geant4 gretina/greta simulation

21
UCGretina GEANT4 GRETINA/GRETA Simulation bitbucket.org/lriley/ucgretina Third AGATA-GRETINA/GRETA tracking arrays collaboration meeting ANL October 3, 2019 Lew Riley Ursinus College [email protected]

Upload: others

Post on 26-Mar-2022

12 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: GEANT4 GRETINA/GRETA Simulation

UCGretina GEANT4 GRETINA/GRETA

Simulationbitbucket.org/lriley/ucgretina

Third AGATA-GRETINA/GRETA tracking arrays collaboration meetingANL

October 3, 2019

Lew Riley

Ursinus College

[email protected]

Page 2: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometryadopted from the AGATA simulation code

Page 3: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometry… with modified capsules and cryostat walls …

Page 4: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometry… and back, coaxial, and outer dead layers …

Page 5: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometry… and a beam pipe/flange

Page 6: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometryconstraining dead layers: Q4, Crystal 4

Coaxial Dead Layer

Photopeak efficiencies from pencil-beam scans

Back Dead Layer

Photopeak efficiencies for events involving the back slice (φ layer)

Outer Dead Layer

Photopeak efficiencies

Page 7: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometryconstraining dead layers: Pencil-beam scans Q4, Crystal 4

Best-fit coaxial dead-layer thickness = 2.24(6) mm

Page 8: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometryconstraining dead layers: back slice Q4, Crystal 4

Best-fit coaxial dead-layer thickness = 2.43(12) mm

Page 9: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometryconstraining dead layers: Q4, xtal4 photopeak efficiencies

Best-fit outer dead-layer thickness = 0.85(2) mm

Page 10: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometryconstraining dead layers: 8 Quads

Coaxial & OuterDead Layers

Photopeak efficiencies(no pencil beam scans)

Back Dead Layer

Photopeak efficiencies for events involving the back slice (φ layer)

Page 11: GEANT4 GRETINA/GRETA Simulation

Efficiencies Involving φ Layer, 8 Quads: 152Eu, 56Co

Page 12: GEANT4 GRETINA/GRETA Simulation

Photopeak Efficiencies, 8 Quads: 152Eu, 56Co

Page 13: GEANT4 GRETINA/GRETA Simulation

GRETINA/GRETA Geometry… and additional dead material

Page 14: GEANT4 GRETINA/GRETA Simulation

LaBr-Gated 60Co: Compton Continuum

Page 15: GEANT4 GRETINA/GRETA Simulation

LaBr-Gated 60Co: Angular Correlations

Page 16: GEANT4 GRETINA/GRETA Simulation

In Beam: Ion Tracking, Reactions, and γ Decay• Beam/Beam-Like Reaction Product (GenericIon Class)

• Tracked through the target and to the S800 quadrupole

• Incoming kinetic energy• Option 1: Mean KE and dp/p

• Option 2: User-supplied incoming KE distribtution

• Relativistic 2-body reaction kinematics

• γ decay in flight• Option 1: Single transition

• Option 2: User-supplied partial level scheme• Level lifetimes

• Angular correlations

Page 17: GEANT4 GRETINA/GRETA Simulation

γ Tracking• Raw data: "hits" depositing energy in active detector volumes

• Primary particles (emitted γ rays)

• Secondary particles (scattered electrons, scattered γ rays, pairs)

• First pass: consolidate secondary electrons with each Compton-scattering interaction

• Second pass: Consolidate multiple interaction points within each segment• User-specified "packing resolution" (6 mm?)

• IP positions: barycenters of consolidated hits

Page 18: GEANT4 GRETINA/GRETA Simulation

Inverse-kinematics (p,p’)

GRETINA @ NSCL

30 mm LH Target≈50 pps

L. RIley et al., PRC90, 011305(R) (2014)

In-beam

Page 19: GEANT4 GRETINA/GRETA Simulation

Output• Decomposed γ-ray packets (Mode 2 data, Type 1)

• S800 physics data packets (Type 9)

• Emitted γ-ray packets (Type 11)• Number of emitted γ rays

• Full-energy flag (multiplicity 1, full energy in one crystal)

• For each emitted γ:• Energy

• Emission position (x, y, z)

• Emission direction (theta, phi)

• Source beta

• User sorting code must fold in thresholds, energy & position resolution

Page 20: GEANT4 GRETINA/GRETA Simulation

Ongoing / Future Work• Geometry/Efficiencies

• Update efficiencies and the dead-layer model for the full 11 (or 12) quads

• Understand variations in dead layers – pencil-beam scans of a sample of crystals

• Implement realistic segmentation

• Continued work on angular distributions/correlations

• Response to neutrons

• Investigate Geant4 modeling of polarization

• Evaluate Addback and Tracking• Determine packing resolution empirically (hit multiplicity?)

• How to handle background?

• Test cases?

• Additional reaction kinematics (fragmentation, knockout, pickup, e.g.)

Thank You!Contact: [email protected]

Page 21: GEANT4 GRETINA/GRETA Simulation

Thank You!

Heather Crawford

Dirk Weisshaar, Remco Zegers, Charlie Hultquist

Samantha Wildonger (UC `12), Michael Agiourgousis (UC `13), Ben Roberts (UC `13), Bryan Sadler (`14), Ethan Haldeman (UC `18), Chase Stine (UC `18), Jonathan

Kustina (UC `16), Sean Gregory (UC `17) Esther Lawson-John (UC `20)

(Tom Carroll for the use of the UC supercomputer)

NSF-RUI Grant No. PHY-1617250