genetics single trait punnett square tt t t t t ¼

25
GENETICS SINGLE TRAIT PUNNETT SQUARE Tt T t T t ¼

Upload: gary-pearson

Post on 17-Dec-2015

243 views

Category:

Documents


6 download

TRANSCRIPT

GENETICS

SINGLE TRAIT PUNNETT SQUARE

Tt

T

t

T

t

¼

STUDENT EXPECTATION

• 7-2.6 STUDENTS WILL MAKE PREDICTIONS ABOUT POSSIBLE OUTCOMES OF VARIOUS GENETIC COMBINATIONS OF INHERITED CHARACTERISTICS

T t

T

T

TT Tt

HIGHLIGHT OF OBJECTIVE 2

• SINGLE-TRAIT PUNNETT SQUARES MAY BE USED, AND STUDENTS WILL BE EXPECTED TO PREDICT GENETIC OUTCOMES.

¾

75%

3:1

Gregor Mendel

• The basic laws of heredity were first formed during the mid-1800’s by an Austrian botanist monk named Gregor Mendel. Because his work laid the foundation to the study of heredity, Mendel is referred to as “The Father of Genetics.”

Mendel’ Pea PlantsMendel based his laws on his studies of garden pea plants. Mendel was able to observe differences in multiple traits over many generations because pea plants reproduce rapidly, and have many visible traits such as:

Plant Height

Tall Short

Pod color

Seed Shape

Pod Shape

Seed Color

Green Yellow

Green Yellow

RoundWrinkled

Smooth Pinched

Mendel’s ExperimentsMendel noticed that some plants always produced offspring that had a form of a trait exactly like the parent plant. He called these plants “purebred” plants. For instance, purebred short plants always produced short offspring and purebred tall plants always produced tall offspring.

X

Purebred Short Parents

Purebred Tall Parents

X

Short Offspring

Tall Offspring

Mendel’s First ExperimentMendel crossed purebred plants with opposite forms of a trait. He called these plants the parental generation , or P generation. For instance, purebred tall plants were crossed with purebred short plants.

Parent TallP generation

Parent ShortP generation

X

Offspring TallF1 generation

Mendel observed that all of the offspring grew to be tall plants. None resembled the short short parent. He called this generation of offspring the first filial , or F1 generation, (The word filial means “son” in Latin.)

Mendel’s Second ExperimentMendel then crossed two of the offspring tall plants produced from his first experiment.

TallF1 generation

X

3⁄4 Tall & 1⁄4 ShortF2 generation

Mendel called this second generation of plants the second filial, F2, generation. To his surprise, Mendel observed that this generation had a mix of tall and short plants. This occurred even though none of the F1 parents were short.

Parent Plants Offspring

TOOLS TO KNOW

A PUNNET SQUARE IS A TOOL USED TO PREDICT THE POSSIBLE GENOTYPES FOR THE OFFSPRING OF TWO KNOWN PARENTS.

PARENT’S GENES

PA

RE

NT

’S G

EN

ES

TERMS TO KNOW

ALLELES DIFFERENT FORMS OF A TRAIT THAT A GENE MAY HAVE T,t

HOMOZYGOUS AN ORGANISM WITH TWO ALLELES THAT ARE THE SAME TT, tt

HETEROZYGOUS AN ORGANISM WITH TWO DIFFERENT ALLELES FOR A TRAIT Tt, Gg

TERMS TO KNOW

HYBRID SAME AS HETEROZYGOUS Tt, Gg

DOMINANT A TRAIT THAT DOMINATES OR COVERS UP THE OTHER FORM OF THE TRAIT

REPRESENTED BY AN UPPERCASE LETTER

T OR GRECESSIVE THE TRAIT BEING

DOMINATED OR COVERED UP BY THE DOMINATE TRAIT

REPRESENTED BY A LOWER CASE LETTER

t or g

TERMS TO KNOW

PHENOTYPE THE PHYSICAL APPEARANCE OF AN ORGANISM

(WHAT IT LOOKS LIKE)

TALL, SHORT, GREEN, WRINKLED

GENOTYPE THE GENE ORDER OF AN ORGANISM

(WHAT ITS GENES LOOK LIKE)

TT, GG, Tt, gg

Gg, tt

RATIO THE RELATIONSHIP IN NUMBERS BETWEEN TWO OR MORE THINGS

3:1, 2:2, 1:2:1

HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE

THE PARENTS’ ALLELES GO ON THE OUTSIDE OF THE SQUARE B B

b

b

BB X bb

HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE

THE PARENTS’ ALLELES GO ON THE OUTSIDE OF THE SQUARE B B

b

b

B B

B B

DROP THE LETTERS ON THE TOP, INTO EACH SQUARE

MOVE EACH LETTER ON THE SIDE, INTO EACH SQUARE

THE ORDER DOES NOT MATTER IN THE BOXES, BUT UPPERCASE FIRST IS A GOOD RULE

b b

b b

HOW TO USE A MONOHYBRID (ONE TRAIT) PUNNETT SQUARE

B B

b

b

Bb Bb

Bb Bb

WHAT DO THE RESULTS SHOW?

IF B IS THE DOMINANT ALLELE FOR BLACK

AND b IS THE RECESSIVE ALLELE FOR BROWN

THEN WE CAN MAKE PREDICTIONS ABOUT THE OUTCOMES

RESULTS:

PHENOTYPIC: 100% BLACK

4:0 RATIO, BLACK TO BROWN

GENOTYPIC:

100% Bb

4:0 ALL Bb

HOW TO USE A PUNNETT SQUARE

T t

T

t

WHAT ARE THE RESULTS?

PHENOTYPIC:

75% TALL 25% SHORT

3 TO 1 RATIO: TALL TO SHORT

GENOTYPIC:

1TT: 2Tt: 1tt 1:2:1 RATIO

25 %TT, 50% Tt, 25% tt

LET’S LOOK AT ANOTHER PUNNETT SQUARE AND PREDICT THE OUTCOME T T

T t

T t

t t

T IS THE DOMINANT ALLELE FOR TALLNESS

t IS THE RECESSIVE ALLELE FOR SHORTNESS

PRACTICAL APPLICATION OF PUNNETT SQUARES

THE ALLELES OF A PARTICULAR SPECIES OF DOG CAN BE EITHER D (NORMAL HEIGHTH) OR d (DWARF). THE HETEROZYGOUS (Dd) AND HOMOZYGOUS DOMINANT (DD) FORM OF THIS DOG LOOK THE SAME (TALL). IF YOU FOUND A STRAY DOG OF THIS BREED, HOW COULD YOU DETERMINE ITS GENOTYPE?

PRACTICAL APPLICATION OF PUNNETT SQUARES

COULD A DOG BE CROSSED WITH ANOTHER DOG TO DETERMINE IF HE WAS PUREBRED FOR TALLNESS?

WHAT GENOTYPE SHOULD THE DOG HAVE THAT IS BEING USED FOR THE CROSS?

PRACTICAL APPLICATION OF PUNNETT SQUARES

IF THE DOG IS PUREBRED (DD), IT DOESN’T MATTER WHAT YOU CROSS IT WITH, THE OFFSPRING WILL ALWAYS LOOK LIKE THE DOMINANT.

D D

D

DD

D D

D

D

D

d d

dDD

D

Dd Dd DdDd

Dd Dd

DD

DD

DD

DD

PRACTICAL APPLICATION OF PUNNETT SQUARES

WHAT WOULD BE THE MOST EFFECTIVE CROSS FOR DETERMINING IF THE DOG IS HETEROZYGOUS (Dd) ? CROSSING IT WITH A PUREBRED (DD) WILL NOT HELP.

D

WHAT WOULD THE RESULTS BE IF YOU CROSSED IT WITH ANOTHER HETEROZYGOUS?

d

D

d

D d

d

d

WHAT WOULD THE RESULTS BE IF YOU CROSSED IT WITH A HOMOZYGOUS RECESSIVE (dd)?

DdDD

Dd dd

Dd

Dd

dd

dd

PRACTICAL APPLICATION OF PUNNETT SQUARES

D d

D

d

DdDD

Dd dd

D d

d

d

Dd

Dd

dd

dd

THE HETEROZYGOUS CROSS WOULD ONLY GIVE YOU A 25% CHANCE OF THE RECESSIVE TRAIT APPEARING.

THE MOST EFFECTIVE CROSS WAS USING THE HOMOZYGOUS RECESSIVE. THIS WOULD GIVE A 50% CHANCE OF THE RECESSIVE TRAIT APPEARING.

THIS PROCESS IS CALLED A TEST CROSS. IN A LITTER OF DOGS, IF A RECESSIVE DOG APPEARS, THEN YOU KNOW THAT THE ORIGINAL DOG WAS NOT A PUREBRED.

TAKS FORMATTED ITEMS

IN DROSOPHILA MELANOGASTER (FRUIT FLIES), RED EYE COLOR (R) IS DOMINANT OVER BROWN EYE COLOR (r). IF THE FLIES IN THE PICTURE WERE CROSSED, WHAT PERCENT OF THEIR OFFSPRING WOULD BE EXPECTED TO HAVE BROWN EYES?

ANSWER: 50%

TAKS FORMATTED ITEMS

H h

H

h

4

3

1

2

1. WHICH OF THE FOLLOWING HAS THE hh GENOTYPE?

A. 1 & 3B. 2C. 4D. NONE

2. WHICH OF THE FOLLOWING IS A TRUE STATEMENT?

A. INDIVIDUAL 4 IS RECESSIVEB. INDIVIDUALS 1 & 3 ARE HETEROZYGOUSC. INDIVIDUAL 2 IS DOMINANTD. ALL INDIVIDUALS ARE FEMALE

B b

B

b

BB

Bb

Bb

bb

TAKS FORMATTED ITEMS

3. IF B IS THE ALLELE FOR BLACK FUR AND b IS THE ALLELE FOR WHITE FUR, WHAT PERCENT WOULD BE BLACK?

A. 25%B. 50%C. 100%D. 75%

4. WHAT FRACTION IS HOMOZYGOUS DOMINANT IN THE ABOVE CROSS?

A. 1/2B. 1/4C. 1/3D. 3/4

B B

B

b

BB

Bb

BB

Bb

TAKS FORMATTED ITEMS

5. IN THIS CROSS, WHAT IS THE RATIO OF BB TO Bb?

A. 3 : 1B. 4 : 1C. 2 : 2D. 0 : 4