g.c. sander; p.b. hairsine; c.w. rose; d. cassidy; j.-y. parlang -- unsteady soil erosion model

Upload: sardesai-avi

Post on 01-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    1/17

    ournal

    of

    ydrology

    E L S E V I E R Jou r na l o f H ydr o l ogy 178 ( 1996) 351- 367

    U nste ad y soil erosion mod el analytical solutions and

    comparison with experimental results

    G . C . S a n d e r a *, P . B . H a i r s i n e b , C . W . R o s e c , D . C a s s i d y a , J . -Y . P a r l a n g e d ,

    W . L . H o g a r t h c , I .G . i s l e c

    aFaculty o f Science and Technology Grif fi th University Nathan Qld . 4111 Australia

    bCS IRO D ivision o f Soi ls P.O. Bo x 639 Canberra AC T Austral ia

    CFaculty o f Environmental Sciences Grif fi th University Nathan Qld. 4111 Australia

    dDepartmen t o f Agricultural and Biological Engineering Cornell University Ithaca N Y 14853 USA

    Received 9 M arch 1995; accepted 31 M arch 1995

    Abstract

    H a i r s i n e a n d R o s e d e v e l o p e d a s o i l e r o s i o n m o d e l w h i c h d e s c r i b e d t h e e r o s io n t r a n s p o r t o f

    t h e m u l t i p a r t ic l e s iz e s i n s e d i m e n t f o r r a i n - i m p a c t e d f l o w s i n t h e a b s e n c e o f e n t r a i n m e n t i n

    o v e r l a n d f lo w . I n t h i s p a p e r w e e x t e n d t h e i r s te a d y - s t a t e s o l u t i o n s to a c c o u n t f o r t h e t i m e

    v a r i a t i o n o f s u s p e n d e d s e d i m e n t c o n c e n t r a t i o n d u r i n g a n e r o s i o n e v e n t. A v e r y s im p l e a p p r o x i -

    m a t e a n a l y t i c a l s o l u t i o n is f o u n d w h i c h a g r e e s e x t r e m e l y w e l l w i t h e x p e r i m e n t a l d a t a o b t a i n e d

    f r o m n i n e e x p e r i m e n t s . W e a r e a b l e to r e p r o d u c e t h e r a p i d i n i ti a l i n c r e a s e t o a p e a k i n t h e t o t a l

    s e d i m e n t c o n c e n t r a t i o n , w h i c h o c c u r s a b o u t 3 - 5 m i n a f t e r t h e c o m m e n c e m e n t o f ra i n f a ll , a s

    w e l l a s t h e s u b s e q u e n t d e c l in i n g e x p o n e n t i a l t a il to w a r d s s t e a d y - s t a t e c o n d i t i o n s . W e a r e a l s o

    a b l e t o s h o w t h a t t h e f r a c t i o n o f s h i e ld i n g o f t h e o r i g i n a l so i l b e d r e s u l ti n g f r o m d e p o s i t i n g

    s e d i m e n t r e a c h e s i ts e q u i l ib r i u m v a l u e o n a b o u t t h e s a m e t i m e - s c a le a s t h e to t a l p e a k s u s p e n d e d

    s e d i m e n t c o n c e n t r a t i o n . I n t e r e s t in g l y , w e f i n d t h a t t h e m a s s e s o f t h e i n d i v i d u a l p a r t i c le s w h i c h

    f o r m t h is d e p o s i t e d l a y e r a r e f a r f r o m e q u i l i b r iu m , a n d t h a t t h e r e i s a g r e a t d e a l o f c o n t i n u o u s

    r e w o r k i n g a n d s o r t i n g o f t h i s m a t e r i a l d u r i n g t h e e r o s i o n e v e n t . F i n a l l y , o u r s o l u t i o n s h o w s

    t h a t t h e i n i t i a l p e a k i n t h e t o t a l s e d i m e n t c o n c e n t r a t i o n i s d u e t o t h e e n r i c h m e n t o f th i s s e d i m e n t

    b y t h e f i n e r si ze c la s s e s a n d t h a t a s t h e e v e n t c o n t i n u e s t h e i r p e r c e n t a g e c o n t r i b u t i o n d i m i n i s h e s .

    1 I n t r o d u c t i o n

    I n a r e c e n t p a p e r b y H a i r s i n e a n d R o s e ( 1 99 1 ) a s o i l e r o s i o n m o d e l h a s b e e n

    d e v e l o p e d t o d e s c r i b e t h e e r o s i o n a n d t r a n s p o r t o f s e d i m e n t i n r a i n - i m p a c t e d f lo w s

    * Cor responding au thor .

    0022-1694/96/ 15.00 1996 - Elsevier Science B.V. A ll r ights reserved

    S S D I 0 0 2 2 - 1 6 9 4 ( 9 5 ) 0 2 8 1 0 - 2

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    2/17

    35 G.C. Sander et al . / Journal o f Hydrology 178 1996) 35 1- 36 7

    in the absence of entrainment by shallow overland flow. Soils are naturally composed

    of a range of particle sizes and aggregates, and in the past, soil erosion models have

    tended to lump or average over all size classes, resulting in a single conservation

    equation for the total suspended sediment concentration, c, as a function of distance

    x and time t Govindaraju and Kavvas, 1991; Laguna and Giraldez, 1993). In

    contrast, the approach o f Hairsine and Rose 1991) is to consider the contributions

    of the individual size classes to the total suspended sediment concentration separately.

    This leads to separate coupled conservation equations for the suspended sediment

    concentration c i x , t ) for each particle size class i. While this does increase the number

    of equations and complicates their solution, there are sound physical grounds for

    justifying this approach.

    Once particles have become suspended, they will naturally begin to settle back

    towards the soil surface owing to their immersed weight. The fine particles, having

    relatively small settling velocities, can be carried significant distances in the direction

    of the surface water flow before depositing back to the soil surface. The larger

    particles however, will return very quickly to the soil surface from suspension and

    would make their way to the end of the plane by saltation. Therefore, at the beginning

    of an erosion event, most of the contribution to the total suspended sediment

    concentration c will be coming from the finer particles, but, as time increases and

    most o f the finer material has been removed, the larger particles will begin to increase

    their contribution to c.

    Prediction of size distributions of eroded particles then enables estimates to be

    made of quantities of sorbed pollutants, e.g. Palis et al., 1990). An understanding

    of the dynamics of the suspended sediment concentrations ci of the individual

    particles, as well as the overall total concentration c, therefore has significant

    implications on the understanding of the supply of non-point source pollutants to

    waterways.

    In this paper we will only be considering erosion from situations where raindrop

    impact is the only erosive agent. Under these conditions the role of overland flow is

    simply to transport the sediment eroded under the action of raindrops. The fluid flow

    velocity is low enough so that no sediment is entrained into the fluid by the shear

    stresses acting between the soil surface and the fluid. This allows us to compare the

    predictions of the model with the experimental results of Proffitt et al. 1991) and

    considerably simplifies the mathematical solutions. As the development of the model

    is discussed in detail in Hairsine and Rose 1991) and Hairsine et al. 1995) we will

    only give a brief description o f it here.

    2.

    heory

    Once sediment has become suspended in the overland flow, this sediment will begin

    to settle or deposit back towards the soil surface. The rate o f deposition di is directly

    dependent on the size of the sediment and can vary by orders of magnitude from fine

    sediment to large aggregates. The deposition rate d i of a given sediment size class i is

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    3/17

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    4/17

    54 G.C. Sander et al. / Journal of Hydrology 178 1996) 351-367

    R t ) , c o n s e r v a t i o n o f m a s s o f s e d i m e n t o f siz e c la s s i r e q u i re s t h a t

    O D c i ) O q c i )

    ~ - - - - e i + e d i - - d i i = 1 , 2 , . . . , I

    (6)

    O t a x

    w h e r e

    D x , t )

    a n d

    q x , t )

    a r e t h e d e p t h o f f lo w a n d t h e v o l u m e t r i c f lu x p e r u n i t w i d t h

    o f p l a n e , r e s p e c ti v e ly . I n t h e c a s e o f s h a l lo w k i n e m a t i c o v e r l a n d f l o w , D a n d q a r e

    r e l a t e d b y

    01)0t ~- -~xOq= R t )

    (7)

    a n d

    q = K D m (8)

    w h e r e K a n d m a r e c o n s t a n t s d e p e n d i n g o n t h e fl o w r e g i m e a n d

    R t )

    i s t h e r a i n f a l l

    e x c e s s . I n p a r t i c u l a r K = s l / 2 / n w h e r e s is t h e s u r f a c e s l o p e , n i s a m e a s u r e o f t h e

    s u r f a c e r o u g h n e s s a n d m i s a p p r o x i m a t e l y 5 / 3 f o r t u r b u l e n t f l o w a n d 3 f o r l a m i n a r

    f lo w . W i t h D a n d q k n o w n E q s . ( 6 ) a n d ( 7) c a n a l s o b e c o m b i n e d t o g iv e

    O c i q O c i 1

    O t + D O x - 1 ) e i + e d i - d i - R c i ) i = 1 , 2 , . . ., I (9)

    F i n a l l y , w e n e e d a c o n s e r v a t i o n e q u a t i o n w h i c h g o v e r n s t h e v a r i a t i o n o f

    M d i

    i n t h e

    d e p o s i t e d l a y e r . T h e o n l y p r o c e s s e s w h i c h e f f e c t t h e d e p o s i t e d l a y e r a r e

    d i

    an d edi, t h u s

    t h e c h a n g e i n m a s s M d i i n t h e d e p o s i te d l a y e r f r o m t h e c o m m e n c e m e n t o f ra i nf a ll

    d e t a c h m e n t is s im p l y t h e d i f f e re n c e b e t w e e n d i a n d e d i o r

    OMdi

    - - = d i - e d i i -- - - 1 , 2 , . . . , I ( 1 0)

    O t

    T h e r e f o r e E q s . ( 9 ) a n d ( 10 ) f o r m a s y s t e m o f N N - - 2 1 ) p a r t i a l d i f f e r e n t i a l e q u a t i o n s

    f o r d e t e r m i n i n g th e N u n k n o w n s c i x , t ) a n d M d i X , t ) .

    3 Approximate analytical solution

    I n t h is s e c t i o n w e s e e k a n a p p r o x i m a t e a n a l y t ic a l s o l u t i o n t o E q s . ( 9) a n d ( 10 ) w i t h

    a v i e w t o r e p r o d u c i n g t h e e x p e r i m e n t a l d a t a o f P r o f f i t t e t a l. ( 19 9 1) . T h e i r e x p e r i m e n t s

    w e r e p e r f o r m e d f o r c o n s t a n t r a i n fa l l r a te s P , l o w s l o p es ( ~< 1 % ) , t h r e e s h a l lo w m e a n

    f lo w d e p t h s o f 2 , 5 a n d 10 m m , a n d n o l o s s e s o f r a i n fa l l b y i n fi lt r a ti o n , h e n c e

    R t )

    = P = c o n s t a n t . F o r P r o f f i tt e t a l. (1 9 9 1 ) t o b e a b l e t o m a i n t a i n t h e s e m e a n

    f l o w d e p t h s f o r t/ > 0 t h r o u g h o u t t h e i r e x p e r i m e n t s . . . a b a r r i e r w a s t e m p o r a r i l y

    i n s ta l le d a t t h e e n d o f th e f l u m e a n d c l e a r w a t e r i n t r o d u c e d g e n t l y s o t h a t t h e r e w a s n o

    t u r b u l e n c e . O n c e t h e c o r r e c t m e a n d e p t h o f p o n d i n g h a d b e e n a c h i e v e d , r a i n fa l l w a s

    s t a r t e d a n d t h e b a r r i e r r e m o v e d s i m u l t a n e o u s l y . T r a n s i e n t u n s t e a d y [ w a te r] fl o w

    o c c u r r i n g p r i o r t o a c h i e v in g a s t e a d y - s t a t e a p p e a r e d t o b e n e g l ig ib l e a f te r a p p r o x i -

    m a t e l y o n e m i n u t e . I f w e a r e p r e p a r e d t o i g n o r e th e in i ti a l t r a n s i e n t h y d r o l o g i c a l

    e f f e c t s o n c i , w e c a n t h e r e f o r e s i m p l i f y E q . ( 9 ) b y r e p l a c i n g D a n d q w i t h t h e i r

    a v e r a g e d q u a n t it i e s w h i c h a re i n d e p e n d e n t o f x a n d t, w i t h o u t i n t r o d u c i n g a n y

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    5/17

    G . C . S a n d e r e t a l. / J o u r n a l o f H y d r o l o g y 1 7 8 ( 1 9 9 6 ) 3 5 1 - 3 6 7

    355

    s i g n i f ic a n t e r r o r s . S o , f o r t h e e x p e r i m e n t a l c o n d i t i o n s o f P r o f f i t t e t a l. 1 9 9 1 ) t h e

    f o l l o w i n g d i m e n s i o n l e s s v a r i a b l e s c a n b e d e f i n e d

    P t

    T = -= - l l a )

    D

    x

    z = - 1 l b )

    L

    c i

    C = - - l l c )

    a

    M d i 1 l d )

    m d i - ~ aD

    I

    gd t

    E m d i

    l l e )

    m d r a y e )

    i=1

    a n d d i m e n s i o n l e s s p a r a m e t e r s

    v i

    ui = ~ 1 l f )

    e = - - l l g )

    P L

    a n d

    adZ)

    o~ -- - - 1 l h )

    a d

    = - - 1 l i )

    a

    w h e r e L i s l e n g t h o f t h e f l o w d o m a i n . C o m b i n i n g E q s . 1 ), 2 ) , 4 ), 5 ), 9 ), 1 0 ) a n d

    1 1 ) g i v e s

    OCi~_eOC

    1 a )

    Or Oz = I 1 - ~ m d ~ + a m d i - - l + u i )C i i = 1 , 2 , . . . , I 1 2 )

    a n d

    O m d i

    O F ~ - v i C i - - a m d i i =

    1 , 2 , . . . , I 1 3 )

    E v e n t h o u g h E q s . 1 2 ) a n d 1 3 ) f o r m a s y s t e m o f l in e a r p a r t ia l d i ff e r e n ti a l e q u a t i o n s

    t h e r e i s n o e x a c t a n a l y t i c a l s o l u t i o n a v a i l a b l e . C o n s e q u e n t l y w e s e e k a si m p l if ie d

    a p p r o x i m a t e a n a l y t i c a l s o l u t i o n w h i c h w i ll s ti ll c a p t u r e t h e u n d e r l y i n g p h y s i c s o f

    t h e e r o s i o n p r o c e s s e s . E x p e r i m e n t a l d a t a f ie ld o r l a b o r a t o r y ) a r e ty p i c a l l y c o l l ec t e d

    a t th e e n d o f t h e fi el d s l o p e e .g . H u d s o n 1 9 8 1 ), o r a t t h e e n d o f t h e t i m e , e .g . P r o f f it t

    e t a l. 1 9 9 1 ). S o i n o r d e r t o c o m p a r e w i t h t h is d a t a w e o n l y n e e d s o l u t i o n s o f E q s . 1 2 )

    a n d 1 3 ) a t z = L . F o r l o w s lo p e s a n d l o w w a t e r f lo w v e lo c i ti e s i t i s r e a s o n a b l e t o

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    6/17

    3 5 6 G.C. Sander e t aL / Journal of Hydrology 178 1996) 35 1-3 67

    a s s u m e t h a t t h e se d i m e n t c o n c e n t r a t io n d o e s n o t v a r y g r e a tl y w i t h z n e a r z = L ,

    c e r t a i n l y f o r e a r l y t i m e s i n a n e r o s i o n e v e n t t h e g r e a t e s t c h a n g e s i n C i n e a r z = L

    a r e t i m e d e p e n d e n t . N o w i f w e a s s u m e t h a t t h i s is t r u e f o r a l l t i m e i. e.

    OC i /t~ F

    >>

    E(OCi /OZ)z= l . ,

    t h e n t h e s o l u t io n f o r

    C i L , 7 -)

    c a n b e a p p r o x i m a t e d t h r o u g h

    t h e m u c h s i m p l er s e t o f l in e a r a u t o n o m o u s o r d i n a r y d i f f e re n t ia l e q u a t i o n s

    d r = 1 - - ~ m d . r + a m d i - - l + v i ) C i i = 1 , 2 , . . . , I 1 4 )

    a n d

    d m d i

    d = l / i C i - a m d i i = 1 , 2 , . . . , I 1 5)

    s u b j e c t t o t h e i n i t i a l c o n d i t i o n s

    7- = 0, C i -~ 0 , m d i = 0 i = 1 ,2 , . . . , I 16 )

    E q s . 1 4 ) a n d 1 5 ) a r e n o w e a s i ly s o l v e d b y s t a n d a r d t e c h n i q u e s . F i r s t w r i t e E q s . 1 4)

    a n d 1 5) i n v e c t o r n o t a t i o n a s

    d w

    d r A w + b 17)

    w h e r e

    W = C l , C 2 , . . . ,

    e l ,

    m d l ,

    md2,

    . . . , r o d / ) T

    18)

    19)

    } l l ) T

    b = , j , . . . ? , o , o , . . . , a o

    a n d A is a b l o c k N x N ) s q u a r e m a t r i x

    [ D I S ] 2 0)

    A = D2 D3

    T h e m a t r i c e s D 1, D E a n d D 3 a r e d i a g o n a l I x I ) m a t r ic e s a n d S i s a s y m m e t r i c I x I )

    m a t r i x . D 1 h a s d i a g o n a l e l e m e n t s - 1

    + v i ) , i = 1 , 2 , . . . , I , 1 )2

    h a s d i a g o n a l e l e m e n t s

    v i , i = 1 , 2 , . . ., I , a n d D 3 h a s d i a g o n a l e l e m e n t s a , i = 1 , 2, .. ., I . T h e m a t r i x S i s f u ll ,

    w i t h d i a g o n a l e l e m e n t s [ a - a / t ~ I ) ] , i = 1 , 2 , .. . , I a n d a ll th e o f f - d i a g o n a l e l e m e n t s

    a r e g i v e n b y

    - a / t ~ I ) .

    T h e s o l u t i o n o f E q . 1 7 ) i s t h e n g i v e n b y

    W ~l~.gl e x p -- A lr ) + ~2~Lg2 xp -- A 2r ) + ... +

    ~ N ~ I N

    exp - -A N r) + Ws 21)

    w h e re A j an d t ~ j , j = 1 , 2 , .. ., N , a r e t h e e i g en v a l u e s an d e i g en v ec t o r s o f A r e s p ec t i v e l y .

    T h e r / j ,j = 1 , 2 , ..., N a r e t h e c o n s t a n t s o f in t e g r a t i o n f o u n d f r o m s a t i s f y i n g t h e i n it i a l

    co n d i t i o n r = 0 , w = 0 , C i = 0 an d m a i = 0 , o r f r o m s o l v i n g

    E n = - w s 2 2 )

    w h e r e E i s t h e m a t r i x o f e ig e n v e c to r s t~j w i t h t h e e i g e n v e e to r t~ j f o r m i n g c o l u n m j , a n d

    Ws i s t h e s t e ad y - s t a t e s o l u t i o n o f Eq . 1 7) .

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    7/17

    G.C. Sander et aL / J ou r n a l o f H y dr o l o gy 178 1996) 351- 367

    3 5 7

    4 . S t e a d y - s t a t e o r e q u i li b r iu m s o l u t i o n

    T h e s te a d y - s ta t e o r e q u i l ib r i u m s o l u t i o n o f E q . 1 7 ) is g i v e n w h e n b o t h d C i / d r a n d

    dmd i / d r

    a r e z e r o o r

    l i 1 - ~ m d ~ ) +

    amdi - -

    1 +

    v i ) C i

    = 0 2 3 )

    v i - otmdi

    = 0 24)

    t h e s o l u t io n o f w h i c h i s g i v e n b y H a i r s i n e a n d R o s e 1 9 9 1 ) a s

    C i

    = 1 + i = 1 , 2 , . . . , I 2 5 )

    a n d

    V i j . = ~ l ~ ) ] - - 1

    m d ~ = - 1 + i = 1 , 2 , . . . , I 2 6 )

    W e n o t e a t e q u il ib r i u m

    C i

    s in d e p e n d e n t o f i, t h a t i s,

    C 1 = C 2 . . . =

    b u t

    md i

    d o e s

    v a r y w i t h i .

    5 . C o m p a r i s o n w i t h t h e e x p e r i m e n t a l d a t a o f P r o f l i t t e t a l . 1 9 9 1 )

    T h e e x p e r i m e n t s p e r f o r m e d b y P r o f fi tt e t a l. 1 9 9 1 ) w e r e o n t w o b a r e s o il s o f

    4 0 . 0 0

    30 00

    20 00

    d

    c -

    O

    . . ) 1 0 0 0

    O

    o 0 . 0 o o 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    o l o o o 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

    T i m e m i n s )

    F i g . 1 . S e d i m e n t c o n c e n t r a t i o n f o r t h e S o l o n c h a k a s a f u n c t i o n o f t i m e w h e n P = 1 0 0 m m h - 1 a n d

    D = 2 n u n . P a r a m e t e r v a l u e s a r e a = 1 0 0 0 , ~ = 2 0 a n d a = 1 2 3 3. E x p e r i m e n t a l d a t a p o i n t s g i v e n b y t h e

    stars

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    8/17

    358

    G.C. Sander et al. /Journ al of Hydrology 178 1996) 351-367

    E

    x 3 0 . 0 0

    ~'~20.00

    6

    c-

    1 0 . 0 0

    0

    L D

    ~D

    - 4 . - -

    0

    F

    0 . 0 0 i 1 , , 1 , , 1 i 1 , 1 1 , , , , 1 i i , i i i i i i i i i i i i i i i i i i , , , i i i i I

    o o o l o o o 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

    Time mins)

    Fig. 2. Sediment concentration for the Solonchak as a function of time when P = 100 mm h -1 and D =

    5 nun. Parameter values are a = 1200, ~ = 20 and a = 718. Experimental data points given by the stars.

    different type (a vertisol referred to as Black Earth and an aridisol referred to as

    Solonchak ) at slopes between 0.1 and 1.0 . Both sediment conc entr ati on and

    settl ing velocity characteristics were measured through time under two different

    cons tant rainfall rates of 56 and 100 mm h -1 . The experiments were also performed

    for three different average constant depths of water of 2, 5 and 10 ram.

    Figs. 1-3 give the experimental

    c t )

    (stars) for the Solonch ak for depths of 2 mm,

    E

    1 0 0 0

    t2n

    5.o0

    t-

    O

    0

    b -

    0 . 0 0

    I ; i , l i , , , l , 1 , , , l , , , l , , , , , , , , , l , , a , , , , , i l

    o o o l o o o 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

    T i m e m i n s )

    F i g . 3 . Sediment concentration for the Solonchak a s a function of time when P = 100 nun h -1 and D =

    I 0 m m . P a r a m e t e r v a l u e s a r e c~ = 1 6 0 0 ~ = 2 0 a n d a = 4 1 2 . E x p e r i m e n t a l d a t a p o i n t s g i v e n b y t h e s t a rs .

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    9/17

    G.C. Sander et al . / Journal o f Hydrology 178 1996) 35 1-3 67

    359

    5 m m a n d 1 0 m m , r e s p e c t iv e l y , w h e n P = 1 00 m m h - 1 . T h e s o l id li ne s i n Fi g s. 1 - 3 a r e

    t h e p r e d i c t e d s o l u t i o n s o b t a i n e d f r o m E q s . ( 2 1) a n d ( 22 ) f o r te n s i z e c l as s e s, i. e.

    I = 1 0. T h e c o r r e s p o n d i n g f a ll v e l o c i ti e s

    v i ,

    i = 1 , 2 , . .. , 1 0 u s e d , w e r e o b t a i n e d f r o m

    t h e s o i l cu r v e i n F i g . 2 o f P r o f f i t t e t a l. ( 1 9 9 1 ) l ab e l l ed o r i g i n a l s o i l ( w e t t ed p l u s r a i n f a l l

    a t 1 00 m m h - l f o r 4 0 m i n ). T h e t e n v e l o ci ti e s w e r e t h e n s i m p l y r e a d o f f a t e q u a l

    i n t e r v a l s a l o n g t h e i r y - a x is . T h e f i n e s t s e d i m e n t c l a s s s iz e i s g iv e n b y i = 1 ( s m a l l e s t

    v e l o c i t y ) w i t h t h e l a r g e s t c l a s s s iz e c o r r e s p o n d i n g t o i = 1 0 ( l a r g e s t v e l o c i ty ) . T h e

    p a r a m e t e r v a l u e s o f c~, ~; a n d a a r e o b t a i n e d b y m a t c h i n g t h e p r e d i c t e d c o n c e n t r a t i o n

    c u r v e t o t h e e x p e r i m e n t a l d a t a p o i n t s .

    T h e l ev e l o f a g r e e m e n t b e t w e e n t h e e x p e r i m e n t a l d a t a a n d o u r p r e d i c t e d c u rv e s

    is e x c e ll e n t, w e l l w i t h i n t h e e x p e r i m e n t a l e r r o r o f + 1 5 . T h e m o s t i n t e r e s ti n g

    f e a t u r e o f t h e s o l u t io n s i s th e v e r y r a p i d i n c r e a se i n th e c o n c e n t r a t i o n f r o m 0 a t

    t = 0 , to i ts p e a k c o n c e n t r a t i o n w h i c h o c c u r s a r o u n d 1 r a in , f o l l o w e d b y a c o n -

    t i n u o u s d e c l i n e t o w a r d s i t s s t e a d y - s t a t e o r e q u i l i b r i u m c o n c e n t r a t i o n . T h e p e a k

    c o n c e n t r a t i o n p r e d i c t e d b y t h e t h e o r y is n o t a b s o l u t e i n th a t b y m a k i n g s li g ht

    v a r i a t i o n s t o t h e v a l u e s o f a , n a n d a , w e c a n e i t h e r i n c r e a se o r d e c r e a s e t h e

    p e a k p r e d i c t e d c o n c e n t r a t i o n w h i l e st ill m a i n t a i n i n g t h e e x c e l l e n t a g r e e m e n t w i t h

    t h e e x p e r i m e n t a l d a t a . T h i s i s d i s c u s s e d i n m o r e d e t a i l i n a l a t e r s e c t i o n . W h a t i s

    n e e d e d i s t o o b t a i n m o r e m e a s u r e d s e d i m e n t c o n c e n t r a t i o n s a t t i m e s e a r l i e r t h a n

    1 .5 m i n i n o r d e r t o f ix t h e p e a k c o n c e n t r a t i o n . I t w a s a l s o f o u n d t h a t w h e n P = 5 6

    m m h - ] e x a c t ly th e s a m e le v el o f a g r e e m e n t w a s o b t a i n e d b e t w e e n t h e o r y a n d

    e x p e r i m e n t a l d a t a a s t h a t d i s p la y e d f o r P = 1 00 m m h - ] . N o t e f r o m n o w o n t h e

    b a r h a s b e e n d r o p p e d f r o m t h e d e p t h D t h o u g h r e f e re n c e s t o D w i l l s till i m p l y

    a v e r a g e d d e p t h s .

    F i g . 4 s h o w s t h e d e v e l o p m e n t o f th e d e p o s i t e d l a y e r d u r i n g t h e e r o s i o n e v e n t. W h i l e

    t h e s e d i m e n t c o n c e n t r a t i o n t a k e s q u i t e a w h i l e t o o b t a i n e q u i l i b r i u m , t h e l e v e l o f

    s h i e l d i n g o b t a i n e d b y t h e d e p o s i t e d l a y e r a t t a i n s e q u i l i b r i u m v e r y r a p i d l y . T h e

    e q u i l i b r i u m sh i e ld i n g v a l u e o f a p p r o x i m a t e l y 9 8 s e em s t o b e a c h i e v e d o n th e

    1 0 0

    0.75

    ~- 0.50

    0.25

    0.00 I I J l l l l l l lS l l l J l l l l I l j L l~ l l l l *~h j l l j l l j l l l l l

    0.00 10.00 20.00 30.00 40.00 50.00

    TIME mlns)

    Fig. 4. Developmentof the fractionalcoverageH as a function of time for P = 100 mm h -I and D = ram.

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    10/17

    360

    G.C. Sander e t al . Journal o f Hydrology 178 1996) 35 1-3 67

    0 030

    E

    w.

    E

    .2

    - 0 . 0 2 0

    / 3

    5

    0 .010

    ~J3

    . > a, confirming the greater detachability of the deposited layer over the original

    T a ~ e l

    L i s to f pa ra m e te rv a lu e s ~ v i n g b e s t a ~ m e n t w i t h t h e e x p e f i m e n t ~ d a t a

    S o l o n c h a k B l a c k E a r t h

    P D a ad M~t P D a a d M~t

    m m h - i ) m m ) k g m - 3) k g r n - 3) k g m - 2) m m h - 1) m m ) k g r n - 3) k g m - 3) k g m -E )

    56 2 1113 2226 0 0.074 56

    5 358 7160 0.18

    10 319 6380 0.071

    100 2 1233 24 660 0.05 100

    5 718 14360 0.06

    10 412 8240 0.051

    2 3910 7429 0.15

    2 3738 7102 0.18

    5 1950 3705 0.23

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    12/17

    36 G.C. Sander e t al . / Journal o f Hydrology 178 1996 ) 35 1-3 67

    s o il . B e in g a w a r e o f th i s b e h a v i o u r h e l p s r e s tr i c t t h e r a n g e o f p o s s ib l e p a r a m e t e r

    v a l u e s a a n d t~ w h i c h y i e ld g o o d a g r e e m e n t w i t h t h e e x p e r i m e n t a l c t ) d a t a .

    W e n o t e t h a t t h e v a l u e s o f t h e d e t a c h a b i l i t y a f o u n d i n T a b l e 1 a r e m u c h h i g h e r

    t h a n t h o s e r e p o r t e d e x p e r i m e n t a l l y in P r o f f i t t e t a l. ( 1 99 1 ). T h i s d i f fe r e n c e a r is e s

    b e c a u s e t h e e x p e r i m e n t a l v a l u e s o f a w e r e b a s e d o n a n e q u i l i b r i u m v a l u e o f

    H = 0 .9 o b t a i n e d b y v is u a l o b s e r v a t i o n . I n c o n t r a s t F i g. 4 s h o w s t h a t H s h o u l d b e

    m u c h c l o s e r t o o n e , o r t o b e p r e c is e 0 .9 8 . S i n c e t h e d e t a c h a b i l i t y in c r e a s e s v e r y r a p i d l y

    a s a f u n c t i o n o f H f o r H n e a r o n e ( s e e F i g . 4 o f P r o f f i t t e t a l. , 1 99 I ) , t h e n s m a l l e r r o r s

    i n e s ti m a t i n g H n e a r o n e a r e m a g n i fi e d , a n d c a u s e v e r y la r g e e r r o r s in d e t e r m i n i n g a .

    T h u s i t is n o t r e a ll y a p p r o p r i a t e t o c o m p a r e t h e e x p e r i m e n t a l a n d a n a l y t i c a l v a l u e s o f

    a e x c e p t t o n o t e t h a t t h e s ig n o f t h e d i f fe r e n c e is c o r r e c t . O n t h e o t h e r h a n d , a d

    d e p e n d s o n l y m i l d ly o n H f o r H n e a r o n e a n d w e fi nd g o o d a g r e e m e n t b e t w e e n th e

    e x p e r i m e n t a l a n d a n a l y t i c a l v a l u e s . F i g . 4 o f P r o f i t t e t a l. ( 1 9 9 1) g iv e s e x p e r i m e n t a l

    v a l u e s o f a d f o r D = 2 , 5 a n d 1 0 m m o f th e o r d e r o f 2 3 0 0 0 k g m - 3 , 1 2 0 0 0 k g m - a a n d

    7 5 0 0 k g m - 3 , r e s p e c t iv e l y , w h i c h a l l a g r e e w i t h t h e v a l u e s r e p o r t e d i n T a b l e 1.

    H a i r s i n e a n d R o s e ( 1 9 9 1 ) d e v e l o p e d t h e o r y f o r t h e g e n e r a l c a s e w h e r e D i s a

    f u n c t i o n o f d i s ta n c e x a n d t h e d e t a c h a b i li ti e s a r e f u n c t i o n s o f d e p t h . T h e y c o n s i d e r e d

    e x p r e s s io n s f o r a a n d a d o f th e f o r m

    ( 2 7 a )

    = a o D D o

    a = a o D / D o ) - b D > . D o

    a d = ado D < D o

    a s = a d o Z ) / n o ) - b D >1 D o

    a n d

    ( 2 7 b )

    28a)

    ( 2 8 b )

    I n E q s . ( 27 ) a n d ( 28 ) D o is u su a l ly t a k e n t o b e o f t h e o r d e r o f t w o t o t h r e e r a i n d r o p

    d i a m e t e r s b e i n g a b o u t 2 m m f o r t h e e x p e r i m e n t s o f P r o ff i tt e t a l. ( 1 99 1 ). U s i n g t h e

    d a t a a v a i la b l e in T a b l e 1 w e c a n e s t i m a t e t h e p a r a m e t e r s i n E q . ( 27 ) b y p e r f o r m i n g a

    l e a st s q u a r e s c u r v e f it . T h e p a r a m e t e r a do in E q . ( 28 ) th e n f o ll o w s a u t o m a t i c a l l y f r o m

    Eq s . (1 l i ), ( 2 7 ) an d ( 2 8 ) f o r

    D >~ D o

    a / a d = a o / a d o = n (29)

    F o r t h e p u r p o s e s o f t h e l e a s t s q u a r e s f i t E q . ( 2 7 ) c a n b e s im p l i f ie d t o a = w D - b w h e r e

    w = aoDbo a n d r e s u l t s i n

    a = 1 7 3 0 D - 8 P = 5 6 m m h - 1 ( 3 0 a )

    a n d

    a = 2 0 1 7 D - 7 P = 1 00 m m h - 1 ( 3 0 b )

    T a k i n g D o a s a p p r o x i m a t e l y 2 m m g iv es

    ao

    = 9 9 4 k g m - 3 ,

    ado

    = 1 9 8 8 0 k g m - 3 f o r

    P = 5 6 m m h - 1 a n d

    ao

    = 1 2 4 2 k g m - 3 ,

    ado

    = 2 4 8 4 0 k g m - 3 f o r P = 1 00 m m h - 1 . T h e

    a g r e e m e n t b e t w e e n E q . ( 5 .1 ) a n d t h e d a t a i n T a b l e 1 , i s s h o w n i n F i g . 7 . T h e r e s u l ts f o r

    P = 1 0 0 a r e e x c e l le n t , h o w e v e r t h o s e f o r P = 5 6 a r e n o t a s g o o d . T h i s i s d u e m a i n l y t o

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    13/17

    G.C. San~re tal. /JournalofHy~olo gy178 1996) 351-367

    1400.0

    363

    1200.0

    1 0 0 0 0

    8 0 0 0

    25

    6 0 0 0

    Q

    4 0 0 0

    2 0 0 0

    A

    Q

    A

    =

    0 O 0 0 2 0 0 1

    q q i T ~ i t i i ~ i ~ L ~ i i i i ~ i i i i i i i i i i i J i

    4.00 6.00 8.00 10.00

    Depth mm)

    F i g . 7 . D e t a c h a b i l i t y a s a f u n c t i o n o f d e p t h f o r d i f f e re n t r a i n fa l l ra t e s . S o l i d l i ne s a r e f ro m E q . 2 7 ) b a s e d o n

    a l e a s t s q u a r e s r e g r e s s i o n f i t t o t h e d a t a p o i n t s s h o w n i n T a b l e 1 .

    the data point at D = 5 for P = 56 being too low. We also note that the values of b

    derived from the least squares procedure are in general agreement with those found by

    Proffitt et al. 1991).

    Table 1 also gives the variation of M~t with D for various rainfall rates. These are

    the least favourable results, since M~t represents the mass per unit area kg m -2) of

    the deposited layer which provides complete shielding, these values appear to be lower

    than physically expected. There also does not appear to be any uniform relation

    between M~t and depth. This could mean that the definition of

    H t )

    given by Eq.

    7) is not quite correct and needs further development. However all other

    comparisons between theory and experiment i.e. Figs. 1-6) are very encouraging

    and lead us to believe that considering the individual class sizes as opposed to just a

    total concentration per se is more useful in explaining soil erosion behaviour.

    Certainly it is not possible to predict the sudden peak concentration of Figs. 1-3

    by using less than three particle sizes I = 3). Even then these three size classes must

    cover several orders of magnitude in their settling velocities vi or the peak will still not

    appear.

    5 .1 . Curve f i t t ing to exper imen ta l c t) d a t a

    To curve fit the experimental data and determine the parameter values for a, a d and

    M~tt we used the solution in dimensionless form as given by Eqs. 21) and 22) since

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    14/17

    364

    G.C. Sander et al . / Journal of H ydrology 178 (1996) 351-367

    o n l y tw o u n k n o w n p a r a m e t e r s a a n d n a p p e a r r a t h e r t h a n t h re e . T h e s e tt li ng v e l o ci ty

    d i s t r i b u t i o n v i i s o b t a i n e d d i r e c t l y f r o m s e t t li n g t u b e e x p e r i m e n t a l s ( a s i n F i g . 2 o f

    P r o f f it t e t a l. , 1 99 1) o n c e t h e n u m b e r o f si ze c l a s s e s / h a s b e e n s e t. F o r a g i v e n r a in f a ll

    r a t e e x p e r i m e n t t h e

    v i s

    a r e t h e n d e t e r m i n e d f r o m E q . (1 I f ) a s

    v i = v i / P ,

    i = 1 ,2 , . . ., I ,

    w i t h

    C i ( r )

    a n d m d i(7 - t h e n c a l c u l a t e d f r o m E q s . ( 2 1) a n d ( 2 2) f o r a p r e s e t a a n d ~ .

    T h e t o t a l d im e n s i o n le s s c o n c e n t r a t i o n C ( r ) is th e n f o u n d b y s u m m i n g t h e C i ( r ) f o r

    i = 1 , 2 , . . . , I .

    T o f i n d t h e d e t a c h a b i l i t y a w e m a t c h t h e e x p e r i m e n t a l s e d i m e n t c o n c e n t r a t i o n a t

    t = 4 0 m i n , c e ( 4 0 ), w i t h t h e t h e o r e t i c a l s e d i m e n t c o n c e n t r a t i o n C a t 7- = 4 0 P / D a n d

    t h e n u s e E q . ( 1 l c ) t o g i v e a =

    c e ( 4 0 ) / C ( 4 O P / D ) .

    T h e t i m e o f 4 0 m i n w a s c h o s e n s i nc e

    t h is w a s t h e l a r g e s t ti m e f o r w h i c h e x p e r i m e n t a l c d a t a w e r e a v a i la b l e a n d a s s u c h t h is

    d a t a p o i n t w o u l d b e t h e m o s t r e l i ab l e o w i n g t o a m i n i m u m i n fl u e n c e o f tr a n s i e n t fl o w

    e f fe c ts . A c o n s e q u e n c e o f t h is m e t h o d f o r f i n d in g t h e d e t a c h a b i l i ty is t h a t t h e

    t h e o r e t ic a l s o l u t io n w ill a lw a y s g o t h r o u g h t h e f in a l e x p e r i m e n t a l d a t a p o i n t . H a v i n g

    a , t h e e n t i r e t h e o r e t i c a l c ( t ) s o l u t i o n c a n b e p l o t t e d a n d c o m p a r e d w i t h a l l t h e

    e x p e r i m e n t a l d a t a . I f t h e le v e l o f a g r e e m e n t i s u n s a t i s f a c t o r y t h e n t h e w h o l e p r o c e s s

    i s r e p e a t e d w i t h n e w v a l u e s o f a a n d n u n t i l t h e b e s t f it i s f o u n d . W i t h t h e f in a l v a l u e s

    o f a , ~; an d a , Eq . (1 l i ) g i v e s a d an d Eq . (1 l h ) g i v e s M ~ t .

    T h e e f f e ct o f t h e p a r a m e t e r s a a n d ~ o n t h e c u r v e f it ti n g o f t h e s o l u t i o n is b e st s e e n

    t h r o u g h t h e ir in f lu e n c e o n t h e m a g n i t u d e a n d t im i n g o f t h e p e a k s e d im e n t c o n c e n t r a -

    t io n . D e f i n e Cmax a s t h e p e a k o r m a x i m u m c o n c e n t r a t i o n r e a c h e d a n d tm ax a s t h e t i m e

    a t w h i c h t h i s p e a k o c c u r s . I f w e r e r u n t h e m o d e l s e v e r a l t im e s d u r i n g w h i c h w e k e e p

    f i x e d w h i l e a is d e c r e a s e d f o r e a c h a d d i t i o n a l r u n , t h e n w e f in d t h a t b o t h tm ax a n d Cmax

    i n c r e a s e , t h a t i s t h e p e a k c o n c e n t r a t i o n g e t s l a r g e r a n d i s d e l a y e d , w h i l e th e a s s o c i a t e d

    v a l u e s o f a a n d a d d e c r e a s e w i th M ~ t in c r e a si n g . T h i s o c c u r s b e c a u s e i f t h e d e t a c h -

    a b i li ti e s a a n d a d d e c r e a s e , t h e n t o m a i n t a i n t h e s u p p l y o f so i l p a r t i c l e s i n o r d e r t o

    m a t c h t h e m e a s u r e d e x p e r i m e n t a l s e d i m e n t c o n c e n t r a t i o n s , t h e f r a c t i o n H o f s h ie ld -

    i n g m u s t d e c r e a se , I n p r a c t i c e , t h is o c c u r s t h r o u g h i n c r e a s in g nit i n E q . ( 5) so t h a t

    t h e p r o d u c t a ( 1 - H ) , b e i n g t h e s o u r c e o f d e t a c h e d m a t e r i a l, r e m a i n s c o n s t a n t . I n

    t e r m s o f t h e d i s t r i b u t i o n o f t h e s iz e c l a ss e s in t h e e r o d e d s e d i m e n t , a f i x e d ~; w i t h a

    d e c r e a s i n g a w i l l d e c r e a s e t h e c o n t r i b u t i o n f r o m t h e l a r g e r p a r t i c l e s .

    F i x i n g t h e v a l u e o f a a n d l e t ti n g ~; d e c r e a s e f o r e a c h r u n , r e s u l ts i n a n i n c r e a s e d

    p e a k c o n c e n t r a t i o n w h i c h o c c u r s a t a n e a r li er ti m e . H o w e v e r

    ~t

    an d ad w i l l

    r e m a i n e d f i x e d w h i le t h e d e t a c h a b i l i t y a i n cr e a se s . F u r t h e r m o r e , t h e t o ta l m a s s o f

    s u s p e n d e d s e d i m e n t i n c re a s e s, b u t t h e r e is a te n d e n c y t o w a r d s a r e d u c t i o n i n t h e

    p e r c e n t a g e o f s m a l l e r p a rt ic l e s c o n t r i b u t i n g t o t h is s e d i m e n t . T a k i n g t h e t w o p a r a -

    m e t e r s i n c o m b i n a t i o n , t h e n Cmax c a n b e r e d u c e d b u t k e p t a t t h e s a m e t i m e t ma x b y

    i n c r e a s i n g b o t h a a n d ~;, o r c o n v e r s e l y , t h e p e a k c o n c e n t r a t i o n c a n b e h e l d c o n s t a n t

    a n d b e m a d e t o o c c u r e a rl ie r b y in c r e a s i n g a a n d d e c r e a s i n g ~;, o r t o o c c u r l a t e r b y

    d e c r e a s i n g a a n d i n c r e a s i n g n.

    W e a l s o n o t e t h a t w h e n n i s f ix e d a n d w e v a r y a , t h e d e t a c h a b i l i ty o n l y v ar ie s

    s l i g h t l y . T h i s o c c u r s b e c a u s e w e c h o s e t o f i n d t h e d e t a c h a b i l i t y b y m a t c h i n g t h e

    t h e o r e t i c a l C t o c e (4 0 ) w h i c h is n e a r t o t h e s t e a d y - s t a t e c o n c e n t r a t i o n . I f w e w e r e

    a b l e t o u s e t h e t r u e s t e a d y - s t a te c o n c e n t r a t i o n t o f i n d a b y a =

    C e (t ~ o o ) /

    C ( r ~ c ~ ) t h e n a w o u l d r e m a i n i n d e p e n d e n t o f a a s E q . (2 5 ) s h o w s t h a t

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    15/17

    G.C. Sander e t aL / Journal of Hydrology 178 1996) 35 1-3 67

    3 6 5

    C r ~ o o )

    is i n d e p e n d e n t o f a . T h u s t h e s m a l l v a r i a t io n s w e s ee i n c a lc u l a t in g t h e

    d e t a c h a b i l i t y f o r f i x e d ~ s i m p l y is d u e t o t h e d i f f e r e n c e b e t w e e n c e 4 0 ) a n d

    c e t ~ o o ) .

    C o n v e r s e l y w h e n w e h o l d a f ix e d a n d v a r y ~ d u r i n g t h e c u r v e fi tt in g ,

    t h e n l a r g e v a r i a t i o n s i n t h e c a l c u l a t e d d e t a c h a b i l i t i e s w i l l b e f o u n d w h i c h a r e

    p r o p o r t i o n a l t o t h e c h a n g e s i n ~ .

    5 . 2 . S e n s i t i v i t y t o n u m b e r o f s i z e c la s s e s

    I t w a s d i s c u s se d e a r l i e r t h a t i t w a s p o s s i b l e t o o b t a i n a v e r y g o o d f it w i t h t h e

    e x p e r i m e n t a l d a t a w i t h a r a n g e o f v a l u e s f o r a a n d ~;, a n d t h e r e f o r e a , ad a n d M ~ t .

    I n t h i s s e c ti o n w e a r e i n t e re s t e d in h o w t h e se r a n g e s a r e a f f e c t e d b y t h e n u m b e r o f

    p a r t i c l e s i ze cl a ss e s . S p e c i fi c a ll y , w e a r e l o o k i n g f o r a n o p t i m a l n u m b e r o f p a r t i c l e

    c la s s si ze s lp a b o v e w h i c h t h e s u i ta b l e r a n g e s o f v a l u e s f o r t~ a n d ~ w h i c h r e p r o d u c e

    t h e e x p e r i m e n t a l d a t a a r e e s s e n ti a ll y i n d e p e n d e n t o f L T h i s is p a r t i c u l a r l y i m p o r t a n t

    w h e n s e e ki n g s o lu t io n s f o r t h e s p a t ia l d e p e n d e n c e o f t h e c o n c e n t r a t io n t h r o u g h t im e

    f r o m E q s . 9 ) a n d 1 0 ). A n y r e d u c t i o n in th e n u m b e r o f p a r t ic l e si ze c la s se s le a d s to a

    r e d u c t i o n o f t w i c e t h a t n u m b e r o f p a r t i a l d if f e re n t ia l e q u a t i o n s , a n d w o u l d t h e r e f o r e

    h a v e a s i g n if ic a n t i m p a c t o n t h e c o m p u t a t i o n t i m e r e q u i r e d t o s o lv e n u m e r i c a l l y f o r

    c x , t )

    f r o m E q s . 9 ) a n d 1 0 ).

    F o r t h e p u r p o s e s o f e x a m i n i n g t h e s en s it iv i t y o f th e m o d e l t o / , t h e e x p e r im e n t o n

    t h e B l a c k E a r t h s o il f o r a 5 m m d e p t h a n d a 1 00 m m h - l r a i n fa l l ra t e is u s e d . T h e

    r e s u l t s f o r I = 5 , 1 0 , 1 5 a n d 2 0 a r e s u m m a r i s e d i n T a b l e 2 . T h e p a r a m e t e r r a n g e s

    g i v e n i n T a b l e 2 a r e b a s e d o n g o o d a g r e e m e n t b e t w e e n t h e t h e o r e t i c a l c t ) a n d t h e

    e x p e r i m e n t a l c o n c e n t r a t i o n s , a n d a l so o n w h e t h e r t h e s e t tl in g v e l o c it y d i s t r ib u t i o n

    c u r v e s a r e a c c e p t a b l e . F o r a l l p a r t i c l e s i ze c la s s e s i t w a s f o u n d t h a t ~c m u s t a l w a y s l ie in

    t h e r a n g e 1 .9 ~< t e l 0 .0 e x c e p t f o r I = 2 0 w h e r e t h e u p p e r l i m i t o f n i s 4 a n d t h a t M ~ t

    w a s i n d e p e n d e n t o f ~. F r o m T a b l e 2 w e s e e t h a t t h e r a n g e o f p o s s ib l e a v a l u e s

    d e c r e a s e s s ig n i fi c a n tl y b o t h i n m a g n i t u d e a n d w i d t h a s I i n c re a s e s. T h e m a g n i t u d e

    o f t h e d e t a c h a b i l i t y r a n g e a l s o d e c r e a s e s si g n i fi c a n t ly f r o m I = 5 t o I = 1 0 b u t t h e n

    s ta b il is e s. T h e w i d t h o f t h e r a n g e i n M ~ t d o e s n o t s e e m t o s h o w a n y p a r t i c u l a r t r e n d

    w h i l e it s m a g n i t u d e a p p e a r s t o b e i n c r e a s in g . B a s e d o n t h e r e s u l t s i n T a b l e 2 , I p = 1 5

    w o u l d b e a n i d e a l n u m b e r o f p a r t ic l e s iz e c la s se s t o u s e b u t , o w i n g t o t h e c o m p u t a t i o n

    r e s t r i c t i o n s i t w o u l d p la c e o n s o lv i n g E q s . 9 ) a n d 1 0 ) f o r c x , t ) w e fee l t h a t Ip = 10 i s

    m o r e t h a n s u ff ic ie n t t o r e p r o d u c e t h e u n d e r l y i n g p h y s i c s o f t h e e r o s i o n p r o c e s s e s a n d

    t h e s t r u c t u r e o f t h e e x p e r i m e n t a l d a t a .

    T a b l e 2

    E f f ec t o f n u m b e r o f p a rt ic l e s iz e I o n p a r a m e t e r v a l u e s

    I a ~ - 1 .9 ~ = 10 .0 M ~ t

    5 1 6 0 ~ a ~ 2 2 0 2 5 4 7 ~< a ~ 2 7 3 5 4 8 5 ~ a ~ 5 0 0 0 . 1 2 ~< M ~ t ~ 0 . 1 5

    1 0 6 0 ~ a ~ 1 2 0 1 85 1 ~ a ~ 2 0 9 7 3 5 2 ~ a ~ 4 0 0 0 . 1 7 ~ M ~ t ~ 0 . 2 9

    15 40 ~ a ~ 80 1673 ~ a ~ 189 2 318 ~ a ~ 361 0 .23 ~ M ~t ~< 0 .4

    20 40 ~< a ~< 60 16 74 ~< a ~< 18 09 79 5 ~< a

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    16/17

    366

    G . C. Sander e t a l . / Jour nal o f H ydr o logy 178 1996) 351 -367

    6 Conc lus ion

    I n c o n c l u s i o n w e h a v e p r e s e n t e d a t i m e - d e p e n d e n t s o l u t i o n f o r t h e so i l e r o s i o n

    m o d e l o f H a i r s i n e a n d R o s e 1 9 9 1) a n d s h o w n t h a t w e c a n r e p r o d u c e t h e e x p er i-

    m e n t a l d a t a o f P r o f f it t e t a l 1 9 91 ) . T h i s s i m p l e a n a l y t i c a l s o l u t i o n i s b a s e d o n t h e

    a s s u m p t i o n t h a t t h e s p at i al d e p e n d e n c e o f t h e s e d i m e n t c o n c e n t r a t i o n a t x = L is

    s m a ll c o m p a r e d w i t h it s t im e d e p e n d e n c e . D a t a f r o m n i n e e x p e r im e n t s w e r e u se d t o

    v e r i fy t h e r e li a b il i t y o f t h e t h e o r e t i c a l m o d e l w i t h e x c e ll e n t a g r e e m e n t f o u n d f o r a ll

    n i n e . W e w e r e a b l e t o r e p r o d u c e t h e i n i t i a l r a p i d i n c r e a s e t o a p e a k i n s e d i m e n t

    c o n c e n t r a t i o n w h i c h o c c u r r e d a p p r o x i m a t e l y 5 r a i n a f te r th e c o m m e n c e m e n t o f

    r a i n fa l l , a s w e l l a s t h e t a i li n g e x p o n e n t i a l d e c l i n e f r o m t h i s p e a k t o s t e a d y - s t a t e

    c o n d i t i o n s .

    W e s h o w t h a t w h i le t h e t o ta l s e d i m e n t c o n c e n t r a t i o n a n d t h e f r a c t i o n o f s h ie l d i n g

    r e s u l t i n g f r o m t h e d e p o s i t e d l a y e r a p p e a r t o r e a c h e q u i l i b r i u m f a i rl y q u i c k l y , th e

    d i s t r i b u t i o n o f p a r ti c l e s iz e c la s se s w h i c h c o m p r i s e t h is s e d i m e n t i s f a r f r o m

    e q u i l i b r i u m . T r u e s t e a d y s ta te f o r th e S o l o n c h a k e x p e r i m e n t s w a s a c h i e v e d b e t w e e n

    1 5 00 a n d 2 0 0 0 m i n b e i n g o n t h e o r d e r o f o n e d a y . S e n s i ti v i t y t o th e n u m b e r o f p a r t ic l e

    s iz e c l a s s e s w a s i n v e s t i g a t e d a n d i t w a s d e c i d e d t h a t t e n c l a s s e s w e r e s u f f ic i e n t t o

    r e p r o d u c e t h e s t ru c t u r e a n d p h y s i c s u n d e r l y i n g t h e e x p e r i m e n t a l d a t a . A s it is o n l y

    p o s s i b l e t o s o lv e f o r c x , t ) n u m e r i c a ll y , a n d t h a t a n y r e d u c t i o n i n t h e n u m b e r o f siz e

    c l as s es l e a d s t o a r e d u c t i o n o f t w i c e as m a n y p a r t i a l d i ff e re n t ia l e q u a t i o n s , t h e n

    k n o w i n g I p = 1 0 h a s s i g n if i ca n t p r a c t i c a l i m p l i c a t i o n s f o r d e t e r m i n i n g t h e s p a t i a l

    a s w e ll as th e t e m p o r a l d e p e n d e n c e o f th e s e d i m e n t c o n c e n t r a t io n . T h i s p r o b l e m is

    c o v e r e d i n f u t u r e p u b l i c a t i o n s .

    References

    Alberts, E.E., Mo ldenhauer, W .C. and Foster, G .R., 1980. So il aggregates and prim ary particles

    transported in rill and interill flow. Soil Sci. So c. Am . J., 44: 590-595.

    Alberts, E.E., W endt, R .C. and Prie st, R.F., 1983. Physical and chemical properties of eroded soil

    aggregates. Trans. A SAE , 26: 465-471.

    Gov indaraju, R.S . and Kavv as, M .L., 1991.Modelling the erosion process over steep slopes: approximate

    analytical solutions. J. Hydrol., 127: 279-305.

    Hairsine, P.B . and Rose, C.W ., 1991. Rainfall detachment an d deposition: sediment transport in the

    absence o f flow-driven processes. Soil Sci. Sot:. Am . J., 55: 320-324.

    Hairsine, P.B., Sander, G.C., Rose, C.W ., Parlange, J.-Y. an d H ogarth, W .L., 1995. Unsteady soil erosion

    due to rainfall impact: I. Theo retical considerations and practical applications. Water Resour. Res.,

    submitted.

    Hud son, N., 1981. So il Conservation, 2nd edn. C ornell University, Ithaca, NY .

    Laguna, A. and Giraldez, J.V ., 1993. The description o f soil erosion through a kinem atic wave model. J.

    Hydrol., 145: 65-82.

    M eyer, L.D., Foster, G .R. and Rom kens, M.J.M. 1975. Source o f soil eroded by water from upland slopes.

    In: Present and Prospective Technology fo r Predicting Sediment Yields and Sources, Proc. Sediment

    Yield W orkshop, Oxford, MS, 28-3 0 Novem ber 1972. USD A-ARS-40, pp. 177-189.

    Palis, R.G., Okw ach, G., Rose, C .W . and Saffigna, P.G., 1990. Soil erosion processes and nutrient loss. I.

    The interpretation of enrichment ratio and nitrogen loss in runoff sediment. Aust. J. Soil Res., 28:

    623-639.

  • 8/9/2019 G.C. Sander; P.B. Hairsine; C.W. Rose; D. Cassidy; J.-y. Parlang -- Unsteady Soil Erosion Model

    17/17