formal seminar_yang

38
Enhancement of photocatalytic activity by site-poisoning platinum doped titanium dioxide Yang Chu The University of Akron 1 Committees: Dr. Mesfin Tsige Dr. Toshikazu Miyoshi Advisor: Dr. Steven S.C. Chuang Research Presentation

Upload: yang-chu

Post on 14-Feb-2017

82 views

Category:

Documents


3 download

TRANSCRIPT

Page 1: Formal Seminar_Yang

1

Enhancement of photocatalytic activity by site-poisoning platinum doped titanium dioxide

Yang ChuThe University of Akron

Committees: Dr. Mesfin Tsige Dr. Toshikazu MiyoshiAdvisor: Dr. Steven S.C. Chuang

Research Presentation

Page 2: Formal Seminar_Yang

2

Overview of my Master project

Page 3: Formal Seminar_Yang

MotivationAir pollution

http://news.cutv.com/tupian/2013-12-6/1386305085865.shtmlhttp://www.asyousow.org/health_safety/energy.shtml

Water pollution

3

Coal-fired power plant Oil refinery

Page 4: Formal Seminar_Yang

4

Water Wind 

Nuclear Geothermal 

http://en.wikipedia.org/wiki/Power_station

Solar

Clean energy

Page 5: Formal Seminar_Yang

5

• A solar cell that can interconvert chemicals and electricity with the energy of light by the photovoltaic effect.

• Performance of PEC are determined by the hydrogen production and organic degradation.

Photoelectrochemical cell

Page 6: Formal Seminar_Yang

6

Gratzel, M., Nature, 2001, 414, 338

TiO2 Pt

Jsc: short circuit current densityVoc: open circuit voltagePmax: maximum power of PECPin: power of UV light

Page 7: Formal Seminar_Yang

7

Photocatalyst: semiconductor

http://www.powerguru.org/semiconductor-doping/M. Gratzel, Nature, 2001, 414, 338

Cyclic voltammetry

Epc: energy level of conduction bandEpa: energy level of valance bandBand gap = Epc-Epa

Page 8: Formal Seminar_Yang

8

Titanium dioxideThree main crystal structure: rutile, anatase and brookite

http://en.wikipedia.org/wiki/Titanium_dioxideWoodley, S. M.; Catlow, C. R. A. Computational Materials Science 2009, 45, 84-95.

RutileBand gap: 3.0 eV

AnataseBand gap: 3.2 eV

BrookiteBand gap: 3.4 eV

Ti atoms are grayO atoms are red

Slow electrontransfer

Fast Recombination

Surface

Page 9: Formal Seminar_Yang

9

Challenge of PECs Low performance – Electrolyte– Photocatalyst

Slow electron transfer to acceptorFast electron-hole recombination

Page 10: Formal Seminar_Yang

10Antoniadou, M.; Bouras, P.; Strataki, N.; Lianos, P., Int J Hydrogen Energy 2008, 33, 5045-5051.

Electrolyte

H2SO4 (aq.)NaOH (aq.)+EtOH

Chemical bias:∆V=0.059 ∆pH

Page 11: Formal Seminar_Yang

11

Ethanol enhancement

Antoniadou, M.; Bouras, P.; Strataki, N.; Lianos, P., Int J Hydrogen Energy 2008, 33, 5045-5051.

The anode electrolyte: 1.0 mol/L NaOH The cathode electrolyte: 1.0 mol/L H2SO4

20%

Page 12: Formal Seminar_Yang

12

Easier to be oxidized than H2O due to low oxidized potential

Proposed reaction pathway

Antoniadou, M.; Kondarides, D.; Lianos, P., Catal Lett 2009, 129, 344-349.

OrE0= +1.229V

E0= +0.197VE0= +0.580VE0= +0.42V

Page 13: Formal Seminar_Yang

13

Organics enhancement

Antoniadou, M.; Lianos, P., Catalysis Today 2009, 144 (1–2), 166-171.

Page 14: Formal Seminar_Yang

14

Photocatalyst

Enhancement of TiO2

• Increase the porosity • Extend its absorption spectrum from UV to the

visible range: N-TiO2

• Increase photocatalytic activity: Pt-TiO2

Page 15: Formal Seminar_Yang

15

Mechanism of Pt-TiO2

• Facilitate the interfacial electron transfer to electron acceptors

• Decrease fast electron-hole recombination by serving as an electron sink

A. Yamakata; T. Ishibashi; H. Onishi, J. Phys. Chem. B 2001, 105, 7258.

Page 16: Formal Seminar_Yang

16

Photocatalytic degradation of various organics over Pt-TiO2

Toluene

Young, C.; Lim, T. M.; Chiang, K.; Scott, J.; Amal, R., Applied Catalysis B: Environmental 2008, 78, 1-10.

CO2 concentration over time

Methylene blue (MB)

Z. Yu and S. S. C. Chuang, Appl. Catal., B, 2008, 83, 277-285

CO2

Pt-TiO2

UV

IR intensity over time

Page 17: Formal Seminar_Yang

17

Challenge

• Low performance– Electrolyte– Photocatalyst

Slow electron transfer to acceptorFast electron-hole recombination

Page 18: Formal Seminar_Yang

18

Hypothesis

Fast hole-electron recombination

Significantly decrease or inhibit electron-hole recombination

Block electron generating site

Page 19: Formal Seminar_Yang

19

Site poisoning: H2S

Sulfur

1. Hydrogen production is decreased.2. Organics degradation is increased.

Sulfur

Electron trap

Electron trap

Page 20: Formal Seminar_Yang

20

Preparation of photocatalystPt-TiO2

Pt-TiO2/H2S

0.5 wt.% Pt-TiO2

6.6 mg H2PtCl6

Z. Yu and S. S. C. Chuang, Appl. Catal., B, 2008, 83, 277-285

Page 21: Formal Seminar_Yang

21

Thin film preparation

TiO2 Pt-TiO2 Pt-TiO2/H2S

Page 22: Formal Seminar_Yang

Characterization of photocatalyst

22

4000 3500 1500 10000.0

0.5

1.0

1.5Pt-TiO

2/H

2S

Pt-TiO2

Sing

le b

eam

inte

nsity

(a.u

.)

Wavenumber (cm-1)

TiO2

3650

3629

3677

3414

4000 3500 1500 10000

2

4

Pt-TiO2/H

2S

Pt-TiO2

Abs

orba

nce

(a.u

.)

Wavenumber (cm-1)

TiO2

3650

3629

3677

3414

4000 3500 1500 10000.0

0.5

1.0

1.5 3711

Pt-TiO2/H2SPt-TiO

2Sing

le b

eam

inte

nsity

(a.u

.)

Wavenumber (cm-1)

TiO2

3650

3629

3677

3414

4000 3500 1500 10000.0

0.5

1.0

1.5

2.0 3711

Pt-TiO2/H2SPt-TiO2TiO

2

Abs

orba

nce

(a.u

.)

Wavenumber (cm-1)

3650

3629

3677

3414

IR of powder

IR of thin film

H2 O

• Pt-TiO2 and Pt-TiO2/H2S has more hydroxyl group in powder.• TiO2 has more hydroxyl group in thin film.

Single beam: I0Absorbance=log(1/ I0)

Page 23: Formal Seminar_Yang

23

200 300 400 500 600 700 8000.0

0.5

1.0

1.5

2.0

Pt-TiO2/H

2S

Abs

orba

nce

(a.u

.)

Wavelength (nm)

Pt-TiO2

TiO2

418

200 300 400 500 600 700 8000.0

0.5

1.0

Abs

orba

nce

(a.u

.)

Wavelength (nm)

Pt-TiO2/H

2S

Pt-TiO2

TiO2

418

Characterization of photocatalyst

UV-vis of powder UV-vis of thin film

• Band gap is not changed because of the same onset point.

Page 24: Formal Seminar_Yang

24

Atom %Ti O Pt S

TiO2 30.89 69.11 0 0Pt-TiO2 35.03 64.77 0.2 0Pt-TiO2/H2S 34.55 64.99 0.2 0.26

15 20 25 30 35 40 45

R

AR

A

R

2

Cou

nts (

a.u.

)

Pt-TiO2/H

2S

Pt-TiO2TiO

2

Pt (111)

Characterization of photocatalystXRD of powder

EDS (Energy-dispersive X-ray spectroscopy) of thin film

• Sulfur is only covered on the platinum.

• Crystal structure of TiO2 is not changed.

• Platinum is too little to be detected by XRD.

Page 25: Formal Seminar_Yang

25

Characterization of photocatalystTEM of powder

• Particle size of TiO2 is 15~25 nm, Pt is 3~5 nm.• Sulfur cannot been due to the non-conductivity.

Page 26: Formal Seminar_Yang

26

Characterization of photocatalystSide view: SEM of thin film

Top view: SEM of thin film

• The thickness of Pt-TiO2/H2S is much less than TiO2 and Pt-TiO2.• The optimize thickness is around 10~15 µm.

• Higher porosity causes the higher performance.

Page 27: Formal Seminar_Yang

27

Experimental setup of PECs

0.1% MB

TiO2

Pt-TiO2

Pt-TiO2/H2S 100 mW/cm2

Page 28: Formal Seminar_Yang

TiO2, Pt-TiO2 and Pt-TiO2/H2S tested in PECs

28

Current density vs. Voltage

0 10 20 30 40 50 60

0.0

0.5

1.0

1.5

UV

on

UV

off

UV

off

UV

on

UV

off

UV

on

TiO2

Pt-TiO2

Pt-TiO2/H

2S

Cur

rent

den

sity

(mW

/cm

2 )

Time (min)

1.0 V

0.5 V

0.0 V

• UV irradiation has significant effect on the current.• Pt-TiO2 has highest current at 0V because of the higher photocatalytic activity.• Pt-TiO2/H2S has lowest current because of the block electron generating site.

Page 29: Formal Seminar_Yang

0 10 20 30 40 50 60

1.0 V0.5 V0 V

CO2

CO2

H2

H2

H2

CO2

TiO2

Pt-TiO2

Pt-TiO2/H

2S

Ion

inte

nsity

(a.u

.)

Time (min)

8.88E-13 1.14E-12 1.57E-12

7.71E-13 8.33E-13 1.24E-121.53E-12 1.85E-12

7.54E-13 6.65E-13 5.12E-138.47E-13 6.56E-13 4.90E-13

3.43E-13 3.15E-13

29

MS: H2 and CO2

CO2 blubbing

• Pt-TiO2 and Pt-TiO2/H2S produced much more CO2 than TiO2.

Page 30: Formal Seminar_Yang

30

Catalyst Forward bias (V)

Average current density

(mW/cm2)

MS H2 intensity

area

H2 volume

(µL)

MS CO2 intensity

area

CO2 volume

(µL)

TiO2

0 0.41 0 0.00 0 0.000.5 0.89 1.53E-12 22.71 3.43E-13 0.511 1.49 1.85E-12 29.38 3.15E-13 0.47

Pt-TiO2

0 0.51 7.71E-13 6.90 8.47E-13 1.240.5 1.16 8.33E-13 8.19 6.56E-13 0.961 1.37 1.24E-12 16.67 4.90E-13 0.72

Pt-TiO2/H2S0 0.38 8.88E-13 9.33 7.54E-13 1.11

0.5 0.64 1.14E-12 14.58 6.50E-13 0.961 0.77 1.57E-12 23.54 5.12E-13 0.76

• TiO2 produced the most H2.• Pt-TiO2 and Pt-TiO2/H2S produced the similar amount of CO2.

• The rate of the gas production will be recorded in the future work.

Page 31: Formal Seminar_Yang

31

Methylene blue degradation

278.5 nm 597.1 nm Average

Methylene blue Peak height

Degradation percentage

Peak height

Degradation percentage

Degradation percentage

Before degradation 0.265 0.00% 0.514 0.00% 0.00%After degradation by TiO2 0.194 26.79% 0.376 26.85% 26.82%After degradation by Pt-TiO2 0.098 63.02% 0.206 59.92% 61.47%After degradation by Pt-TiO2/H2S 0.142 46.42% 0.289 43.77% 45.09%

200 300 400 500 600 700 8000.0

0.5

1.0

597.1278.5

Abs

orba

nce

(a.u

.)

Wavelength (nm)

Before degradation After degradation by TiO

2

After degradation by Pt-TiO2

After degradation by Pt-TiO2/H

2S

Before degradation

After degradation byTiO2 Pt-TiO2 Pt-TiO2/H2S

UV-vis of electrolyte

• Pt-TiO2 has the best performance to degrade the methylene blue.Y. Chu; M. Lohrasbi; S. S. C. Chuang, Manuscript preparation

Page 32: Formal Seminar_Yang

32

Possible reasons• Overloaded H2S covered the hole generating site. • The thickness of Pt-TiO2/H2S thin film is much less

than Pt-TiO2 thin film.

Solutions• Optimize the conditions of site poisoning.• Reduce the aggregation size of Pt-TiO2/H2S and make

thin films with the exactly same thickness.

Page 33: Formal Seminar_Yang

33

Effect of UV light intensity

0

2

4

0.8

0.9

0 5 10 15 20 25

12.3

12.4

UV

on

UV

on

UV

on

UV

on

UV

off

UV

off

UV

off

UV

off

UV

off

UV

on

2.0V1.5V1.0V0.5V

Cur

rent

den

sity

(mA

/cm

2 )

0V

Base

Acid

Time (min)

pHpH

0 5 10 15 20 251.30

1.35

1.40

1.45

1.50

1.55

1.60

2.0 V1.5 V

1.0 V0.5 V

0.0 V

pH

Time (min)

1000 mW/cm2

100 mW/cm2

10 mW/cm2

0 5 10 15 20 2512.60

12.64

12.68

12.72

12.76

12.80

pH

Time (min)

2.0 V1.5 V1.0 V0.5 V0.0 V

UV light intensity affect pH change

• pH vibrate with the on and off of UV irradiation.• Higher UV light intensity causes larger amplitude.

Page 34: Formal Seminar_Yang

34

UV light affect voltage and current density

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.000

0.001

0.002

0.003 Reverse biasForward bias2000 mW/cm2

1000 mW/cm2

500 mW/cm2

200 mW/cm2

100 mW/cm2

75 mW/cm2

50 mW/cm2

30 mW/cm2

10 mW/cm2

Dark current

75 mW/cm2

100 mW/cm2

Cur

rent

den

sity

(A/c

m2 )

Voltage (V)

0.0 0.50.0000

0.0001

0.0002

0.0003

0.0004

• Current didn’t increase with the forward bias below 75 mW/cm2.• Current increase proportional to the forward bias above 100 nm/cm2.• Low UV light intensity has high Voc and high intensity has high Jsc.

Jsc

Voc

Page 35: Formal Seminar_Yang

35

Summary

• Photoelectrochemical cell can not only generate hydrogen as clean energy, but also decompose organic wastes for polluted water treatment.

• Pt-TiO2 can enhance photocatalytic activity compared to TiO2.

• H2S is possible to poison Pt for blocking the electron generating site and significantly decrease the electron-hole recombination to increase the organics degradation.

Page 36: Formal Seminar_Yang

36

Future work

• Performance of TiO2, Pt-TiO2 and Pt-TiO2/H2S thin films with the same thickness will be urgently compared.

• The doping amount of Pt and the conditions of H2S poisoning need to be optimized.

• In-situ infrared spectroscopy is strongly needed to study the photocatalytic degradation pathway of organics on Pt-TiO2/H2S.

Page 37: Formal Seminar_Yang

37

• Ag and Fe will be tried to replace Pt because they have similar properties for enhancing the photocatalytic activity of TiO2 at low cost.

• Develop the applications of PEC in the utilization of the shale gas that can provide the energy with high efficiency and environmental friendly.

Future work

Page 38: Formal Seminar_Yang

38

Acknowledgment

• Advisor: Dr. Steven S.C. Chuang• Committee members: Dr. Mesfin Tsige,

Dr. Toshikazu Miyoshi• Mehdi Lohrasbi, Piyapong Pattanapanishsawat, Dan

Huang, Jie Yu• Other group members• Families and friends