functional materialspowder technology center - ptc 1 copper based composites reinforced with carbon...

26
1 FUNCTIONAL MATERIALS Powder Technology Center - PTC Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf research GmbH Tel.: +43 50550 3378 Fax: +43 50550 2724 E-Mail: [email protected] www.materials-technology.at

Upload: alyson-horn

Post on 25-Dec-2015

220 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

1

FUNCTIONAL MATERIALS Powder Technology Center - PTC

Copper based composites reinforced with carbon nanofibers

René Nagel, Erich Neubauer

ARC Seibersdorf research GmbH Tel.: +43 50550 3378Fax: +43 50550 2724

E-Mail: [email protected]

Page 2: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

2

FUNCTIONAL MATERIALS

Overview:

Introduction – Motivation – Potential

Problem Description & Approach

Experimental Results 1) PM processing2) Infiltration processing

Conclusion & Outlook

Page 3: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

3

FUNCTIONAL MATERIALS

Electronics need cooling…

Market for electronic´s cooling is increasing

New cooling solutions are required => Materials with high thermal conductivity (low CTE) are necessary

High Power Module LED CPU

Page 4: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

4

FUNCTIONAL MATERIALS

Overview of Developed Heat Conductive Materials

Diamond based composites (PM)

Cu-ZrW2O8

Cu-Cu2O

Cu-Carbon fiber

Cu-Carbon Nanotube

Page 5: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

5

FUNCTIONAL MATERIALS

Overview on properties of matrix materials/reinforcementsMaterial [ppm/K] [g/cm3] [W/mK]

Al 22 – 24 2.7 220 - 240 HEAT SINKMatrix MaterialsCu 16 – 17 8.9 390 – 400

Diamond 1 – 1.2 1500 - 2000

Reinforcements

Pyrolytic graphite (long.) = C-FiberTransversal

-0.5 – (-1.0)27

2.25 -2.3 1700-200010

Graphite (isotropic) ~0 2.2 104 - 130

Carbon Nanofibers ~ -1 to 0 ~1 – 1.5 ~1000-2000

Carbon Nanotubes ~ -1 to 0 ~1 – 1.5 ~1800-6000

SiC Particle 3.7 –5 3.21 ~ 150 (270 – 390)

ZrW2O8 (negative CTE!!) -8 to -9 5.1 ~ 2

Cu – C-fiber composites (PM)6 – 12

(in plane)

5 - 8 250 – 300 (in plane)

150 – 200 (out of plane)

ARCCompositeMaterials

Cu – Diamond (PM) 8 - 12 5 - 8 300 – 650

Al – Diamond (PM) 8 -14 ~ 3 300 - 550

Cu – SiC (PM) 8-12 ~6-7 200-250

Cu – ZrW2O8 (PM) 6 - 10 6 - 8 150 - 200

Cu-CNF * ~12 6-7 ~250 (500)

* A part of R&D activities related to Cu-CNF are performed within EU STREP Project: „INTERFACE“ (http://www.ceit.es/interface) which started 2007

Page 6: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

6

FUNCTIONAL MATERIALS

Problems Carbon fibers (dia:10 µm, 100-500µm) Carbon Nanofibers (dia:100-200nm, 1-500µm)

Selection of suitable raw materials (different suppliers & qualities)

Data sheet of different carbon fibers are available, thermal, mechanical properties are available from measurements

Characterisation of CNF properties is not easy, only rare experimental data are available, there are different suppliers, to get reproducible quality is not easy (thermal properties!)

Separation and dispersion of short fibers in the matrix material

Optimisation of conventional blending techniques is sufficient, coating of fibers provides an advanced solution, fiber breakage has to be taken into account

To coat the CNFs seems to be the most appropriate way to get a homogenous distribution, mechanical milling (damage of fibers?), dispersion techniques with surfactants

Alignment/ Orientation/Anisotropy

Fiber aspect ratio of 1:10 to 1:100 results in an orientation of the fibers during PM processing => anisotropy of properties

Alignment of CNFs during PM processing is not confirmed yet, extrusion results in a prefered alignment of CNFs

Densification of the composite

Optimisation of processing conditions with regard to densification and interfacial reactions

Remaining porosity is higher, interfacial reactions must be controlled with high precision, analysis of interface difficult; low CNF loading can be realized by PM process using CNFs, high loading of CNF only achievable via liquid phase infiltration of pre-forms

Interface Interface plays an important role for mechanical and thermophysical properties

Interface plays an essential role to exploit the potential of the reinforcement => using of alloying elements and/or coated CNFs

Page 7: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

7

FUNCTIONAL MATERIALS

Copper – Carbon Nanofiber Composites:

Cu coated CNF+

Cr or Ti powder

PVD (Cr, Mo) coated CNF+

Cu powder

Route A: Electro chemical coating of Cu on CNF Admixing of „Active elements“

Route B: „Active element“ directly deposited on CNF Admixing of Cu powder

Dispersion of CNF in copper matrix: =>using of chemical coating techniques to deposit the matrix material (copper)

on the CNF

Reduction of Thermal Contact Resistance between Copper and CNF =>Interface „design“ between copper matrix and carbon nanofiber necessary

Page 8: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

8

FUNCTIONAL MATERIALS

Processing: Powder Metallurgical (PM) process

Hydraulic pressure

Vacuum chamber

Graphite Heater

Graphite die

Graphit Punch

Powder

Graphite Punch

Chemical Coating/“decoration“ of CNF with Cu

1. Coating/Mixing

2. Hot Pressing 3. Composite

PVD coating (Mo) on CNF

Page 9: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

9

FUNCTIONAL MATERIALS

Results (I): Comparison of microstructure

ROUTE A ROUTE B

Page 10: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

10

FUNCTIONAL MATERIALS

Results (II): Comparison of microstructure

ROUTE A ROUTE B

„Perfect CNF distribution for route A Clusters of CNF observed in route B resulting in porosity

Page 11: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

11

FUNCTIONAL MATERIALS

Thermal Properties:

pca

0 20 40 60 80 100 1200

20

40

60

80

100

120

140

160

180

200

+5%+14%

Th

erm

al C

on

du

ctiv

ity [W

/mK

]

PVD "nominal" coating thickness [nm]

Cr Mo

0 1 2 30

50

100

150

200

250

300

350

+20% +22%

Th

erm

al C

on

du

ctiv

ity [W

/mK

]

Alloying Content [wt.%]

Ti Cr

ROUTE A ROUTE B

Page 12: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

12

FUNCTIONAL MATERIALS

CTE (@50°C)=12.8 ppm/KCTE (@250°C)=14 ppm/K

Coefficient of thermal expansion (CTE)

Reduction of CTE by addition of CNF was achieved (12.8 ppm/K) Further reduction expected by increase of the CNF volume content High temperature applications (>300°C) might lead to a degradation of

the interface (optimisation necessary)

Page 13: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

13

FUNCTIONAL MATERIALS

Conclusion (I): PM processing „perfect“ CNF distribution is necessary and can be realised by the copper

coating on the CNF Both concepts: PVD coating of fibers with „active“ element and alloying of

„active“ elements showed significant improvements compared to pure Cu-CNF composites (up to 20 % in thermal conductivity)

Further improvements (up to 100%) are expected from: Use of better quality of CNF material (lower impurity, high temperature treated CNFs) Increasing of CNF content from approx. 20 vol% to 40 vol.% Optimisation of the content of the „active“ element Optimisation of processing/sintering conditions

Page 14: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

14

FUNCTIONAL MATERIALS

Liquid Phase Infiltration of CNF felts: concept Infiltration process would allow to realise composite materials with a

higher CNF loading (40vol% or higher) => higher thermal conductivity and lower CTE

Larger Parts can be manufactured (compared to PM) Main Problem: No wetting between carbon/CNF by copper and high

Thermal Contact Resistance between Copper and CNF =>

Approach: using of „designed“ copper alloys which promote wetting and form a good thermal and mechanical interface in combination with proper selected processing conditions

Page 15: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

15

FUNCTIONAL MATERIALS

First results (I): Wetting of CNF by Cu and Cu alloys

Cu alloy

CNF Foam

Non wetting between CNF and pure Cu Wetting of Cu alloy

Page 16: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

16

FUNCTIONAL MATERIALS

Increasing reaction between Cu-Alloy and CNF

First results (II): Infiltration of CNF with Cu alloy

Metal

CNT pre-form

Pressure

Alloying Content/Contact Time between melt and CNF requires a careful optimisation to avoid gradients and reaction products (total consumption of CNF) due to severe reaction between CNF and melt

Page 17: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

17

FUNCTIONAL MATERIALS

Conclusion (II): Infiltration processing The use of Cu alloys results in wetting of the CNF felt First infiltration tests have shown that infiltration is possibleBUT Further optimisation (of alloy composition and process) is necessary to

allow a complete infiltration and to avoid too severe reactions between the alloying elements and the CNF felt

„Quality“ of CNF felt (its high thermal conductivity) is not confirmed yet Thermal analysis of composite materials will be necessary to assess

the performance.

Page 18: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

18

FUNCTIONAL MATERIALS

Thank you for your attention!

Contact

Austrian Research Centers GmbH - ARC

Functional Materials

A-2444 Seibersdorf, ÖsterreichTelefon: +43 (0) 50550 - 3345Fax: +43 (0) 50550-3366

Contact Person:

Dr. Erich [email protected]

POWDER TECHNOLOGY CENTER

Page 19: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

19

FUNCTIONAL MATERIALS Powder Technology Center - PTC

ANNEX

Page 20: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

20

FUNCTIONAL MATERIALS

Matrix Substrate Temperature Contact Angle

Cu (1at% Cr) Vitreous Carbon 1373 K 414

Cu (<0.2at% Cr) Vitreous Carbon 1050°C ~130

Cu (>0.2at% Cr Vitreous Carbon 1050°C ~45

Cu (<0.2at% Ti Vitreous Carbon 850°C ~150

Cu (>10at% Ti Vitreous Carbon 850°C Close to 0

Cu (10at% Ti) VC/Pyro-C 1180°C/1150°C Close to 0

Cu/Cu+1at%V Vitreous Carbon 1150°C 45/62

Cu (1at% Cr) VC/graphite 1150°C /60 min 50/45

Cu VC/Pyro-C 1150°C 1362, 1333

Cu VC/PMG[1] 1100 1392, 1222

Positive Influence of alloying elements on wetting, but…

Page 21: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

21

FUNCTIONAL MATERIALS

..negative influence on the thermal conductivity of the matrix

only ~0.8 wt. Ti lead to a 50%(!) reduction of the thermal conductivity of the copper matrix

0 1 2 3 4 5 60

50

100

150

200

250

300

350

400

P

Au

Zn

Ti

Pd

Ther

mal

Con

duct

ivity

[W/m

K]

Alloying Element [wt.%]

Ni

0,0 0,2 0,4 0,6 0,8 1,0100

150

200

250

300

350

400

P

Au

Zn

Ti

Pd

Ther

mal

Con

duct

ivity

[W/m

K]

Alloying Element [wt.%]

Ni

Page 22: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

22

FUNCTIONAL MATERIALS

0 50 100 150 200 250 3000

2

4

6

8

10

12

14

16

18

Kurze Pitch-Kohlefasern (verkupfert) Kurze Pitch-Kohlefasern (gemischt) Kurze PAN-Kohlefasern (verkupfert) Kurze PAN-Kohlefasern (gemischt) Lange PAN-Kohlefasern (verkupfert) Infiltration von Kohlefaserfilzen

CT

E (

20 -

150

°C

), 1

0-6 [

K-1]

Wärmeleitfähigkeit, [W/mK]

Kurze Pitch-Kohlefasern

Kurze PAN-Kohlefasern PAN

CF-Filze

Lange PAN-Kohlefasern

Zielbereich

Thermal Properties of Cu-C-CompositesCTE: x-y directionTh. Cond.: z-direction

CTE

TC

Page 23: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

23

FUNCTIONAL MATERIALS

0 50 100 150 200 250 300 350 4000

2

4

6

8

10

12

14

16

18

CT

E (

20 -

150

°C

), 1

0-6 [

K-1]

Wärmeleitfähigkeit, [W/mK]

Kurze Pitch-Kohlefasern (verkupfert) Kurze Pitch-Kohlefasern (gemischt) Kurze PAN-Kohlefasern (verkupfert) Kurze PAN-Kohlefasern (gemischt) Lange PAN-Kohlefasern (verkupfert) Infiltration von Kohlefaserfilzen Kupfer

Kurze PAN-Kohlefasern

PANCF Filze

Kurze Pitch-Kohlefasern

Lange PAN-Kohlefasern

Zielbereich

Properties of Cu-C-CompositesCTE: x-y directionTh. Cond.: x-y-direction

TC, CTE

Page 24: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

24

FUNCTIONAL MATERIALS

Thermal Expansion – Experiment und Modell

PITCH Fasern

0 10 20 30 40 50 60 700

2

4

6

8

10

12

14

16

18

20

22

24

CT

E, 2

0 -

15

0 °

C, [

10-6

K-1]

PITCH-type carbon fibres, [Vol-%]

FEM model (XY-direction) FEM model (Z-direction) Experimental data (XY-direction) Experimental data (Z-direction)

Page 25: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

25

FUNCTIONAL MATERIALS

Challenge: Mikro – Nano („Metal-Carbon System“)

1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4150

200

250

300

350

400

450

500

550

600

Th

erm

al C

on

du

ctiv

ity [W

/mK

]

Thermal Contact Resistance [m2

W/K]

1000 W/mK 100 W/mK 10 W/mK

22

1

22

12

i

thi

m

ii

i

thi

m

i

i

thi

m

ii

i

thi

m

i

mc

rR

VrR

rR

VrR

1E-13 1E-12 1E-11 1E-10 1E-9 1E-8 1E-7 1E-6 1E-5 1E-4150

200

250

300

350

400

450

500

550

600

Th

erm

al C

on

du

ctiv

ity [W

/mK

]

Thermal Contact Resistance [m2

W/K]

1000 W/mK 100 W/mK 10 W/mK

Model of Haselmann

Diameter: 20 µm („micron sized filler“) Diameter : 200 nm („nanosized filler“)

Page 26: FUNCTIONAL MATERIALSPowder Technology Center - PTC 1 Copper based composites reinforced with carbon nanofibers René Nagel, Erich Neubauer ARC Seibersdorf

26

FUNCTIONAL MATERIALS

Overview of Process Development

Powder Metallurgical Processes (Semi-industrial) Net-shape processes (Powder Injection Moulding): Pilot Plant

Liquid Phase Infiltration (Lab scale)