Transcript
Page 1: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Fractional Brownian motion

Jorge A. León

Departamento de Control AutomáticoCinvestav del IPN

Spring School “Stochastic Control in Finance”, Roscoff 2010

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 1 / 62

Page 2: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 2 / 62

Page 3: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 3 / 62

Page 4: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Stochastic integration

We consider ∫ T

0· dBs .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 4 / 62

Page 5: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Stochastic integration

We consider ∫ T

0· dBs .

Here B is a fractional Brownian motion.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 5 / 62

Page 6: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 6 / 62

Page 7: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Fractional Brownian motion

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 7 / 62

Page 8: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 8 / 62

Page 9: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.B has stationary increments.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 9 / 62

Page 10: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.B has stationary increments :

E(|Bt − Bs |2

)= |t − s|2H .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 10 / 62

Page 11: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmDefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.B has stationary increments :

E(|Bt − Bs |2

)= |t − s|2H .

For any ε ∈ (0,H) and T > 0, there exists Gε,T such that

|Bt − Bs | ≤ Gε,T |t − s|H−ε, t, s ∈ [0,T ].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 11 / 62

Page 12: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

DefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 12 / 62

Page 13: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmDefinitionA Gaussian stochastic process B = Bt ; t ≥ 0 is called a fractionalBrownian motion (fBm) of Hurst parameter H ∈ (0, 1) if it has zeromean and covariance fuction

RH(t, s) = E (BtBs) =12(t2H + s2H − |t − s|2H

).

B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 13 / 62

Page 14: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBm

B is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals : Let t − s = nh and

ρH(n) = E [(Bt+h − Bt)(Bs+h − Bs)]

≈ h2HH(2H − 1)n2H−2 → 0.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 14 / 62

Page 15: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmB is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals : Let t − s = nh and

ρH(n) = E [(Bt+h − Bt)(Bs+h − Bs)]

≈ h2HH(2H − 1)n2H−2 → 0.

i) If H > 1/2, ρH(n) > 0 and∑∞

n=1 ρ(n) =∞.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 15 / 62

Page 16: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmB is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals : Let t − s = nh and

ρH(n) = E [(Bt+h − Bt)(Bs+h − Bs)]

≈ h2HH(2H − 1)n2H−2 → 0.

i) If H > 1/2, ρH(n) > 0 and∑∞

n=1 ρ(n) =∞.ii) If H < 1/2, ρH(n) < 0 and

∑∞n=1 ρ(n) <∞.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 16 / 62

Page 17: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Properties of fBmB is a Brownian motion for H = 1/2.B has stationary increments.B is Hölder continuous for any exponent less than H .B is self-similar (with index H). That is, for any a > 0,a−HBat ; t ≥ 0 and Bt ; t ≥ 0 have the same distribution.The covariance of its increments on intervals decaysasymptotically as a negative power of the distance between theintervals : Let t − s = nh and

ρH(n) = E [(Bt+h − Bt)(Bs+h − Bs)]

≈ h2HH(2H − 1)n2H−2 → 0.

i) If H > 1/2, ρH(n) > 0 and∑∞

n=1 ρ(n) =∞.ii) If H < 1/2, ρH(n) < 0 and

∑∞n=1 ρ(n) <∞.

B has no bounded variation paths.Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 17 / 62

Page 18: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 18 / 62

Page 19: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 19 / 62

Page 20: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn = t bea partition of [0, t].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 20 / 62

Page 21: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn = t bea partition of [0, t]. Then,

E( n∑

i=1|Bti − Bti−1|2

)=

n∑i=1|ti − ti−1|2H

≤ |Π|2H−1n∑

i=1|ti − ti−1|

= t|Π|2H−1 → 0

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 21 / 62

Page 22: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn = t bea partition of [0, t]. Then,

E( n∑

i=1|Bti − Bti−1|2

)=

n∑i=1|ti − ti−1|2H

≤ |Π|2H−1n∑

i=1|ti − ti−1|

= t|Π|2H−1 → 0

If B were a semimartingale. Then, B = M + V .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 22 / 62

Page 23: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingaleTheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn = t bea partition of [0, t]. Then,

E( n∑

i=1|Bti − Bti−1|2

)=

n∑i=1|ti − ti−1|2H

≤ |Π|2H−1n∑

i=1|ti − ti−1|

= t|Π|2H−1 → 0

If B were a semimartingale. Then, B = M + V . Thus

0 = [B] = [M].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 23 / 62

Page 24: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingaleTheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H > 1/2. Let Πt = 0 = t0 < t1 < . . . < tn be apartition of [0, t]. Then,

E( n∑

i=1|Bti − Bti−1|2

)=

n∑i=1|ti − ti−1|2H

≤ |Π|2H−1n∑

i=1|ti − ti−1|

= t|Π|2H−1 → 0

If B were a semimartingale. Then, B = M + V . Thus

0 = [B] = [M].

Consequently B = V .Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 24 / 62

Page 25: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H < 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 25 / 62

Page 26: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H < 1/2. We have

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 26 / 62

Page 27: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingale

TheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H < 1/2. We have

In : =n∑

j=1|Bj/n − B(j−1)/n|2

(d)=

1n2H

n∑j=1|Bj − Bj−1|2

= n1−2H

1n

n∑j=1|Bj − Bj−1|2

→∞.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 27 / 62

Page 28: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

FBM is not a semimartingaleTheoremB is not a semimartingale for H 6= 1/2.

Proof : (i) Case H < 1/2. We have

In : =n∑

j=1|Bj/n − B(j−1)/n|2

(d)=

1n2H

n∑j=1|Bj − Bj−1|2

= n1−2H

1n

n∑j=1|Bj − Bj−1|2

→∞.Due to, the ergodic theorem implies that

1n

n∑j=1|Bj − Bj−1|2 → E ((B1)2) a.s

.Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 28 / 62

Page 29: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 29 / 62

Page 30: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Mandelbrot-van Ness representation

Bt = CH

[∫ 0

∞(t − s)H−1/2 − (−s)H−1/2dWs +

∫ t

0(t − s)H−1/2dWs

].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 30 / 62

Page 31: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Mandelbrot-van Ness representation

Bt = CH

[∫ t

∞(t − s)H−1/2 − (−s)H−1/2dWs +

∫ t

0(t − s)H−1/2dWs

].

Here W is a Brownian motion.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 31 / 62

Page 32: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of fBm on an finite interval

Fix a time interval [0,T ] and consider the fBm B = Bt ; t ∈ [0,T ].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 32 / 62

Page 33: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of fBm on an finite interval

Fix a time interval [0,T ] and consider the fBm B = Bt ; t ∈ [0,T ].Then there exists a Bm Wt ; t ∈ [0,T ] such that

Bt =∫ t

0KH(t, s)dWs ,

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 33 / 62

Page 34: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of fBm on an finite interval

Fix a time interval [0,T ] and consider the fBm B = Bt ; t ∈ [0,T ].Then there exists a Bm Wt ; t ∈ [0,T ] such that

Bt =∫ t

0KH(t, s)dWs ,

whereFor H > 1/2,

KH(t, s) = cHs 12−H

∫ t

s(u − s)H− 3

2 uH− 12 du s < t.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 34 / 62

Page 35: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of fBm on an finite intervalFix a time interval [0,T ] and consider the fBm B = Bt ; t ∈ [0,T ].Then there exists a Bm Wt ; t ∈ [0,T ] such that

Bt =∫ t

0KH(t, s)dWs ,

whereFor H > 1/2,

KH(t, s) = cHs 12−H

∫ t

s(u − s)H− 3

2 uH− 12 du, s < t.

For H < 1/2,

KH(t, s) = cH

[( ts

)H− 12

(t − s)H− 12

−(H − 12)s 1

2−H∫ t

suH− 3

2 (u − s)H− 12 du

], s < t.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 35 / 62

Page 36: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 36 / 62

Page 37: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integrals

Let E be the family of the step functions of the form

f =n∑

i=0ai I(tj ,tj+1].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 37 / 62

Page 38: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integrals

Let E be the family of the step functions of the form

f =n∑

i=0ai I(tj ,tj+1].

The Wiener integral with respect to B

I(f ) =n∑

i=0ai(Bti+1 − Bti )

and the space

L(B) = X ∈ L2(Ω) : X = L2(Ω)− limn→∞

I(fn), for some fn ⊂ E.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 38 / 62

Page 39: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integrals

L(B) = X ∈ L2(Ω) : X = L2(Ω)− limn→∞

I(fn), for some fn ⊂ E.

Proposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 39 / 62

Page 40: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integrals

L(B) = X ∈ L2(Ω) : X = L2(Ω)− limn→∞

I(fn), for some fn ⊂ E.

Proposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,the isometry is an extension of I.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 40 / 62

Page 41: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integralsProposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,the isometry is an extension of I.

Remarksa) For H < 1/2,

H = f ∈ L2([0,T ]) : f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s)

for some φf ∈ L2with (IαT−g)(s) = 1

Γ(α)

∫ Ts (x − s)α−1g(x)dx .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 41 / 62

Page 42: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integralsProposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,the isometry is an extension of I.

Remarksa) For H < 1/2,

H = f ∈ L2([0,T ]) : f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s)

for some φf ∈ L2with the inner product (f , g) = (φf , φg )L2([0,T ]).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 42 / 62

Page 43: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integralsProposition (Pipiras and Taqqu)Suppose that H is a inner product space with inner product (·, ·)such that :i) E ⊂ H and (f , g) = E (I(f )I(g)), for f , g ∈ E .ii) E is dense in H.

Then H is isometric to L(B) if and only if H is complete. Moreover,the isometry is an extension of I.

Remarksb) For H > 1/2,

H = f ∈ D′ : ∃f ∗ ∈ W 1/2−H,2(R) with supp(f ) ⊂ [0,T ]

such that f = f ∗|[0,T ]

with the inner product (f , g) = cH∫

R F f ∗(x)Fg∗(x)|x |1−2Hdx .Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 43 / 62

Page 44: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Wiener integralsa) For H < 1/2,

H = f ∈ L2([0,T ]) : f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s)

for some φf ∈ L2

with the inner product (f , g) = (φf , φg )L2([0,T ]).

b) For H > 1/2,

H = f ∈ D′ : ∃f ∗ ∈ W 1/2−H,2(R) with supp(f ) ⊂ [0,T ]

such that f = f ∗|[0,T ]

with the inner product (f , g) = cH∫

R F f ∗(x)Fg∗(x)|x |1−2Hdx .c) W s,2(R) = f ∈ S : (1 + |x |2)s/2F f (x) ∈ L2(R).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 44 / 62

Page 45: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of Wiener integrals

Moreover, there exists an isometry K ∗H : H → L2([0,T ]) and aBrownian motion W such that :

1 I(f ) =∫ T0 (K ∗H f )(s)dWs .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 45 / 62

Page 46: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of Wiener integralsMoreover, there exists an isometry K ∗H : H → L2([0,T ]) and aBrownian motion W such that :

1 I(f ) =∫ T0 (K ∗H f )(s)dWs .

2 K ∗H I[0,t] = KH(t, ·) with

KH(t, s) = cHs 12−H

∫ t

s(u− s)H− 3

2 uH− 12 du, s < t and H > 1/2

and

KH(t, s) = cH

[( ts

)H− 12

(t − s)H− 12

−(H − 12)s 1

2−H∫ t

suH− 3

2 (u − s)H− 12 du

], H < 1/2.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 46 / 62

Page 47: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of Wiener integrals

Moreover, there exists an isometry K ∗H : H → L2([0,T ]) and aBrownian motion W such that :

1 I(φ) =∫ T0 (K ∗Hφ)(s)dWs .

2 K ∗H I[0,t] = KH(t, ·) .3 For H < 1/2,

K ∗H f = φf ,

with f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s), s ∈ [0,T ].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 47 / 62

Page 48: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Representation of Wiener integrals

Moreover, there exists an isometry K ∗H : H → L2([0,T ]) and aBrownian motion W such that :

1 I(φ) =∫ T0 (K ∗Hφ)(s)dWs .

2 K ∗H I[0,t] = KH(t, ·) .3 For H < 1/2,

K ∗H f = φf ,

with f (s) = cHs 12−H(I

12−HT− uH− 1

2φf (u))(s), s ∈ [0,T ].

4 For H > 1/2 and φ ∈ E ,

(K ∗Hφ)(s) = cHs1/2−H(IH− 12

T− uh− 12φ(u))(s), s ∈ [0,T ].

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 48 / 62

Page 49: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Contents

1 Introduction

2 FBM and Some Properties

3 Integral Representation

4 Wiener Integrals

5 Malliavin Calculus

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 49 / 62

Page 50: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Derivative operator

Let S be the set of smooth functional of the form

F = f (B(φ1), . . . ,B(φn)),

where n ≥ 1, f ∈ C∞b (Rn) and φi ∈ H.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 50 / 62

Page 51: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Derivative operator

Let S be the set of smooth functional of the form

F = f (B(φ1), . . . ,B(φn)),

where n ≥ 1, f ∈ C∞b (Rn) and φi ∈ H. The derivative operator isgiven by

DF =n∑

i=1

∂f∂xi

(B(φ1), . . . ,B(φn))φi .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 51 / 62

Page 52: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Derivative operator

Let S be the set of smooth functional of the form

F = f (B(φ1), . . . ,B(φn)),

where n ≥ 1, f ∈ C∞b (Rn) and φi ∈ H. The derivative operator isgiven by

DF =n∑

i=1

∂f∂xi

(B(φ1), . . . ,B(φn))φi .

The operator D is closable from L2(Ω) into L2(Ω;H).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 52 / 62

Page 53: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 53 / 62

Page 54: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Transfer principle

Let W be the Brownian motion such that

Bt =∫ t

0KH(t, s)dWs t ∈ [0,T ].

Then,1 DomD=DomDW and

K ∗HDF = DW F .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 54 / 62

Page 55: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Transfer principle

Let W be the Brownian motion such that

Bt =∫ t

0KH(t, s)dWs t ∈ [0,T ].

Then,1 DomD=DomDW and

K ∗HDF = DW F .

2 φ ∈Domδ if and only if K ∗Hφ ∈DomδW and

δ(φ) = δW (K ∗Hφ).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 55 / 62

Page 56: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Transfer principle

1 DomD=DomDW and

K ∗HDF = DW F .

2 φ ∈Domδ if and only if K ∗Hφ ∈DomδW and

δ(φ) = δW (K ∗Hφ).

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

Remark For H = 1/2, H = L2([0,T ]).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 56 / 62

Page 57: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Transfer principle1 DomD=DomDW and K ∗HDF = DW F .2 φ ∈Domδ if and only if K ∗Hφ ∈DomδW and

δ(φ) = δW (K ∗Hφ).

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

Remark For H = 1/2, H = L2([0,T ]). So

E(F δW (u)

)= E

(∫ T

0(DW

s F )usds), F ∈ S, u ∈ L2(Ω× [0,T ]).

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 57 / 62

Page 58: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu)

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 58 / 62

Page 59: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu) + 〈DF , u〉H.

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 59 / 62

Page 60: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operator

The divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu) + 〈DF , u〉H.

Proof : Let G ∈ S, then

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 60 / 62

Page 61: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operatorThe divergence operator δ is the adjoint of D. It is defined by theduality relation

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu) + 〈DF , u〉H.

Proof : Let G ∈ S, then

E (〈DG ,Fu〉H) = E (〈D(GF ), u〉H − G 〈DF , u〉H)

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 61 / 62

Page 62: Fractional Brownian motion - math.univ-brest.fr · Contents 1 Introduction 2 FBMandSomeProperties 3 IntegralRepresentation 4 WienerIntegrals 5 MalliavinCalculus JorgeA.León (Cinvestav–IPN)

Divergence operatorThe divergence operator δ is the adjoint of D.

E (F δ(u)) = E (〈DF , u〉H) , F ∈ S, u ∈ L2(Ω,H).

PropositionLet u ∈Dom δ and F ∈ Dom D such that (Fu) ∈ L2(Ω;H) and(F δ(u)− 〈DF , u〉H) ∈ L2(Ω). Then

F δ(u) = δ(Fu)− 〈DF , u〉H.

Proof : Let G ∈ S, then

E (〈DG ,Fu〉H) = E (〈D(GF ), u〉H − G 〈DF , u〉H)

= E (G (F δ(u)− 〈DF , u〉H)) .

Jorge A. León (Cinvestav–IPN) FBM Roscoff 2010 62 / 62


Top Related