from theory to practical implementations (i) · mercator assimilation system - testut et al.(2004)...

24
Sequential methods for ocean data assimilation _________ From theory to practical implementations (I) P. BRASSEUR CNRS/LEGI, Grenoble, France [email protected] J. Ballabrera, L. Berline, F. Birol, J.M. Brankart, G. Broquet, V. Carmillet, F. Castruccio, F. Debost, D. Rozier, Y. Ourmières, T.Penduff, J. Verron Th. Delcroix, B. Dewitte, Y. duPenhoat, F. Durand, L. Gourdeau E. Blayo, S. Carme, I. Hoteit, Pham D.T., C. Robert A. Barth, C. Raick C.E. Testut, B. Tranchant L. Parent

Upload: others

Post on 24-Jan-2021

3 views

Category:

Documents


0 download

TRANSCRIPT

  • Sequential methods for ocean data assimilation

    _________

    From theory to practical implementations (I)

    P. BRASSEURCNRS/LEGI, Grenoble, [email protected]

    J. Ballabrera, L. Berline, F. Birol, J.M. Brankart, G. Broquet, V. Carmillet, F. Castruccio, F. Debost, D. Rozier, Y. Ourmières, T.Penduff, J. Verron

    Th. Delcroix, B. Dewitte, Y. duPenhoat, F. Durand, L. Gourdeau

    E. Blayo, S. Carme, I. Hoteit, Pham D.T., C. Robert

    A. Barth, C. Raick

    C.E. Testut, B. Tranchant

    L. Parent

  • OUTLINE

    q State-of-the-art1. Kalman filter: fundamentals2. Ocean data assimilation: specific issues3. Error sub-spaces 4. Low rank filters: SEEK and EnKF

    q Advanced issues5. Objective validation and evaluation of DA systems6. Error tuning and adaptive schemes7. Improved temporal strategies : FGAT and IAU8. Kalman filtering with inequality constraints

    q The MERCATOR Assimilation System

  • Ocean data assimilation

    q Data assimilation involves the optimal combination of measurements with the underlying dynamical principles governing the system under observation.

    q Data assimilation can serve several oceanographic objectives:Ø Ocean state estimation in space & time (4D) ;Ø Detection of model errors ;Ø Estimation of budgets & model parameters ;Ø Initialisation, prediction, monitoring ;Ø Optimal design of complex observation systems ;Ø …

    q Theories: optimal control (VAR) and optimal estimation (Kalman)

  • 1. Kalman Filter fundamentalsProblem definition

    aix

    i i+1

    yi+1

    ai

    fi xx M=+1

    aix : estimation of the « true » state vector at time i , dimension n

    tix

    fi 1+x : forecast of the state vector at time i+1, using the linear model M

    1+iy : observations available at time i+1 , dimension p

    Misfit between forecast and observations should be small :How « small » ?

    Notations: Ide et al. (1997)

  • 1+iyai

    fi xx M=+1

    incomplete data imperfect model

    1. Kalman Filter fundamentalsModel-data misfit

  • 1. Kalman Filter fundamentalsUncertainties & PDFs

    aix

    i i+1

    ai

    fi xx M=+1

    ti

    ai

    ai xxe −= : error on state estimate at time i ; unknown quantity, but

    assume

    )(P~)P,( 121

    exp01

    −→

    − ai

    ai

    Tai

    ai

    ai N eee

    ti

    ti 1+−= xx? M : error on model forecast between time i and time i+1 ; assume:

    )(Q~Q),( 221

    exp0 1

    −→ − ??? TN

    time

  • 1. Kalman Filter fundamentalsError diagram

    aix

    tix

    fi 1+x

    tixM

    M

    ti 1+x

    M

    aie

    ?

    fi 1+e

    aieM

    State space

  • 1. Kalman Filter fundamentalsForecast error

    ?e?xxxxe −=+−=−= +++f

    iti

    fi

    ti

    ai

    ai 111 )(MMM

    Assuming pdf (1) and (2), model linearity and uncorrelated initial and modelling errors, the forecast error is distributed as :

    )(P~)P,( 321

    exp0 11

    1111

    −→ +

    ++++f

    if

    i

    Tfi

    fi

    fi N eee

    The estimation error is amplified by:- unstable model dynamics (M) ; - modelling errors Q .

    )(QMMPP

    MMM 41

    111

    +=⇒+=⇒+=

    +

    +++Ta

    if

    i

    TTTai

    ai

    Tfi

    fi

    ai

    fi ??eeee?ee

    with

  • oi

    tii 111 +++ += exy H : observation available at time i +1

    1. Kalman Filter fundamentalsObservations and errors

    aix

    i i+1

    yi+1

    ai

    fi xx M=+1

    A probability distribution for the observation error is assumed:

    )(R~R),( 521

    exp0 11

    11

    −→ +

    −++

    oi

    Toi

    oi N eee

  • 1. Kalman Filter fundamentalsOptimal estimation

    Using Bayes rule at time i+1 :

    ( ) ( ) ( ) )()(

    61

    11111

    +

    +++++

    ⋅=

    i

    ti

    tii

    iti P

    PPP

    y

    xxyyx

    given by (5) given by (3)

    a factor independent of ti 1+x

    The best estimate of is the value of which maxi mize (7), i.e. the minimum of :ti 1+x x

    ( ) ( )

    { } )()H(R)H()(P)()H(R)H()(P)(

    ~

    721

    exp

    21

    exp21

    exp

    111

    1111

    1

    111

    111

    1111

    1

    111

    111

    −−+−−−=

    −−−⋅

    −−−

    ++−

    ++++

    +++

    ++−

    ++++

    +++

    +++

    tii

    Ttii

    ti

    fi

    fi

    Tti

    fi

    tii

    Ttii

    ti

    fi

    fi

    Tti

    fi

    ti

    tii PP

    xyxyxxxx

    xyxyxxxx

    xxy

    )()H(R)H()(P)()( 811

    11

    1

    11 xyxyxxxxx −−+−−= +−

    ++

    ++ iT

    if

    if

    iTf

    iJ

  • )()H(RHP)( 90 11

    11 xyxxxx −+=⇒= +−

    ++ iTf

    if

    iJδ

    1. Kalman Filter fundamentalsKalman gain

    Equation (9) can be solved for using simple algebra (*), leading to: x

    )H(R)H(HPHP fiiTf

    iTf

    if

    i 111

    111 ++−

    +++ −++= xyxx

    Kalman gain = 1+iK

    (*) Hint : use matrix equality [ ] [ ] 11211121121212111112112121 −−−−−−− +−=+ XXXXXXXXXXXXX

    Note: the forecast and analysis equations can be extended to weakly non-linear models and observation operator .M H

  • ai

    ai

    Px ( )

    QMMPP +=

    =

    +

    +

    Tai

    fi

    ai

    fi M

    1

    1 xxForecast

    1111

    −+++ += R)H(HPHPK

    Tfi

    Tfii

    ( )( )( ) fiiai

    fiii

    fi

    ai H

    111

    11111

    +++

    +++++

    −=

    −+=

    PHKIP

    K xyxx

    An

    alys

    is

    i i+1

    yi+1

    1. Kalman Filter fundamentalsAssimilation cycle

  • i i+1

    Sequential assimilation = repeated forecast/analysis cycles

    1. Kalman Filter fundamentalsAssimilation sequence

    The best estimate at a given time is influenced by all previous observations (Kalman « filter »), and the analysis error covariance reflects the competition between this accumulation of past information and the error growth due to model imperfections .

    i+2 i+3

  • 1. Kalman Filter fundamentalsOptimal Interpolation

    ? Simplification of the Kalman filter: « Optimal Interpolation » To save cost and memory requirements, the KF can be simplified, using time-independent « background » covariance matrix

    21211

    // DCDBP ==+f

    icorrelations

    variances

    q The forecast error requires 2n model integrations !!!

    ( ) QMPMQMMPP +=+=+ TaiTaifi 1q The 2n model integrations are useless if model errors are poorly

    known (the KF is optimal only when error statistics are perfectly known),

    Q

    Noting that :

  • 2. Ocean data assimilation : specific issuesModel complexity

    (*) ocean circulation model developed at Univ. Miami (RSMAS, E. Chassignet)

    q Model variables in HYCOM(*)temperature, salinity, velocity, layer thicknesses, sea-surface height (SSH)

  • 2. Ocean data assimilation : specific issuesState vector dimension

    q HYCOM state vector x : 3D grid of the 5 scalar model variables + 2D grid for SSH

    q R&D prototype: 1/3° horizontal resolution , 19 hybrid layers

    n ~ 5 x 350 x 350 x 19 ~ 1.1 x 107Operational prototype: 1/12° horizontal resolution , 26 hybrid layers

    n ~ 5 x 1400 x 1400 x 26 ~ 2.5 x 108

    q M operator : dim n x n ~ 6 x 1016 real*8 (i.e. ~ 6000 Earth Simulators !)

    ØThe state vector dimension can be huge

    ØThe model transition matrix « M » cannot be represented explicitely.Ø Instead, a computer code is used to transition « x » from time i to i+1

  • 2. Ocean data assimilation : specific issuesSpace observations

    q Observed variables: - from space: sea-surface height (SSH), sea-surface temperature (SST)

    TP/ERS along track data

    August 19-26,1993

    AVHRR SSTAugust 19-26,1993

  • 2. Ocean data assimilation : specific issuesIn situ observations

    q Observed variables: - in situ: T/S profiles (drifting floats, field campaigns, …)

    ARGO, July 2004

  • 2. Ocean data assimilation : specific issuesObservations

    q Observation vector y : data from various sources, at different time and space resolution

    q Radar Altimetry : along-track measurements of SSH anomalies (JASON: 1 obs. / 7 km, ~ 300 km Equatorial tracks separation, repeated every 10 days ;ERS/ENVISAT: ~ 80 km Equatorial tracks separation, repeated every 35 days)

    q AVHRR SST : weekly composite images at 4 km resolution (if no clouds)q ARGO flots : 3° x 3° horizontal resolution (targetted), profiles (between

    2000 m depth to surface) every 10 days with 1 obs / m along vertical

    Ø p = dim y is much smaller than n = dim x : too few observations !Ø The ocean surface relatively well observed by satellites: vertical

    extrapolation of data assimilated at the surface into the ocean’s interior has to be consistent with vertical data profiles

    Ø The observed variables are closely related to model variables: H is mainly an interpolation operator ( ~ simple)

  • 2. Ocean data assimilation : specific issuesError covariance matrix

    q Specification of error covariance matrix ? a0P

    0Pq Assume a background state and associated error covariance Consider the analysis step with only one data at a model grid point and the associated observation error .

    Ø p = 1 , y is a scalar and H is a vector of the formØ The Kalman gain is then a (n x 1) vector:

    Ø The posterior estimate is a correction of the background using the –column of

    ?

    [ ]00100 ,...,,,,...,H =

    0x

    e

    { } { }ηηηηηηη ε

    0021

    00 with1

    PP)(

    R)H(HPHPK =+

    =+= − pp

    TT

    { } { }ηηηη

    ηηηε 000020

    with1

    xxx =−+

    += )(P)(

    ˆp

    η0P

  • 2. Ocean data assimilation : specific issuesHorizontal covariance structures

    Example: Horizontal covariance relative to a SSH (η) point at (32oN,70oW) MERCATOR Assimilation System - Testut et al.(2004)

    Influence function of a single altimeter measurement in the sub-tropical gyre

  • 2. Ocean data assimilation : specific issuesMultivariate covariance structures

    Example: covariance relative to a SSH (η) point at (0o,144oW) - Weaver et al.(2003)

    Ø The rows/colums of P should be « balanced » dynamically.Ø This requires multivariate covariances

    Ø A full-rank representation of P (dim n x n) is still impossible !

  • 2. Ocean data assimilation : specific issuesModel errors Q

    q Model variability differs from observed variability

    Model Data

    Ø Many different model error sources (finite discretizations, representation of bottom topography, atmospheric forcings, etc … ) which cannot be easily quantified in terms of a Q matrix

    EKE example :

  • 2. Ocean data assimilation : specific issuesSystematic model errors

    q Model mean SSH differs from observed mean SSH

    OPA model (Madec et al. 2003) Data (Niiler et al., 2003)

    Ø Model biases cannot be properly taken into account with Kalman filters

    Mean sea-level difference between Pacific and Atlantic systematically too small in the model