krishna Gorge 832 300 1.5 0.9 2.3 0.55

Srisailam Fm/Krishna Gorge 833 300 1.2 0.6 2.7 0.49

Srisailam Fm/Krishna Gorge 826 300 2.5 0.8 4.8 0.81

Srisailam Fm/Krishna Gorge 827 300 1.9 0.6 3.9 0.63

Srisailam Fm/Krishna Gorge 828 60 2.9 1.6 5.7 1.11

Srisailam Fm/Krishna Gorge 829 300 1.3 0.6 2.4 0.47

Srisailam Fm/Krishna Gorge 830 300 1.3 0.4 3.9 0.52

Srisailam Fm/Krishna Gorge 831 60 2.4 0.6 2.0 0.53

Srisailam Fm/Krishna Gorge 834 300 2.0 0.6 2.8 0.56

Srisailam Fm/Krishna Gorge 835 300 2.7 0.9 2.7 0.70

Srisailam Fm/Krishna Gorge 836 60 1.5 1.2 5.8 0.89

Srisailam Fm/Krishna Gorge 837 60 3.8 0.5 2.8 0.71

Srisailam Fm/Krishna Gorge 839 300 1.1 0.5 4.8 0.60

Page 68: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

Srisailam Fm/Krishna Gorge 840 60 1.9 0.9 2.9 0.63

Srisailam Fm/Krishna Gorge 841 300 2.2 1.0 5.6 0.89

Srisailam Fm/Krishna Gorge 842 60 3.2 0.6 2.9 0.68

Srisailam Fm/Krishna Gorge 843 300 3.5 2.5 10.0 1.74

Srisailam Fm/Krishna Gorge 845 300 4.6 4.5 20.9 3.15

Srisailam Fm/Krishna Gorge 846 300 1.1 0.2 4.5 0.49

Srisailam Fm/Krishna Gorge 847 300 1.2 0.5 4.8 0.61

Srisailam Fm/Krishna Gorge 848 300 4.2 3.8 20.6 2.91

Srisailam Fm/Krishna Gorge 849 300 3.1 3.9 18.5 2.66

Page 69: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

A3.

Sample RG-01 Isotope Ratios Ages (Ma)

Spot Name Pb207/Pb206 ± 1σ Pb206/U238 ± 1σ Pb207/U235 ± 1σ Pb208/Th232 ± 1σ rho Pb207/Pb206 ± 1σ Pb206/U238 ± 1σ Pb207/U235 ± 1σ Pb208/Th232 ± 1σ Conc. (%)

RG01_SPOT02 0.15790 0.0016 0.17483 0.0022 3.80641 0.0489 0.01780 0.0002 0.98944 2433 18 1039 12 1594 10 357 3 43

RG01_SPOT03 0.17407 0.0022 0.46142 0.0060 11.07441 0.1613 0.03991 0.0005 0.89409 2597 21 2446 27 2529 14 791 10 94

RG01_SPOT04 0.14875 0.0019 0.39461 0.0053 8.09289 0.1211 0.06253 0.0007 0.89057 2332 22 2144 24 2242 14 1226 13 92

RG01_SPOT05 0.16752 0.0017 0.47079 0.0060 10.87429 0.1389 0.08428 0.0008 0.99949 2533 17 2487 26 2512 12 1636 15 98

RG01_SPOT06 0.15943 0.0016 0.28092 0.0037 6.17381 0.0813 0.02734 0.0003 0.99663 2450 17 1596 19 2001 12 545 5 65

RG01_SPOT07 0.17277 0.0022 0.33297 0.0045 7.92926 0.1175 0.03316 0.0004 0.91584 2585 21 1853 22 2223 13 659 7 72

RG01_SPOT08 0.17804 0.0018 0.47974 0.0061 11.77612 0.1494 0.07563 0.0007 0.99390 2635 17 2526 26 2587 12 1474 14 96

RG01_SPOT09 0.17152 0.0022 0.29106 0.0042 6.86388 0.1080 0.03328 0.0004 0.91298 2573 22 1647 21 2094 14 662 7 64

RG01_SPOT10 0.14840 0.0016 0.12792 0.0017 2.61696 0.0352 0.01332 0.0001 0.98193 2328 18 776 10 1305 10 267 3 33

RG01_SPOT12 0.16065 0.0017 0.29163 0.0034 6.45950 0.0761 0.05305 0.0005 0.98908 2463 17 1650 17 2040 10 1045 10 67

RG01_SPOT13 0.16641 0.0017 0.26433 0.0032 6.06503 0.0741 0.03614 0.0004 0.98535 2522 17 1512 16 1985 11 718 7 60

RG01_SPOT14 0.16892 0.0017 0.35204 0.0042 8.19932 0.0996 0.06278 0.0006 0.99150 2547 17 1944 20 2253 11 1231 12 76

RG01_SPOT15 0.57731 0.0414 0.75470 0.0372 60.05082 3.9574 0.24733 0.0104 0.74795 4452 101 3625 137 4175 66 4467 169 81

RG01_SPOT16 0.22471 0.0057 0.45219 0.0079 14.00021 0.3569 0.04562 0.0010 0.68625 3015 40 2405 35 2750 24 902 19 80

RG01_SPOT17 0.16484 0.0017 0.37328 0.0043 8.48376 0.0995 0.09578 0.0009 0.99153 2506 17 2045 20 2284 11 1849 17 82

RG01_SPOT18 0.16326 0.0017 0.38938 0.0046 8.76439 0.1041 0.08397 0.0008 0.99058 2490 17 2120 21 2314 11 1630 15 85

RG01_SPOT19 0.16244 0.0017 0.40073 0.0051 8.97012 0.1143 0.03967 0.0004 0.99510 2481 17 2172 24 2335 12 786 7 88

RG01_SPOT20 0.16707 0.0017 0.43205 0.0054 9.94903 0.1247 0.09315 0.0009 0.99164 2529 17 2315 24 2430 12 1800 16 92

RG01_SPOT21 0.21002 0.0022 0.44967 0.0057 13.01709 0.1678 0.05986 0.0006 0.97983 2906 17 2394 25 2681 12 1175 11 82

RG01_SPOT22 0.16663 0.0017 0.48374 0.0058 11.11237 0.1325 0.11414 0.0011 0.99847 2524 17 2544 25 2533 11 2185 19 101

RG01_SPOT23 0.17020 0.0018 0.49672 0.0061 11.65428 0.1439 0.12027 0.0012 0.98841 2560 17 2600 26 2577 12 2295 21 102

RG01_SPOT24 0.16389 0.0017 0.28614 0.0035 6.46519 0.0794 0.05189 0.0005 0.98126 2496 17 1622 17 2041 11 1023 10 65

RG01_SPOT25 0.16170 0.0017 0.30404 0.0037 6.77768 0.0834 0.04994 0.0005 0.98886 2474 17 1711 18 2083 11 985 10 69

Page 70: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG01_SPOT26 0.25490 0.0027 0.61749 0.0081 21.69959 0.2857 0.09739 0.0010 0.99009 3215 16 3100 32 3170 13 1878 18 96

RG01_SPOT27 0.15640 0.0016 0.39134 0.0047 8.43744 0.1008 0.07849 0.0008 0.99704 2417 17 2129 22 2279 11 1527 14 88

RG01_SPOT28 0.16877 0.0018 0.28965 0.0040 6.74659 0.0931 0.01210 0.0001 0.98947 2545 18 1640 20 2079 12 243 3 64

RG01_SPOT29 0.16821 0.0019 0.47537 0.0058 11.02295 0.1418 0.12921 0.0014 0.94225 2540 19 2507 25 2525 12 2456 25 99

RG01_SPOT30 0.17256 0.0018 0.45132 0.0054 10.73592 0.1308 0.05579 0.0006 0.98957 2583 17 2401 24 2501 11 1097 11 93

RG01_SPOT31 0.17246 0.0020 0.46523 0.0062 11.06693 0.1559 0.08877 0.0009 0.94926 2582 19 2463 27 2529 13 1719 17 95

RG01_SPOT32 0.13070 0.0013 0.15399 0.0018 2.77461 0.0335 0.03664 0.0004 0.99083 2107 18 923 10 1349 9 727 7 44

RG01_SPOT33 0.16597 0.0017 0.47534 0.0056 10.87743 0.1291 0.13767 0.0014 0.99231 2517 17 2507 24 2513 11 2607 25 100

RG01_SPOT34 0.14551 0.0017 0.43413 0.0055 8.70929 0.1192 0.11482 0.0013 0.92573 2294 20 2324 25 2308 12 2197 23 101

RG01_SPOT35 0.15891 0.0016 0.40968 0.0049 8.97596 0.1094 0.08496 0.0009 0.98315 2444 17 2213 22 2336 11 1648 17 91

RG01_SPOT36 0.14748 0.0017 0.40676 0.0050 8.27195 0.1101 0.07762 0.0009 0.92345 2317 20 2200 23 2261 12 1511 17 95

RG01_SPOT37 0.18816 0.0022 0.49233 0.0067 12.77534 0.1826 0.07400 0.0010 0.94654 2726 19 2581 29 2663 13 1443 18 95

RG01_SPOT38 0.16847 0.0018 0.44370 0.0054 10.30715 0.1292 0.07034 0.0008 0.96717 2543 18 2367 24 2463 12 1374 15 93

RG01_SPOT39 0.18889 0.0022 0.49046 0.0065 12.77371 0.1813 0.08195 0.0010 0.93508 2733 19 2573 28 2663 13 1592 18 94

RG01_SPOT40 0.17686 0.0024 0.48862 0.0069 11.91469 0.1922 0.03910 0.0007 0.87907 2624 23 2565 30 2598 15 775 13 98

RG01_SPOT41 0.13463 0.0017 0.36190 0.0050 6.71532 0.1017 0.02640 0.0004 0.91620 2159 21 1991 24 2075 13 527 7 92

RG01_SPOT42 0.16364 0.0017 0.36239 0.0045 8.17625 0.1031 0.07393 0.0008 0.98705 2494 17 1994 21 2251 11 1442 14 80

RG01_SPOT43 0.18872 0.0031 0.50298 0.0077 13.01857 0.2325 0.06258 0.0019 0.85601 2731 27 2627 33 2681 17 1227 36 96

RG01_SPOT44 0.16603 0.0017 0.23901 0.0029 5.47127 0.0667 0.03016 0.0003 0.98827 2518 17 1382 15 1896 10 601 6 55

RG01_SPOT45 0.15833 0.0017 0.44463 0.0057 9.70403 0.1268 0.03044 0.0004 0.97968 2438 18 2371 25 2407 12 606 7 97

RG01_SPOT46 0.25651 0.0026 0.63793 0.0079 22.55724 0.2799 0.12530 0.0013 0.99408 3225 16 3181 31 3208 12 2386 23 99

RG01_SPOT47 0.23763 0.0024 0.58630 0.0072 19.20483 0.2360 0.01207 0.0002 0.99656 3104 16 2974 29 3052 12 243 3 96

RG01_SPOT48 0.17614 0.0019 0.27113 0.0035 6.57936 0.0874 0.02866 0.0003 0.98043 2617 17 1547 18 2057 12 571 6 59

RG01_SPOT49 0.16328 0.0017 0.47121 0.0057 10.60525 0.1303 0.13115 0.0014 0.98440 2490 17 2489 25 2489 11 2491 24 100

RG01_SPOT50 0.16424 0.0018 0.46698 0.0060 10.56869 0.1409 0.11960 0.0012 0.96535 2500 18 2470 26 2486 12 2284 22 99

RG01_SPOT51 0.16762 0.0033 0.39294 0.0059 9.04653 0.1834 0.08605 0.0040 0.74566 2534 33 2136 27 2343 19 1669 75 84

RG01_SPOT52 0.35089 0.0112 0.91195 0.0219 44.03096 1.3918 0.25190 0.0094 0.75831 3711 48 4178 74 3866 31 4541 152 113

Page 71: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG01_SPOT53 0.18646 0.0398 1.45833 0.1530 37.48955 8.0834 0.30369 0.0384 0.48658 2711 315 5798 401 3707 213 5360 596 214

RG01_SPOT54 0.11471 0.0012 0.32438 0.0040 5.12911 0.0645 0.04686 0.0005 0.98488 1875 19 1811 20 1841 11 926 10 97

2RG01_SPOT01 0.17157 0.0018 0.45838 0.0054 10.84126 0.1326 0.12138 0.0014 0.97016 2573 18 2432 24 2510 11 2316 25 95

2RG01_SPOT02 0.16888 0.0019 0.49202 0.0061 11.45447 0.1526 0.13295 0.0016 0.93543 2547 19 2579 26 2561 12 2523 28 101

2RG01_SPOT03 0.10637 0.0012 0.26626 0.0032 3.90444 0.0502 0.07377 0.0008 0.93128 1738 20 1522 16 1615 10 1439 15 88

2RG01_SPOT04 0.17159 0.0020 0.46855 0.0058 11.08435 0.1471 0.09093 0.0011 0.92973 2573 19 2477 25 2530 12 1759 19 96

2RG01_SPOT05 0.16776 0.0018 0.45729 0.0055 10.57485 0.1312 0.11632 0.0013 0.96597 2536 18 2428 24 2487 12 2224 23 96

2RG01_SPOT06 0.16661 0.0019 0.43258 0.0056 9.92613 0.1358 0.08002 0.0009 0.94300 2524 19 2317 25 2428 13 1556 17 92

2RG01_SPOT07 0.11999 0.0013 0.11991 0.0015 1.98310 0.0251 0.00812 0.0001 0.95578 1956 19 730 8 1110 9 163 2 37

2RG01_SPOT08 0.12190 0.0016 0.34094 0.0042 5.72690 0.0830 0.08852 0.0010 0.85788 1984 23 1891 20 1935 13 1714 19 95

2RG01_SPOT09 0.12722 0.0016 0.32909 0.0041 5.77017 0.0811 0.07099 0.0008 0.89323 2060 21 1834 20 1942 12 1386 15 89

2RG01_SPOT10 0.16900 0.0018 0.47906 0.0057 11.15875 0.1370 0.10320 0.0013 0.96254 2548 18 2523 25 2537 11 1985 24 99

2RG01_SPOT11 0.14726 0.0016 0.14088 0.0017 2.85955 0.0359 0.03046 0.0003 0.96818 2314 18 850 10 1371 9 607 6 37

2RG01_SPOT12 0.16695 0.0020 0.31823 0.0037 7.32409 0.0938 0.03889 0.0005 0.91069 2527 19 1781 18 2152 11 771 10 70

2RG01_SPOT13 0.13260 0.0015 0.28267 0.0034 5.16680 0.0661 0.07312 0.0008 0.94921 2133 19 1605 17 1847 11 1427 16 75

2RG01_SPOT14 0.16317 0.0018 0.34186 0.0045 7.68070 0.1060 0.06591 0.0008 0.95380 2489 19 1896 22 2194 12 1290 15 76

2RG01_SPOT15 0.13744 0.0018 0.17151 0.0021 3.24548 0.0473 0.02087 0.0003 0.85613 2195 23 1020 12 1468 11 417 6 46

2RG01_SPOT16 0.16554 0.0018 0.46718 0.0055 10.66125 0.1319 0.10616 0.0012 0.94963 2513 18 2471 24 2494 11 2039 22 98

2RG01_SPOT17 0.17058 0.0020 0.47520 0.0061 11.16563 0.1546 0.11883 0.0015 0.93038 2563 19 2506 27 2537 13 2270 27 98

2RG01_SPOT18 0.16622 0.0018 0.43883 0.0054 10.05334 0.1278 0.08742 0.0011 0.97159 2520 18 2345 24 2440 12 1694 20 93

2RG01_SPOT19 0.16172 0.0018 0.40521 0.0049 9.03323 0.1148 0.07336 0.0009 0.94383 2474 19 2193 22 2341 12 1431 16 89

2RG01_SPOT20 0.13975 0.0015 0.29746 0.0036 5.73010 0.0707 0.05525 0.0007 0.97598 2224 18 1679 18 1936 11 1087 13 75

2RG01_SPOT21 0.16883 0.0018 0.45306 0.0055 10.54320 0.1337 0.11829 0.0015 0.96433 2546 18 2409 25 2484 12 2260 27 95

2RG01_SPOT22 0.14946 0.0018 0.43494 0.0053 8.95591 0.1210 0.12044 0.0017 0.90518 2340 20 2328 24 2334 12 2299 31 99

2RG01_SPOT23 0.11271 0.0012 0.20937 0.0025 3.25326 0.0415 0.05340 0.0007 0.95217 1844 20 1226 14 1470 10 1052 13 66

2RG01_SPOT24 0.11354 0.0013 0.27320 0.0034 4.27477 0.0568 0.03680 0.0005 0.94797 1857 20 1557 17 1689 11 730 10 84

2RG01_SPOT25 0.15283 0.0016 0.11643 0.0014 2.45253 0.0310 0.02181 0.0003 0.97294 2378 18 710 8 1258 9 436 5 30

Page 72: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

2RG01_SPOT26 0.15455 0.0016 0.29382 0.0036 6.25986 0.0780 0.07077 0.0009 0.96978 2397 18 1661 18 2013 11 1382 17 69

2RG01_SPOT27 0.11141 0.0013 0.25573 0.0032 3.92643 0.0526 0.05525 0.0008 0.93151 1823 21 1468 16 1619 11 1087 14 81

2RG01_SPOT28 0.60212 0.0124 0.89502 0.0172 74.21957 1.5777 2.46785 0.0583 0.90194 4513 30 4121 58 4387 21 ****** 340 91

2RG01_SPOT29 0.16177 0.0018 0.32233 0.0039 7.18759 0.0916 0.05486 0.0007 0.93682 2474 19 1801 19 2135 11 1080 13 73

2RG01_SPOT30 0.17988 0.0023 0.48170 0.0056 11.93843 0.1619 0.12692 0.0023 0.85256 2652 21 2535 24 2600 13 2415 41 96

2RG01_SPOT31 0.16985 0.0019 0.45927 0.0053 10.75452 0.1330 0.10292 0.0014 0.93138 2556 19 2436 23 2502 11 1980 25 95

2RG01_SPOT32 0.11378 0.0013 0.14730 0.0018 2.31065 0.0304 0.02896 0.0004 0.93306 1861 20 886 10 1216 9 577 8 48

2RG01_SPOT33 0.16325 0.0026 0.48794 0.0064 10.97425 0.1832 0.07866 0.0019 0.78804 2490 26 2562 28 2521 16 1531 35 103

2RG01_SPOT34 0.18117 0.0020 0.19962 0.0024 4.98605 0.0641 0.01823 0.0002 0.95034 2664 18 1173 13 1817 11 365 4 44

2RG01_SPOT35 0.28480 0.0030 0.45771 0.0057 17.97152 0.2272 0.07640 0.0009 0.98000 3389 16 2429 25 2988 12 1488 17 72

2RG01_SPOT36 0.14488 0.0017 0.43349 0.0054 8.65842 0.1199 0.09251 0.0012 0.90442 2286 21 2321 24 2303 13 1788 22 102

2RG01_SPOT37 0.18189 0.0020 0.53462 0.0066 13.40761 0.1759 0.12017 0.0016 0.94516 2670 18 2761 28 2709 12 2294 29 103

2RG01_SPOT38 0.16761 0.0018 0.49037 0.0059 11.33109 0.1423 0.11679 0.0014 0.95996 2534 18 2572 26 2551 12 2233 25 102

2RG01_SPOT39 0.11570 0.0014 0.27652 0.0033 4.41043 0.0576 0.03113 0.0005 0.89932 1891 21 1574 16 1714 11 620 9 83

2RG01_SPOT40 0.13115 0.0016 0.11551 0.0015 2.08889 0.0295 0.02767 0.0004 0.90053 2114 21 705 9 1145 10 552 8 33

2RG01_SPOT41 0.17206 0.0019 0.47137 0.0058 11.18079 0.1448 0.11421 0.0016 0.94820 2578 18 2490 25 2538 12 2186 28 97

2RG01_SPOT42 0.16461 0.0018 0.22546 0.0028 5.11707 0.0665 0.04451 0.0006 0.96587 2504 18 1311 15 1839 11 880 12 52

2RG01_SPOT43 0.16668 0.0019 0.22135 0.0028 5.08746 0.0689 0.02869 0.0005 0.94778 2525 19 1289 15 1834 11 572 9 51

2RG01_SPOT44 0.14039 0.0016 0.17796 0.0021 3.44100 0.0439 0.03002 0.0007 0.91111 2232 20 1056 11 1514 10 598 13 47

2RG01_SPOT45 0.13239 0.0014 0.31918 0.0040 5.82552 0.0746 0.07187 0.0010 0.96588 2130 19 1786 19 1950 11 1403 19 84

2RG01_SPOT46 0.16182 0.0018 0.43796 0.0055 9.77172 0.1284 0.08889 0.0014 0.95247 2475 19 2342 25 2414 12 1721 26 95

2RG01_SPOT47 0.16630 0.0020 0.37321 0.0048 8.55801 0.1195 0.02607 0.0005 0.91693 2521 20 2045 22 2292 13 520 10 81

2RG01_SPOT48 0.16420 0.0017 0.33755 0.0041 7.64001 0.0949 0.06518 0.0010 0.97329 2499 18 1875 20 2190 11 1276 19 75

2RG01_SPOT49 0.16186 0.0017 0.39668 0.0050 8.85160 0.1136 0.09951 0.0015 0.97642 2475 18 2154 23 2323 12 1917 27 87

2RG01_SPOT50 0.16545 0.0017 0.42011 0.0052 9.58231 0.1196 0.10446 0.0015 0.98200 2512 18 2261 23 2396 11 2008 27 90

2RG01_SPOT51 0.16918 0.0023 0.44208 0.0059 10.30400 0.1582 0.08167 0.0018 0.87543 2550 22 2360 27 2463 14 1587 33 93

2RG01_SPOT52 0.17614 0.0019 0.36309 0.0045 8.81557 0.1116 0.08546 0.0014 0.98309 2617 17 1997 21 2319 12 1658 25 76

Page 73: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

2RG01_SPOT53 0.16836 0.0020 0.48242 0.0063 11.19050 0.1559 0.10531 0.0020 0.94209 2541 19 2538 28 2539 13 2024 37 100

2RG01_SPOT54 0.16053 0.0017 0.48760 0.0059 10.79139 0.1351 0.12838 0.0020 0.97115 2461 18 2560 26 2505 12 2441 36 104

2RG01_SPOT55 0.16386 0.0018 0.40731 0.0050 9.20046 0.1175 0.07455 0.0013 0.96697 2496 18 2203 23 2358 12 1453 23 88

2RG01_SPOT56 0.17091 0.0018 0.47567 0.0059 11.20680 0.1438 0.11984 0.0019 0.96645 2567 18 2508 26 2541 12 2288 35 98

2RG01_SPOT57 0.17712 0.0020 0.50887 0.0063 12.42476 0.1618 0.14662 0.0025 0.95540 2626 18 2652 27 2637 12 2765 44 101

2RG01_SPOT58 0.17070 0.0019 0.49111 0.0061 11.55753 0.1504 0.14444 0.0025 0.94691 2565 19 2576 26 2569 12 2727 44 100

2RG01_SPOT59 0.16335 0.0017 0.42794 0.0052 9.63797 0.1189 0.11376 0.0018 0.97896 2491 17 2296 23 2401 11 2178 33 92

2RG01_SPOT60 0.14337 0.0017 0.17837 0.0021 3.52358 0.0460 0.02304 0.0007 0.90671 2268 20 1058 12 1533 10 460 14 47

2RG01_SPOT61 0.17535 0.0019 0.40852 0.0051 9.87573 0.1249 0.10682 0.0017 0.97751 2609 17 2208 23 2423 12 2051 31 85

2RG01_SPOT62 0.14178 0.0016 0.18749 0.0022 3.66522 0.0457 0.04418 0.0010 0.94598 2249 19 1108 12 1564 10 874 20 49

2RG01_SPOT63 0.16799 0.0018 0.44187 0.0053 10.23335 0.1284 0.10925 0.0019 0.96316 2538 18 2359 24 2456 12 2096 35 93

2RG01_SPOT64 0.14413 0.0017 0.38362 0.0049 7.62018 0.1034 0.07569 0.0014 0.93785 2277 20 2093 23 2187 12 1475 26 92

2RG01_SPOT65 0.17697 0.0019 0.26454 0.0033 6.45372 0.0820 0.04030 0.0007 0.97346 2625 18 1513 17 2040 11 799 13 58

2RG01_SPOT66 0.15530 0.0017 0.22338 0.0027 4.78233 0.0600 0.04293 0.0007 0.96633 2405 18 1300 14 1782 11 850 14 54

2RG01_SPOT67 0.16470 0.0019 0.35752 0.0044 8.11541 0.1071 0.02644 0.0005 0.93493 2505 19 1970 21 2244 12 527 11 79

2RG01_SPOT68 0.16684 0.0020 0.44311 0.0055 10.18967 0.1377 0.09731 0.0018 0.92531 2526 19 2365 25 2452 12 1877 34 94

2RG01_SPOT69 0.17048 0.0019 0.47781 0.0058 11.23105 0.1429 0.11232 0.0018 0.94732 2562 18 2518 25 2543 12 2152 33 98

2RG01_SPOT70 0.10923 0.0013 0.31632 0.0039 4.76303 0.0645 0.08687 0.0015 0.90070 1787 22 1772 19 1778 11 1684 28 99

2RG01_SPOT71 0.16928 0.0018 0.27237 0.0033 6.35697 0.0803 0.02044 0.0003 0.96509 2551 18 1553 17 2026 11 409 7 61

2RG01_SPOT72 0.18009 0.0019 0.46913 0.0057 11.64974 0.1465 0.09778 0.0017 0.96436 2654 18 2480 25 2577 12 1886 31 93

2RG01_SPOT73 0.16852 0.0018 0.48533 0.0058 11.27688 0.1413 0.12293 0.0020 0.96040 2543 18 2550 25 2546 12 2343 36 100

2RG01_SPOT74 0.11775 0.0013 0.21622 0.0026 3.51052 0.0442 0.01872 0.0003 0.96952 1922 19 1262 14 1530 10 375 6 66

2RG01_SPOT75 0.12136 0.0013 0.25315 0.0030 4.23606 0.0527 0.06667 0.0011 0.96508 1976 19 1455 16 1681 10 1305 20 74

2RG01_SPOT76 0.16634 0.0018 0.48933 0.0059 11.22426 0.1412 0.12062 0.0021 0.95501 2521 18 2568 25 2542 12 2302 38 102

2RG01_SPOT77 0.13712 0.0014 0.23243 0.0028 4.39451 0.0540 0.05719 0.0009 0.97963 2191 18 1347 15 1711 10 1124 17 61

2RG01_SPOT78 0.16036 0.0018 0.45451 0.0056 10.05004 0.1321 0.09200 0.0021 0.93918 2460 19 2415 25 2439 12 1779 38 98

2RG01_SPOT79 0.16942 0.0018 0.42297 0.0050 9.88143 0.1216 0.07310 0.0015 0.95285 2552 18 2274 22 2424 11 1426 29 89

Page 74: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

2RG01_SPOT80 0.17444 0.0019 0.47564 0.0058 11.44078 0.1450 0.11655 0.0019 0.96247 2601 18 2508 25 2560 12 2228 34 96

2RG01_SPOT81 0.10681 0.0012 0.23687 0.0029 3.48881 0.0444 0.05358 0.0006 0.95935 1746 20 1370 15 1525 10 1055 11 79

2RG01_SPOT82 0.17805 0.0020 0.48255 0.0059 11.84652 0.1550 0.08601 0.0010 0.93588 2635 19 2538 26 2592 12 1668 19 96

2RG01_SPOT83 0.16507 0.0018 0.50141 0.0060 11.41505 0.1444 0.12447 0.0013 0.94910 2508 18 2620 26 2558 12 2371 24 104

2RG01_SPOT84 0.13987 0.0015 0.14536 0.0017 2.80405 0.0340 0.04103 0.0004 0.98125 2226 18 875 10 1357 9 813 8 39

2RG01_SPOT85 0.12242 0.0013 0.20317 0.0024 3.43019 0.0423 0.03183 0.0003 0.96682 1992 19 1192 13 1511 10 633 6 60

2RG01_SPOT86 0.17041 0.0018 0.46551 0.0056 10.94029 0.1344 0.11623 0.0012 0.97064 2562 18 2464 24 2518 11 2222 21 96

2RG01_SPOT87 0.17844 0.0019 0.50086 0.0064 12.32338 0.1613 0.14310 0.0019 0.98076 2638 18 2618 28 2629 12 2703 34 99

2RG01_SPOT88 0.15731 0.0016 0.32994 0.0041 7.15528 0.0902 0.09282 0.0011 0.98051 2427 18 1838 20 2131 11 1794 21 76

A3. (continued)

Sample RG-02 Isotope Ratios Ages (Ma)

Spot Name Pb207/Pb206 ± 1σ Pb206/U238 ± 1σ Pb207/U235 ± 1σ Pb208/Th232 ± 1σ rho Pb207/Pb206 ± 1σ Pb206/U238 ± 1σ Pb207/U235 ± 1σ Pb208/Th232 ± 1σ Conc. (%)

RG02SPOT03 0.46389 0.0064 0.80285 0.0114 51.35010 0.7812 0.21647 0.0023 0.90799 4130 20 3799 41 4019 15 3961 38 92

RG02SPOT04 0.16116 0.0017 0.33434 0.0047 7.42381 0.1040 0.04894 0.0004 0.96771 2468 18 1859 23 2164 13 966 8 75

RG02SPOT05 0.15848 0.0016 0.37045 0.0051 8.09054 0.1094 0.06085 0.0005 0.99154 2440 17 2032 24 2241 12 1194 10 83

RG02SPOT06 0.16203 0.0016 0.35775 0.0049 7.98792 0.1071 0.04453 0.0004 0.98339 2477 17 1972 23 2230 12 881 7 80

RG02SPOT07 0.14795 0.0015 0.13207 0.0019 2.69143 0.0367 0.02460 0.0002 0.99638 2322 17 800 11 1326 10 491 4 34

RG02SPOT09 0.17631 0.0018 0.34345 0.0049 8.34593 0.1164 0.04248 0.0003 0.99001 2619 17 1903 24 2269 13 841 6 73

RG02SPOT10 0.15349 0.0015 0.31363 0.0044 6.63286 0.0908 0.03761 0.0003 0.98170 2385 17 1759 22 2064 12 746 6 74

RG02SPOT13 0.15942 0.0016 0.23614 0.0033 5.18722 0.0714 0.02862 0.0003 0.98003 2450 17 1367 17 1851 12 570 5 56

RG02SPOT14 0.20610 0.0022 0.11397 0.0014 3.23751 0.0410 0.01929 0.0002 0.99972 2875 17 696 8 1466 10 386 4 24

RG02SPOT15 0.16775 0.0017 0.35037 0.0051 8.10230 0.1142 0.04680 0.0003 0.98432 2535 17 1936 24 2243 13 925 6 76

RG02SPOT16 0.17454 0.0018 0.16506 0.0021 3.96968 0.0516 0.04392 0.0004 0.98712 2602 17 985 12 1628 11 869 8 38

Page 75: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG02SPOT17 0.16387 0.0017 0.41819 0.0058 9.44510 0.1289 0.03115 0.0003 0.98511 2496 17 2252 26 2382 13 620 5 90

RG02SPOT19 0.16703 0.0017 0.39689 0.0052 9.13463 0.1196 0.06684 0.0006 0.99459 2528 17 2155 24 2352 12 1308 12 85

RG02SPOT20 0.15216 0.0015 0.16863 0.0023 3.53625 0.0470 0.02021 0.0002 0.99257 2370 17 1005 13 1535 11 404 3 42

RG02SPOT21 0.17977 0.0018 0.09661 0.0013 2.39444 0.0313 0.00727 0.0001 0.99309 2651 16 595 8 1241 9 146 1 22

RG02SPOT22 0.16328 0.0017 0.37357 0.0052 8.40922 0.1157 0.05032 0.0004 0.96303 2490 17 2046 24 2276 12 992 8 82

RG02SPOT23 0.16321 0.0017 0.35159 0.0049 7.90968 0.1089 0.03732 0.0003 0.98754 2489 17 1942 23 2221 12 741 7 78

RG02SPOT24 0.16216 0.0018 0.22586 0.0028 5.04884 0.0657 0.02324 0.0002 0.99092 2478 18 1313 15 1828 11 464 5 53

RG02SPOT25 0.16331 0.0017 0.35137 0.0048 7.90945 0.1084 0.05786 0.0005 0.99388 2490 17 1941 23 2221 12 1137 10 78

RG02SPOT26 0.17264 0.0018 0.31730 0.0046 7.55380 0.1058 0.03829 0.0003 0.96709 2583 17 1777 22 2179 13 760 5 69

RG02SPOT27 0.16322 0.0017 0.34789 0.0045 7.82779 0.1019 0.05956 0.0006 0.98852 2489 17 1925 22 2211 12 1169 11 77

RG02SPOT28 0.18161 0.0019 0.19843 0.0027 4.96724 0.0671 0.02900 0.0003 0.97432 2668 17 1167 14 1814 11 578 5 44

RG02SPOT29 0.18807 0.0020 0.33420 0.0044 8.66477 0.1163 0.02464 0.0003 0.99625 2725 18 1859 21 2303 12 492 5 68

RG02SPOT30 0.16223 0.0017 0.41933 0.0057 9.37552 0.1282 0.10743 0.0010 0.99701 2479 17 2257 26 2375 13 2063 18 91

RG02SPOT32 0.16552 0.0017 0.40763 0.0058 9.30106 0.1303 0.02776 0.0002 0.97276 2513 17 2204 27 2368 13 553 4 88

RG02SPOT34 0.17964 0.0019 0.15284 0.0020 3.78539 0.0494 0.01841 0.0002 0.97773 2650 17 917 11 1590 10 369 4 35

RG02SPOT35Rim 0.28248 0.0039 0.03456 0.0005 1.34558 0.0214 0.00735 0.0001 0.97790 3377 21 219 3 866 9 148 2 6

RG02SPOT36 0.16969 0.0018 0.44709 0.0063 10.45733 0.1461 0.08963 0.0008 0.98670 2555 17 2382 28 2476 13 1735 16 93

RG02SPOT37 0.16822 0.0018 0.26008 0.0037 6.03072 0.0853 0.01424 0.0001 0.97429 2540 18 1490 19 1980 12 286 2 59

RG02SPOT38 0.18164 0.0018 0.14174 0.0020 3.54910 0.0481 0.01632 0.0001 0.99961 2668 16 855 11 1538 11 327 3 32

RG02SPOT39 0.16390 0.0017 0.40523 0.0054 9.15772 0.1232 0.08559 0.0008 0.99716 2496 17 2193 25 2354 12 1660 16 88

RG02SPOT40 0.16503 0.0017 0.39343 0.0054 8.95061 0.1230 0.07590 0.0007 0.99595 2508 17 2139 25 2333 13 1479 13 85

RG02SPOT42 0.45970 0.0107 0.67425 0.0133 42.73708 1.0051 0.47073 0.0081 0.99878 4117 34 3322 51 3836 23 7797 111 81

RG02SPOT44 0.25183 0.0027 0.04682 0.0006 1.62583 0.0215 0.01325 0.0001 0.99754 3196 17 295 4 980 8 266 3 9

Page 76: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

A3. (continued)

Sample RG-04 Isotope Ratios Ages (Ma)

Spot Name Pb207/Pb206 ± 1σ Pb206/U238 ± 1σ Pb207/U235 ± 1σ Pb208/Th232 ± 1σ rho Pb207/Pb206 ± 1σ Pb206/U238 ± 1σ Pb207/U235 ± 1σ Pb208/Th232 ± 1σ Conc. (%)

RG04spot01 0.16398 0.0031 0.09542 0.0014 2.15771 0.0410 0.01679 0.0004 0.99908 2497 32 588 8 1168 13 337 7 24

RG04spot02 0.16275 0.0018 0.42996 0.0058 9.63537 0.1306 0.07995 0.0010 0.97932 2484 18 2306 26 2401 12 1555 19 93

RG04spot03 0.16649 0.0018 0.50057 0.0065 11.48122 0.1516 0.12441 0.0016 0.99354 2523 18 2616 28 2563 12 2370 28 104

RG04spot04 0.16758 0.0019 0.50612 0.0067 11.68735 0.1600 0.12194 0.0017 0.98870 2534 19 2640 29 2580 13 2326 31 104

RG04spot05 0.15006 0.0017 0.14463 0.0020 2.99064 0.0422 0.01204 0.0002 0.99562 2347 19 871 11 1405 11 242 4 37

RG04spot06 0.16094 0.0017 0.18360 0.0023 4.07288 0.0524 0.03326 0.0004 0.98175 2466 18 1087 13 1649 10 661 8 44

RG04spot07 0.16462 0.0020 0.32136 0.0045 7.28162 0.1056 0.03321 0.0006 0.94141 2504 20 1796 22 2147 13 660 11 72

RG04spot08 0.17098 0.0019 0.26007 0.0036 6.12815 0.0849 0.01509 0.0002 0.98891 2567 18 1490 18 1994 12 303 5 58

RG04spot09 0.15733 0.0018 0.21862 0.0029 4.73839 0.0663 0.03979 0.0006 0.99165 2427 19 1275 16 1774 12 789 12 53

RG04spot10 0.16303 0.0018 0.11458 0.0016 2.57415 0.0361 0.01241 0.0002 0.96343 2487 19 699 9 1293 10 249 3 28

RG04spot11 0.16651 0.0018 0.37432 0.0049 8.59320 0.1151 0.02934 0.0005 0.95571 2523 18 2050 23 2296 12 585 10 81

RG04spot12 0.16952 0.0019 0.28030 0.0038 6.54835 0.0922 0.03371 0.0007 0.77766 2553 19 1593 19 2052 12 670 14 62

RG04spot13 0.16228 0.0017 0.20008 0.0026 4.47636 0.0594 0.02370 0.0004 0.96380 2480 18 1176 14 1727 11 474 9 47

RG04spot14 0.15784 0.0019 0.26729 0.0038 5.81152 0.0846 0.04092 0.0022 0.98069 2433 20 1527 19 1948 13 811 43 63

RG04spot15 0.15907 0.0025 0.21778 0.0032 4.74373 0.0792 0.02088 0.0020 0.93334 2446 26 1270 17 1775 14 418 39 52

RG04spot16 0.16299 0.0019 0.17418 0.0024 3.91067 0.0564 0.02556 0.0011 0.95057 2487 20 1035 13 1616 12 510 21 42

RG04spot17 0.18144 0.0020 0.49997 0.0066 12.50584 0.1689 0.12002 0.0026 0.98281 2666 18 2614 28 2643 13 2291 47 98

RG04spot18 0.16673 0.0018 0.15755 0.0021 3.62153 0.0483 0.02628 0.0006 0.98399 2525 18 943 12 1554 11 524 11 37

RG04spot19 0.16053 0.0018 0.16126 0.0022 3.56846 0.0502 0.02038 0.0009 0.98099 2461 19 964 12 1543 11 408 18 39

RG04spot20 0.16461 0.0018 0.05510 0.0008 1.24935 0.0172 0.02111 0.0006 0.99655 2504 18 346 5 823 8 422 12 14

RG04spot21 0.16610 0.0020 0.48657 0.0066 11.14818 0.1587 0.12291 0.0042 0.97132 2519 20 2556 29 2536 13 2343 76 101

RG04spot22 0.16396 0.0019 0.41821 0.0055 9.45690 0.1303 0.10321 0.0032 0.98640 2497 19 2252 25 2383 13 1985 59 90

Page 77: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG04spot23 0.16441 0.0018 0.47337 0.0063 10.73566 0.1445 0.11727 0.0037 0.98648 2502 18 2498 27 2501 13 2241 66 100

RG04spot24 0.16500 0.0020 0.37236 0.0052 8.46503 0.1216 0.04808 0.0032 0.99838 2508 20 2041 24 2282 13 949 61 81

RG04spot25 0.15193 0.0018 0.09227 0.0013 1.92973 0.0282 0.01451 0.0011 0.96111 2368 20 569 8 1091 10 291 22 24

RG04spot26 0.16407 0.0023 0.49210 0.0074 11.13179 0.1811 0.10177 0.0055 0.98283 2498 24 2580 32 2534 15 1959 101 103

RG04spot27 0.16447 0.0020 0.14091 0.0019 3.19784 0.0456 0.02126 0.0011 0.88317 2502 20 850 11 1457 11 425 22 34

RG04spot28 0.16861 0.0021 0.06603 0.0009 1.53448 0.0220 0.01192 0.0007 0.97423 2544 21 412 5 944 9 240 14 16

RG04spot29 0.15376 0.0018 0.09608 0.0013 2.03807 0.0284 0.01596 0.0006 0.92065 2388 20 591 8 1128 9 320 11 25

RG04spot30 0.22242 0.0024 0.04874 0.0007 1.49446 0.0216 0.00887 0.0001 0.99563 2998 18 307 4 928 9 178 2 10

RG04spot31 0.11474 0.0012 0.09352 0.0013 1.47910 0.0208 0.00676 0.0001 0.99960 1876 19 576 8 922 9 136 2 31

RG04spot32 0.16537 0.0018 0.49702 0.0076 11.32773 0.1745 0.11375 0.0013 0.99712 2511 18 2601 33 2551 14 2177 24 104

RG04spot33 0.16690 0.0018 0.49609 0.0077 11.41896 0.1788 0.12382 0.0016 0.99897 2527 18 2597 33 2558 15 2360 28 103

RG04spot34 0.16583 0.0018 0.52984 0.0082 12.11408 0.1909 0.12289 0.0016 0.96690 2516 19 2741 35 2613 15 2343 29 109

RG04spot35 0.15895 0.0017 0.21630 0.0031 4.73962 0.0680 0.01379 0.0002 0.96974 2445 18 1262 16 1774 12 277 4 52

RG04spot36 0.15366 0.0016 0.22033 0.0032 4.66565 0.0677 0.05343 0.0007 0.98817 2387 18 1284 17 1761 12 1052 13 54

RG04spot37 0.15975 0.0018 0.21747 0.0032 4.78803 0.0716 0.07033 0.0009 0.96265 2453 19 1269 17 1783 13 1374 18 52

RG04spot38 0.16650 0.0020 0.37153 0.0060 8.52813 0.1407 0.03889 0.0005 0.95708 2523 20 2037 28 2289 15 771 9 81

RG04spot39 0.16166 0.0018 0.51155 0.0081 11.42059 0.1840 0.10811 0.0013 0.99800 2473 19 2663 35 2558 15 2075 23 108

RG04spot40 0.15864 0.0016 0.22601 0.0033 4.94073 0.0714 0.03131 0.0004 0.96460 2441 17 1314 17 1809 12 623 7 54

RG04spot41 0.16165 0.0017 0.22186 0.0034 4.94197 0.0753 0.03625 0.0005 0.97552 2473 18 1292 18 1810 13 720 9 52

RG04spot42 0.16237 0.0017 0.50833 0.0079 11.37674 0.1757 0.08567 0.0010 0.96900 2481 18 2650 34 2555 14 1661 19 107

RG04spot43 0.15250 0.0016 0.07710 0.0012 1.62256 0.0254 0.00812 0.0001 0.99778 2374 18 479 7 979 10 164 2 20

RG04spot44 0.16526 0.0018 0.24724 0.0039 5.63774 0.0898 0.03894 0.0004 0.99721 2510 18 1424 20 1922 14 772 8 57

RG04spot45 0.16289 0.0018 0.02966 0.0005 0.66609 0.0103 0.00426 0.0001 0.96007 2486 18 188 3 518 6 86 1 8

RG04spot46 0.15366 0.0016 0.08924 0.0013 1.88999 0.0269 0.01647 0.0002 0.98696 2387 18 551 7 1078 9 330 4 23

RG04spot47 0.16980 0.0019 0.49709 0.0074 11.63116 0.1742 0.11389 0.0014 0.99469 2556 18 2601 32 2575 14 2180 26 102

RG04spot48 0.16150 0.0020 0.21674 0.0030 4.82392 0.0718 0.05441 0.0007 0.98564 2471 21 1265 16 1789 13 1071 13 51

RG04spot49 0.17201 0.0018 0.03383 0.0005 0.80284 0.0126 0.00707 0.0001 0.98895 2577 18 215 3 598 7 142 2 8

Page 78: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG04spot50 0.12734 0.0015 0.33214 0.0053 5.83255 0.0951 0.03107 0.0004 0.99896 2062 20 1849 25 1951 14 619 7 90

RG04spot51 0.16581 0.0017 0.38723 0.0056 8.84763 0.1281 0.07469 0.0009 0.91828 2516 18 2110 26 2322 13 1456 16 84

RG04spot52 0.16560 0.0018 0.47313 0.0073 10.79840 0.1678 0.10183 0.0013 0.95454 2514 19 2497 32 2506 14 1960 23 99

RG04spot53 0.16338 0.0018 0.39156 0.0061 8.81893 0.1368 0.06337 0.0008 0.98899 2491 18 2130 28 2320 14 1242 16 86

RG04spot54 0.16395 0.0017 0.47141 0.0074 10.65925 0.1671 0.10462 0.0013 0.99632 2497 18 2490 33 2494 15 2011 24 100

RG04spot55 0.15788 0.0016 0.22849 0.0034 4.97311 0.0729 0.03015 0.0004 0.98746 2433 18 1327 18 1815 12 600 7 55

RG04spot56 0.15583 0.0017 0.17678 0.0029 3.79906 0.0613 0.00798 0.0001 0.98550 2411 19 1049 16 1593 13 161 2 44

RG04spot57 0.16078 0.0017 0.35293 0.0055 7.82348 0.1217 0.03246 0.0005 0.98493 2464 18 1949 26 2211 14 646 9 79

RG04spot58 0.21124 0.0022 0.12363 0.0019 3.60129 0.0553 0.00972 0.0001 0.99005 2915 17 751 11 1550 12 195 3 26

RG04spot59 0.15980 0.0020 0.14409 0.0022 3.17420 0.0517 0.02253 0.0003 0.96698 2454 21 868 12 1451 13 450 6 35

RG04spot60 0.18422 0.0020 0.03571 0.0006 0.90738 0.0144 0.00739 0.0001 0.98449 2691 17 226 4 656 8 149 2 8

RG04spot61 0.16200 0.0017 0.49310 0.0075 11.01505 0.1678 0.11087 0.0014 0.98021 2477 18 2584 32 2524 14 2125 25 104

A3. (continued)

Sample RG-15 Isotope Ratios Ages (Ma)

Spot Name Pb207/Pb206 ± 1σ Pb206/U238 ± 1σ Pb207/U235 ± 1σ Pb208/Th232 ± 1σ rho Pb207/Pb206 ± 1σ Pb206/U238 ± 1σ Pb207/U235 ± 1σ Pb208/Th232 ± 1σ Conc. (%)

2RG15_SPOT01 0.15420 0.0016 0.09481 0.0012 2.01537 0.0254 0.03107 0.0003 0.91507 2393 17 584 7 1121 9 619 6 24

2RG15_SPOT02 0.16263 0.0017 0.41245 0.0051 9.24704 0.1144 0.07694 0.0007 0.93890 2483 17 2226 23 2363 11 1498 14 90

2RG15_SPOT03 0.15830 0.0016 0.34353 0.0042 7.49644 0.0929 0.09561 0.0009 0.97178 2438 17 1904 20 2173 11 1846 17 78

2RG15_SPOT04 0.17724 0.0021 0.45659 0.0062 11.14597 0.1589 0.13310 0.0015 0.99234 2627 19 2425 27 2535 13 2526 26 92

2RG15_SPOT05 0.12208 0.0013 0.10564 0.0013 1.77753 0.0228 0.03009 0.0003 0.98882 1987 18 647 8 1037 8 599 6 33

2RG15_SPOT06 0.16717 0.0018 0.37664 0.0045 8.68091 0.1052 0.11263 0.0011 0.98369 2530 18 2061 21 2305 11 2157 20 81

2RG15_SPOT07 0.16851 0.0018 0.43015 0.0050 9.99389 0.1178 0.12149 0.0012 0.98714 2543 17 2306 22 2434 11 2318 22 91

Page 79: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

2RG15_SPOT08 0.16828 0.0018 0.41956 0.0053 9.73195 0.1247 0.10750 0.0011 0.98161 2541 17 2259 24 2410 12 2064 20 89

2RG15_SPOT09 0.13734 0.0014 0.21761 0.0026 4.11951 0.0505 0.07210 0.0007 0.99530 2194 18 1269 14 1658 10 1407 13 58

2RG15_SPOT10 0.14936 0.0015 0.27989 0.0034 5.76271 0.0706 0.08443 0.0009 0.99079 2339 18 1591 17 1941 11 1638 16 68

2RG15_SPOT11 0.16814 0.0017 0.48347 0.0058 11.20110 0.1372 0.12986 0.0013 0.95689 2539 17 2542 25 2540 11 2468 23 100

2RG15_SPOT12 0.16934 0.0018 0.46230 0.0056 10.78827 0.1334 0.12447 0.0012 0.98116 2551 17 2450 25 2505 11 2371 22 96

2RG15_SPOT13 0.16801 0.0018 0.43294 0.0052 10.02312 0.1256 0.11540 0.0012 0.99439 2538 18 2319 24 2437 12 2208 21 91

2RG15_SPOT14 0.17577 0.0019 0.39254 0.0050 9.50681 0.1239 0.11784 0.0013 0.99294 2613 18 2135 23 2388 12 2252 23 82

2RG15_SPOT15 0.16744 0.0018 0.40855 0.0053 9.42634 0.1279 0.11400 0.0013 0.99034 2532 18 2208 24 2380 12 2182 23 87

2RG15_SPOT16 0.12733 0.0013 0.06544 0.0008 1.14876 0.0141 0.02199 0.0002 0.99132 2061 18 409 5 777 7 440 4 20

2RG15_SPOT17 0.17121 0.0019 0.47883 0.0064 11.29423 0.1576 0.13355 0.0015 0.99778 2570 18 2522 28 2548 13 2534 26 98

2RG15_SPOT18 0.16257 0.0019 0.29666 0.0036 6.64558 0.0868 0.02490 0.0003 0.99469 2483 19 1675 18 2065 12 497 5 67

2RG15_SPOT19 0.17448 0.0020 0.26099 0.0034 6.27589 0.0853 0.11883 0.0013 0.98204 2601 19 1495 17 2015 12 2269 23 57

2RG15_SPOT20 0.16310 0.0017 0.34708 0.0043 7.80204 0.0998 0.10263 0.0011 0.97961 2488 18 1921 21 2208 12 1975 19 77

2RG15_SPOT21 0.13973 0.0016 0.05444 0.0007 1.04783 0.0148 0.01972 0.0002 0.99227 2224 19 342 4 728 7 395 4 15

2RG15_SPOT22 0.16094 0.0017 0.39464 0.0050 8.75295 0.1125 0.10557 0.0011 0.98254 2466 17 2144 23 2313 12 2029 19 87

2RG15_SPOT23 0.20276 0.0024 0.34703 0.0046 9.69904 0.1376 0.28563 0.0034 0.98856 2849 19 1920 22 2407 13 5078 54 67

2RG15_SPOT24 0.12472 0.0014 0.13768 0.0018 2.36776 0.0325 0.00669 0.0001 0.99491 2025 19 832 10 1233 10 135 2 41

2RG15_SPOT25 0.14848 0.0016 0.19199 0.0024 3.92973 0.0495 0.06581 0.0007 0.97834 2328 18 1132 13 1620 10 1288 13 49

2RG15_SPOT26 0.16468 0.0017 0.45165 0.0058 10.25407 0.1341 0.11294 0.0012 0.99740 2504 18 2403 26 2458 12 2163 21 96

2RG15_SPOT27 0.17519 0.0020 0.37508 0.0050 9.05986 0.1264 0.10706 0.0012 0.98516 2608 19 2053 23 2344 13 2056 22 79

2RG15_SPOT28 0.15787 0.0016 0.07312 0.0010 1.59142 0.0209 0.04118 0.0005 0.99717 2433 18 455 6 967 8 816 9 19

2RG15_SPOT29 0.12990 0.0013 0.15403 0.0019 2.75867 0.0342 0.04663 0.0005 0.99272 2097 18 924 11 1344 9 921 9 44

2RG15_SPOT30 0.16937 0.0018 0.37829 0.0049 8.83267 0.1170 0.09400 0.0010 0.94471 2551 18 2068 23 2321 12 1816 18 81

2RG15_SPOT31 0.46497 0.0096 0.76671 0.0145 49.15261 1.0670 0.48833 0.0077 0.98996 4134 30 3669 53 3975 22 8038 104 89

RG15spot01 0.15979 0.0016 0.26363 0.0034 5.81088 0.0745 0.08111 0.0008 0.99994 2453 17 1508 17 1948 11 1576 15 61

RG15spot02 0.16557 0.0017 0.46678 0.0062 10.66431 0.1433 0.14982 0.0016 0.99156 2513 18 2469 27 2494 12 2822 28 98

RG15spot03 0.16615 0.0017 0.38553 0.0051 8.83840 0.1175 0.11330 0.0012 0.99948 2519 17 2102 24 2322 12 2169 21 83

Page 80: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG15spot04 0.12498 0.0013 0.11903 0.0016 2.05350 0.0276 0.05967 0.0006 0.97867 2029 18 725 9 1134 9 1171 12 36

RG15spot05 0.16949 0.0017 0.39440 0.0053 9.22866 0.1245 0.13585 0.0015 0.98769 2553 17 2143 25 2361 12 2575 26 84

RG15spot06 0.17551 0.0018 0.46758 0.0064 11.33217 0.1553 0.16343 0.0019 0.98853 2611 17 2473 28 2551 13 3060 33 95

RG15spot07 0.16463 0.0017 0.46182 0.0063 10.50622 0.1436 0.15999 0.0020 0.87701 2504 17 2448 28 2481 13 3000 35 98

RG15spot08 0.16930 0.0018 0.39921 0.0056 9.35286 0.1343 0.15717 0.0023 0.98321 2551 18 2165 26 2373 13 2951 39 85

RG15spot09 0.16848 0.0018 0.50882 0.0070 11.83532 0.1639 0.16321 0.0019 0.87184 2543 18 2652 30 2592 13 3056 33 104

RG15spot10 0.15784 0.0016 0.30560 0.0042 6.65910 0.0915 0.10736 0.0013 0.99991 2433 17 1719 21 2067 12 2061 23 71

RG15_SPOT_11 0.16239 0.0017 0.37707 0.0054 8.44078 0.1220 0.10704 0.0011 0.93221 2481 18 2063 25 2280 13 2055 19 83

RG15_SPOT_12 0.15550 0.0016 0.30060 0.0043 6.44340 0.0917 0.06213 0.0006 0.99484 2407 17 1694 21 2038 13 1218 12 70

RG15_SPOT_13 0.11741 0.0012 0.14340 0.0021 2.32065 0.0330 0.04731 0.0005 0.98774 1917 18 864 12 1219 10 934 9 45

RG15_SPOT_14 0.15713 0.0016 0.38894 0.0055 8.42335 0.1172 0.10072 0.0011 0.99047 2425 17 2118 25 2278 13 1940 19 87

RG15_SPOT_15 0.15399 0.0016 0.23872 0.0034 5.06722 0.0728 0.03215 0.0003 0.98548 2391 18 1380 18 1831 12 640 6 58

RG15_SPOT_16 0.17547 0.0018 0.49727 0.0070 12.02498 0.1678 0.10733 0.0011 0.99316 2611 17 2602 30 2606 13 2061 20 100

RG15_SPOT_17 0.11190 0.0011 0.13309 0.0019 2.05272 0.0292 0.02434 0.0002 0.99174 1831 18 806 11 1133 10 486 5 44

RG15_SPOT_18 0.16752 0.0017 0.43044 0.0062 9.93771 0.1417 0.11984 0.0013 0.98055 2533 17 2308 28 2429 13 2288 23 91

RG15_SPOT_19 0.16537 0.0017 0.35765 0.0051 8.14996 0.1163 0.09859 0.0010 0.96749 2511 17 1971 24 2248 13 1901 18 78

RG15_SPOT_20 0.16512 0.0017 0.46750 0.0068 10.63775 0.1522 0.11203 0.0012 1.00000 2509 17 2473 30 2492 13 2146 21 99

RG15_SPOT_21 0.17954 0.0021 0.38184 0.0058 9.44996 0.1471 0.11802 0.0013 0.99553 2649 19 2085 27 2383 14 2255 23 79

RG15_SPOT_22 0.16215 0.0018 0.46170 0.0067 10.31868 0.1531 0.11731 0.0013 0.98993 2478 18 2447 30 2464 14 2242 24 99

RG15_SPOT_23 0.13656 0.0014 0.06476 0.0009 1.21911 0.0176 0.00801 0.0001 0.96815 2184 18 405 6 809 8 161 2 19

RG15_SPOT_24 0.13017 0.0013 0.20480 0.0030 3.67530 0.0537 0.04813 0.0005 0.99285 2100 18 1201 16 1566 12 950 10 57

RG15_SPOT_25 0.16032 0.0016 0.41757 0.0061 9.22866 0.1340 0.08305 0.0009 0.98966 2459 17 2250 28 2361 13 1613 16 91

RG15_SPOT_26 0.14278 0.0015 0.13070 0.0019 2.57264 0.0373 0.04629 0.0005 0.99424 2261 18 792 11 1293 11 915 10 35

RG15_SPOT_27 0.16936 0.0018 0.44268 0.0063 10.33561 0.1486 0.10787 0.0014 0.98883 2551 18 2363 28 2465 13 2071 25 93

RG15_SPOT_28 0.16019 0.0017 0.40274 0.0059 8.89358 0.1307 0.10838 0.0012 0.97514 2458 18 2182 27 2327 13 2080 21 89

RG15_SPOT_29 0.16497 0.0017 0.44476 0.0064 10.11675 0.1440 0.11334 0.0013 0.98419 2507 17 2372 28 2446 13 2170 23 95

RG15_SPOT_30 0.16164 0.0016 0.39114 0.0057 8.71667 0.1244 0.11085 0.0012 0.98782 2473 17 2128 26 2309 13 2125 22 86

Page 81: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG15_SPOT_32 0.16429 0.0017 0.48775 0.0071 11.04982 0.1586 0.13001 0.0015 0.97913 2500 17 2561 31 2527 13 2471 26 102

RG15_SPOT_33 0.13851 0.0014 0.19904 0.0030 3.80077 0.0553 0.05719 0.0006 0.97404 2209 17 1170 16 1593 12 1124 12 53

RG15_SPOT_34 0.17358 0.0018 0.48140 0.0072 11.51849 0.1718 0.10284 0.0011 0.99901 2592 18 2533 32 2566 14 1979 20 98

RG15_SPOT_35 0.15826 0.0018 0.33498 0.0050 7.30825 0.1128 0.10510 0.0013 0.99816 2437 19 1863 24 2150 14 2020 25 76

RG15_SPOT_36 0.16295 0.0018 0.52420 0.0077 11.77664 0.1756 0.14459 0.0018 0.95334 2487 19 2717 32 2587 14 2730 32 109

RG15_SPOT_37 0.15700 0.0016 0.33363 0.0049 7.22218 0.1032 0.10758 0.0012 0.98101 2424 17 1856 23 2139 13 2065 21 77

RG15_SPOT_38 0.15866 0.0016 0.41414 0.0061 9.06001 0.1298 0.10773 0.0012 0.98893 2441 17 2234 28 2344 13 2068 21 91

RG15_SPOT_39 0.16210 0.0016 0.47747 0.0071 10.67041 0.1546 0.10602 0.0011 0.98177 2478 17 2516 31 2495 13 2037 19 102

RG15_SPOT_40 0.15758 0.0016 0.45627 0.0067 9.91218 0.1439 0.11308 0.0012 0.98762 2430 17 2423 30 2427 13 2165 22 100

RG15_SPOT_41 0.16212 0.0016 0.43653 0.0064 9.75736 0.1403 0.08532 0.0009 0.99987 2478 17 2335 29 2412 13 1655 17 94

RG15_SPOT_42 0.16481 0.0018 0.50099 0.0075 11.38155 0.1709 0.12457 0.0014 0.99164 2506 18 2618 32 2555 14 2373 25 104

RG15_SPOT_43 0.17237 0.0018 0.54109 0.0080 12.85871 0.1874 0.21170 0.0025 0.98944 2581 17 2788 34 2669 14 3881 41 108

RG15_SPOT_44 0.16060 0.0017 0.41612 0.0062 9.21391 0.1357 0.09415 0.0009 0.97182 2462 17 2243 28 2360 13 1819 17 91

RG15_SPOT_45 0.16456 0.0017 0.49804 0.0073 11.30119 0.1647 0.11657 0.0012 0.95956 2503 17 2605 31 2548 14 2229 22 104

RG15_SPOT_46 0.16271 0.0018 0.44650 0.0067 10.01631 0.1504 0.09470 0.0010 0.96908 2484 18 2380 30 2436 14 1829 19 96

RG15_SPOT_47 0.16137 0.0016 0.30429 0.0044 6.77053 0.0974 0.09468 0.0010 0.96961 2470 17 1713 22 2082 13 1828 19 69

RG15_SPOT_49 0.16808 0.0017 0.40095 0.0059 9.29198 0.1348 0.09352 0.0010 0.98206 2539 17 2173 27 2367 13 1807 18 86

RG15_SPOT_50 0.15984 0.0017 0.41478 0.0062 9.14081 0.1379 0.10561 0.0011 0.98390 2454 18 2237 28 2352 14 2029 20 91

RG15_SPOT_51 0.13314 0.0014 0.18649 0.0028 3.42352 0.0508 0.05154 0.0005 0.98403 2140 18 1102 15 1510 12 1016 10 52

RG15_SPOT_52 0.16848 0.0018 0.32199 0.0048 7.48024 0.1115 0.06140 0.0006 0.99629 2543 18 1800 23 2171 13 1205 12 71

RG15_SPOT_53 0.16837 0.0017 0.49668 0.0072 11.53048 0.1680 0.12155 0.0013 0.97858 2542 17 2600 31 2567 14 2319 23 102

RG15_SPOT_54 0.15350 0.0015 0.32501 0.0047 6.87903 0.0987 0.07588 0.0008 0.99195 2385 17 1814 23 2096 13 1478 14 76

RG15_SPOT_55 0.15703 0.0017 0.31357 0.0046 6.78890 0.1006 0.05599 0.0006 0.96564 2424 18 1758 23 2084 13 1101 12 73

RG15_SPOT_56 0.16462 0.0018 0.38209 0.0057 8.67248 0.1297 0.09862 0.0011 0.99368 2504 18 2086 26 2304 14 1901 20 83

RG15_SPOT_57 0.15539 0.0016 0.22819 0.0034 4.88907 0.0714 0.04621 0.0005 0.97879 2406 17 1325 18 1800 12 913 10 55

RG15_SPOT_58 0.15836 0.0016 0.27267 0.0040 5.95392 0.0865 0.07923 0.0008 0.98072 2438 17 1554 20 1969 13 1541 15 64

RG15_SPOT_59 0.17449 0.0025 0.50018 0.0076 12.02887 0.2087 0.13576 0.0019 0.99135 2601 24 2615 33 2607 16 2573 33 101

Page 82: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG15_SPOT_60 0.16711 0.0018 0.45250 0.0065 10.42429 0.1533 0.10179 0.0012 0.98104 2529 18 2406 29 2473 14 1959 23 95

RG15_SPOT_61 0.15252 0.0017 0.41903 0.0062 8.80980 0.1329 0.10931 0.0013 0.99807 2374 19 2256 28 2319 14 2097 24 95

RG15_SPOT_62 0.14935 0.0015 0.19585 0.0029 4.03269 0.0582 0.02456 0.0003 0.99410 2339 17 1153 15 1641 12 490 5 49

RG15_SPOT_63 0.16546 0.0019 0.46642 0.0070 10.63987 0.1640 0.10388 0.0013 0.99080 2512 19 2468 31 2492 14 1998 24 98

RG15_SPOT_64 0.15945 0.0017 0.32722 0.0048 7.19309 0.1057 0.08737 0.0011 0.96956 2450 18 1825 23 2136 13 1693 20 74

RG15_SPOT_65 0.16461 0.0017 0.46522 0.0067 10.55938 0.1525 0.12211 0.0014 0.98695 2504 17 2463 29 2485 13 2329 26 98

RG15_SPOT_66 0.16704 0.0018 0.46820 0.0067 10.77856 0.1580 0.12684 0.0017 0.97168 2528 18 2476 30 2504 14 2414 30 98

RG15_SPOT_67 0.15385 0.0016 0.15777 0.0023 3.34508 0.0496 0.01789 0.0002 0.97901 2389 18 944 13 1492 12 358 4 40

RG15_SPOT_68 0.15482 0.0016 0.22858 0.0033 4.87730 0.0700 0.04767 0.0005 0.98160 2400 17 1327 17 1798 12 941 10 55

RG15_SPOT_69 0.12433 0.0013 0.14731 0.0022 2.52387 0.0370 0.03838 0.0005 0.98900 2019 18 886 12 1279 11 761 9 44

RG15_SPOT_70 0.16063 0.0018 0.39827 0.0060 8.81763 0.1345 0.08775 0.0011 0.94652 2462 19 2161 27 2319 14 1700 20 88

RG15_SPOT_71 0.15565 0.0016 0.33045 0.0047 7.08729 0.0999 0.08537 0.0010 0.98462 2409 17 1841 23 2122 13 1656 18 76

RG15_SPOT_72 0.15841 0.0016 0.34690 0.0050 7.57500 0.1087 0.08009 0.0009 0.96234 2439 17 1920 24 2182 13 1557 16 79

RG15_SPOT_73 0.15455 0.0016 0.23149 0.0034 4.93218 0.0698 0.02351 0.0003 0.99268 2397 17 1342 18 1808 12 470 5 56

A4.

Element La139 Ce140 Pr141 Nd146 Sm147 Eu153 Gd157 Tb159 Dy163 Ho165 Er166 Tm169 Yb172 Lu175

2RG15_02 3.60218 63.47962 22.40876 40.36568 175.5844 154.9425 361.2092 489.6552 684.7507 938.6604 1224.177 1772.191 2334.879 2329.396

2RG15_04 1.99455 60.26123 15.48175 28.74824 158.0519 189.1954 364.2484 449.3103 537.2441 647.8261 780.4819 1037.079 1362.944 1546.194

2RG15_07 7.356948 41.92268 18.52555 30.09845 120.0866 104.9425 220.8824 299.8276 420.9711 576.9683 756.3052 1059.27 1341.694 1527.297

2RG15_11 0.765668 19.73877 7.036496 18.5654 89.39394 58.73563 236.6667 356.0345 532.4672 750.5288 953.4538 1360.112 1786.935 1674.278

2RG15_12 1.166213 31.80773 6.591241 17.27145 77.48918 62.18391 188.7255 269.4828 414.357 617.1563 890.9639 1291.573 1712.258 2086.877

2RG15_13 91.82561 144.9634 83.72263 85.41491 85.62771 31.08046 136.8301 181.7241 269.4488 402.7027 546.2651 847.4719 1218.468 1221.522

2RG15_26 42.47956 74.37827 45.25547 53.16456 94.80519 78.62069 187.0915 270.6897 410.3937 606.5805 859.2771 1288.483 1755.524 1877.69

Page 83: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG15_02 20.89918 114.2947 54.23358 85.34459 327.1429 321.954 575.3595 745.8621 990.2625 1252.879 1675.502 2181.461 2766.774 3159.843

RG15_06 36.53951 111.2017 87.51825 144.4023 530.7792 559.7701 1118.954 1304.655 1561.68 1739.013 2045.984 2564.045 3151.815 3906.562

RG15_07 14.41417 126.8861 98.24818 194.7679 698.2251 612.1839 903.268 1080.517 1268.556 1495.887 1826.988 2419.382 3078.427 3414.436

RG15_16 2.250681 22.87356 13.08759 24.45851 114.8918 135.1724 235.817 300.1724 391.4173 500.1175 650.0402 979.4944 1406.613 1339.895

RG15_20 30.81744 116.9383 44.9635 66.63854 318.1385 426.8966 633.0065 726.7241 868.7927 1034.078 1284.94 1918.539 2706.008 2501.575

RG15_22 0.400545 19.73877 2.788321 7.158931 41.55844 25.97701 132.0915 222.2414 362.021 573.443 821.4458 1204.494 1609.395 1831.234

RG15_25 2.99455 70.86729 24.9635 50.70323 246.5368 216.7816 516.7974 691.2069 933.9895 1159.812 1446.867 1864.045 2268.185 2531.759

RG15_27 234.5777 335.7158 172.7737 175.7947 366.6234 343.4483 567.9412 766.7241 1050.499 1488.249 2039.277 2777.247 3643.589 4403.412

RG15_29 5.613079 36.83386 13.79562 28.27004 204.1558 324.5977 765.5556 1057.931 1068.346 1335.605 1367.149 1637.64 1968.952 2123.097

RG15_32 0.120436 33.45873 1.868613 5.049226 28.09524 29.42529 84.08497 142.4138 249.9213 418.6839 652.6908 1116.573 1735.403 1770.341

RG15_34 3.978202 31.08673 15.83942 25.20394 81.68831 80.68966 183.6601 298.1034 507.4541 834.0776 1264.177 1887.64 2569.274 3324.672

RG15_36 8.80109 53.96029 25.40146 41.49086 143.1602 144.1379 256.9608 345.3448 489.6325 691.1868 954.5382 1521.067 2145.323 1939.37

RG15_38 186.594 259.5716 200.5109 229.0436 356.5801 274.9425 481.2745 548.4483 703.7008 924.7944 1224.538 1713.202 2248.548 2819.685

RG15_39 2.474114 52.65413 8.583942 16.01969 70.38961 66.78161 141.1111 190.6897 279.6588 398.5899 568.3133 867.9775 1240.726 1587.927

RG15_40 12.77929 47.43992 28.68613 47.173 112.3377 81.03448 162.7451 201.7241 300.8136 480.611 744.9799 1221.629 1817.823 2500.787

RG15_41 213.951 280.1045 267.2993 375.9775 639.6537 544.9425 814.6405 913.6207 1082.047 1324.442 1611.807 2204.494 2841.411 2856.955

RG15_43 2.626703 33.0721 15.62044 24.61322 72.03463 63.67816 105.098 136.7241 206.0892 294.8296 454.0562 724.7191 1102.056 1370.604

RG15_45 0.256131 27.40857 2.452555 6.694796 35.28139 38.27586 102.6797 168.7931 294.252 493.772 745.8635 1233.427 1841.815 2046.982

RG15_46 0.588556 7.899687 5.021898 14.23347 60.38961 39.42529 165.2941 256.3793 406.5092 623.7368 828.5542 1206.742 1558.508 1614.436

RG15_50 1.051771 27.24138 4.525547 9.381153 46.70996 32.98851 93.36601 145.6897 230.7087 360.7521 521.8072 795.2247 1104.435 1228.346

RG15_53 2.354223 47.45037 2.138686 4.964838 25.45455 20.29885 83.79085 142.069 247.4016 401.1751 607.3896 991.573 1507.903 1479.265

RG15_59 5.013624 24.47231 16.64234 23.20675 63.24675 49.1954 118.4641 134.1379 152.0735 182.6087 224.8594 307.5843 399.2742 470.8661

RG15_60 4.959128 43.27064 14.89051 26.24473 105.7143 95.05747 172.6471 231.5517 318.9239 426.087 580.4418 845.7865 1141.129 1410.761

RG15_63 0.926431 45.50679 7.737226 15.44304 132.1645 56.55172 196.2418 342.7586 551.1549 887.309 1340.964 1982.303 2591.653 3085.564

RG15_65 0.882834 39.33124 5.49635 12.92546 63.16017 48.96552 147.3203 218.4483 325.4331 468.9777 629.1165 963.2022 1405.605 1288.714

RG15_66 7.384196 89.16405 39.92701 112.7426 1138.658 1592.414 3753.301 4137.759 4408.425 4323.972 3920.161 4003.09 4116.492 4002.1

Page 84: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

A5.

Analysis No. Hf176/Hf177 2 S.E. Lu176/Hf177 Yb176/Hf177 Pb/Pb AGE Hfi epsilon 1s TDM (Ga) TDM (crustal) Hf Chur (t) Hf DM (t)

RG-04 Spot 02 0.281055119 0.000233216 0.003564935 0.166444191 2484.4 0.280886 -11.0762 8.162566 3.27627 3.628327834 0.281197515 0.28143

RG-04 Spot 03 0.281399006 0.000112758 0.001343131 0.075558029 2522.7 0.281334 5.748698 3.946517 2.613545 2.664502154 0.281172667 0.281401

RG-04 Spot 17 0.281577393 9.47395E-05 0.002076706 0.158242413 2666.1 0.281472 13.94796 3.315884 2.41389 2.288083275 0.281079474 0.281293

RG-04 Spot 21 0.28111557 6.0059E-05 0.000725137 0.044013888 2518.7 0.281081 -3.3633 2.102064 2.954814 3.201336362 0.281175263 0.281404

RG-04 Spot 22 0.281272172 0.000107755 0.00153457 0.101378806 2496.9 0.281199 0.341914 3.771414 2.802159 2.965593731 0.281189407 0.281421

RG-04 Spot 23 0.281290505 7.44652E-05 0.00056924 0.034195769 2501.5 0.281263 2.734689 2.606284 2.707749 2.827233471 0.281186423 0.281417

RG-04 Spot 26 0.281194014 4.8767E-05 0.001081583 0.065508925 2498.1 0.281142 -1.64294 1.706846 2.875549 3.08396622 0.281188629 0.28142

RG-04 Spot 32 0.281408047 0.000124223 0.001532856 0.099757356 2511.3 0.281335 5.49406 4.347794 2.61415 2.670762532 0.281180065 0.28141

RG-04 Spot 39 0.28143252 0.000265693 0.002578447 0.128358873 2473.1 0.281311 3.768268 9.29924 2.65372 2.743730071 0.281204843 0.281438

RG-04 Spot 42 0.281092137 0.00023662 0.00285224 0.145103396 2480.5 0.280957 -8.63992 8.281689 3.159897 3.482613297 0.281200044 0.281433

RG-04 Spot 47 0.281096366 5.69451E-05 0.000438253 0.026530127 2555.7 0.281075 -2.71283 1.993078 2.958758 3.191366298 0.281151243 0.281376

RG-04 Spot 50 0.281530363 0.000219719 0.002098253 0.092571179 2061.6 0.281448 -0.80023 7.69015 2.481655 2.698722423 0.281470641 0.281746

RG-04 Spot 52 0.281240487 0.000105556 0.000701719 0.046894955 2513.7 0.281207 1.006468 3.694446 2.784611 2.939203863 0.281178507 0.281408

RG-04 Spot 52 (2) 0.281470353 0.000224779 0.002103367 0.098964158 2513.7 0.281369 6.78896 7.867268 2.56657 2.595471064 0.281178507 0.281408

RG-04 Spot 54 0.281398923 0.000358958 0.00322072 0.162054703 2496.9 0.281245 1.991162 12.56353 2.749639 2.867806876 0.281189407 0.281421

RG-04 Spot 61 0.281177392 7.00077E-05 0.000715842 0.048992306 2476.7 0.281144 -2.09659 2.45027 2.87079 3.094336502 0.281202508 0.281436

2RG-01 Spot 04 0.281232595 5.03259E-05 0.001285196 0.073103102 2573.2 0.281169 1.05064 1.761407 2.838068 2.982620281 0.281139876 0.281363

2RG-01 Spot 08 0.281276329 0.000110174 0.001250617 0.086577085 1984.2 0.281229 -10.3447 3.85608 2.775589 3.209164649 0.281520408 0.281803

2RG-01 Spot 22 0.281289121 7.72774E-05 0.001255326 0.086835157 2339.7 0.281233 -2.06551 2.704709 2.758396 2.987363318 0.281291233 0.281538

Page 85: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

2RG-01 Spot 33 0.281638309 0.000276438 0.002095051 0.115550962 2489.6 0.281539 12.2548 9.675342 2.329008 2.24943485 0.281194142 0.281426

2RG-01 Spot 36 0.28160435 0.000198647 0.004996649 0.243342459 2286.3 0.281387 2.165929 6.95265 2.578601 2.694374373 0.281325754 0.281578

2RG-01 Spot 37 0.281124813 8.42136E-05 0.00112094 0.052298077 2670.2 0.281068 -0.32831 2.947475 2.972752 3.139025036 0.281076806 0.28129

RG-01 Spot 36 0.281381803 0.000543222 0.002108017 0.095889207 2316.9 0.281289 -0.61348 19.01278 2.691458 2.883595835 0.281305976 0.281555

RG-01 Spot 49 0.281109335 0.000124028 0.001592311 0.081255051 2489.9 0.281034 -5.7006 4.340984 3.031085 3.317014013 0.281193948 0.281426

2RG-01 Spot 41 0.281236659 0.000118926 0.001878544 0.085101704 2577.7 0.281144 0.255759 4.162417 2.877305 3.033100452 0.281136953 0.28136

2RG-01 Spot 46 0.281180005 0.000153641 0.00145832 0.074348105 2474.8 0.281111 -3.29375 5.377433 2.923351 3.163600575 0.28120374 0.281437

2RG-01 Spot 50 0.281339238 5.65388E-05 0.000987488 0.059001034 2512.2 0.281292 3.997099 1.978859 2.670851 2.760537317 0.281179481 0.281409

2RG-01 Spot 58 0.281334096 5.32655E-05 0.000644158 0.041836485 2564.5 0.281303 5.584677 1.864291 2.654104 2.70692225 0.281145528 0.28137

2RG-01 Spot 64 0.281489191 0.000154353 0.005088173 0.25382867 2277.4 0.281268 -2.24225 5.402366 2.761862 2.950110642 0.281331505 0.281585

2RG-01 Spot 70 0.281578437 7.30319E-05 0.001194262 0.074612344 1786.6 0.281538 -3.87587 2.556115 2.356437 2.673520116 0.281647137 0.28195

2RG-01 Spot 73 0.281396071 4.8235E-05 0.000328564 0.025939624 2543 0.28138 7.84692 1.688225 2.549466 2.555338444 0.281159489 0.281386

A6.

Sample No. Ce/Ce*

RG15_40 2.285714

RG15_41 1.164045

RG15_43 3.630077

RG15_06 1.792536

RG15_07 2.252019

RG15_09 27.63889

RG15_16 2.981747

RG15_20 3.085895

RG15_22 12.3723

Page 86: Geochronological and sedimentological constraints of the ...€¦ · sequences (Dharwar Group) and the dominating polyphase gneissic basement of tonalite-trondhjemite-granodiorite

RG15_25 5.06867

RG15_27 1.648263

RG15_02 3.041245

RG15_60 4.359698

RG15_61 26.67073

RG15_63 10.50808

RG15_65 12.32143

RG15_66 3.771997

RG15_46 2.817404

RG15_45 20.25868

RG15_50 9.763441

RG15_53 21.13586

RG15_59 2.258422

RG15_29 3.792997

RG15_32 33.62814

RG15_34 3.132494

RG15_36 3.153711

RG15_38 1.341031

RG15_39 9.529412

2RG15_13 1.651401

2RG15_26 1.695077

2RG15_12 8.200567

2RG15_11 5.055734

2RG15_02 4.883077

2RG15_04 6.899828

2RG15_07 3.239567