fractional brownian motion - math.univ-brest.fr · contents 1 introduction 2 fbmandsomeproperties 3...

62
Fractional Brownian motion Jorge A. León Departamento de Control Automático Cinvestav del IPN Spring School “Stochastic Control in Finance”, Roscoff 2010 Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 1 / 62

Upload: others

Post on 11-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Fractional Brownian motion

Jorge A. León

Departamento de Control AutomáticoCinvestav del IPN

Spring School “Stochastic Control in Finance”, Roscoff 2010

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 1 / 62

Page 2: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 2 / 62

Page 3: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 3 / 62

Page 4: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Stochastic integration

We consider ∫ T

0· dBs .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 4 / 62

Page 5: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Stochastic integration

We consider ∫ T

0· dBs .

Here B is a fractional Brownian motion.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 5 / 62

Page 6: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 6 / 62

Page 7: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Fractional Brownian motion

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 7 / 62

Page 8: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 8 / 62

Page 9: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.B has stationary increments.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 9 / 62

Page 10: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.B has stationary increments :

E(|Bt − Bs |2

)= |t − s|2H .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 10 / 62

Page 11: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmDefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.B has stationary increments :

E(|Bt − Bs |2

)= |t − s|2H .

For any ε ∈ (0,H) and T > 0, there exists Gε,T such that

|Bt − Bs | ≤ Gε,T |t − s|H−ε, t, s ∈ [0,T ].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 11 / 62

Page 12: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 12 / 62

Page 13: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmDefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 13 / 62

Page 14: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

B is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals : Let t − s = nh and

ρH(n) = E [(Bt+h − Bt)(Bs+h − Bs)]

≈ h2HH(2H − 1)n2H−2 → 0.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 14 / 62

Page 15: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmB is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals : Let t − s = nh and

ρH(n) = E [(Bt+h − Bt)(Bs+h − Bs)]

≈ h2HH(2H − 1)n2H−2 → 0.

i) If H > 1/2, ρH(n) > 0 and∑∞

n=1 ρ(n) =∞.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 15 / 62

Page 16: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmB is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals : Let t − s = nh and

ρH(n) = E [(Bt+h − Bt)(Bs+h − Bs)]

≈ h2HH(2H − 1)n2H−2 → 0.

i) If H > 1/2, ρH(n) > 0 and∑∞

n=1 ρ(n) =∞.ii) If H < 1/2, ρH(n) < 0 and

∑∞n=1 ρ(n) <∞.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 16 / 62

Page 17: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmB is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals : Let t − s = nh and

ρH(n) = E [(Bt+h − Bt)(Bs+h − Bs)]

≈ h2HH(2H − 1)n2H−2 → 0.

i) If H > 1/2, ρH(n) > 0 and∑∞

n=1 ρ(n) =∞.ii) If H < 1/2, ρH(n) < 0 and

∑∞n=1 ρ(n) <∞.

B has no bounded variation paths.Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 17 / 62

Page 18: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 18 / 62

Page 19: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 19 / 62

Page 20: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn = t bea partition of [0, t].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 20 / 62

Page 21: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn = t bea partition of [0, t]. Then,

E( n∑

i=1|Bti − Bti−1|2

)=

n∑i=1|ti − ti−1|2H

≤ |Π|2H−1n∑

i=1|ti − ti−1|

= t|Π|2H−1 → 0

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 21 / 62

Page 22: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn = t bea partition of [0, t]. Then,

E( n∑

i=1|Bti − Bti−1|2

)=

n∑i=1|ti − ti−1|2H

≤ |Π|2H−1n∑

i=1|ti − ti−1|

= t|Π|2H−1 → 0

If B were a semimartingale. Then, B = M + V .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 22 / 62

Page 23: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingaleTheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn = t bea partition of [0, t]. Then,

E( n∑

i=1|Bti − Bti−1|2

)=

n∑i=1|ti − ti−1|2H

≤ |Π|2H−1n∑

i=1|ti − ti−1|

= t|Π|2H−1 → 0

If B were a semimartingale. Then, B = M + V . Thus

0 = [B] = [M].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 23 / 62

Page 24: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingaleTheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn be apartition of [0, t]. Then,

E( n∑

i=1|Bti − Bti−1|2

)=

n∑i=1|ti − ti−1|2H

≤ |Π|2H−1n∑

i=1|ti − ti−1|

= t|Π|2H−1 → 0

If B were a semimartingale. Then, B = M + V . Thus

0 = [B] = [M].

Consequently B = V .Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 24 / 62

Page 25: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H < 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 25 / 62

Page 26: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H < 1/2. We have

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 26 / 62

Page 27: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H < 1/2. We have

In : =n∑

j=1|Bj/n − B(j−1)/n|2

(d)=

1n2H

n∑j=1|Bj − Bj−1|2

= n1−2H

1n

n∑j=1|Bj − Bj−1|2

→∞.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 27 / 62

Page 28: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingaleTheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H < 1/2. We have

In : =n∑

j=1|Bj/n − B(j−1)/n|2

(d)=

1n2H

n∑j=1|Bj − Bj−1|2

= n1−2H

1n

n∑j=1|Bj − Bj−1|2

→∞.Due to, the ergodic theorem implies that

1n

n∑j=1|Bj − Bj−1|2 → E ((B1)2) a.s

.Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 28 / 62

Page 29: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 29 / 62

Page 30: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Mandelbrot-van Ness representation

Bt = CH

[∫ 0

∞(t − s)H−1/2 − (−s)H−1/2dWs +

∫ t

0(t − s)H−1/2dWs

].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 30 / 62

Page 31: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Mandelbrot-van Ness representation

Bt = CH

[∫ t

∞(t − s)H−1/2 − (−s)H−1/2dWs +

∫ t

0(t − s)H−1/2dWs

].

Here W is a Brownian motion.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 31 / 62

Page 32: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of fBm on an finite interval

Fix a time interval [0,T ] and consider the fBm B = Bt ; t ∈ [0,T ].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 32 / 62

Page 33: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of fBm on an finite interval

Fix a time interval [0,T ] and consider the fBm B = Bt ; t ∈ [0,T ].Then there exists a Bm Wt ; t ∈ [0,T ] such that

Bt =∫ t

0KH(t, s)dWs ,

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 33 / 62

Page 34: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of fBm on an finite interval

Fix a time interval [0,T ] and consider the fBm B = Bt ; t ∈ [0,T ].Then there exists a Bm Wt ; t ∈ [0,T ] such that

Bt =∫ t

0KH(t, s)dWs ,

whereFor H > 1/2,

KH(t, s) = cHs 12−H

∫ t

s(u − s)H− 3

2 uH− 12 du s < t.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 34 / 62

Page 35: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of fBm on an finite intervalFix a time interval [0,T ] and consider the fBm B = Bt ; t ∈ [0,T ].Then there exists a Bm Wt ; t ∈ [0,T ] such that

Bt =∫ t

0KH(t, s)dWs ,

whereFor H > 1/2,

KH(t, s) = cHs 12−H

∫ t

s(u − s)H− 3

2 uH− 12 du, s < t.

For H < 1/2,

KH(t, s) = cH

[( ts

)H− 12

(t − s)H− 12

−(H − 12)s 1

2−H∫ t

suH− 3

2 (u − s)H− 12 du

], s < t.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 35 / 62

Page 36: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 36 / 62

Page 37: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integrals

Let E be the family of the step functions of the form

f =n∑

i=0ai I(tj ,tj+1].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 37 / 62

Page 38: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integrals

Let E be the family of the step functions of the form

f =n∑

i=0ai I(tj ,tj+1].

The Wiener integral with respect to B

I(f ) =n∑

i=0ai(Bti+1 − Bti )

and the space

L(B) = X ∈ L2(Ω) : X = L2(Ω)− limn→∞

I(fn), for some fn ⊂ E.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 38 / 62

Page 39: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integrals

L(B) = X ∈ L2(Ω) : X = L2(Ω)− limn→∞

I(fn), for some fn ⊂ E.

Proposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 39 / 62

Page 40: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integrals

L(B) = X ∈ L2(Ω) : X = L2(Ω)− limn→∞

I(fn), for some fn ⊂ E.

Proposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,the isometry is an extension of I.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 40 / 62

Page 41: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integralsProposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,the isometry is an extension of I.

Remarksa) For H < 1/2,

H = f ∈ L2([0,T ]) : f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s)

for some φf ∈ L2with (IαT−g)(s) = 1

Γ(α)

∫ Ts (x − s)α−1g(x)dx .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 41 / 62

Page 42: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integralsProposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,the isometry is an extension of I.

Remarksa) For H < 1/2,

H = f ∈ L2([0,T ]) : f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s)

for some φf ∈ L2with the inner product (f , g) = (φf , φg )L2([0,T ]).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 42 / 62

Page 43: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integralsProposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,the isometry is an extension of I.

Remarksb) For H > 1/2,

H = f ∈ D′ : ∃f ∗ ∈ W 1/2−H,2(R) with supp(f ) ⊂ [0,T ]

such that f = f ∗|[0,T ]

with the inner product (f , g) = cH∫

R F f ∗(x)Fg∗(x)|x |1−2Hdx .Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 43 / 62

Page 44: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integralsa) For H < 1/2,

H = f ∈ L2([0,T ]) : f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s)

for some φf ∈ L2

with the inner product (f , g) = (φf , φg )L2([0,T ]).

b) For H > 1/2,

H = f ∈ D′ : ∃f ∗ ∈ W 1/2−H,2(R) with supp(f ) ⊂ [0,T ]

such that f = f ∗|[0,T ]

with the inner product (f , g) = cH∫

R F f ∗(x)Fg∗(x)|x |1−2Hdx .c) W s,2(R) = f ∈ S : (1 + |x |2)s/2F f (x) ∈ L2(R).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 44 / 62

Page 45: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of Wiener integrals

Moreover, there exists an isometry K ∗H : H → L2([0,T ]) and aBrownian motion W such that :

1 I(f ) =∫ T0 (K ∗H f )(s)dWs .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 45 / 62

Page 46: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of Wiener integralsMoreover, there exists an isometry K ∗H : H → L2([0,T ]) and aBrownian motion W such that :

1 I(f ) =∫ T0 (K ∗H f )(s)dWs .

2 K ∗H I[0,t] = KH(t, ·) with

KH(t, s) = cHs 12−H

∫ t

s(u− s)H− 3

2 uH− 12 du, s < t and H > 1/2

and

KH(t, s) = cH

[( ts

)H− 12

(t − s)H− 12

−(H − 12)s 1

2−H∫ t

suH− 3

2 (u − s)H− 12 du

], H < 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 46 / 62

Page 47: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of Wiener integrals

Moreover, there exists an isometry K ∗H : H → L2([0,T ]) and aBrownian motion W such that :

1 I(φ) =∫ T0 (K ∗Hφ)(s)dWs .

2 K ∗H I[0,t] = KH(t, ·) .3 For H < 1/2,

K ∗H f = φf ,

with f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s), s ∈ [0,T ].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 47 / 62

Page 48: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of Wiener integrals

Moreover, there exists an isometry K ∗H : H → L2([0,T ]) and aBrownian motion W such that :

1 I(φ) =∫ T0 (K ∗Hφ)(s)dWs .

2 K ∗H I[0,t] = KH(t, ·) .3 For H < 1/2,

K ∗H f = φf ,

with f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s), s ∈ [0,T ].

4 For H > 1/2 and φ ∈ E ,

(K ∗Hφ)(s) = cHs1/2−H(IH− 12

T− uh− 12φ(u))(s), s ∈ [0,T ].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 48 / 62

Page 49: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 49 / 62

Page 50: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Derivative operator

Let S be the set of smooth functional of the form

F = f (B(φ1), . . . ,B(φn)),

where n ≥ 1, f ∈ C∞b (Rn) and φi ∈ H.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 50 / 62

Page 51: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Derivative operator

Let S be the set of smooth functional of the form

F = f (B(φ1), . . . ,B(φn)),

where n ≥ 1, f ∈ C∞b (Rn) and φi ∈ H. The derivative operator isgiven by

DF =n∑

i=1

∂f∂xi

(B(φ1), . . . ,B(φn))φi .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 51 / 62

Page 52: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Derivative operator

Let S be the set of smooth functional of the form

F = f (B(φ1), . . . ,B(φn)),

where n ≥ 1, f ∈ C∞b (Rn) and φi ∈ H. The derivative operator isgiven by

DF =n∑

i=1

∂f∂xi

(B(φ1), . . . ,B(φn))φi .

The operator D is closable from L2(Ω) into L2(Ω;H).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 52 / 62

Page 53: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 53 / 62

Page 54: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Transfer principle

Let W be the Brownian motion such that

Bt =∫ t

0KH(t, s)dWs t ∈ [0,T ].

Then,1 DomD=DomDW and

K ∗HDF = DW F .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 54 / 62

Page 55: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Transfer principle

Let W be the Brownian motion such that

Bt =∫ t

0KH(t, s)dWs t ∈ [0,T ].

Then,1 DomD=DomDW and

K ∗HDF = DW F .

2 φ ∈Domδ if and only if K ∗Hφ ∈DomδW and

δ(φ) = δW (K ∗Hφ).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 55 / 62

Page 56: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Transfer principle

1 DomD=DomDW and

K ∗HDF = DW F .

2 φ ∈Domδ if and only if K ∗Hφ ∈DomδW and

δ(φ) = δW (K ∗Hφ).

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

Remark For H = 1/2, H = L2([0,T ]).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 56 / 62

Page 57: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Transfer principle1 DomD=DomDW and K ∗HDF = DW F .2 φ ∈Domδ if and only if K ∗Hφ ∈DomδW and

δ(φ) = δW (K ∗Hφ).

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

Remark For H = 1/2, H = L2([0,T ]). So

E(F δW (u)

)= E

(∫ T

0(DW

s F )usds), F ∈ S, u ∈ L2(Ω× [0,T ]).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 57 / 62

Page 58: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu)

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 58 / 62

Page 59: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu) + 〈DF , u〉H.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 59 / 62

Page 60: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu) + 〈DF , u〉H.

Proof : Let G ∈ S, then

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 60 / 62

Page 61: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operatorThe divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu) + 〈DF , u〉H.

Proof : Let G ∈ S, then

E (〈DG ,Fu〉H) = E (〈D(GF ), u〉H − G 〈DF , u〉H)

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 61 / 62

Page 62: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operatorThe divergence operator δ is the adjoint of D.

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu)− 〈DF , u〉H.

Proof : Let G ∈ S, then

E (〈DG ,Fu〉H) = E (〈D(GF ), u〉H − G 〈DF , u〉H)

= E (G (F δ(u)− 〈DF , u〉H)) .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 62 / 62