geo479/579: geostatistics ch17. cokriging

39
Geo479/579: Geostatistics Ch17. Cokriging

Upload: jafari

Post on 11-Jan-2016

96 views

Category:

Documents


8 download

DESCRIPTION

Geo479/579: Geostatistics Ch17. Cokriging. Introduction. Data sets often contain more than one variable of interest These variables are usually spatially cross-correlated. The Cokriging System. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Geo479/579: Geostatistics Ch17.  Cokriging

Geo479/579: Geostatistics

Ch17. Cokriging

Page 2: Geo479/579: Geostatistics Ch17.  Cokriging

Data sets often contain more than one variable of interest

These variables are usually spatially cross-correlated

Introduction

Page 3: Geo479/579: Geostatistics Ch17.  Cokriging
Page 4: Geo479/579: Geostatistics Ch17.  Cokriging

A method for estimation that minimizes the variance of the estimation error by exploiting the cross-correlation between several variables

Cross-correlated information contained in the secondary variable should help reduce the variance of the estimation errors

The Cokriging System

Page 5: Geo479/579: Geostatistics Ch17.  Cokriging

When is the secondary variable useful in estimates?

Primary variable of interest is under sampled then the only information we have is the cross correlated information

The Cokriging System

Page 6: Geo479/579: Geostatistics Ch17.  Cokriging

The Cokriging System

The cokriging estimate is a linear combination of both primary and secondary data values

01 1

ˆ (17.1)n m

i i j ji j

u a u b v

This is the Equation used in Ordinary Kriging pg 279

n

jj vwv

1

ˆ

Page 7: Geo479/579: Geostatistics Ch17.  Cokriging

The development of the cokriging system is identical to the development of ordinary kriging system

Estimation Error R can be defined as

This is a modification of the error estimation in Ordinary Kriging( pg 279) iii vvr ˆ

The Cokriging System

Page 8: Geo479/579: Geostatistics Ch17.  Cokriging

Using matrix notation we can write

w = { a1, a2, a3,…an, b1, b2, b3,…bm}

Z = { U1, U2…..Ui, V1,….Vj}

The Cokriging System

Page 9: Geo479/579: Geostatistics Ch17.  Cokriging

0

0 0 0

(17.4)

2 2

2 (17.5)

tz

n n m m

i j i j i j i ji j i j

n m n

i j i j i ii j i

m

j jj

Var R w C w

a a Cov U U b b Cov VV

a b Cov U V a Cov U U

b Cov V U Cov U U

Using Equation 9.14 (p216), 12.6 (p283), 16.3 (p372) we can write

The Cokriging System

Page 10: Geo479/579: Geostatistics Ch17.  Cokriging

This is similar to Chapter 16

)283P 6.12 (16.3, ),(}{

(16.2) 0~

Kww

1 11

0 0

t

n

i

n

jjiji

n

iii

n

i

n

jijji

VVCovwwVwVar

Cww

Page 11: Geo479/579: Geostatistics Ch17.  Cokriging

0 1 1

1 1

1 1

ˆ

(17.6)

n m

i i j ji j

n m

i i j ji j

n m

U i V ji j

E U E aU b V

a E U b E V

m a m b

1 1

1 0 (17.7)n m

i ji j

a and b

Note: Other nonbias conditions are also possible

1) Unbiasedness condition

The Cokriging System

Page 12: Geo479/579: Geostatistics Ch17.  Cokriging

We set error at as 0:

x0

E{R(x0)} E{V} wi

i1

n

E{V}

E{V} wi

i1

n

E{V}

wi

i1

n

1

E{R(x0)} E{V} wi

i1

n

E{V} 0

It is similar to unbiasedness in Ordinary Kriging (p281)

Page 13: Geo479/579: Geostatistics Ch17.  Cokriging

2) Minimizing error variance

1

1

min

. .

1

0

n

ii

m

jj

Var R

s t

a

b

1 21 1

2 ( 1) 2 ( ) (17.8)n m

tz i j

i j

Var R w C w a b

Lagrangean Relaxation:

The Cokriging System

Page 14: Geo479/579: Geostatistics Ch17.  Cokriging

1 21 1

2 ( 1) 2 ( ) (17.8)n m

tz i j

i j

Var R w C w a b

Lagrangean Relaxation:

Original Lagrange parameter:

The Cokriging System

˜ 2R = ˜ 2 wiw j

j1

n

i1

n

˜ C ij 2 wi

i1

n

˜ C i0 2( wi

i1

n

1)

(12.9)

Page 15: Geo479/579: Geostatistics Ch17.  Cokriging

1 01 1

2 01 1

1

1

1,...,

1,...,

1

0 (17.9)

n m

i i j i i j ji i

n m

i i j i i j ji i

n

ii

m

ii

a Cov U U b Cov VU Cov U U for j n

a Cov U V b Cov VV Cov U V for j m

a

b

Equating n+m+2 partial derivatives of Var{R} to zero, we get the following system of equations

The Cokriging System

Page 16: Geo479/579: Geostatistics Ch17.  Cokriging

This is similar to minimizing the varianves of error in Ordinary Kriging

The set of weights that minimize the error variance under the unbiasedness condition satisfies the following n+1 equations - ordinary kriging system:

R2

wi

0 w j˜ C ij ˜ C i0

j1

n

i 1,,n

R2

0 wi

i1

n

1

(12.11)

(12.12)

Page 17: Geo479/579: Geostatistics Ch17.  Cokriging

Minimization of the Error Variance The ordinary kriging system expressed in matrix

˜ C 11 ˜ C 1n 1

˜ C n1 ˜ C nn 1

1 1 0

w1

wn

˜ C 10

˜ C n 0

1

C w D

w C-1 D (12.14)

(12.13)

Page 18: Geo479/579: Geostatistics Ch17.  Cokriging

Positive definiteness must hold for the set of auto- and cross-variograms (Eq16.44, p391).

U (h) u00(h) + u11(h) ... umm (h)

V (h) v00(h) +v11(h) ... vmm (h)

UV (h) w00(h) + w11(h) ... wmm(h)

u j > 0 and v j > 0, for all j = 0, ..., m

u j v j > w j w j , for all j = 0, ..., m

U , j (h) UV , j

(h)

VU , j (h) V , j (h)

u j w j

w j v j

j (h) 0

0 j (h)

The Cokriging System

Page 19: Geo479/579: Geostatistics Ch17.  Cokriging

If the primary and secondary variables both exist at all data locations and the auto- and cross-variograms are proportional to the same basic model then the cokriging estimates will be identical to the ordinary kriging estimates

The Cokriging System

Page 20: Geo479/579: Geostatistics Ch17.  Cokriging

A Cokriging Example

Page 21: Geo479/579: Geostatistics Ch17.  Cokriging

1 1 1 2

1 1 1 2

1 1 1 2

( ) 440,000 70,000 ( ) 95,000 ( )

( ) 22,000 40,000 ( ) 45,000 ( )

( ) 47,000 50,000 ( ) 40,000 ( ) (17.11)

U

V

VU

h Sph h Sph h

h Sph h Sph h

h Sph h Sph h

Page 22: Geo479/579: Geostatistics Ch17.  Cokriging
Page 23: Geo479/579: Geostatistics Ch17.  Cokriging
Page 24: Geo479/579: Geostatistics Ch17.  Cokriging

Compares cokriging and ordinary kriging

Undersampled variable U is estimated using 275 U & 470 V sample data for cokriging and only the 275 U data for ordinary kriging

1 1 1 2

1 1 1 2

1 1 1 2

( ) 440,000 70,000 ( ) 95,000 ( )

( ) 22,000 40,000 ( ) 45,000 ( )

( ) 47,000 50,000 ( ) 40,000 ( ) (17.11)

U

V

VU

h Sph h Sph h

h Sph h Sph h

h Sph h Sph h

A Case Study

Page 25: Geo479/579: Geostatistics Ch17.  Cokriging

,1

1,1

10

cos(14) sin(14)25 (17.12)1 sin(14) cos(14)

030

x x

y y

h hh

h h

,2

2,2

10

cos(14) sin(14)50 (17.13)1 sin(14) cos(14)

0150

x x

y y

h hh

h h

12 22

1 ,1 ,1

12 22

2 ,2 ,2 (17.14)

x y

x y

h h h

h h h

Page 26: Geo479/579: Geostatistics Ch17.  Cokriging
Page 27: Geo479/579: Geostatistics Ch17.  Cokriging

Ordinary kriging

275 U values

Using eq 17.11 for the variogram model

Page 28: Geo479/579: Geostatistics Ch17.  Cokriging

Cokriging

275 U and 470 V values

Using eq 17.11 for the variogram model

Two non-bias conditions

1) uses the initial conditions

2) uses only one nonbias condition

1 1

1n m

i ji j

a b

Page 29: Geo479/579: Geostatistics Ch17.  Cokriging

01 1

ˆ ˆ ˆ( ) (17.16)n m

i i j j V Ui j

U aU b V m m

0 1 1

1 1

1 1

1 1

ˆ ˆ ˆ( )

ˆ ˆ

(17.17)

n m

i i j j V Ui j

n m

i i j j V Ui j

n m

U i U ji j

n m

U i ji j

E U E aU b V m m

a E U b E V E m E m

m a m b

m a b

In the alternate unbiased condition, the unknown U value is now estimated as a weighted linear combination of nearby V values adjusted by a constant so that their mean is equal to the mean of the U values

Page 30: Geo479/579: Geostatistics Ch17.  Cokriging

Negative estimates occur because of the nonbias

condition 1

0m

jj

b

Page 31: Geo479/579: Geostatistics Ch17.  Cokriging
Page 32: Geo479/579: Geostatistics Ch17.  Cokriging
Page 33: Geo479/579: Geostatistics Ch17.  Cokriging
Page 34: Geo479/579: Geostatistics Ch17.  Cokriging
Page 35: Geo479/579: Geostatistics Ch17.  Cokriging

Cokriging with two nonbias conditions is less than satisfactory

A physical process with both negative and positive weighting scheme is difficult to imagine

Cokriging with one nonbias condition considerably improved the spread of errors and bias

Though we had to calculate global means of U and V

Page 36: Geo479/579: Geostatistics Ch17.  Cokriging

( ) ( ) ( )UV UV UVC h h

If the spatial continuity is modeled using semivariograms then they can be converted to covariance values for cokriging matrices by following equation:

Page 37: Geo479/579: Geostatistics Ch17.  Cokriging

If we want an estimate over a local area A, there are two options:

1) Average of point estimations within A

The Cokriging System

Page 38: Geo479/579: Geostatistics Ch17.  Cokriging

2) Replace all the covariance terms and

in point cokriging system, with average

covariance values and

0 iCov U U

0 jCov U V

A iCov U U A jCov U V

The Cokriging System

Page 39: Geo479/579: Geostatistics Ch17.  Cokriging

0 0 1 0 01 1

(17.10)n m

i i j ji j

Var R Cov U U a Cov U U b Cov V U

With the unbiasedness conditions, we can calculate error variance as follows

The Cokriging System