gas dynamics and jet propulsion_p. murugaperumal (1)

Upload: narender-singh

Post on 06-Jul-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    1/224

    Scilab Textbook Companion for

    Gas Dynamics and Jet Propulsion

    by P. Murugaperumal1

    Created byBathini Maheswara Reddy

    B.TechMechanical Engineering

    SASTRA UNIVERSITYCollege Teacher

    Prof. D. VenkatesanCross-Checked by

    Chaitanya

    June 8, 2014

    1Funded by a grant from the National Mission on Education through ICT,http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilabcodes written in it can be downloaded from the ”Textbook Companion Project”section at the website http://scilab.in

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    2/224

    Book Description

    Title:  Gas Dynamics and Jet Propulsion

    Author:  P. Murugaperumal

    Publisher:  Scitech Publications, Chennai

    Edition:   1

    Year:   2005

    ISBN:   8188429937

    1

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    3/224

    Scilab numbering policy used in this document and the relation to theabove book.

    Exa  Example (Solved example)

    Eqn  Equation (Particular equation of the above book)

    AP  Appendix to Example(Scilab Code that is an Appednix to a particularExample of the above book)

    For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 meansa scilab code whose theory is explained in Section 2.3 of the book.

    2

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    4/224

    Contents

    List of Scilab Codes   4

    1 Compressible Flow Fundamentals   12

    2 Flow through Variable Area Ducts   46

    3 Flow Through Constant Area Duct Adiabatic Flow   74

    4 Flow Through Constant Area Ducts Rayleigh Flow   104

    5 Normal and Oblique Shock   124

    6 Aircraft Propulsion   170

    7 Rocket Propulsion   195

    8 Two Marks Questions and Answers   209

    3

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    5/224

    List of Scilab Codes

    Exa 1.1 To calculate the work done   . . . . . . . . . . . . . . . 12Exa 1.2 To calculate heat transfer internal energy change and

    work done . . . . . . . . . . . . . . . . . . . . . . . . . 13Exa 1.3 To determine temperature enthalpy drop and internal

    energy change   . . . . . . . . . . . . . . . . . . . . . . 14Exa 1.4 To determine properties at outlet and area ratio of dif-

    fuser   . . . . . . . . . . . . . . . . . . . . . . . . . . . 15Exa 1.5 To determine static pressure and axial force of turbojet

    engine   . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Exa 1.6 To determine mach number at a point   . . . . . . . . . 17Exa 1.7 To find direction of flow   . . . . . . . . . . . . . . . . . 17Exa 1.8 To calculate the bulk modulus   . . . . . . . . . . . . . 18Exa 1.9 To calculate mass of water to be pumped to obtain de-

    sired pressure   . . . . . . . . . . . . . . . . . . . . . . . 19Exa 1.10 To find sonic velocity   . . . . . . . . . . . . . . . . . . 20Exa 1.11 To find velocity of sound   . . . . . . . . . . . . . . . . 20Exa 1.12 To find highest pressure acting on surface of a body   . 22Exa 1.13 To find air velocity for different types of flow   . . . . . 22Exa 1.14 To find number of nozzles   . . . . . . . . . . . . . . . . 23Exa 1.15 To find properties of a gas in vessel at a point  . . . . . 24Exa 1.16 To find mach number and velocity of flow   . . . . . . . 25Exa 1.17 To find distance covered before sonic boom is heard on

    ground   . . . . . . . . . . . . . . . . . . . . . . . . . . 25Exa 1.18 To calculate time elapsed to feel disturbance due to air-

    craft  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Exa 1.19 To find mach number at a point   . . . . . . . . . . . . 27Exa 1.20 To find Mach number   . . . . . . . . . . . . . . . . . . 28Exa 1.21 To find speed of sound and Mach number   . . . . . . . 28

    4

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    6/224

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    7/224

    Exa 2.11 To find properties at throat and test section mass flow

    rate and Power required in nozzle of wind tunnel   . . . 59Exa 2.12 To find cross section at throat and exit . . . . . . . . . 60Exa 2.13 To find ratio of areas velocity and back pressure in CD

    nozzle   . . . . . . . . . . . . . . . . . . . . . . . . . . . 62Exa 2.14 To find how duct acts   . . . . . . . . . . . . . . . . . . 63Exa 2.15 To find mass flow rate static and stagnation conditions

    and entropy change of subsonic diffuser   . . . . . . . . 63Exa 2.16 To find throat area reservoir conditions and mass flow

    rate   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Exa 2.17 To find throat conditions ratio of velocities and mass

    flow rate   . . . . . . . . . . . . . . . . . . . . . . . . . 66

    Exa 2.18 To find mass flow rate and exit conditions   . . . . . . . 67Exa 2.19 To find mach number change in stagnation pressure en-

    tropy change and static temperature and efficiency of nozzle   . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

    Exa 2.20 To find pressure rise coefficient and ratio of area   . . . 70Exa 2.21 To find area at throat and exit Mach number total pres-

    sure loss and entropy change   . . . . . . . . . . . . . . 71Exa 2.22 To find required throat and exit area of nozzle   . . . . 72Exa 3.1 To find length of pipe   . . . . . . . . . . . . . . . . . . 74Exa 3.2 To find length of required duct and length required to

    obtain critical condition   . . . . . . . . . . . . . . . . . 75Exa 3.3 To find length of pipe and mass flow rate   . . . . . . . 76Exa 3.4 To find temperature velocity at a section and distance

    between two sections . . . . . . . . . . . . . . . . . . . 77Exa 3.5 To find length of pipe and properties of air at exit   . . 78Exa 3.6 To find mach number properties at a section and critical

    section and length of the duct   . . . . . . . . . . . . . 80Exa 3.7 TO find final pressure and velocity of duct   . . . . . . 82Exa 3.8 To find inlet mach number mass flow rate and exit tem-

    perature   . . . . . . . . . . . . . . . . . . . . . . . . . 83Exa 3.9 To find length diameter of the duct pressure at exit Stag-

    nation pressure lose and to verify exit mach number   . 84Exa 3.10 To find length of the pipe Mach number percent of stag-

    nation pressure loss and length required to reach chokingcondition   . . . . . . . . . . . . . . . . . . . . . . . . . 86

    Exa 3.11 To find length of the pipe and mass flow rate   . . . . . 87

    6

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    8/224

    Exa 3.12 To find length and Mach number of given pipe and at

    required section   . . . . . . . . . . . . . . . . . . . . . 88Exa 3.13 To find length of the pipe percent of stagnation pressurechange and entropy change   . . . . . . . . . . . . . . . 89

    Exa 3.14 To find maximum length of pipe and conditions of airat exit   . . . . . . . . . . . . . . . . . . . . . . . . . . 91

    Exa 3.15 To find Maximum and required length of the pipe andproperties of air at a section . . . . . . . . . . . . . . . 93

    Exa 3.16 To find exit mach number and inlet temperature andpressure   . . . . . . . . . . . . . . . . . . . . . . . . . . 95

    Exa 3.17 To find Static and Stagnation conditions velocity lengthand mass flow rate of air in pipe   . . . . . . . . . . . . 96

    Exa 3.18 To find length of pipe and properties of air at a sectionand limiting mach number . . . . . . . . . . . . . . . . 98

    Exa 3.19 To find diameter of pipe   . . . . . . . . . . . . . . . . 100Exa 3.20 To determine required inlet conditions   . . . . . . . . . 101Exa 3.21 To find mach number at sections and mean value of 

    friction   . . . . . . . . . . . . . . . . . . . . . . . . . . 102Exa 4.1 To find heat transferred per unit mass flow and temper-

    ature change   . . . . . . . . . . . . . . . . . . . . . . . 104Exa 4.2 To calculate flow properties at the exit   . . . . . . . . . 105Exa 4.3 To find mass flow rate per unit area Final temperature

    and heat added per kg of air flow   . . . . . . . . . . . . 107Exa 4.4 To calculate pressure and Mach number after combus-tion in combustion chamber   . . . . . . . . . . . . . . 108

    Exa 4.5 To find total temperature static pressure at exit Stag-nation pressure and exponent of polytropic equation   . 109

    Exa 4.6 To determine Mach number pressure temperature of gasat entry and amount of heat added and maximum heatcan be added   . . . . . . . . . . . . . . . . . . . . . . 111

    Exa 4.7 To determine Mach number pressure temperature andvelocity of gas at exit   . . . . . . . . . . . . . . . . . . 112

    Exa 4.8 To find Mach number pressure and temperature after

    cooling   . . . . . . . . . . . . . . . . . . . . . . . . . . 114Exa 4.9 To determine heat added per kg of air flow maximum

    possible heat transfer and heat transfer required to getmaximum static temperature   . . . . . . . . . . . . . . 115

    7

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    9/224

    Exa 4.10 To find exit properties Maximum stagnation tempera-

    ture percentage of pressure loss and initial mach number. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116Exa 4.11 To find Mach number and percentage drop in pressure   118Exa 4.12 To find inlet mach number and percentage loss in static

    pressure   . . . . . . . . . . . . . . . . . . . . . . . . . . 119Exa 4.13 To find inlet and exit mach number   . . . . . . . . . . 120Exa 4.14 To find properties at exit and sonic condition and heat

    required to accelerate gas from inlet to sonic condition   121Exa 5.1 To find Mach number before shock properties after shock

    density increase loss of stagnation pressure and entropychange of air in pipe   . . . . . . . . . . . . . . . . . . . 124

    Exa 5.2 To find properties across normal shock and entropy change   125Exa 5.3 To find properties downstream of shock   . . . . . . . . 127Exa 5.4 To find velocities across shock and stagnation pressure

    change   . . . . . . . . . . . . . . . . . . . . . . . . . . 128Exa 5.5 To find properties downstream of shock   . . . . . . . . 129Exa 5.6 To find pressure acting on front of the body   . . . . . . 130Exa 5.7 To find mass flow rate and properties at exit of CD nozzle   130Exa 5.8 To find properties upstream of wave front   . . . . . . . 133Exa 5.9 To find properties downstream of shock total head pres-

    sure ratio entropy change strength of shock   . . . . . . 134

    Exa 5.10 To determine Mach number across shock and area atshock   . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Exa 5.11 To find Mach number across shock Static pressure and

    area at shock   . . . . . . . . . . . . . . . . . . . . . . . 136Exa 5.12 To find properties at various sections  . . . . . . . . . . 137Exa 5.13 To find mass flow rate and properties at throat and exit

    at various sections of CD nozzle   . . . . . . . . . . . . 139Exa 5.14 To estimate the difference in mercury in limbs of U tube

    manometer at various velocities   . . . . . . . . . . . . 146Exa 5.15 To estimate Mach number and properties across the nor-

    mal shock of tube   . . . . . . . . . . . . . . . . . . . . 147

    Exa 5.16 To find Mach number and velocity in pitot tube . . . . 148Exa 5.17 To find shock speed and air velocity inside the shock   . 149Exa 5.18 To compute speed of wave pressure and temperature of 

    air at rest   . . . . . . . . . . . . . . . . . . . . . . . . 150

    8

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    10/224

    Exa 5.19 To find Mach number pressure temperature at exit and

    diffuser efficiency   . . . . . . . . . . . . . . . . . . . . 151Exa 5.20 To find length of duct across shock mass flow rate en-tropy change across and downstream of shock   . . . . . 153

    Exa 5.21 To find length across the shock properties of air at exitand mass flow rate through the duct   . . . . . . . . . . 156

    Exa 5.22 To find properties after shock and exit and exit Machnumber   . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    Exa 5.23 To find length diameter of pipe and properties at pipeexit   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

    Exa 5.24 To estimate amount of heat added in two pipe sectionand properties   . . . . . . . . . . . . . . . . . . . . . . 161

    Exa 5.25 To find deflection angle Downstream Mach number Staticpressure and total pressure loss through the shock   . . 164

    Exa 5.26 To determine static pressure temperature behind waveMach number and Wedge angle   . . . . . . . . . . . . 165

    Exa 5.27 To find property ratios at strong and weak shock atwedge   . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    Exa 5.28 To find deflection angle final Mach number and temper-ature of gas   . . . . . . . . . . . . . . . . . . . . . . . 168

    Exa 6.1 To calculate thrust and specific thrust of jet propulsion   170Exa 6.2 To find thrust developed thrust power and propulsive

    efficiency   . . . . . . . . . . . . . . . . . . . . . . . . . 172Exa 6.3 To determine specific thrust and thrust specific fuel con-sumption for turbojet engine   . . . . . . . . . . . . . . 173

    Exa 6.4 To estimate properties at exit and propulsive efficiencyof a turbojet aircraft   . . . . . . . . . . . . . . . . . . 175

    Exa 6.5 To calculate absolute velocity drag overall and turbineefficiency of jet   . . . . . . . . . . . . . . . . . . . . . 176

    Exa 6.6 To Calculate propulsive and thrust power total fuel con-sumption and propulsive thermal and overall efficiency   177

    Exa 6.7 To find specific thrust jet velocity TSFC and propulsivethermal and overall efficiency   . . . . . . . . . . . . . . 179

    Exa 6.8 To calculate fuel air and pressure ratios and Mach num-ber of jet   . . . . . . . . . . . . . . . . . . . . . . . . . 180

    Exa 6.9 To determine air flow rate thrust power thrust producedspecific thrust and specific impulse   . . . . . . . . . . 181

    9

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    11/224

    Exa 6.10 To calculate pressure rise pressured developed by com-

    pressor and air standard efficiency of the engine  . . . . 182Exa 6.11 To estimate diameter power output AFR and absolutevelocity of the jet   . . . . . . . . . . . . . . . . . . . . 184

    Exa 6.12 To determine jet velocity thrust specific thrust TSFCthrust power and efficiencies   . . . . . . . . . . . . . . 185

    Exa 6.13 To jet velocity fuel rate TSFC propulsive power andefficiencies   . . . . . . . . . . . . . . . . . . . . . . . . 186

    Exa 6.14 To find absolute jet velocity volume of air compresseddiameter power output and air fuel ratio of the jet   . . 187

    Exa 6.15 To estimate AFR nozzle thrust propeller thrust andmass flow rate   . . . . . . . . . . . . . . . . . . . . . . 188

    Exa 6.16 To find various parameters of ramjet engine through outits operation   . . . . . . . . . . . . . . . . . . . . . . . 190

    Exa 6.17 To find power input power output Fuel air ratio ExitMach number thrust and thrust power developed in the

     jet   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Exa 7.1 To find thrust of the motor of a rocket   . . . . . . . . . 195Exa 7.2 To calculate area ratio thrust characteristic velocity thrust

    coefficient exit velocity and possible maximum velocity   196Exa 7.3 To estimate thrust per unit area and specific impulse   197Exa 7.4 To find specific impulse specific propellant consumption

    effective and absolute jet velocity of rocket   . . . . . . 198Exa 7.5 To find propulsive efficiency thrust and thrust power of rocket   . . . . . . . . . . . . . . . . . . . . . . . . . . 199

    Exa 7.6 To find velocity and maximum height that rocket willreach   . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

    Exa 7.7 To determine thrust coefficient propellant weight flowcoefficient SPC and characteristic velocity of rocket   . 201

    Exa 7.8 To find various parameters of rocket projectile duringits operation   . . . . . . . . . . . . . . . . . . . . . . . 202

    Exa 7.9 To propulsive power engine output and efficiencies   . . 203Exa 7.10 To find thrust specific impulse and efficiencies   . . . . 204

    Exa 7.11 To find specific impulse SPC effective and actual jetvelocity and efficiencies   . . . . . . . . . . . . . . . . . 204

    Exa 7.12 To find propellant flow rate thrust developed and heightattained during powered and coasting flights   . . . . . 206

    10

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    12/224

    Exa 7.13 To find effective jet velocity mass ratio and propellant

    mass fraction maximum slight speed Altitude gain dur-ing powered and coasting flights   . . . . . . . . . . . . 207Exa 7.14 To find orbital and escape velocities of a rocket   . . . . 208Exa 8.1.34 To find Mach angle   . . . . . . . . . . . . . . . . . . . 209Exa 8.1.35 To find values of back pressure   . . . . . . . . . . . . . 210Exa 8.1.37 To find temperature at nose of aircraft   . . . . . . . . 210Exa 8.1.38 To determine stagnation pressure and stagnation tem-

    perature   . . . . . . . . . . . . . . . . . . . . . . . . . 211Exa 8.1.39 To calculate bulk modulus of elasticity of a liquid   . . 212Exa 8.1.40 To find highest possible velocity   . . . . . . . . . . . . 212Exa 8.3.10 To find the length of the pipe   . . . . . . . . . . . . . 213

    Exa 8.3.15 To find length of the pipe to achieve deceleration   . . . 213Exa 8.3.31 To find maximum possible amount of heat transfer of 

    combustion chamber   . . . . . . . . . . . . . . . . . . 214Exa 8.3.32 To find increase in specific entropy of the fluid   . . . . 214Exa 8.3.33 To pipe maximum heat transfer in a pipe   . . . . . . . 215Exa 8.5.16 To find pressure acting on the front of the body  . . . . 216Exa 8.5.17 To find strength of shock wave   . . . . . . . . . . . . . 216Exa 8.5.20 To find irreversibility of duct   . . . . . . . . . . . . . . 217Exa 8.5.21 To find mach number and air velocity of pitot tube   . 217Exa 8.5.22 To find properties downstream of the shock   . . . . . . 218

    Exa 8.6.41 To find propulsive efficiency for an optimum thrust power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219Exa 8.6.42 To find propulsive efficency   . . . . . . . . . . . . . . . 219Exa 8.7.42 To find thrust of the rocket   . . . . . . . . . . . . . . . 220Exa 8.7.44 To find the thrust developed   . . . . . . . . . . . . . . 221Exa 8.7.45 To find the jet velocity of a rocket   . . . . . . . . . . . 221Exa 8.7.46 To calculate thrust propulsive efficiency and thrust power

    of a rocket   . . . . . . . . . . . . . . . . . . . . . . . . 222Exa 8.7.47 To determine orbital velocity and escape velocity of a

    rocket   . . . . . . . . . . . . . . . . . . . . . . . . . . 222Exa 8.7.48 To determine propulsive efficiency and propulsive power

    of a rocket   . . . . . . . . . . . . . . . . . . . . . . . . 223

    11

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    13/224

    Chapter 1

    Compressible Flow

    Fundamentals

    Scilab code Exa 1.1  To calculate the work done

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   m = 0 . 7 5   // Mass o f a i r i n kg6   T 1 = 8 0 0   / / I n t i a l T em pe ra tu re i n K7   P 1 = 4 0 0   / / I n i t i a l P r e s s u r e i n kPa8   P 2 = 1 5 0   / / F i n a l P r e s s u r e i n kPa9   k = 1 . 4   / / A d i a b a ti c c o n s t a n t

    10   R = 0 . 2 8 7   / / S p e c i f i c Gas c o n st a n t i n J /kg−K11

    12   / / C a l c u l a t i o n13   p 1 = P 2 / P 1   // p r e s s u r e r a t i o o f p r oc e ss14   T 2 = T 1 * p 1 ^ ( ( k - 1 ) / k )   / / F i n a l t e mp e r at u r e i n K

    15   W = ( ( m * R * ( T 1 - T 2 ) ) / ( k - 1 ) )   / / Wo rk do ne i n k J1617   //P−V Di agr am18   s c f ( )

    19   c l f ( )

    12

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    14/224

    20   V 1 = ( ( ( m * R * T 1 ) / P 1 ) ^ ( 1 / k ) ) * 1 0 ^ 3   / / I n l e t volume i n c c

    21   V 2 = ( ( ( m * R * T 2 ) / P 2 ) ^ ( 1 / k ) ) * 1 0 ^ 3   / / F i n a l vo lu me i n c c22   V = V 1 :( V2 - V 1 ) / 10 0: V 2   / / R e p r e s e n t i n g v ol um e o ngraph , a d i a b a t i c e xp a ns i on

    23   P = P1 * V1 ^ k ./ V ^k   / / R e p r e se n t i n g p r e s s u r e on g ra ph24   plot (V , P )   / / P l o t t i n g25   l e g e n d ( ’ P∗Vˆk=C ’ )   / / D e f i n i n g c u r v e26   xtitle ( ”PV Diagram” ,   ”V ( cc ) ” ,   ” P ( k P a ) ” )   / / T i t l e s

    o f a xe s27

    28   //Output29   printf ( ’ W orkdone i s %3 . 2 f k J ’ ,W )

    Scilab code Exa 1.2  To calculate heat transfer internal energy change andwork done

    1   clc

    2   clear

    3

    4   / / I n p ut d at a

    5   V 1 = 0 . 3 5   / / Volume o f g a s i n mˆ 36   P 1 = 1 1 0   / / I n i t i a l P r e s s u r e i n kPa7   T 1 = 3 0 0   / / I n t i a l T em pe ra tu re i n K8   P 2 = 6 0 0   // F i n a l P r e s s u r e i n kPa , m i s s i n g d at a9   k = 1 . 4   / / A d i a b a ti c c o n s t a n t

    10   C v = 7 1 8   // S p e c i f i c h ea t a t c o n st a n t volume i n J /kg−K11   R = 2 8 7   / / S p e c i f i c Gas c o n st a n t i n J /kg−K12

    13   / / C a l c u l a t i o n14   d Q = 0   // Heat t r a n s f e r i n J , S i nc e A di a ba t i c p r o c e s s

    15   m = ( P 1 * 1 0 ^ 3 * V 1 ) / ( R * T 1 )   // Mass o f a i r i n kg16   p 1 = P 2 / P 1   // P r e ss u r e r a t i o17   T 2 = T 1 * p 1 ^ ( ( k - 1 ) / k )   / / F i n a l t e mp e r at u r e i n K18   d U = ( m * C v * ( T 2 - T 1 ) ) * 1 0 ^ - 3   // Change i n i n t e r n a l e ne rg y

    i n kJ

    13

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    15/224

    19   d W = - d U   / / W ork do ne i n kJ , S i n c e dQ=0

    2021   //P−V Di agr am22   s c f ( )

    23   c l f ( )

    24   V 1 c c = V 1 * 1 0 ^ 3   / / I n l e t volume i n c c25   V 2 c c = V 1 c c * ( T 2 / T 1 ) ^ ( 1 / ( k - 1 ) )   / / F i n a l vo lu me i n c c26   V = V 1 cc : ( V 2 cc - V 1 c c ) / 1 00 : V 2 c c   / / R e p r e s e n t i n g

    v ol ume on g ra ph , a d i a b a t i c e x p an s i o n27   P = P 2 * V1 cc ^ k . / V^ k   / / R e p r e s en t i n g p r e s s u r e on g ra ph28   plot (V , P )   / / P l o t t i n g29   l e g e n d ( ’ P∗Vˆk=C ’ )   / / D e f i n i n g c u r v e

    30   xtitle ( ”PV Diagram” ,   ”V ( cc ) ” ,   ” P ( k P a ) ” )   / / T i t l e so f a xe s

    31

    32   //Output33   printf ( ’ (A) H eat t r a n s f e r i s %3i J\n ( B) C h an ge i n

    i n t e r n a l e ne rg y i s %3 . 3 f kJ\n ( C) W orkdone i s %3 . 3f kJ\n ’ , d Q , d U , d W )

    Scilab code Exa 1.3   To determine temperature enthalpy drop and internalenergy change

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   P 1 = 3 . 2   / / I n i t i a l P r e s s u r e i n b a r6   P 2 = 1   / / F i n al P r e ss u r e i n b ar7   T 1 = 4 7 5   / / I n i t i a l t e m p e r a t u r e i n K

    8   M o l = 4 4   // M o l ec u l ar w e ig h t o f c a r b o n d i o x i d e i n kg / mol9   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K10   k = 1 . 3   / / A d i a b a ti c c o n s t a n t11

    12   / / C a l c u l a t i o n

    14

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    16/224

    13   R = R i / M o l   // S p e c i f i c g as c on s ta n t i n J /kg−K

    14   C p = ( k * R ) / ( k - 1 )   // S p e c i f i c h ea t c a p ac i t y a t c o ns t a n tp r e s s ur e i n J /kg−K15   C v = C p / k   / / S p e c i f i c h ea t c a pa c i ty a t c on s ta n t volume

    i n J /kg−K16   p 1 = P 2 / P 1   // P r e ss u r e r a t i o17   T 2 = T 1 * p 1 ^ ( ( k - 1 ) / k )   / / F i n a l T e m p er a t u re18   d h = C p * ( T 1 - T 2 ) * 1 0 ^ - 3   / / E nt ha lp y d ro p i n kJ / kg19   d U = C v * ( T 2 - T 1 ) * 1 0 ^ - 3   // Change i n i n t e r n a l e ne rg y i n

    kJ/ kg ,   −ve s i g n i n d i c a t e s l o s s20

    21   //Output

    22   printf ( ’ ( A) T e m p er a t u r e i s %3 . 3 f K\n ( B) E n t ha l p y d r opi s %3 . 3 f kJ / kg\n (C) Change i n i n t e r n a l e ne rg y i s

    %3 . 2 f k J / kg i . e . %3 . 2 f k J / kg ( l o s s ) ’ , T 2 , d h , d U , abs( d U ) )

    Scilab code Exa 1.4   To determine properties at outlet and area ratio of diffuser

    1   clc2   clear

    3

    4   / / I n p ut d at a5   P 1 = 0 . 5   / / I n i t i a l P r e s s u r e i n b a r6   T 1 = 5 0 + 2 7 3   / / I n t i a l T em pe ra tu re i n K7   C 1 = 2 4 0   / / I n l e t v e l o c i t y i n m/ s8   C 2 = 1 2 0   / / O ut l et v e l o c i t y i n m/ s , m i s s in g d at a9   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K

    10   k = 1 . 4   / / A d i a b a ti c c o n s t a n t1112   / / C a l c u l a t i o n13   T 2 = T 1 + ( ( C 1 ^ 2 - C 2 ^ 2 ) / ( 2 * C p ) )   / / F i n a l T em pe ra tu re i n K14   t 1 = T 2 / T 1   // T e m pe ra tu re r a t i o

    15

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    17/224

    15   P 2 = P 1 * t 1 ^ ( k / ( k - 1 ) )   // F i n al P r e s su r e i n b ar

    16   a r = ( P 1 * T 2 * C 1 ) / ( P 2 * T 1 * C 2 )   // R a ti o o f o u t l e t t o i n l e ta r e a17

    18   //Output19   printf ( ’ (A) A t o u t l e t : \ n T empe r at ure i s %3 . 2 f K\n

    P r e s su r e i s %3 . 4 f b ar \n (B) R at io o f o u t l e t t oi n l e t a re a i s %3 . 4 f ’ , T 2 , P 2 , a r )

    Scilab code Exa 1.5   To determine static pressure and axial force of tur-bojet engine

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   m = 2 5   // Mass f lo w r a t e o f a i r i n kg / s6   C 2 = 1 1 5   / / O ut l et v e l o c i t y i n m/ s7   P 1 = 1 0 0   / / / / I n i t i a l P r e s s u r e i n kPa8   T 1 = 3 0 0   / / I n t i a l T em pe ra tu re i n K

    9   C 1 = 4 0   / / I n l e t v e l o c i t y i n m/ s10   R = 0 . 2 8 7   / / S p e c i f i c g as c o ns t a n t i n kJ /kg−K11   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K12   k = 1 . 4   / / A d i a b a ti c c o n s t a n t13

    14   / / C a l c u l a t i o n15   T 2 = T 1 + ( ( C 1 ^ 2 - C 2 ^ 2 ) / ( 2 * C p ) )   / / F i n a l T em pe ra tu re i n K16   t 1 = T 2 / T 1   // T e m pe ra tu re r a t i o17   P 2 = P 1 * t 1 ^ ( k / ( k - 1 ) )   // F i n al P r e s su r e i n b ar

    18   A 1 = ( m * R * T 1 ) / ( P 1 * C 1 )   // Area a t i n l e t i n mˆ219   A 2 = ( m * R * T 2 ) / ( P 2 * C 2 )   // Area a t o u t l e t i n mˆ220   F = ( ( P 1 * A 1 ) - ( P 2 * A 2 ) ) + ( m * ( C 1 - C 2 ) ) * 1 0 ^ - 3   / / A x i a l f o r c e

    on m o u t h p ie c e r e s u l t i n g from a c c e l e r a t i o n o f a i ri n kN

    16

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    18/224

    21

    22   //Output23   printf ( ’ (A) S t a t i c p r e s s ur e a t i n t ak e f a c e i s %3 . 3 f  kPa\n (B) M ag ni tu de o f a x i a l f o r c e on m o ut hp ie cer e s u l t i n g from a c c e l e r a t i o n o f a i r i s %3 . 3 f kN ’ ,P 2 , F )

    Scilab code Exa 1.6  To determine mach number at a point

    1   clc2   clear

    3

    4   / / I n p ut d at a5   P = 2 0 0   / / P r e s s u r e i n kPa6   C = 5 0   // V e l oc i t y o f a i r i n m/ s7   d = 2 . 9   / / D e n s i t y i n k g /mˆ 38   M o l = 3 2   / / M o l ec u l ar w e ig h t o f o xy ge n i n kg / mol9   k = 1 . 4   / / A d i a b a ti c c o n s t a n t

    10   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K11

    12   / / C a l c u l a t o r13   R = R i / M o l   // S p e c i f i c g as c on s ta n t i n J /kg−K14   T = P * 1 0 ^ 3 / ( R * d )   / / T e mp er at ur e i n K15   a = sqrt ( k * R * T )   // V e l o c i t y o f s ou nd i n m/ s16   M = C / a   //Mach number17

    18   //Output19   printf ( ’ Mach n um be r i s %3 . 2 f ’ ,M )

    Scilab code Exa 1.7  To find direction of flow

    1   clc

    2   clear

    17

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    19/224

    3

    4   / / I n p ut d at a5   P a = 1 . 3   // P r e s su r e a t s e c t i o n −A i n ba r6   T a = 5 0 + 2 7 3   // T e mp er at ur e a t s e c t i o n −A i n K7   P b = 1   / / P r e s su r e a t s e c t i o n −B i n b ar8   T b = 1 3 + 2 7 3   // T e mp er at ur e a t s e c t i o n −B i n K9   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K10   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−K11

    12   / / C a l c u l a t i o n13   d s = ( ( C p * log ( T b / T a ) ) - ( R * log ( P b / P a ) ) ) * 1 0 ^ - 3   //The

    c ha ng e i n t he e nt ro py i s kJ /kg14   / /+ve s i g n i n d i c a t e s A t o B15   //−ve s i g n i n d i c a t e s B t o A16

    17   //Output18   printf ( ’ The c ha ng e i n t he e nt ro p y i s %3 . 4 f kJ / kg\n

    S i n ce v al ue i s   −ve , p r o c e s s must t a k e s p l a c e fro mB t o A ’ , d s )

    Scilab code Exa 1.8  To calculate the bulk modulus

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   V 1 = 8   / / I n t i a l v ol um e i n l i t r e6   V 2 = 7 . 8   / / F i n a l v ol um e i n l i t r e7   P 1 = 0 . 7   / / I n t i a l P r e ss u r e i n MPa

    8   P 2 = 2 . 7   / / F i n a l P r e s s u r e i n MPa910   / / C a l c u l a t i o n s11   K = ( P 2 - P 1 ) / ( log ( V 1 / V 2 ) )   // Bulk modulus o f l i q u i d i n

    kPa

    18

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    20/224

    12

    13   //Output14   printf ( ’ B ulk modulus o f l i q u i d i s %3 . 3 f kPa ’ ,K )

    Scilab code Exa 1.9   To calculate mass of water to be pumped to obtaindesired pressure

    1   clc

    2   clear

    34   / / I n p ut d at a5   V 1 = 0 . 5   / / Voume o f Water r e q u i r e d t o f i l l p r e s s u r e

    v e s s e l i n mˆ36   P = 3 0 0 0   // T es t p r e s s ur e i n ba r7   d v = 0 . 6   // Change o f empty v ol um e o f c o n t a i n e r due t o

    p r e s s u r i s a t i o n i n p e r c e nt ag e8   K = 2 0 0 0 0   / / Bu lk m od ul us o f w a te r i n MPa9

    10   / / C a l c u l a t i o n11   m 1 = V 1 * 1 0 ^ 3   / / Mass o f w at er r e q u i r e d t o f i l l p r e s s u r e

    v e s s e l i n kg12   V r = ( P * V 1 ) / K   // R ed uc ed v ol um e o f w a te r d ue t o

    c o m p r e s s i o n i n mˆ 313   V i = d v * V 1 / 1 0 0   / / I n c r e a s e d volume o f c o n t a i n e r i n mˆ314   V = V r + V i   // Volume o f a d d i t i o n a l w at er r e q u i r e d i n mˆ315   m = V * 1 0 ^ 3   // Mass o f a d d i t i o n a l w a te r r e q ui r e d i n kg16   m t = m 1 + m   // T ot al mass o f w at er r e q ui r e d i n l i t r e ,

    S i n c e 1 k g=1 L i t17

    18   //Output

    19   printf ( ’ Mass o f w at er t o be pumped i n t o t he v e s e l t oo bt ai n t he d e s i r e d p r e s s u r e i s %3i l i t ’ , m t )

    19

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    21/224

    Scilab code Exa 1.10  To find sonic velocity

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   S G _ o i l = 0 . 8   // S p e c i f i c g r a v i t y o f c r ud e o i l6   K _ o i l = 1 5 3 0 3 6 * 1 0 ^ 4   / / B ul k m od ul us o f O i l i n N/mˆ 27   K _ h g = 2 6 4 8 7 0 0 * 1 0 ^ 4   / / B u lk m od ul us o f M er cu ry i n N/mˆ 28   d _ s t e e l = 7 8 6 0   / / D en s it y o f s t e e l i n kg /mˆ39   E _ s t e e l = 2 0 0 * 1 0 ^ 9   //M odulus of e l a s t i c i t y i n Pa

    10   d _ h g = 1 3 6 0 0   / / D e n s i t y o f m er cu ry i n k g /mˆ 3

    11   d _ w a t e r = 1 0 0 0   / / D e n s i t y o f w a te r i n kg /mˆ 312

    13   / / C a l c u l a t i o n14   d _ o i l = S G _ o i l * d _ w a t e r   / / D en s it y o f o i l i n kg /mˆ315   a _ o i l = sqrt ( K _ o i l / d _ o i l )   // S on i c v e l o c i t y o f c ru de

    o i l i n m/ s16   a _ h g = sqrt ( K _ h g / d _ h g )   / / S on i c v e l o c i t y o f mer cury i n

    m/ s17   a _ s t e e l = sqrt ( E _ s t e e l / d _ s t e e l )   / / S on ic v e l o c i t y o f  

    s t e e l i n m/ s18

    19   //Output20   printf ( ’ (A) S on i c v e l o c i t y o f c ru de o i l i s %3 . 2 f m/ s \

    n (B) S o ni c v e l o c i t y o f me rcu ry i s %3 . 2 f m/ s \n (A)S on ic v e l o c i t y o f s t e e l i s %3 . 1 f m/ s \n ’ , a _ o i l ,a _ h g , a _ s t e e l )

    Scilab code Exa 1.11  To find velocity of sound

    1   clc

    2   clear

    3

    4   / / I n p ut d at a

    20

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    22/224

    5   T = 2 0 + 2 7 3   / / T e m pe r ar t ur e o f medium i n K

    6   C p _ f r = 6 7 8   // S p e c i f i c h ea t c a p ac i t y a t c o ns t a n tp r e s s u r e o f f r e o n i n J /kg−K7   C v _ f r = 5 4 3   // S p e c i f i c h ea t c a p ac i t y a t c o ns t a n t

    v ol im e o f f r eo n i n J / kg−K8   T _ a i r = 0 + 2 7 3   // T em pe ra tu re o f a i r i n K9   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K

    10   m o l _ h = 2   / / M o l e c u l a r w e i g ht o f H yd ro ge n i n kg / m ol11   m o l _ w a t e r = 1 8   / / M o l ec u l a r w ei g ht o f w at er i n kg / mol12   R _ a i r = 2 8 7   // S p e c i f i c g a s c on st an t o f a i r i n J / kg−K13   k = 1 . 4   / / A d i a b a ti c c o n s t a n t o f h yd ro ge n14   k _ w a t e r = 1 . 3   / / A d i a b a t ic c o n s t a n t o f w at er

    1516   / / C a l c u l a t i o n17   R _ h = R i / m o l _ h   // S p e c i f i c g as c o ns t a n t o f h yd ro ge n i n

    J /k g−K18   a _ h = sqrt ( k * R _ h * T )   // V e l o c i t y o f so un d i n h yd ro ge n i n

    m/ s19   R _ w a t e r = R i / m o l _ w a t e r   // S p e c i f i c g as c on s ta n t o f  

    w at er i n J / kg−K20   a _ w a t e r = sqrt ( k _ w a t e r * R _ w a t e r * T )   / / V e l o c i t y o f s ou nd

    i n w at er v ap ou r i n m/ s21   k _ f r = C p _ f r / C v _ f r

      / / A d i ab a t ic c o n st a n t o f f e oa n22   R _ f r = C p _ f r - C v _ f r   // S p e c i f i c g as c on st an t o f f r e o n i nJ/kg−K

    23   a _ f r = sqrt ( k _ f r * R _ f r * T )   / / V e l oc i t y o f sound i n f r e o ni n m / s

    24   a _ a i r = sqrt ( k * R _ a i r * T _ a i r )   // S on ic V e l o c i t y o f a i r a ti n m / s

    25

    26   //Output27   printf ( ’ (A) V e l o c i t y o f s ou nd i n h yd ro ge n i s %3 . 2 f m/

    s \n (B) V e l o c i t y o f s oun d i n w at er v ap ou r i s %3 . 2 f  

    m/ s \n (C) V e l o c i t y o f so un d i n f r e o n i s %3 . 2 f m/ s\n (D) S on i c V e l oc i t y o f a i r a t %3i K i s %3 . 4 f m/ s’ , a _h , a _ w a t er , a _ fr , T _ a ir , a _ a i r )

    21

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    23/224

    Scilab code Exa 1.12   To find highest pressure acting on surface of a body

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   M = 0 . 8 5   // Mach number6   P = 8 0   / / P r e s s u r e i n kPa7   k = 1 . 4   / / A d i a b a t i c C o n s ta n t8

    9   / / C a l c u l a t i o n10   P o = P * ( 1 + ( ( ( k - 1 ) / 2 ) * M ^ 2 ) ) ^ ( k / ( k - 1 ) )   / / P r e s s u r e a c t i n g

    on t he s u r f a c e o f t he body i n kPa11

    12   //Output13   printf ( ’ The h i g h e s t p r e s s u r e a c ti n g on t h e s u r f a c e

    o f t h e body i s %3 . 1 f kPa ’ , P o )

    Scilab code Exa 1.13  To find air velocity for different types of flow

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   P = 9 6   / / P r e s s u r e i n kPa6   T = 2 7 + 2 7 3   / / T e mp er at ur e i n K7   d P = 3 2   // D i f f e r e n c e b et w ee n p i v o t and s t a t i c p r e s s ur e

    8   k = 1 . 4   / / A d i a b a t i c C o n s ta n t9   R = 2 8 7   / / S p e c i f i c Gas c o n st a n t i n J /kg−K

    10

    11   / / C a l c u l a t i o n12   d = ( P * 1 0 ^ 3 ) / ( R * T )   / / D e n s i t y i n k g /mˆ 3

    22

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    24/224

    13   Ci = sqrt ( ( 2 * ( d P * 1 0 ^ 3 ) ) / d )   // V e l o c i t y o f  

    i n c o m pr e s s i b l e f l o w i n m/ s14   p r = ( d P ) / P   // P r e s su r e r a t i o15   p 1 = p r + 1   // S ta gn at i o n t o s t a t i c p r e s s u r e r a t i o16   M = sqrt ( ( ( p 1 ^ ( ( k - 1 ) / k ) - 1 ) * 2 ) / ( k - 1 ) )   //Mach number17   C c = M * sqrt ( k * R * T )   // V e l oc i t y o f c o m pr e s si b l e f l o w i n

    m/ s18

    19   //Output20   printf ( ’ (A) A ir v e l o c i t y i n i n c o m pr e s s i b l e f l o w i s %3

    . 1 f m/ s \n (B) A i r v e l o c i t y i f f lo w i s c o mp r es s i b l ei s %3 . 3 f m/ s ’ , C i , C c )

    Scilab code Exa 1.14  To find number of nozzles

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   T 1 = 2 0 0 + 2 7 3   / / I n t i a l T em pe ra tu re i n K

    6   P 1 = 1 . 7   / / I n i t i a l P r e s s u r e i n b a r7   P 2 = 1   / / F i n al P r e ss u r e i n b ar8   C 1 = 3 0   / / I n l e t v e l o c i t y i n m/ s9   m =1   // Mass f l o w r a t e i n kg / s

    10   D = 0 . 0 2 5   / / N o zz l e d i a me t er i n m11   k = 1 . 4   / / A d i a b a t i c C o n s ta n t12   R = 2 8 7   / / S p e c i f i c Gas c o n st a n t i n J /kg−K13   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K14

    15   / / C a l c u l a t i o n16   p 1 = P 2 / P 1   // P r e ss u r e r a t i o17   T 2 = T 1 * p 1 ^ ( ( k - 1 ) / k )   / / F i n a l t e mp e r at u r e i n K18   E 1 = T 1 + ( C 1 ^ 2 / ( 2 * C p ) )   //LHS o f S te ad y f l o w e n er g y

    e q u a t i o n

    23

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    25/224

    19   C2 = sqrt ( ( E 1 - T 2 ) * 2 * C p )   // E x i t v e l o c i t y o f t h e a i r i n

    m/ s20   d 2 = ( P 2 * 1 0 ^ 5 ) / ( R * T 2 )   / / D e ns i t y a t o u t l e t i n kg /mˆ 321   A 2 = % p i * D ^ 2 / 4   // Area a t o u t l e t i n mˆ222   n = ceil ( m / ( d 2 * A 2 * C 2 ) )   // Number o f n o z z l e s t o be u se d23

    24   //Output25   printf ( ’ (A) E xi t v e l o c i t y o f t he a i r i s %3 . 2 f m/ s \n (

    B) Number o f n o z z l e s t o be u se d a r e %1 . 0 f ’ , C 2 , n )

    Scilab code Exa 1.15  To find properties of a gas in vessel at a point

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   P o = 3 0 0   // P r es s ur e i n t he v e s s e l i n kPa6   T o = 5 0 + 2 7 3   // T em pe ra tu re i n v e s s e l i n K7   M =1   //Mach number8   k = 1 . 6 6 7   / / A d i a b a ti c c o n s t a n t

    9   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K10   M o l = 4   // M o l ec u l a r w ei g h t o f h el i um i n kg / mol11

    12   / / C a l c u l a t i o n13   R = R i / M o l   // S p e c i f i c g as c on s ta n t i n J /kg−K14   C p = ( k * R ) / ( k - 1 )   // S p e c i f i c h ea t c a p ac i t y a t c o ns t an t

    p r e s s ur e i n J /kg−K15   p 1 = ( 2 / ( k + 1 ) ) ^ ( k / ( k - 1 ) )   // P r e s su r e r a t i o16   P t = P o * p 1   // P r es s ur e a t t e s t c o n d i t i o n i n kPa17   t 1 = ( 2 / ( k + 1 ) )   // T e m pe ra tu re r a t i o

    18   T t = T o * t 1   // T emper at ur e a t t e s t c o n d i t i o n i n K19   at = sqrt ( k * R * T t )   / / V e l o c i t y o f s ou nd i n m/ s20   C t = a t   // V e l o c it y o f g as a t t e s t c o n d i t i o n i n m/ s21   C m a x = sqrt ( 2 * C p * T o )   / /Maximum v e l o c i t y d ue t o

    e xp an di ng o f g a s e s t hr ou gh n o z z l e s ys te m i n m/ s

    24

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    26/224

    22

    23   //Output24   printf ( ’ (A) At t e s t p o i n t :\ n P r e s s u r e i s %3 . 2 f kPa\n Te mper at ur e i s %3 . 2 f K\n V e l o c i t y i s %3. 1 f m/ s \n (B )Maximum v e l o c i t y d ue t o e x pa n d in g o f  

    g a s e s t hr ou gh n o z z l e s ys te m i s %3 . 2 f m/ s ’ , P t , T t ,C t , C m a x )

    Scilab code Exa 1.16  To find mach number and velocity of flow

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   T = 4 0 + 2 7 3   / / T e mp er at ur e i n K6   p 1 = 0 . 5   // S t a t i c t o S t a g na t io n p r e s su r e r a t i o7   k = 1 . 6 7   / / A d i a b a t i c c o n s t a n t8   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K9   M o l = 3 9 . 9 4   / / M o l ec u l ar w e ig h t o f a r go n i n kg / mol

    10

    11   / / C a l c u l a t i o n12   R = R i / M o l   // S p e c i f i c g as c on s ta n t i n J /kg−K13   p 2 = 1 / p 1   // P r e s su r e r a t i o14   M = sqrt ( ( ( p 2 ^ ( ( k - 1 ) / k ) - 1 ) * 2 ) / ( k - 1 ) )   //Mach number15   C = M * sqrt ( k * R * T )   / / V e l o ci t y i n t he f l ow i n m/ s16

    17   //Output18   printf ( ’ ( A) M ach numbe r i s %3. 3 f   \n (B) V e l o c i t y i n t he

    f l o w i s %3 . 1 f m/ s ’ , M , C )

    Scilab code Exa 1.17  To find distance covered before sonic boom is heardon ground

    25

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    27/224

    1   clc

    2   clear3

    4   / / I n p ut d at a5   M = 2 . 5   //Mach number6   h = 1 0   / / H e ig h t i n km7

    8   / / C a l c u l a t i o n9   a l p = a s i n d ( 1 / M )   // Mach c on e a n g l e i n d e g r e e

    10   d = 1 0 / t a n d ( a l p )   // D i s ta n ce t he j e t would c o ve r b e f o r ea s o n i c boom i s h ea rd on g ro un d i n km

    11

    12   //Output13   printf ( ’ D i s t a n ce t he j e t would c ov er b e f o r e a s o n i c

    boom i s h ea rd on g ro un d i s %3 . 2 f km ’ ,d )

    Scilab code Exa 1.18  To calculate time elapsed to feel disturbance due toaircraft

    1   clc

    2   clear3

    4   / / I n p ut d at a5   h = 1 1 0 0   // H e ig ht i n m6   M 1 = 2 . 5   / /Mach number o f a i r c r a f t @h7   T = 2 8 0   // T e mpe r at ur e @h8   M 2 = 0 . 5   / /Mach nu mber o f o b s e r v e r9   k = 1 . 4   / / A d i a b a t i c C o n s ta n t

    10   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−K11

    12   / / C a l c u l a t i o n13   a l p = a s i n d ( 1 / M 1 )   // Mach c on e a n g l e i n d e g r e e14   a = sqrt ( k * R * T )   // V e l o c i t y o f s ou nd i n m/ s15   C 1 = M 1 * a   // V e lo c i t y o f a i r c r a f t when t h e o b se r v e r i s

    s t a t i o n a r y i n m/ s

    26

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    28/224

    16   t 1 = h / ( C 1 * t a n d ( a l p ) )   // Time e l a p s e d when t h e o b s e r v e r

    i s s t a t i o n a r y i n s ec17   C 2 = ( M 1 - M 2 ) * a   // V e l oc i t y o f a i r c r a f t when t heo b s e r v e r i s moving i n t h e d i r e c t i o n o f a i r c r a f ti n m / s

    18   t 2 = h / ( C 2 * t a n d ( a l p ) )   // Time e l a p s e d when t h e o b s e r v e ri s moving i n t h e d i r e c t i o n o f a i r c r a f t i n s ec

    19   C 3 = ( M 1 + M 2 ) * a   // V e l oc i t y o f a i r c r a f t when t heo b se r v e r i s moving i n t h e o p po s i t e d i r e c t i o n i n m/ s

    20   t 3 = h / ( C 3 * t a n d ( a l p ) )   // Time e l a p s e d when t h e o b s e r v e ri s moving i n t h e o p po s i t e d i r e c t i o n i n s e c

    2122   //Output23   printf ( ’ (A) Time e l a p s e d when t h e o b s e r v e r i s

    s t a t i o n a r y i s %3 . 3 f s e c \n ( B) Time e l a p s e d whent h e o b se r v e r i s moving i n t h e d i r e c t i o n o f  a i r c r a f t w it h M=%3 . 1 f i s %3 . 2 f s e c \n ( C) Ti mee l a p s e d when t he o b s e r v er i s moving i n t heo p po s i t e d i r e c t i o n i s %3 . 2 f s e c \n ’ , t 1 , M 2 , t 2 , t 3 )

    Scilab code Exa 1.19  To find mach number at a point

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   P = 2 0 0   / / P r e s s u r e i n kPa6   d = 2 . 9   / / D e n s i t y i n k g /mˆ 37   C = 5 0   / / V e l o c i t y i n m/ s

    8   m o l = 3 2   / / M o l ec u l ar w e ig h t o f o xy ge n i n kg / mol9   k = 1 . 4   / / A d i a b a ti c c o n s t a n t10   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K11

    12   / / C a l c u l a t i o n

    27

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    29/224

    13   R = R i / m o l   // S p e c i f i c g as C on st an t i n J /kg−k

    14   T = ( P * 1 0 ^ 3 ) / ( R * d )   / / T e mp er at ur e i n K15   a = sqrt ( k * R * T )   // V e l o c i t y o f s ou nd i n m/ s16   M = C / a   //Mach number17

    18   //Output19   printf ( ’ Mach n um be r i s %3 . 4 f ’ ,M )

    Scilab code Exa 1.20  To find Mach number

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   C = 2 0 0   / / V e l o ci t y o f o b j e ct i n m/ s6   m o l = 4   // M o l ec u l a r w ei g h t o f h el i um i n kg / mol7   k = 1 . 6 7   / / A d i a b a t i c c o n s t a n t8   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K9   T = 2 8 8   / / T e mp er at ur e i n K

    10

    11   / / C a l c u l a t i o n12   R = R i / m o l   // S p e c i f i c g as C on st an t i n J /kg−k13   a = sqrt ( k * R * T )   // V e l o c i t y o f s ou nd i n m/ s14   M = C / a   //Mach number15

    16   //Output17   printf ( ’ Mach n um be r i s %3 . 1 f ’ ,M )

    Scilab code Exa 1.21  To find speed of sound and Mach number

    1   clc

    2   clear

    3

    28

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    30/224

    4   / / I n p ut d at a

    5   Z 1 = 0   // H ei gh t fr om s ea l e v e l i n m6   Z 2 = 1 1   // H ei g ht from s ea l e v e l i n m7   T 1 = 2 8 8   / / T em pe ra tu re @Z1 i n K , f ro m g a s t a b l e s8   T 2 = 2 1 6 . 5   / / Te mp er at ur e @Z2 i n K , f ro m g a s t a b l e s9   C = 1 0 0 0 * ( 5 / 1 8 )   // V e l o c i t y i n m/ s

    10   k = 1 . 4   / / A d i a b a t i c C o n s ta n t11   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k12

    13   / / C a l c u l a t i o n14   a1 = sqrt ( k * R * T 1 )   / / Sound v e l o c i t y @Z1 i n m/ s15   M 1 = C / a 1   // Mach number @Z1

    16   a2 = sqrt ( k * R * T 2 )   / / Sound v e l o c i t y @Z2 i n m/ s17   M 2 = C / a 2   // Mach number @Z218

    19   //Output20   printf ( ’ (A) S p ee d o f s o un d a t : \ n s e a l e v e l i s %3 . 2

    f  \n an a l t i t u d e o f %3i km i s %3 . 2 f m/ s\n (B)Mach numbeer at :\ n s e a l e v e l i s %3 . 2 f   \n ana l t i t u d e o f %3i km i s %3 . 2 f ’ , a 1 , Z 2 , a 2 , M 1 , Z 2 , M 2 )

    Scilab code Exa 1.22  To find maximum possible velocity of air

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   T = 3 0 0 + 2 7 3   / / S t a t i c T em pe ra tu re i n K6   C = 2 0 0   / / V e l o c i t y i n m/ s7   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K89   / / C a l c u l a t i o n

    10   T o = T + ( C ^ 2 / ( 2 * C p ) )   / / S t a g n a t i o n T em pe ra tu re i n K11   C _ m a x = sqrt ( 2 * C p * T o )   // Maximum p o s s i b l e v e l o c i t y

    29

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    31/224

    o b ta i ne d by a i r i n m/ s

    1213   //Output14   printf ( ’ Maximum p o s s i b l e v e l o c i t y o b ta i n ed by a i r i s

    %3. 2 f m/ s ’ , C _ m a x )

    Scilab code Exa 1.23  To find exit velocity of air

    1   clc

    2   clear3

    4   / / I n p ut d at a5   d T = 3 7   // T em per at ur e d i f f e r e n c e b et we en a i r i n s i d e

    t h e t y r e and n o z z l e e x i t6   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K7

    8   / / C a l c u l a t i o n9   C = sqrt ( 2 * C p * d T )   // E xi t v e l o c i t y o f a i r i n m/ s

    10

    11   //Output12   printf ( ’ E xi t v e l o c i t y o f a i r i s %3 . 1 f m/ s ’ ,C )

    Scilab code Exa 1.24  To find static conditions and Flight Mach number

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   C = 8 0 0 * ( 5 / 1 8 )   / / V e l o c i t y i n m/ s6   P o = 1 0 5   / / S t ag n a ti o n p r e s s u r e i n kPa7   T o = 3 5 + 2 7 3   / / S t a g n a t io n t e m pe r a tu r e i n K

    30

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    32/224

    8   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K9   k = 1 . 4   / / A d i a b a t i c C o n s ta n t10   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k11

    12   / / C a l c u l a t i o n13   T = T o - ( C ^ 2 / ( 2 * C p ) )   / / S t a t i c t em p er at u re i n K14   P = P o * ( T / T o ) ^ ( k / ( k - 1 ) )   / / S t a t i c p r e s s ur e i n kPa15   a = sqrt ( k * R * T )   // Sound V e l o c i t y i n m/ s16   M = C / a   //Mach number17

    18   //Output

    19   printf (  ’ (A) S t a t i c c o n d i t i o n s : \ n P r e s s u r e i s %3 . 2 f  kPa\n T empe r at ure i s %3 . 2 f K\n Sound

    V e l o c i t y i s %3 . 2 f m/ s \n ( B) Mach n um ber i s %3 . 2 f ’ ,P , T , a , M )

    Scilab code Exa 1.25  To find stagnation pressure and mach number

    1   clc

    2   clear3

    4   / / I n p ut d at a5   C = 2 1 5   / / V e l o c i t y i n m/ s6   T = 3 0 + 2 7 3   / / S t a t i c t em p er a tu re i n K7   P =5   // S t a t i c p r e s s ur e i n b ar8   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k9   k = 1 . 4   / / A d i a b a t i c C o n s ta n t

    10

    11   / / C a l c u l a t i o n s

    12   a = sqrt ( k * R * T )   // Sound V e l o c i t y i n m/ s13   M = C / a   //Mach number14   T o = T * ( 1 + ( ( ( k - 1 ) / 2 ) * M ^ 2 ) )   / / S t a g n a t io n t e m pe r a tu r e i n

    K15   P o = P * ( T o / T ) ^ ( k / ( k - 1 ) )   / / S t ag n a ti o n p r e s s u r e i n kPa

    31

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    33/224

    16

    17   //Output18   printf ( ’ (A) S t a g n a t i o n P r e s s u r e i s %3 . 4 f b ar \n (B)Mach n um be r i s %3 . 3 f ’ , P o , M )

    Scilab code Exa 1.26  To determine different velocities stagnation enthalpyand crocco number

    1   clc

    2   clear3

    4   / / I n p ut d at a5   T = 4 0 0   / / S t a t i c t em p er at u re i n K6   k = 1 . 4   / / A d i a b a t i c C o n s ta n t7   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K8   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k9

    10   / / C a l c u l a t i o n11   a = sqrt ( k * R * T )   // Sound v e l o c i t y i n m/ s

    12   C = a   // V e l o c i t y o f j e t i n m/ s , S i n c e j e t h as s o n i cv e l o c i t y

    13   T o = T + ( C ^ 2 / ( 2 * C p ) )   / / S t a g n a t i on t e m pe r a tu r e i n K14   ao = sqrt ( k * R * T o )   // Sound v e l o c i t y a t S t a gn a t io n

    c o n d i t i o n i n m/ s15   h o = ( C p * T o ) * 1 0 ^ - 3   / / S t a g n a t io n e n t h al p y i n kJ / kg16   C _ m a x = sqrt ( 2 * C p * T o )   //Maximum v e l o c i t y o f j e t i n m/ s17   c r = C / C _ m a x   / / C r o c c o n um be r18

    19   //Output

    20   printf ( ’ (A) V e l o c i t y o f s ou nd a t %3i K i s %3 . 3 f m/ s \n(B) V e l oc i t y o f sound a t s t a g na t i o n c o n d i t i o n i s%3. 3 f m/ s \n (C) Maximum v e l o c i t y o f j e t i s %3 . 3 f m/ s \n (D) S t a g n a t i on e n t ha l p y i s %3 . 3 f kJ / kg\n ( E )C r o cc o nu mber i s %3 . 4 f ’ , T , C , a o , C _ m a x , h o , c r )

    32

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    34/224

    Scilab code Exa 1.27  To find stagnation conditions and mass flow rate

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   C = 2 5 0   // V e l o ci t y o f a i r i n m/ s6   D = 1 0   // D i am et er i n d uc t i n cm

    7   T = 5 + 2 7 3   / / S t a t i c t em p er at u re i n K8   P = 4 0   / / S t a t i c p r e s s ur e i n kPa9   k = 1 . 4   / / A d i a b a ti c c o n s t a n t

    10   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n tp r e s s ur e i n J /kg−K

    11   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k12

    13   / / C a l c u l a t i o n14   T o = T + ( C ^ 2 / ( 2 * C p ) )   / / S t a g n a t i on t e m pe r a tu r e i n K15   P o = P * ( T o / T ) ^ ( k / ( k - 1 ) )   / / S t ag n a ti o n p r e s s u r e i n kPa16   d = ( P * 1 0 ^ 3 ) / ( R * T )   / / D e n s i t y i n k g /mˆ 317   A = ( % p i * D ^ 2 / 4 ) * 1 0 ^ - 4   / / A re a i n mˆ 218   m = d * A * C   // Mass f l o w r a t e i n kg / s19

    20   //Output21   printf ( ’ (A) S t a g n a t i o n p r e s s u r e i s %3 . 2 f kPa\n (B)

    S t a gn a t io n t em p er a tu re i s %3 . 2 f K\n (C) M ass f l o wr a t e i s %3 . 4 f kg / s ’ , P o , T o , m )

    Scilab code Exa 1.28  To find stagnation conditions and velocity at dy-namic condition

    1   clc

    33

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    35/224

    2   clear

    34   / / I n p ut d at a5   C = 3 0 0   // V e l o ci t y o f a i r i n m/ s6   P =1   / / S t a t i c p r e s s ur e i n kPa7   T = 2 9 0   / / S t a t i c t em p er at u re i n K8   k = 1 . 4   / / A d i a b a ti c c o n s t a n t9   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k

    10   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n tp r e s s ur e i n J /kg−K

    11

    12   / / C a l c u l a t i o n

    13   T o = T + ( C ^ 2 / ( 2 * C p ) )   / / S t a g n a t i on t e m pe r a tu r e i n K14   P o = P * ( T o / T ) ^ ( k / ( k - 1 ) )   / / S t ag n a ti o n p r e s s u r e i n kPa15   a = sqrt ( k * R * T )   // Sound v e l o c i t y i n m/ s16   Co = sqrt ( k * R * T o )   // Sound v e l o c i t y a t S t a gn a t io n

    c o n d i t i o n i n m/ s17

    18   //Output19   printf ( ’ (A) S t a g n a t i o n p r e s s u r e and t e mp e r at u r e a r e

    %3 . 4 f b a r a nd %3 . 2 f K\n (B) V e l o c i t y o f s ound i nt he dynamic and s t a g n a t i o n c o n d i t i o n s a r e %3 . 2 f m

    / s a nd %3 . 2 f m/ s ’, P o , T o , a , C o )

    Scilab code Exa 1.29   To find flow velocity for compressible and incom-pressible flow

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   d P = 4 9 0 * ( 1 . 0 1 3 2 5 / 7 6 0 )   / / P r es s ur e i n p i v o t t u be i n ba r6   P = 0 . 3 5 4 6 + 1 . 0 1 3 2 5   // S t a t i c p r e s s u r e ( a b s o l u t e ) i n b ar7   T o = 2 5 + 2 7 3   / / S t a g n a t io n t e m pe r a tu r e i n K8   k = 1 . 4   / / A d i a b a a t i c c o n s t a n t

    34

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    36/224

    9   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k

    10   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n tp r e s s ur e i n J /kg−K11

    12   / / C a l c u l a t i o n13   P o = d P + P   // S t a gn a t io n p r e s s u r e i n b ar14   T = T o * ( P / P o ) ^ ( ( k - 1 ) / k )   // S t a t i c t e m pe r a tu r e15   C1 = sqrt ( 2 * C p * ( T o - T ) )   // Flow v e l o c i t y f o r

    C o m p re s s ib l e f l o w i n m/ s16   d i = P o / ( R * T o )   / / D e n s i t y i n k g /mˆ 317   C2 = sqrt ( ( 2 * d P ) / d i )   // Flow v e l o c i t y f o r

    i n c o m pr e s s i b l e f l o w i n m/ s

    1819   //Output20   printf ( ’ Flow v e l o c i t y f o r : \ n (A) C o m p re s s i bl e f l o w i s

    %3. 2 f m/ s \n (B) I n c o m p r e s s i b l e f l o w i s %3 . 2 f m/ s ’, C 1 , C 2 )

    Scilab code Exa 1.30  To find Mach number velocity and area at a point

    1   clc2   clear

    3

    4   / / I n p ut d at a5   T o = 2 7 + 2 7 3   / / S t a g n a t io n t e m pe r a tu r e i n K6   P o = 8   / / S t a gn a t io n P r e ss u r e i n b ar7   P = 5 . 6   / / S t a t i c p r e s s u r e i n bar , t ak en fro m d ia gr am

    g i v e n8   m =2   // Mass f l o w r a t e i n kg / s9   k = 1 . 4   / / A d i a b a a t i c c o n s t a n t

    10   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n tp r e s s ur e i n J /kg−K11   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k12

    13   / / C a l c u l a t i o n

    35

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    37/224

    14   T = T o * ( P / P o ) ^ ( ( k - 1 ) / k )   / / S t a t i c t em p er a tu re i n K

    15   a = sqrt ( k * R * T )   // Sound v e l o c i t y i n m/ s16   C = sqrt ( 2 * C p * ( T o - T ) )   / / V e l o c i t y i n m/ s17   M = C / a   //Mach number18   A = ( ( m * R * T ) / ( P * 1 0 ^ 5 * C ) ) * 1 0 ^ 4   // Area a t a p oi nt i n t h e

    c h a n na l i n cm ˆ219

    20   //Output21   printf ( ’ ( A) M ach numbe r i s %3. 4 f   \n (B) V e l o c i t y i s %3

    . 1 f m/ s \n (C) A rea a t a p o in t i n t he c ha nn al i s %3

    . 3 f cmˆ2 ’ , M , C , A )

    Scilab code Exa 1.31  To find velocity and mass flow rate

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   P o = 1 . 8   / / S t ag n a ti o n p r e s s u r e i n atm6   T o = 2 0 + 2 7 3   / / S t a g n a t io n t e m pe r a tu r e i n K

    7   P =1   / / S u rr o un d in g p r e s s u r e i n atm8   k = 1 . 4   / / A d i a b a ti c c o n s t a n t9   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k

    10

    11   / / C a l c u l a t i o n12   p 1 = 0 . 5 2 8   / / S t a t i c t o S t a gn a t io n p r e s s u r e r a t i o @Mach

    number =1 , f ro m g a s t a b l e s13   P t = p 1 * P o   / / C r i t i c a l p r e s su r e i n atm , S i nc e Pt

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    38/224

    a i r f l o w which w i l l t ak e p l a ce from chamber t o

    t h e o u t s i d e t h r o ug h a u ni t a re a h o l e i n m/ s18   G = d i * a o * sqrt ( 2 / ( k - 1 ) ) * ( P / P o ) ^ ( 1 / k ) * sqrt ( ( 1 - ( P / P o ) ^ ( (k - 1 ) / k ) ) )   // Mass f l ow r a t e p er u n it a re a i n kg / s−mˆ2

    19

    20   //Output21   printf ( ’ (A) V e l oc i t y o f a i r f l o w whi ch w i l l t ak e

    p l a c e fro m c hamber t o t he o u t s i d e t hr ou gh a u n i ta r ea h o l e i s %3 . 3 f m/ s \n (B) Mass f l o w r a t e p eru n i t a r e a i s %3 . 3 f kg / s−mˆ2 ’ , C , G )

    Scilab code Exa 1.32  To find various properties at one section in duct

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   A 1 = 4 6 5 . 1 2 5   // C ro ss s e c t i o n a l a re a a t e nt r y i n cmˆ26   T 1 = 2 6 . 6 6 + 2 7 3   / / S t a t i c t em p er at u re a t s e c t i o n −1 i n K

    7   P 1 = 3 . 4 4 7 3   / / S t a t i c P r es s ur e a t s e c ti o n −1 i n ba r8   C 1 = 1 5 2 . 5   / / V e l o c i t y a t s e c t i o n −1 i n m / s9   P 2 = 2 . 0 6 8 3 8   / / S t a t i c P r es s ur e a t s e c t i o n −2 i n b a r

    10   T 2 = 2 7 7 . 4 4   / / S t a t i c t em pe ra t ur e a t s e c t i o n −2 i n K11   C 2 = 2 6 0 . 7 7 5   / / V e l o c i t y a t s e c t i o n −2 i n m / s12   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K13   k = 1 . 4   / / A d i a b a ti c c o n s t a n t14   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k15

    16   / / C a l c u l a t i o n s17   T o 1 = T 1 + ( C 1 ^ 2 / ( 2 * C p ) )   / / S t a g n a t i on t e mp e ra t u re a te nt ry i n K

    18   T o 2 = T 2 + ( C 2 ^ 2 / ( 2 * C p ) )   / / S t a g n a t i on t e mp e ra t u re a te x i t i n K

    37

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    39/224

    19   // he r e To1=To2 f r om ans w e r s

    20   d 1 = ( P 1 * 1 0 ^ 5 ) / ( R * T 1 )   / / D e ns i t y a t s e c t i o n  −121   d 2 = ( P 2 * 1 0 ^ 5 ) / ( R * T 2 )   / / D e ns i t y a t s e c t i o n  −222   a r = ( d 2 * C 2 ) / ( d 1 * C 1 )   // R a ti o o f i n l e t t o o u t l e t a re a23   A 2 = A 1 / a r   // C ro ss s e c t i o n a l a r e a a t e x i t i n cmˆ224   C _ m a x = sqrt ( 2 * C p * T o 1 )   //Maximum v e l o c i t y a t e x i t i n m

    / s25   m = d 1 * A 1 * C 1 * 1 0 ^ - 4   // Mass f l ow r a t e i n kg / s26   F = ( ( P 1 * 1 0 ^ 5 * A 1 * 1 0 ^ - 4 ) - ( P 2 * 1 0 ^ 5 * A 2 * 1 0 ^ - 4 ) ) + ( m * ( C 1 - C 2 )

    )   // F o rc e a c t i n g on t he d uc t w a l l b et we en twos e c t i o n s i n N

    27

    28   //Output29   printf ( ’ (A) Maximum v e l o c i t y a nd s t a g n a t i o n

    t e mp e r at u r e a t e x i t a r e %3 . 2 f m/ s and %3 . 2 f K\n (B) S i n c e S t a g n a t i on t e m pe r a tu r e %3i K a t e n t r y and

    %3i K at e x i t a re e q u a l , t h e f lo w i s a d i a b a t i c \n(C) C ro ss s e c t i o n a l a r e a a t e x i t i s %3 . 2 f cmˆ2\n

    (D) F or ce a c t i n g on t h e d uc t w a l l b et we en twos e c t i o n s i s %3 . 2 f N ’ , C _ m a x , T o 2 , T o 1 , T o 2 , A 2 , F )

    Scilab code Exa 1.33  To find various properties at one section in duct

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   P 1 = 2 5 0   / / S t a t i c P r es s ur e a t s e c t i o n −1 i n kPa6   T 1 = 2 6 + 2 7 3   / / S t a t i c t em pe ra t ur e a t s e c t i o n −1 i n K7   M 1 = 1 . 4   / / Mach n um be r a t e n t r y

    8   M 2 = 2 . 5   / / Mach nu mber a t e x i t9   k = 1 . 4   / / A d i a b a ti c c o n s t a n t10   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k11

    12   / / C a l c u l a t i o n

    38

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    40/224

    13   C1 = sqrt ( k * R * T 1 ) * M 1   // A ir v e l o c i t y a t e nt ry i n m/ s

    14   T o = T 1 * ( 1 + ( ( ( k - 1 ) / 2 ) * M 1 ^ 2 ) )   / / S t a g n a t i o n t e m p e r at u r ei n K15   t 1 = ( 1 + ( ( ( k - 1 ) / 2 ) * M 2 ^ 2 ) )   / / S t a gn a t io n t o e x i t

    T em pe ra tu re r a t i o16   T 2 = T o / t 1   / / E x it t e m pe r a tu r e i n K17   C2 = sqrt ( k * R * T 2 ) * M 2   // A ir v e l o c i t y a t e x i t i n m/ s18   P 2 = P 1 * ( T 2 / T 1 ) ^ ( k / ( k - 1 ) )   // E xi t s t a t i c p r e s s u re i n

    kPa19   d 2 = ( P 2 * 1 0 ^ 3 ) / ( R * T 2 )   / / D e ns i t y a t s e c t i o n  −2 i n k g /mˆ 320   G = d 2 * C 2   // ) M ass f l o w r a t e t hr ou gh t he d uc t p er

    s q ua r e m etr e i n kg / s−mˆ2

    2122   //Output23   printf ( ’ (A) At s e c o nd s e c t i o n : \ n Te mper at ure i s %3

    . 2 f K\n P r e s s u r e i s %3 . 2 f kPa\n V e l o c i t y i s%3. 4 f m/ s \n (B) Mass f l o w r a t e t hr ou gh t he d uc t

    p er s q ua r e m et re i s %3 . 1 f kg / s−mˆ2 ’ , T 2 , P 2 , C 2 , G )

    Scilab code Exa 1.34   To find maximum temperature encountered by skin

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   M =2   //Mach number6   h = 2 0   / / A l t i t u d e i n km7   T c = - 5 6   // A mbient t e mp e r at u r e i n d e g r e e C e n ti g r a d e8   T a = - 5 6 + 2 7 3   / / Am bi ent t e m p e r a tu r e i n K9   k = 1 . 4   / / A d i a b a ti c c o n s t a n t

    10   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−k11   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n tp r e s s ur e i n J /kg−K

    12

    13   / / C a l c u l a t i o n

    39

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    41/224

    14   a = sqrt ( k * R * T a )   // Sound v e l o c i t y i n m/ s

    15   C = M * a   // V e l o c i t y o f f l i g h t i n m/ s16   T o = T c + ( C ^ 2 / ( 2 * C p ) )   //The maximum te mp er at ur ee n co u nt e re d i s %3 . 1 f d e g re e C en t ig r ad e

    17

    18   //Output19   printf ( ’ The maximum t e m p e r a t u r e e n c o u n t e r e d i s %3 . 1 f  

    d e g r e e C e n t ig r a d e ’ , T o )

    Scilab code Exa 1.35  To find rate of heat transfer

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   W = 2 0 0 0 0   / / Po wer d e v e l o p e d i n kW6   m = 1 2   // Mass f l o w r a t e i n kg / s7   C 1 = 5 0   / / V e l o c it y o f a i r e n t e r i n g i n m/ s8   T 1 = 7 0 0 + 2 7 3   // T emper at ur e o f a i r e n t e r i n g i n K9   T 2 = 2 9 8   // T empe ra tur e o f a i r l e a v i n g i n K

    10   C 2 = 1 2 5   / / V e l o c i t y o f a i r l e a v i n g i n m/ s11   C p = 1 . 0 0 5   // S p e c i f i c h ea t c a p ac i t y a t c o ns t an t

    p r e s s u r e i n kJ /kg−K12

    13   / / C a l c u l a t i o n14   d h = C p * ( T 2 - T 1 )   // Change i n e n t ha l p y i n kJ / kg15   Q = ( ( m * d h ) + W - ( m * ( 1 / 2 0 0 0 ) * ( C 2 ^ 2 - C 1 ^ 2 ) ) )   // The r a t e o f  

    h ea t t r a n s f e r i n k J / s16

    17   //Output18   printf ( ’ The r a t e o f h ea t t r a n s f e r i s %3 . 2 f kJ / s ’ ,Q )

    Scilab code Exa 1.36  To find various properties in a nozzle

    40

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    42/224

    1   clc

    2   clear3

    4   / / I n p ut d at a5   m o l = 3 9 . 9   // M o l ec u l a r w e ig h t o f g a s i n kg / mol6   k = 1 . 6 7   / / A d i a b a t i c c o n s t a n t7   P o = 5 0 0   / / P r e s s u r e i n c ha mb er i n kPa8   T o = 3 0 + 2 7 3   / / T em pe ra tu re i n c ha mb er i n K9   P 1 = 8 0   // P r e ss u r e o f n o z z l e a t g iv en s e c t i o n i n kPa

    10   D = 0 . 0 1 2   // C ro ss s e c t i o n d ia me te r o f n o z z l e i n m11   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K12

    13   / / C a l c u l a t i o n14   R = R i / m o l   // S p e c i f i c g as c on s ta n t i n J /kg−K15   p 1 = P o / P 1   // S t a gn at io n t o s t a t i c p r e s s u r e r a t i o16   M1 = sqrt ( ( ( ( p 1 ^ ( ( k - 1 ) / k ) ) - 1 ) * 2 ) / ( k - 1 ) )   //Mach number

    a t s e c t i o n17   T 1 = T o * ( ( 1 + ( ( ( k - 1 ) / 2 ) * M 1 ^ 2 ) ) ^ ( - 1 ) )   / / T e m pe r at u re a t

    s e c t i o n i n K18   a = sqrt ( k * R * T 1 )   // Sound V e l o c i t y i n m/ s19   C 1 = M 1 * a   // Gas V e l oc i t y a t s e c t i o n i n m/ s20   d = ( P 1 * 1 0 ^ 3 ) / ( R * T 1 )   / / D e n s i t y i n k g /mˆ 321   A 1 = % p i * D ^ 2 / 4

      / / C r o s s−s e c t i o n a l Area22   m = d * A 1 * C 1   // Mass f l o w r a t e t hr ou gh n o z z l e i n kg / s23

    24   //Output25   printf (  ’ (A) At s e c t i o n :\ n Mach number i s %3 . 1 f   \n

    T em p er at ur e i s %3 . 1 f K\n V e l o c i t y i s %3 . 3 f  m/ s \n (B) Mass f l o w r a t e t hr ou gh n o z z l e i s %3 . 3 f  k g / s ’ , M 1 , T 1 , C 1 , m )

    Scilab code Exa 1.37   To find Mach number velocity and pressure at asection in duct

    1   clc

    41

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    43/224

    2   clear

    34   / / I n p ut d at a5   m o l = 4   // M o l ec u l a r w ei g h t o f g a s i n kg / mol6   k = 1 . 3   / / A d i a b a ti c c o n s t a n t7   C 1 = 1 5 0   // Gas V e l o c i t y a t s e c t i o n −1 i n m / s8   P 1 = 1 0 0   // P r e s su r e o f d uc t a t s e c t i o n −1 i n kPa9   T 1 = 1 5 + 2 7 3   // T e mp er at ur e a t s e c t i o n −1 i n K

    10   T 2 = - 1 0 + 2 7 3   // T e m pe ra tu re a t s e c t i o n  −2 i n K11   R i = 8 3 1 4   / / I d e a l g as c o n st a n t i n J /mol−K12

    13   / / C a l c u l a t i o n

    14   R = R i / m o l   // S p e c i f i c g as c on s ta n t i n J /kg−K15   a1 = sqrt ( k * R * T 1 )   // Sound v e l o c i t y a t s e c ti o n −1 i n m / s16   M 1 = C 1 / a 1   / / Mach n um ber a t s e c t i o n −117   t 1 = 0 . 9 9 5 5   // S t a t i c t o S t a gn a t io n t em p er a tu re r a t i o

    a t e n t r y f ro m g a s t a b l e s @M1, k = 1. 318   T o = T 1 / t 1   / / S t a g a n t i o n t e mp e r at u r e i n K19   p 1 = 0 . 9 8 1 5   / / S t a t i c t o S ta gn at io n p r e s s u re r a t i o a t

    e n t r y f ro m g a s t a b l e s @M1, k = 1. 320   P o = P 1 / p 1   / / S t a gn a t io n p r e s s u r e i n kPa21   t 2 = T 2 / T o   // S t a t i c t o S t ag n at i o n t em pe ra tu re r a t i o a t

    e x i t22   M 2 = 0 . 8 2   / /Amch n u mb er a t s e c t i o n −2 f rom g as t a b l e s@t2 , k=1. 3

    23   p 2 = 0 . 6 5 9   // S t a t i c t o S t a gn at io n p r e s s u r e r a t i o a te x i t f ro m g a s t a b l e s @M2, k = 1. 3

    24   P 2 = P o * p 2   / / P r e ss u r e a t s e c t i o n −2 i n kPa25   a2 = sqrt ( k * R * T 2 )   // Sound v e l o c i t y a t s e c ti o n −2 i n m / s26   C 2 = M 2 * a 2   // Gas V e l o c i t y a t s e c t i o n −2 i n m / s27

    28   //Output29   printf ( ’ At t h e s e co n d p o i n t :\ n Mach number i s %3

    . 2 f  \n P r e s s u r e i s %3 . 3 f kPa\n V e l o c i t y i s%3. 2 f m/ s ’ , M 2 , P 2 , C 2 )

    42

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    44/224

    Scilab code Exa 1.38  To find mass flow rate and velocity at exit

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   A 1 = 1 0   / / I n l e t a r ea i n cmˆ26   C 1 = 8 0   / / I n l e t A i r v e l o c i t y i n m/ s7   T 1 = 2 8 + 2 7 3   / / I n l e t t em p er a tu re i n K8   P 1 = 7 0 0   / / I n l e t P r e s su r e i n kPa9   P 2 = 2 5 0   / / E xi t p r e s s u r e i n kPa

    10   k = 1 . 4   / / A d i a b a ti c c o n s t a n t11   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−K12

    13   / / C a l c u l a t i o n14   a1 = sqrt ( k * R * T 1 )   // Sound v e l o c i t y a t i n l e t i n m/ s15   M 1 = C 1 / a 1   / /Mach number a t i n l e t16   t 1 = 0 . 9 8 9   // S t a t i c t o S t ag n at i o n t em pe ra tu re r a t i o a t

    e n t r y f ro m g a s t a b l e s @M1, k = 1. 4

    17   T o = T 1 / t 1   / / S t a g a n t i o n t e mp e r at u r e i n K18   p 1 = 0 . 9 6 4   // S t a t i c t o S t a gn at io n p r e s s u r e r a t i o a t

    e n t r y f ro m g a s t a b l e s @M1, k = 1. 419   P o = P 1 / p 1   / / S t a gn a t io n p r e s s u r e i n kPa20   p 2 = P 2 / P o   // S t a t i c t o S t ag n at i o n p r e s s ur e r a t i o21   M 2 = 1 . 3 3 5   / / Mach n um ber a t e x i t22   t 2 = 0 . 7 3 7   // S t a t i c t o S t ag n at i o n t em pe ra tu re r a t i o a t

    e x i t f ro m g a s t a b l e s @M2, k = 1. 423   T 2 = T o * t 2   / / S t a g n a t i o n t e mp e ra t ur i n K24   a2 = sqrt ( k * R * T 2 )   // Sound v e l o c i t y a t e x i t i n m/ s25   C 2 = M 2 * a 2   / / E xi t A ir v e l o c i t y i n m/ s26   d 1 = ( P 1 * 1 0 ^ 3 ) / ( R * T 1 )   / / D en s it y a t i n l e t i n kg /mˆ327   m = d 1 * A 1 * C 1 * 1 0 ^ - 4   // Mass f l ow r a t e i n kg / s28

    29   //Output

    43

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    45/224

    30   printf ( ’ (A) Mass f l o w r a t e i s %3 . 3 f kg / s \n (B )

    V e l oc i t y a t t he e x i t i s %3 . 2 f m/ s ’ , m , C 2 )

    Scilab code Exa 1.39   To find time required for a value of pressure de-crease

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   V =5   // Volume o f a i r i n mˆ36   A e = 1 0 * 1 0 ^ - 4   / / E x i t a r e a i n cm ˆ27   T o = 6 0 + 2 7 3   // T em pe ra tu re i n s i d e i n t he t an k i n K8   P o 1 = 4 0   // I n t i a l t o t a l p r e s s u r e i n ba r9   P o 2 = 2   // F i n a l t o t a l p r e s s u r e i n b ar

    10   P =1   // D i sc h ar g e p r e s s u r e i n b ar11   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−K12

    13   / / C a l c u l a t i o n14   / / H er e p r e s s u r e r a t i o s P/ Po1 a nd P/ Po2 a r e a l wa y s

    l e s s t han c r i t i c a l p r e s s ur e r a t i o t h e r e f o r e f l o wi s c ho ke d i . e . M=1 a t e x i t

    15   G p = ( 0 . 0 4 0 4 1 8 4 * A e ) / sqrt ( T o )   // Mass f l o w r a t e byS t a g n a t i o n p r e s s u r e i . e . m/ Po

    16   / / D i f f e r e n t i a t i n g m=(P∗V) /(R∗To ) w . r . t . t i m e a ndi n t r g r a t i n g r e s u l t i n g e qu at io n we g e t f o l l o w i n ge x p r e s s i o n .

    17   t = - ( V / ( R * T o * G p ) ) * log ( P o 2 / P o 1 )   // The t im e r e q u i r e df o r t a nk p r e s s ur e t o d e c re a s e from Po1 t o Po2 i ns e c

    1819   //Output20   printf ( ’ The t im e r e q u i r e d f o r t a nk p r e s su r e t o

    d e c re a s e from %i ba r t o %i ba r i s %3 . 2 f s e c ’ , P o 1 ,P o 2 , t )

    44

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    46/224

    45

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    47/224

    Chapter 2

    Flow through Variable Area

    Ducts

    Scilab code Exa 2.1  To find mass flow rate temperature and pressure atthroat

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   d o 1 = 1 . 1 2   // D en si ty o f a i r i r e s e r v o i r i n kg /mˆ36   a o 1 = 5 0 0   // V e l oc i t y o f sound i n r e s e r v o i r i n m/ s7   d = 0 . 0 1   // T h ro at d i a m et e r i n m8   k = 1 . 4   / / A d i a b a t i c C o n s ta n t9   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−K

    10

    11   / / C a l c u l a t i o n12   T o 1 = a o 1 ^ 2 / ( k * R )   / / S t a g n a t i on t e mp e ra t u re i n K13   P o 1 = d o 1 * R * T o 1   / / S t a gn a t io n p r e s s u r e i n Pa

    14   p 1 = 0 . 5 2 8   // R a ti o o f c r i t i c a l p r e s s u r e t o S t a g n a t i o np r e s s u r e f ro m g a s t a b l e s @M=115   P t = ( P o 1 * p 1 ) * 1 0 ^ - 5   // T hro at p r e s s u r e i n b ar16   t 1 = 0 . 8 3 4   / / R a t i o o f c r i t i c a l t e m p e r a t u r e t o

    S t a g n a t i o n t e m p e r a tu r e f ro m g a s t a b l e s @M=1

    46

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    48/224

    17   T t = T o 1 * t 1   / / c r i t i c a l t e m p e r a t u r e i n K

    18   d _ t = ( P t * 1 0 ^ 5 ) / ( R * T t )   // D en si ty o f a i r a t t h r o a t i nkg/mˆ319   a _ t = sqrt ( k * R * T t )   // Sound v e l o c i t y a t t h r o a t i n m/ s20   C t = a _ t   // A i r v e l o c i t y t t h r o a t i n m/ s , S i n ce M=121   A _ t = % p i * d ^ 2 / 4   // T h r oa t a r e a i n mˆ 222   m = d _ t * A _ t * C t   // Maximum m a ss f l o w r a t e i n k g / s23

    24   //Output25   printf ( ’ (A) Maximum m as s f l o w r a t e i s %3 . 5 f k g / s \n (B

    ) P r e ss u r e and t e mp e ra r at u re a t t he t h r o a t a r e %3. 3 f b ar and %3 . 4 f K ’ , m , P t , T t )

    Scilab code Exa 2.2  To find properties at throat and exit in ConvergentDivergent nozzle

    1   clc

    2   clear

    3

    4   / / I n p ut d at a

    5   P 1 = 2   // I n t i a l p r e s s u r e i n ba r6   C 1 = 1 7 0   // I n i t i a l v e l o c i t y o f a i r i n m/ s7   T 1 = 4 7 3   / / I n t i a l t em pe ra tu re i n K8   A 1 = 1 0 0 0   / / I n l e t a r e a i n mmˆ 29   P 2 = 0 . 9 5   // E xi t p r e s s u r e i n b ar

    10   k = 1 . 4   / / A d i a b a t i c C o n s ta n t11   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−K12

    13   / / C a l c u l a t i o n14   a _ 1 = sqrt ( k * R * T 1 )   // V e l oc i t y o f sound a t i n l e t i n m/ s

    15   M 1 = C 1 / a _ 1   / / I n l e t mach n um be r16   t 1 = 0 . 9 7 0   / / R at io o f i n l e t t em pe ra tu re t o S t ag n at i o nt e m p e r a t u r e f ro m g a s t a b l e s @M=1

    17   T o 1 = T 1 / t 1   / / S t a g n a t io n t e m pe r a tu r e i n K18   p 1 = 0 . 9 0 0   // R at io o f i n l e t p r e s s ur e t o S t a g na t i o n

    47

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    49/224

    p r e s s u r e f ro m g a s t a b l e s @M=1

    19   P o 1 = P 1 / p 1   / / S t a gn a t io n p r e s s u r e i n b ar20   a 1 = 1 . 6 2 3   // R a ti o o f i n l e t a r e a t o c r i t i c a l a r e a f ro mi s e n t r o p i c g a s t a b l e s @M=1

    21   A t = A 1 / a 1   // c r i t i c a l ar ea in mmˆ222   p 2 = 0 . 5 2 8   // P r e s s u r e r a t i o a t c r i t i c a l s t a t e f ro m

    i s e n t r o p i c g a s t a b l e s @M=123   P t = P o 1 * p 2   // T hr oa t p r e s s u r e i n b ar24   t 2 = 0 . 8 3 4   / / T em pe ra tu re r a t i o a t c r i t i c a l s t a t e f ro m

    i s e n t r o p i c g a s t a b l e s @M=125   T t = T o 1 * t 2   / / Th ro at t e mp e ra t u re i n K26   a _ t = sqrt ( k * R * T t )   // V e l o c i t y o f s ound a t t h r o at i n m/

    s27   C _ t = a _ t   // C r i t i c a l v e l o c i t y o f a i r i n m/ s28   p 3 = P 2 / P o 1   / / P r e s s u r e r a t i o a t e x i t29   M 2 = 1 . 1 7   // Mach n umber a t e x i t fro m i s e n t r o p i c g as

    t a b l e s @p330   t 3 = 0 . 7 8 5   // T emper at ur e r a t i o a t e x i t from i s e n t r o p i c

    g a s t a b l e s @M231   T 2 = T o 1 * t 3   / / E x it t e mp e r at u r e i n K32   a 3 = 1 . 0 2 2   // Area r a t i o a t e x i t from i s e n t r o p i c g as

    t a b l e s @M233   A 2 = A t * a 3

      / / E x i t a r e a i n mmˆ 2 , wr on g a n sw er i nt e x t b o o k34   C 2 = M 2 * sqrt ( k * R * T 2 )   / / E xi t v e l o c i t y i n m/ s35

    36   //Output37   printf ( ’ (A) S t a g n a t i o n t e mp e r at u r e and p r e s s u r e a r e

    %3 . 2 f K a nd %3 . 3 f b a r\n (B) S o ni c v e l o c i t y andmach nu mb er a t e n t r y a r e %3 . 2 f m/ s a nd %3 . 2 f   \n (C) V e l o c i ty , Mach number and f l o w a r e a a t o u t l e ts e c t i o n a r e %3 . 2 f m/ s , %3 . 2 f a nd %3 . 2 f mmˆ 2\n (D)P re ss ur e , a r e a a t t h ro a t o f t he n o z z l e a r e %3 . 5 f  

    bar and %3. 3 f mmˆ2 ’ , T o 1 , P o 1 , a _ 1 , M 1 , C 2 , M 2 , A 2 , P t , A t)

    48

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    50/224

    Scilab code Exa 2.3  To find properties at throat and exit maximum pos-sible velocity of gas and type of nozzle

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   P o 1 = 1 0   // S t ag n a ti o n p r e s s u r e i n b ar6   T o 1 = 7 9 8   / / S t a g n a t i on t e m pe r a tu r e i n K7   P t = 7 . 6   // T hr oa t p r e s s u r e i n b ar8   m = 1 . 5   // Mass f l o w r a t e i n kg / s9   k = 1 . 4   / / A d i a b a t i c C o n s ta n t

    10   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−K11   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K12

    13   / / C a l c u l a t i o n14   p 1 = 0 . 5 2 8   // R a ti o o f c r i t i c a l p r e s s u r e t o S t a g n a t i o n

    p r e s s u r e fro m i s e n t r o p i c g as t a b l e s @M=1 ,k =1 .4

    15   P c = p 1 * P o 1   // C r i t i c a l p r e s s u r e i n b a r16   P 2 = P t   / / E xi t p r e s s u r e i n bar , S i n ce Pc

  • 8/17/2019 Gas Dynamics and Jet Propulsion_P. Murugaperumal (1)

    51/224

    27   printf ( ’ (A) At t h e n o z z l e t h r o a t / e x i t :\ n P r e s s u r e

    i s %3 . 2 f b ar \n Te mper at ure i s %3 . 2 f K\nV e l o c i t y i s %3 . 2 f   \n (B )Maximum p o s s i b l e v e l o c i t yi s %3 . 2 f m/ s \n (C) Type o f t h e n o z z l e i s ac on v e rg e n t n o z z l e and i t s t h ro a t a r e a i s %3 . 3 f mmˆ2 ’ , P 2 , T 2 , C 2 , C _ m a x , A t )

    Scilab code Exa 2.4   To find properties at exit in Convergent Divergentnozzle

    1   clc

    2   clear

    3

    4   / / I n p ut d at a5   P o 1 = 3 . 3 4 4   / / S t a gn a t io n p r e s s u r e i n b ar6   T o 1 = 9 0 0   / / S t a g n a t i on t e m pe r a tu r e i n K7   P 2 = 1 . 0 5   // E xi t p r e s s u r e i n b ar8   k = 1 . 4   / / A d i a b a t i c C o n s ta n t9   R = 2 8 7   // S p e c i f i c g as c o ns t an t i n J /kg−K

    10   C p = 1 0 0 5   // S p e c i f i c h ea t c a pa c i ty a t c on s ta n t

    p r e s s ur e i n J /kg−K11

    12   / / C a l c u l a t i o n13   p 1 = P 2 / P o 1   // P r e s su r e r a t i o14   M 2 = 1 . 4 0   / / E x i t mach n umb er f ro m g a s t a b l e s @p1 , k = 1. 415   t 1 = 0 . 7 1 8   // R at io o f e x i