future impacts of quantum cascade lasers on spectroscopy r. f. curl, anatoliy kosterev & f. k....

29
Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Upload: david-copeland

Post on 11-Jan-2016

226 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Future Impacts Of Quantum Cascade Lasers On

Spectroscopy

R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Page 2: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Quantum cascade laser developments

• IR laser sources

• QC laser principles

• Broadly tunable QC lasers

• Spectroscopic demonstration

Page 3: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

IR laser sources•Difference Frequency Generation (DFG)LiNbO3(2-5µm), AgGaS2(3-9µm),GaSe(7-18µm)

•QC lasers3.4-120 µm, ~5cm -1,power 10-100mW,rugged•Lead Salt Diode Laserseach diode ~100 cm-1,3-30 µm P<1mWundesirable discontinuities, require liq N2

•III-V diodes <3.8 µm P~1-10 mW•Color Center Lasers tunable from 1-4 µm, require liq N2 P~1-10mW

•CO and CO2 Lasers (sidebands)

•Optical Parametric Oscillators (OPO)

Page 4: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Quantum cascade laser; Basic facts

• Semiconductor lasers (III-V materials)• Multiple-quantum-well heterostructure• Intersubband transitions• Band-structure engineering (emission wavelength

defined by the layer thickness – MBE, MOCVD etc.)• Independent of material energy bandgap• Cascading (each electron creates N laser photons)• Number of periods N determines laser power• High reliability, long lifetime• Compact

Frank Tittel, Federico Capasso, Claire Gmachl, Jerome Faist, Rui Yang

Page 5: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Quantum well lasing

AlIn

AsInGaAs

typicallyInGaAs

InG

aAs

AlIn

As

Page 6: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Forming a minisubband

e-

Page 7: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Injection into upper state

e-injectionbarrier Levels relaxed by

optical phonons

Page 8: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

~ 1.5 periods with one active region

Injection barrier

Exit barrier

4 QW active region

Injector regionFaist et al., IEEE J.Quant. El.,38, 533 (2002)

MINIBAND

MINIGAP

Page 9: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

QCL Compared to Diode Lasers

Quantum Cascade LaserDiode Laser

Page 10: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Interband QC laser (ICL)

Rui YangIEEE J. Q. Elect., 38, 559 (2002)

Page 11: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

QCL and ICL

QCL:• Wavelengths 3.5 – 160µm

(limited by the conduction-band offset on the short wavelength side)

• Relatively high threshold current density (typically > 1kA/cm2)

• High efficiency• High power

ICL:• Wavelengths 3 – 5 µm• Type II quantum wells• Low threshold current• High efficiency• High power

SOURCE: J. Faist and C. Sirtori (2001)

Page 12: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Tuning and frequency puritySolitary laser - just the chip: multimode ~2-3

tunes ~3 cm-1

DFB - single mode, tunes ~3 cm-1, limits T range

Wider tuning requires:

• Extended gain region•AR coated facet for external grating cavity near RT operation OR clever outcoupling scheme

Page 13: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Bound-to-continuum design

Richard Maulini, Mattias Beck & Jerome Faist, App. Phys. Lett. 84, 1659 (2004)

Extended Gain~RT CW operation

Page 14: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

CW external cavity QCL: output power

Richard Maulini, University of Neuchatel

Page 15: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Gerard Wysoki

Gerard Wysocki

Page 16: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Apparatus Schematic

Page 17: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Broadly tunable system

Laser

Lens

External cavity length

Grating angle

Page 18: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

UECL – amplitude of the voltage controlling PZT tuning external cavity length UGR – amplitude of the voltage controlling PZT tuning diffraction grating angle EC – external cavity; FP mode – Fabry-Perot resonator mode

Scanning mode tracking

Page 19: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

NO and H2O scan

Page 20: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Wide scan NO spectrum

R1/2(23.5)

R3/2(20.5)

Page 21: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

NO v 10 R3/2(20.5)

Page 22: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

External cavity laser: Pulsed

950 1000 1050 1100cm-1

2

1

0

40

80

0

R. Maulini, M. Beck, J. Faist and E. Gini, Appl. Phys. Lett. 84, 1659 (2004)

Page 23: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Fabry-Perot sideband suppression

R. Maulini, M. Beck, J. Faist and E. Gini, Appl. Phys. Lett. 84, 1659 (2004)

Page 24: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Using a pulsed QC laser

Damien Weidman, A.A. Kosterev, C. Roller, R. F. Curl, M. P. Fraser, and F. K. Tittel, Appl.Opt. 43, 3329-3334 (2004)

Page 25: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Pulse train

Page 26: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Ethylene 100 ppb in N2

Page 27: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

External cavity Bragg grating coupler

Zhang et al, Appl. Phys. Lett. 86, 111112 (2005)

T= 80Kpulsed

Page 28: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Status of QC lasers• Commercial Availability

– Alpes Lasers (http://www.alpeslasers.ch/)– Hammatsu Photonics

(http://www.hpk.co.jp/Eng/products/ld.htm)*

• Anywhere from 80 to 3300 cm-1 (most regions not yet commercially available)

• Tunability - a few non-commercial lasers tunable over 100 cm-1, but typically <5 cm-1

• Line width - CW <1 MHz ; pulsed ~500 MHz (chirp from heating; lifetime linewidth)

• Power 1-500 mW (mostly near low end)

*Just announced, not yet on this web site

Page 29: Future Impacts Of Quantum Cascade Lasers On Spectroscopy R. F. Curl, Anatoliy Kosterev & F. K. Tittel

Future Impacts Of Quantum Cascade Lasers On Spectroscopy

Depend upon QC development and commercial drive

The future impacts on spectroscopy depend upon you!