food engineering aspects of baking sweet goods

299

Upload: dcrisostomo8010

Post on 24-Oct-2014

727 views

Category:

Documents


41 download

TRANSCRIPT

Page 1: Food Engineering Aspects of Baking Sweet Goods
Page 2: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspectsof Baking Sweet Goods

52748.indb 1 2/11/08 1:04:53 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 3: Food Engineering Aspects of Baking Sweet Goods

Contemporary Food Engineering

Series Editor

Professor Da-Wen Sun, DirectorFood Refrigeration & Computerized Food Technology

National University of Ireland, Dublin(University College Dublin)

Dublin, Irelandhttp://www.ucd.ie/sun/

Food Engineering Aspects of Baking Sweet Goods, edited by Servet Gülüm Sumnu and Serpil Sahin (2008)

Computational Fluid Dynamics in Food Processing, edited by Da-Wen Sun (2007)

52748.indb 2 2/11/08 1:04:54 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 4: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspectsof Baking Sweet Goods

Edited by

Servet Gülüm SumnuSerpil Sahin

CRC Press is an imprint of theTaylor & Francis Group, an informa business

Boca Raton London New York

52748.indb 3 2/11/08 1:04:54 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 5: Food Engineering Aspects of Baking Sweet Goods

CRC PressTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487‑2742

© 2008 by Taylor & Francis Group, LLC CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government worksPrinted in the United States of America on acid‑free paper10 9 8 7 6 5 4 3 2 1

International Standard Book Number‑13: 978‑1‑4200‑5274‑9 (Hardcover)

This book contains information obtained from authentic and highly regarded sources Reason‑able efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The Authors and Publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC) 222 Rosewood Drive, Danvers, MA 01923, 978‑750‑8400. CCC is a not‑for‑profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Food engineering aspects of baking sweet goods / editors, Servet Gulum Sumnu, Serpil Sahin.

p. cm. ‑‑ (Contemporary food engineering)Includes bibliographical references and index.ISBN 978‑1‑4200‑5274‑9 (hardback : alk. paper)1. Baked products‑‑Analysis. 2. Food‑‑Analysis. I. Sumnu, Servit Gulum. II.

Sahin, Serpil. III. Title. IV. Series.

TP431.F66 2007664’.752‑‑dc22 2007049013

Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.com

and the CRC Press Web site athttp://www.crcpress.com

52748.indb 4 2/11/08 1:04:54 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 6: Food Engineering Aspects of Baking Sweet Goods

To

Erin Bora, Melisa Defne, and Devin Kerem Dindoruk

and

Tuğçe and Gökçe Özkan and Kaan Demirezen

52748.indb 5 2/11/08 1:04:54 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 7: Food Engineering Aspects of Baking Sweet Goods

ii

ContentsSeries Editor’s Preface ..............................................................................................ixPreface ......................................................................................................................xiAbout the Series Editor .......................................................................................... xiiiAbout the Editors .....................................................................................................xvContributors ...........................................................................................................xvii

Chapter 1 Soft Wheat Quality ..............................................................................1

Edmund J. Tanhehco, Perry K.W. Ng

Chapter 2 Functions of Ingredients in the Baking of Sweet Goods ................... 31

Dasappa Indrani, Gandham Venkateswara Rao

Chapter 3 Chemical Reactions in the Processing of Soft Wheat Products ........ 49

Hamit Köksel, Vural Gökmen

Chapter 4 Cake Emulsions .................................................................................. 81

Sarabjit S. Sahi

Chapter 5 Cake Batter Rheology ........................................................................99

Serpil Sahin

Chapter 6 Cookie Dough Rheology .................................................................. 121

Meryem Esra Yener

Chapter 7 Technology of Cake Production ....................................................... 149

Suzan Tireki

Chapter 8 Technology of Cookie Production .................................................... 159

Suzan Tireki

Chapter 9 Heat and Mass Transfer during Baking of Sweet Goods ................. 173

Weibiao Zhou, Nantawan Therdthai

52748.indb 7 2/11/08 1:04:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 8: Food Engineering Aspects of Baking Sweet Goods

iii FoodEngineeringAspectsofBakingSweetGoods

Chapter 10 Physical and Thermal Properties of Sweet Goods ........................... 191

Shyam S. Sablani

Chapter 11 Alternative Baking Technologies ..................................................... 215

Dilek Kocer, Mukund V. Karwe, Servet Gülüm Sumnu

Chapter 12 Low-Sugar and Low-Fat Sweet Goods .............................................245

Manuel Gómez

52748.indb 8 2/11/08 1:04:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 9: Food Engineering Aspects of Baking Sweet Goods

ix

SeriesEditor’sPreface

Contemporary Food engineering

Food engineering is the multidisciplinary field of applied physical sciences combined with the knowledge of product properties. Food engineers provide the technological knowledge transfer essential to the cost-effective production and commercialization of food products and services. In particular, food engineers develop and design pro-cesses and equipment in order to convert raw agricultural materials and ingredi-ents into safe, convenient, and nutritious consumer food products. However, food engineering topics are continuously undergoing changes to meet diverse consumer demands, and the subject is being rapidly developed to reflect market needs.

In the development of food engineering, one of the many challenges is to employ modern tools and knowledge, such as computational materials science and nano-technology, to develop new products and processes. Simultaneously, improving food quality, safety, and security remain critical issues in food engineering study. New packaging materials and techniques are being developed to provide more protection to foods, and novel preservation technologies are emerging to enhance food security and defense. Additionally, process control and automation regularly appear among the top priorities identified in food engineering. Advanced monitoring and control systems are developed to facilitate automation and flexible food manufacturing. Fur-thermore, energy saving and minimization of environmental problems continue to be an important food engineering issue and significant progress is being made in waste management, efficient utilization of energy, and reduction of effluents and emissions in food production.

Consisting of edited books, the Contemporary Food Engineering book series attempts to address some of the recent developments in food engineering. Advances in classical unit operations in engineering applied to food manufacturing are covered as well as such topics as progress in the transport and storage of liquid and solid foods; heating, chilling, and freezing of foods; mass transfer in foods; chemical and biochemical aspects of food engineering and the use of kinetic analysis; dehydration, thermal processing, nonthermal processing, extrusion, liquid food concentration, membrane processes and applications of membranes in food processing; shelf-life, electronic indicators in inventory management, and sustainable technologies in food processing; and packaging, cleaning, and sanitation. The books aim at professional food scientists, academics researching food engineering problems, and graduate-level students.

The editors of the books are leading engineers and scientists from many parts of the world. All the editors were asked to present their books in a manner that will address the market need and pinpoint the cutting-edge technologies in food engineer-ing. Furthermore, all contributions are written by internationally renowned experts who have both academic and professional credentials. All authors have attempted to

52748.indb 9 2/11/08 1:04:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 10: Food Engineering Aspects of Baking Sweet Goods

x FoodEngineeringAspectsofBakingSweetGoods

provide critical, comprehensive, and readily accessible information on the art and science of a relevant topic in each chapter, with reference lists to be used by readers for further information. Therefore, each book can serve as an essential reference source to students and researchers in universities and research institutions.

Da-Wen Sun, Series Editor

52748.indb 10 2/11/08 1:04:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 11: Food Engineering Aspects of Baking Sweet Goods

xi

PrefaceBaking is a complex food process that involves simultaneous heat and mass transfer. Understanding the baking process is necessary for process and product develop-ment. The books dealing with this topic mainly concentrate on different product formulations and functions of ingredients in cookies, cakes, and so forth. To date, baking has been a field of trial and error. In this book, we chose to look at the topic of baking from a different perspective. We aimed to combine engineering and science aspects of baking, as this is lacking in baking books.

Rheological and emulsion properties of dough and batter, physical properties of sweet goods, and heat and mass transfer during baking are important in under-standing the baking process. For this reason, in this book we include chapters on the rheology of cake batter and cookie dough, physical and thermal properties of sweet goods, cake emulsions, and heat and mass transfer during baking. In addition, information is presented on the food science aspects of soft wheat products, includ-ing quality of soft wheat, functions of ingredients in the baking of sweet goods, and chemical reactions during processing. Moreover, information on cake and cookie technology is provided. The principles of recent technologies for baking soft wheat products, such as jet impingement, microwave and hybrid ovens, and recent studies in this area are also summarized. Presented in the last chapter of this book is a sum-mary of the nutritional issues regarding the consumption of fats and sugars and gen-eral strategies of substituting fats and sugars in baked products, because the recent trend among consumers is to consume low-calorie products.

Various experts in different fields from different countries contributed to this book. The editors believe that this book will be helpful for undergraduate or gradu-ate students who are working in the field of baking, food science, and food engineer-ing, and also people from the food industry.

Servet Gülüm SumnuSerpil Sahin

52748.indb 11 2/11/08 1:04:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 12: Food Engineering Aspects of Baking Sweet Goods

xiii

AbouttheSeriesEditorBorn in Southern China, Professor Da-Wen Sun is internationally recognized for his leadership in food engineering research and education. His main research activities include cooling, drying, and refrigeration processes and systems, quality and safety of food products, bioprocess simulation and optimization, and computer vision tech-nology. Especially, his innovative studies on vacuum cooling of cooked meats, pizza quality inspection by computer vision, and edible films for shelf-life extension of fruits and vegetables have been widely reported in national and international media. Results of his work have been published in over 150 peer-reviewed journal papers and more than 200 conference papers.

He received first class B.Sc. Honors and M.Sc. in mechanical engineering, and a Ph.D. in chemical engineering in China before working in various universities in Europe. He became the first Chinese national to be permanently employed in an Irish University when he was appointed college lecturer at National University of Ireland, Dublin (University College Dublin), in 1995, and was then rapidly promoted to senior lecturer, associate professor, and full professor. Sun is now professor and director of the Food Refrigeration and Computerized Food Technology Research Group in University College Dublin.

As a leading educator in food engineering, Sun has contributed significantly to the field of food engineering. He has trained many Ph.D. students, who have made their own contributions to the industry and academia. He has also, on a regular basis, given lectures on advances in food engineering in academic institutions internation-ally and delivered keynote speeches at international conferences. As a recognized authority in food engineering, he has been conferred adjunct and visiting and consult-ing professorships from ten top universities in China including Zhejiang University, Shanghai Jiaotong University, Harbin Institute of Technology, China Agricultural University, South China University of Technology, and Southern Yangtze University. In recognition of his significant contribution to food engineering worldwide and for his outstanding leadership in the field, the International Commission of Agricultural Engineering (CIGR) awarded him the CIGR Merit Award in 2000 and again in 2006 and the Institution of Mechanical Engineers (IMechE) based in the United Kingdom named him Food Engineer of the Year 2004.

He is a Fellow of the Institution of Agricultural Engineers. He has also received numerous awards for teaching and research excellence, including the President’s Research Fellowship, and twice received the President’s Research Award of Univer-sity College Dublin. He is a member of the CIGR Executive Board and Honorary Vice-President of CIGR, editor-in-chief of Food and Bioprocess Technology—An International Journal (Springer), series editor of the “Contemporary Food Engi-neering” book series (CRC Press/Taylor & Francis), former editor of Journal of Food Engineering (Elsevier), and editorial board member for Journal of Food Pro-cess Engineering (Blackwell), Sensing and Instrumentation for Food Quality and Safety (Springer), and Czech Journal of Food Sciences. He is also a chartered engi-neer registered in the UK Engineering Council.

52748.indb 13 2/11/08 1:04:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 13: Food Engineering Aspects of Baking Sweet Goods

x

AbouttheEditorsServet Gülüm Sumnu is an associate professor in the Department of Food Engi-neering, Middle East Technical University, Ankara, Turkey. She has authored or coauthored 55 journal articles and book chapters. She is one of the authors of Physi-cal Properties of Foods (2006, Springer). She received BS (1991), MS (1994), and PhD (1997) degrees from the Department of Food Engineering, Middle East Tech-nical University. Sumnu was a visiting scholar in the Department of Food Science and Technology at the Ohio State University for one year (1996). She is working on microwave food processes, especially microwave baking and frying. Her research also focuses on physicochemical properties of hydrocolloids and the determination of physical properties of foods.

Serpil Sahin is an associate professor in the Department of Food Engineering, Mid-dle East Technical University, Ankara, Turkey. She has authored or coauthored about 40 journal articles and book chapters. She is one of the authors of Physical Proper-ties of Foods (2006, Springer). She received BS (1989), MS (1992), and PhD (1997) degrees from the Department of Food Engineering, Middle East Technical Univer-sity. Sahin was a visiting scholar in the Department of Food Science and Technology at the Ohio State University for one year (1996). She is working on food processes, especially frying, baking, separation processes, and applications of the microwave.

52748.indb 15 2/11/08 1:04:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 14: Food Engineering Aspects of Baking Sweet Goods

xii

Contributors

Vural GökmenDepartment of Food EngineeringHacettepe UniversityAnkara, Turkey

Manuel GómezE.T.S. Ingenierías Agrarias. AvdaMadrid, Spain

Dasappa IndraniFlour Milling, Baking, and

Confectionery TechnologyCentral Food Technological Research

InstituteMysore, India

Mukund V. KarweDepartment of Food ScienceRutgers, The State University of New

JerseyNew Brunswick, New Jersey

Dilek KocerNational Food Starch InnovationBridgewater, New Jersey

Hamit KökselDepartment of Food EngineeringHacettepe UniversityAnkara, Turkey

Perry K.W. NgDepartment of Food Science and

Human NutritionMichigan State UniversityEast Lansing, Michigan

Gandham Venkateswara RaoFlour Milling, Baking, and

Confectionery TechnologyCentral Food Technological Research

InstituteMysore, India

Shyam S. SablaniDepartment of Biological Systems

EngineeringWashington State UniversityPullman, Washington

Sarabjit S. SahiCereals Processing and Bakery ScienceCampden and Chorleywood Food

Research AssociationGloucestershire, United Kingdom

Serpil SahinDepartment of Food EngineeringMiddle East Technical UniversityAnkara, Turkey

Servet Gulum SumnuDepartment of Food EngineeringMiddle East Technical UniversityAnkara, Turkey

Edmund J. TanhehcoMennel Milling CompanyFostoria, Ohio

Nantawan TherdthaiDepartment of Product Development,

Faculty of Agro-IndustryKasetsart UniversityBangkok, Thailand

52748.indb 17 2/11/08 1:04:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 15: Food Engineering Aspects of Baking Sweet Goods

xiii FoodEngineeringAspectsofBakingSweetGoods

Suzan TirekiETI Group of CompaniesEskisehir, Turkey

Meryem Esra YenerDepartment of Food EngineeringMiddle East Technical UniversityAnkara, Turkey

Weibiao ZhouFood Science and Technology ProgramNational University of SingaporeSingapore

52748.indb 18 2/11/08 1:04:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 16: Food Engineering Aspects of Baking Sweet Goods

1 Soft Wheat QualityEdmund J. Tanhehco, Perry K.W. Ng

Contents

1.1 Introduction.....................................................................................................21.2 WheatProduction,Classification,andUsage.................................................2

1.2.1 Texture.................................................................................................31.2.2 Color.....................................................................................................31.2.3 Growth.................................................................................................3

1.3 FlourMilling...................................................................................................31.4 MajorConstituentsofSoftWheatFlour.........................................................5

1.4.1 Proteins................................................................................................51.4.2 Starch...................................................................................................51.4.3 Pentosans..............................................................................................61.4.4 Lipids...................................................................................................7

1.5 QualityEvaluationofWheatGrainandFlour................................................71.5.1 WheatGrain.........................................................................................8

1.5.1.1 TestWeight.............................................................................81.5.1.2 ExperimentalMilling.............................................................81.5.1.3 BreakFlourYield...................................................................81.5.1.4 KernelTexture........................................................................8

1.5.2 WheatFlour.........................................................................................91.5.2.1 Moisture.................................................................................91.5.2.2 Ash....................................................................................... 101.5.2.3 Protein.................................................................................. 101.5.2.4 SproutDamage..................................................................... 101.5.2.5 DamagedStarch................................................................... 111.5.2.6 PolyphenolOxidase.............................................................. 111.5.2.7 AlkalineWaterRetentionCapacityofFlour....................... 111.5.2.8 SolventRetentionCapacityofFlour.................................... 11

1.5.3 DoughRheology................................................................................ 121.5.3.1 Alveograph........................................................................... 131.5.3.2 MixographandFarinograph................................................. 14

1.5.4 ProductsRequiringWeakerProteins................................................. 141.5.4.1 Cookies................................................................................. 141.5.4.2 High-RatioCakes................................................................. 16

1.5.5 ProductsRequiringStrongerProteins............................................... 161.5.5.1 Crackers................................................................................ 161.5.5.2 Noodles................................................................................. 16

1.6 EffectsofFlourComponentsonCookies..................................................... 171.6.1 Proteins.............................................................................................. 17

52748.indb 1 2/6/08 2:24:26 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 17: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

1.6.2 Starch................................................................................................. 181.6.3 Pentosans............................................................................................ 191.6.4 Lipids................................................................................................. 19

1.7 EffectsofFlourComponentsonCakes........................................................201.7.1 FlourParticleSize..............................................................................201.7.2 Proteins..............................................................................................201.7.3 Lipids................................................................................................. 21

1.8 FlourChlorination......................................................................................... 211.8.1 Starch.................................................................................................221.8.2 Lipids.................................................................................................221.8.3 Proteins..............................................................................................231.8.4 AlternativestoChlorination..............................................................24

1.9 Conclusion.....................................................................................................24References................................................................................................................24

. IntroduCtIon

Thecategoryofsweetgoodsmadefromwheatflourencompassesawidevarietyofproductswithdifferentappearances,textures,flavors,nutritionalvalues,andshelflives.Theseincludedifferenttypesofcakes,cookies,doughnuts,pastries,andmanymoreitems.Thequalityofthesegoodsbeginswiththatofthesoftwheatflourusedtoproduce them.Flourquality is, in turn,affectedby thewheatgenotype,grow-ing environment, and processing. The genotype and growing environment deter-minetheamountandcharacteristicsofthewheatcomponents,includingproteins,carbohydrates, and lipids. To produce high-quality flour, wheat must be properlymilled;postmillingprocessingsuchaschlorinationisalsosometimesutilizedforitsbenefits.Qualitytestingassuresthataflourmeetsanynecessarystandardsandgivesvaluable information to thoseseekingto improve it.These tests include thedeterminationofproximatecompositionalongwithvariouschemical,rheological,andbakingtests.Thefollowingsectionsofthischapterdescribethemillingofsoftwheatintoflour,compositionofflour,qualitytesting,andhowflourpropertiesrelatetothequalityofproductssuchascookiesandcakes.

. WheatProduCtIon,ClassIfICatIon,andusage

Wheat isoneof themajorcropsgrown in theworld,withover620millionmet-rictons(MMT)producedworldwidein2005(USDAForeignAgricultureService2007).U.S.andCanadianwheatproductionaccountedforover57and26MMT,respectively.Commonwheat,Triticumaestivum,isusedforawiderangeofprod-uctsincludingbreads,cakes,cookies,crackers,noodles,breakfastcereals,andmuchmore.Whendescribingwheatvarieties,classificationcanbebasedontexture,color,andgrowthhabit.

1.2.1 TexTure

Wheatiscategorizedashardorsoftbasedonkerneltexture,oneofthemajordeter-minantsofenduse.Comparedtowheatwithasoftertexture,hardwheatrequires

52748.indb 2 2/6/08 2:24:27 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 18: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

moreenergytobemilledintoflourandproducesacoarserflour,andalsoonewithmore starch damage. Conversely, wheat kernels with softer texture produce finerflourwithlessstarchdamage,bothimportantattributesofhigh-qualitysoftwheatflour.Themajority ofwheat grownworldwide is hard. In theUnitedStates, softwheataccountsforabout25%ofwheatproduction.

1.2.2 Color

Wheatcanalsobeclassifiedasredorwhitedependingonthecolorofthebrancover-ingthewheatkernel.Themajordifferencebetweenthetwo,otherthanappearance,isthegreatersusceptibilityofwhitewheattosproutingunderfavorable(moistandwarm)conditions.Thismakes theuseofwhitewheatundesirableforsomefood-processingapplicationssuchasthickening.However,thereareadvantagestowhitewheat,suchasthebranbeinglessbitterinflavor.Millingyields(orextractionrates)canalsobehigherinsomecasesbecausethebranofwhitewheatdoesnotdarkenflourasmuchasredwheatbran(LinandVocke2004).

1.2.3 GrowTh

Wheatplantedinthespringandharvestedinlatesummerinthesameyearisreferredtoasspringwheat.Winterwheatisusuallyplantedinlatesummerorearlyfallandharvested the followingsummer.Soft redwinterwheataccounts for themajorityof soft wheat planted in the United States. Major soft wheat producing areas liearoundtheMississippiRiver,Ohio,andsomeareasontheeastcoast(USDAEco-nomicResearchService2006).StatesthatgrowsoftwhitewheatincludethoseinthePacificNorthwest(Washington,Oregon,andIdaho),alongwithMichiganandNewYork.TheprovincesofOntarioandAlberta,Canada,accountformuchoftheCanadiansoftwheatproduction.

Hardwheatsaregenerallybredtohavehigherproteincontentthansoftwheats,althoughproteincontentandhardnessarenotnecessarilylinked.Thisreflectsthedifferentend-userequirementsofhard(>11%protein)andsoftwheatflours(8to10%protein).Themainuseofhardwheatfloursisinbread,wherestrongandhighlevelsofproteinareneeded.Softwheatfloursontheotherhandareusedinproductswhereweakerprotein (i.e.,weakerdough strengthandweakerviscoelasticproperties) isdesired,includingproductssuchascakesandcookies.However,softwheatfloursarealsousedforawiderangeofgoods,somerequiringhigherlevelsofproteins,althoughnotnecessarily“strong”proteins.Crackersandnoodlesfallintothiscategory.

. flourMIllIng

Themajorcomponentsofthewheatkernelaretheoutercoveringofbran,theembryoorgerm,andtheendosperm.Thegoalofflourmillingistoseparatethesethreeascleanlyaspossible,alongwithreducingtheendospermintoflourparticles.Higherextractionratesofflour,whileeconomicallydesirable,mayresultinflourwithexces-sivebrancontamination(andtherebyhigherashcontent)aswellasincreasedstarchdamage.Therefore,aproperbalanceneedstobeachieved,dependingonthedesiredenduseoftheflour.

52748.indb 3 2/6/08 2:24:27 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 19: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Aftercleaningthewheatofanydebris,thefirststepinmillingistheadditionofwater,referredtoastempering.Thepurposeoftemperingistotoughenthebran,keepingitinlargerflakes,therebyreducingtheamountofsmallbranparticleslatercontaminating the flour. An additional benefit of tempering is that it softens theendosperm, further reducingbreakageof thebranwhen it is crushed against theendospermduringmilling.Theamountofwateraddedintemperingvariesdepend-ingonthehardnessofthewheatandtheflourmillmachinerybeingused.Softwheatiscommonlytemperedtoaround14to15%moisture;hardwheatrequireshigherlevels.Thetimeneededfortemperingcanrangefromafewhoursupto24h,againdependingonthewheat.DetailedinformationonwheattemperingandpreparationforexperimentalmillingcanbefoundintheAmericanAssociationofCerealChem-istsInternational(AACCI)Method26-10A(AACCInternational2000).

Theproductionofflourisachievedthroughrollermillingwhichinvolvessetsoftwosteelrollsspinninginoppositedirections,betweenwhichthewheatfallstobeground.Theflourmilliscomposedoftwomainsystems:thebreakandthereduction.Thepurposeof thebreaksystemis to ripopen thewheatkernelandseparate the endosperm from the bran as cleanly as possible. This is achievedwithcorrugatedrollsturningwithadifferentialinspeed.Theslowerrollservestoholdthekernelwhilethefasterrollbreaksitopen.Multiplepassesthroughdif-ferentsetsofbreakrollswithdifferentgapsandcorrugationsareusedtoachieveagradualseparationofthebranandendosperm,whilekeepingthebranasintactaspossible.Inadditiontoseparatingthebranandendosperm,someflourisalsoproducedaftereachpassthroughthebreakrollsandissiftedout.Wheatwithasofterkerneltexturefracturesmoreeasilyandproducesmoreflourinthebreaksystemthandoeswheatwithahardertexture(Finney1989).Flourobtainedinthebreaksystemiscalled“breakflour”andhasasmallerparticlesizethantheflourproducedlateronduringmillinginthereductionsystem(i.e.,reductionflour).Theremainingendospermfreedbythebreakrollsrequiresfurthermillingandgoesontothereductionsystem.

Thereductionsystemissimilartothebreaksystemwiththemaindifferencebeingthatthereductionrollsaresmooth.Multiplepassesthroughdifferentreduc-tionrollswithsievinginbetweeneachpassareusedtograduallyreducetheendo-spermtoflourofthedesiredparticlesize.Thisgradualreductionisdonetocontrolthelevelofstarchdamage.Adjustingthepressurebetweentherollsandchangingtheleveloftemperingcanalsohelptocontroltheamountofstarchdamageinthemilledflour.

Furtherdownstreaminthemillingprocess,ashcontentishigherduetoincreasesinfinebrancontamination,andstarchdamageishigherduetothenarrowerreduc-tion roll gaps.Therefore, thedifferent break and reductionflour streamsneed tobe selectively blended together to produce flour with the desired characteristics.Straight-gradefloursareacombinationofalloftheflourstreams.Patentflourscon-sistofhigher-gradestreamswithlessbran(lighterincolor)andconsequentlylessash,andclearflourshavehigherbrancontamination(darkerincolor)andhigherash.Detailedinformationregardingmillingcanbefoundintheliterature(PosnerandHibbs1997).

52748.indb 4 2/6/08 2:24:28 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 20: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

. MajorConstItuentsofsoftWheatflour

Theconstituentsofwheatflourvaryduetothegenotypeandthegrowingenviron-ment.These, in turn,determine theend-usecharacteristics,withcertainvarietiesofwheatbeingbettersuitedtospecifictypesofproducts.Themostimportantflourconstituentsinrelationtoflourfunctionalityincludetheproteins,starches,pento-sans(thelargestportionofnonstarchpolysaccharides),andlipids.

1.4.1 ProTeins

Osborne(1907)fractionatedwheatproteinsintofourclassesbasedontheirsolubilityindifferentsolvents.Byhisclassification,albuminswereproteinssolubleinwater,andglobulinsweresolubleinsaltsolutions.Prolaminswerefoundtobesolublein70to85%ethanol,andglutelinsweresolubleindiluteacid.Overthedecades,fur-therworkwasdonetofractionatetheproteins,asthereissomeoverlapbetweenthedifferentclassesandbecausestillfurtherfractionationcanbedonewithdifferentsolvents(ChenandBushuk1970;Kreisetal.1985).

Wheatproteinshavetheuniqueabilitytoformaviscoelasticnetworkthatallowsfortheproductionofproductssuchasbread.Theproteinsmainlyresponsiblefortheviscoelasticpropertiesofflourarethegliadins(prolamins)andglutenins(glutelins).Gluteninsarelargepolymericproteinsheldtogetherbydisulfidebonds.Thesepro-teinsgivedoughstrengthandelasticity.Gliadinsaresmallermonomericproteinsthatareresponsiblefordoughextensibility.Togethertheseproteinsformtheglutenpro-teins.Boththequantity(amount)andquality(type)ofproteinareimportanttoflourcharacteristics.Thestrongglutenproteinsfoundinhardwheatflourareabletoformanetworkwithgoodgas-retainingpropertiesvitalforyeast-leavenedproducts.

Softwheatfloursaretypicallylowinproteincontent(8to10%)andtheproteinsareweakinstrength,characteristicsbettersuitedtomakingmoretenderproductssuchascakesandcookies.Most researchhasbeenfocusedonunderstanding themoreobvious roleofproteins inhardwheatproducts,with less focuson the roleofproteinsinsoftwheatproducts.However,studieshaveshownthatinadditiontoquantity,proteincompositionisimportantinsoftwheatproducts,makingitsstudynecessary(FinneyandBains1999;Houetal.1996a,1996b;Huebneretal.1999;Souzaetal.1994).

1.4.2 sTarCh

Ingeneral,wheatflourcontainsover70%starch (SollarsandRubenthaler1971)thatiscomposedofapproximately25%amyloseand75%amylopectin.Amyloseisaprimarilystraight-chainpolymerofα-1,4-linkedD-glucopyranosemolecules.Amylopectin isabranchedpolymerofα-1,4-linkedglucoseconnectedbyα-1,6-linkedbranchpoints.Amyloseandamylopectinareorganizedinstarchgranulesrangingfrom1to45µmindiameter.Wheatstarchgranulescomeintwoforms:ovaltypeAgranulesabout35µmindiameter,androundtypeBgranulesapproxi-mately3µmindiameter(Alexander1995).Oneofthemostimportantpropertiesofstarchisitsabilitytoswellandabsorbwaterwhenitisheatedinexcesswater.Asstarchgranulesswell,theycauseanincreaseintheviscosityofthestarch–water

52748.indb 5 2/6/08 2:24:28 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 21: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

slurry,untileventuallythegranulesbreakdown,releasingprimarilyamylose,fol-lowed by amylopectin. Upon cooling, the starch molecules, especially amylose,canreassociate,formingagel.Theprocessesofgranuleswellingandbreakdownarereferredtoasgelatinizationandpasting,respectively,andcanbevisualizedinwheatflourbymeasuringtheviscosityofaflour–waterslurryasitisheatedandcooled(Figure1.1).Thesepropertiesofstarchareimportantinmanyaspectsrelat-ingtoflourqualitybecausetheyinfluencetheinteractionsofstarchandwaterinafoodsystem.

Starchgranulescanbephysicallydamagedduringflourmilling,increasingtheirwater-holdingabilityandsusceptibilitytoattackfromtheenzymeα-amylase.GreerandSteward(1959)foundthat2gofwaterwasabsorbedbyeachgramofdamagedstarch,comparedtoonly0.44gofwaterabsorbedbyeachgramofnativestarch.Softwheatflour, ingeneral, is lower indamaged starch content thanhardwheatflour,duetothesofterkerneltextureandhigherbreakflouryield.Inbreadflour,acontrolledamountofdamagedstarchisneededbecausetheenzymaticbreakdownof starch provides some food for the yeast. However, in soft wheat products, theincreasedwaterabsorptionassociatedwithincreasedlevelsofdamagedstarchcanbedetrimentaltoproductquality.

1.4.3 PenTosans

Pentosansarecarbohydratesofinterestduetotheirabilitytoabsorbtentimestheirownweightinwater(D’AppoloniaandKim1976;Kulp1968).Theyarefoundinthe

500

400

300

200

100

0

Temperature

Viscosity

Time (minutes)

Tem

pera

ture

(˚C

)100

90

80

70

60

50

40

30

200 5 10 15 20

Visc

osity

(RV

U)

fIgure. RapidViscoAnalyzerpastingcurveof3.5gofsoftwheatflourin25mlofwater.(RVU:viscosityinRapidViscounits.)

52748.indb 6 2/6/08 2:24:34 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 22: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

cellwallsofwheatendospermandbranandarecomposedmainlyofarabinoxylan,apolymerwithaβ-(1-4)-linkedD-xylopyranosebackboneandbranchesofL-arabino-furanoseresidues(Cole1967;Gruppenetal.1992;Perlin1951a,1951b;Wangetal.2006).Pentosansexistasbothwater-insolubleandwater-solubleforms,dependingonthedegreeofbranchingofthearabinosesidechains.Ahigherdegreeofarabi-nosesubstitutionisassociatedwithhigherwatersolubility(Hoseney1984;MedcalfandGilles1968;Wangetal.2006).Wangetal.(2006)measuredthetotalpentosancontentinsixvarietiesofhardspringwheatandfoundittorangefrom5.45to7.32%ofthewholegrainandfrom1.88to2.04%ofthestraight-gradefloursproducedfromthisgrain.Theratioofwater-solubletowater-insolublepentosansinthisflourwas0.36:0.37.Pentosancontentwasalsofoundtobehigherinthelower-gradestreamsofflour,animportantfacttoconsiderwhenblendingmillingstreams.Finnieetal.(2006)specificallymeasured thearabinoxylancontent insoftwhitewinterwheatflourandfoundvariationamongcultivarstobegreatestinthewater-solublefraction,rangingfrom3.23to5.74mgxyloseequivalentspergramsample.Water-insolublearabinoxylanrangedfromabout7to10andtotalarabinoxylanfromabout11to13.5mgxyloseequivalentspergramsampleofsoftwhitewinterwheatflour.

1.4.4 liPids

Flourlipidsareimportantforqualityattributesofsoftwheatproductssuchascookiespreadandcakevolume.Wholegrainwheatcontainsapproximately2 to4%andtheendospermabout1 to2%crudefat (Morrison1978a). Inflour, lipidsexistaseithernonstarchlipidsorstarchlipidsthatareheldinamylose-inclusioncomplexesin starch granules (Acker and Becker 1971). Starch lipids are deemed to be lessfunctionally important than nonstarch lipids due to their protected environment.Supporting evidence of this is that chlorination of flour (see Section 1.8) affectsnonstarchlipidsbutnotstarchlipids(Morrison1978b).Thenonstarchlipidscanbecharacterizedastwotypes:freelipidsextractablewithpetroleumordiethylether,andboundlipidsextractablewithcoldpolarsolventmixtures(Morrison1978a).Thefreelipidscanbefurtherfractionatedintononpolarlipids(triglycerides,diglycer-ides,monoglycerides,fattyacids,sterols,andhydrocarbons)andpolarlipids(gly-colipids and phospholipids). The bound polar lipids consist of phospholipids andglycolipids(Pomeranz1988).

. QualItyevaluatIonofWheatgraInandflour

Characterizationofwheatgrainandwheatflourisnecessaryforbothcommercialandresearchpurposes.Potentialbuyersneedtoknowifwhattheywillbegettingwillmeettheirneeds,andresearchersusethesemethodstobetterunderstandhowflouraffectsend-usequality.

Qualitytestsonwheatgrainincludedeterminingthetestweight,millingyield,andkernelhardness.Flouristypicallytestedforproximatecompositionalongwithvariouschemical,rheological,andbakingtests.

52748.indb 7 2/6/08 2:24:34 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 23: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

1.5.1 wheaTGrain

... testWeight

Testweight isameasureof theweightofgrainperunitvolumeinkilogramsperhectoliter(kg/hl)orpoundsperbushel(lb/bu)(AACCIMethod55-10).Highertestweightsaregenerallycorrelatedwithgreatermillingflouryield;lowertestweightsresultingfromshriveledandlesssoundkernelsresultinlowerflouryields(Gainesetal.1997).

... experimentalMilling

Flouryieldisdependentontheamountofendosperminthekernelandhowwellit can be separated from the bran. As mentioned previously, flour yield must bebalancedwithflourqualitycharacteristicssuchasstarchdamageandashcontent.Themillingcharacteristicsofsmallquantitiesofwheat(<1kg)canbeevaluatedbylaboratoryscaleexperimentalmilling.AACCIMethods26-30A,26-31,and26-32describeprocedures formilling softwheatflourwith aBühlerMLU-202 experi-mentalmill(BühlerInc.,Uzwil,Switzerland).Thismillproducesthreebreakandthreereductionflourstreams.TheBrabenderQuadrumatJr.experimentalmill(C.W.BrabenderInstruments,Inc.,SouthHackensack,NJ)issuitedforsmallersamplesthantheBühlerMLU-202andproducesflourandbranafterpassingwheatthroughafixed setof threebreaks (AACCIMethod26-50).TheUSDA-ARSSoftWheatQualityLaboratoryinWooster,OH,hasalsodevelopedandmodifiedexperimentalmillingmethods tobetter evaluate themillingqualityof softwheat (Finney andAndrews1986;Gaines et al. 2000;Yamazaki andAndrews1982). In addition tovaluableinformationregardingmillingquality,theflourproducedbythesemillsisimportantforuseinflourqualityevaluation.

... Breakflouryield

Thebreakflouryield,expressedasapercent, is theweightof theflourproducedbythebreakrollsrelativetotheweightofallproductsobtainedfromthecombinedbreakand reduction rolls (all streamsofflour,bran, andgerm). It is anexcellentindicatorofwheathardness,becausesofterwheatproducesmorebreakflour.Forsoftwheatproducts,higherbreakflouryieldsareparticularlyimportantbecauseofthedesireforflourwithfinerparticlesizeandlowerstarchdamage.TypicalbreakflouryieldsfromaBühlerexperimentalmillusedintheMichiganStateUniversityWheatQualityTestingProgram(millingsoftwhitewinterwheat)arearound30%ofthetotalproductsrecoveredfrommilling(Figure1.2;Ngetal.2007),withharderwheatsgivingalowerpercentageofbreakflour,typicallylessthan25%.

... Kerneltexture

Inadditiontocomparingbreakflouryieldsfrommilling,standardizedmethodsexisttomeasurekernelhardness.Particlesizeindex(AACCIMethod55-30)ismeasuredbyusingastandardizedgrindertomillgrainintomealfollowedbyweighingwhatmealpassesthroughaU.S.No.75sieve.Asofterwheatpassesmoreofthemeal

52748.indb 8 2/6/08 2:24:34 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 24: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

throughthesieve.Anear-infrared(NIR)instrumentcanalsobecalibratedtomea-surehardnessofasampleofgroundwheat(AACCIMethod39-70A).

AmoreconvenientandincreasinglyutilizedwayofmeasuringkernelhardnessiswiththeSingleKernelCharacterizationSystem(SKCS;PertenInstruments,Huddinge,Sweden).Hardnessismeasuredbyassigningahardnessindexvaluetothesamplebasedontheforceneededtocrushtheindividualkernels(AACCIMethod55-31;Martinetal.1993).TherehasbeensomelimitedinformationreportedontheuseoftheSKCSforassessingsoftwheats.Gainesetal.(1996a)reportedarelationshipbetweenSKCShard-nessvaluesandsoftnessequivalent(whichisameasureofbreakflouryieldusedbytheUSDA-ARSSoftWheatQualityLaboratoryinWooster,OH)foragroupofsoftwheatcultivars.However,Hazenetal.(1997)didnotfindasignificantrelationshipbetweenSKCShardnessvaluesandsoftnessequivalentfortheirgroupoftestedsoftwheatcul-tivars.ThiscouldbeduetothefactthattheSKCSwasdevelopedinitiallyforahard-wheat-growingregionandperhapsthesensitivityofthemeasuredvaluesrequiressomeadjustmentforverysoftwheatcultivars.Nevertheless,itappearsthattheSKCScanstillbeusedwithsoftwheatsforevaluationofhardness,inrelativeterms.

1.5.2 wheaTFlour

... Moisture

The moisture content of flour is most easily determined from the difference inweightofasamplebeforeandafterdryinginanairoven(AACCIMethods44-15A

33

32

31

30

29

28

27

26

255 10 15 20 25 30 35 40 45

Hardness Index

Brea

k Fl

our Y

ield

(%)

fIgure. ScatterplotofhardnessindexmeasuredbytheSingleKernelCharacterizationSystemandbreakflouryieldofMichigansoftwhitewinterwheatmilledinaBühlerMLU-202flourmill.Wheatvarietiesweregrownintheyears2001to2005.

52748.indb 9 2/6/08 2:24:35 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 25: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

and44-16).MoisturecontentcanalsobedeterminedwithaproperlycalibratedNIRspectrophotometerorwithmoisture-measuringinstrumentsmadebyvariousmanu-facturers.Resultsofflouranalysisareusuallyadjustedto14%moisturebasisasawayofexpressingresultsonaconstantsolidsbasisbetweensamplesthatmayhavedifferentmoisturecontents.

... ash

Ashormineralcontentofflourisoftenmeasuredasanindicatorofthequalityofmilling.As it ishigher in thebran than theendosperm,ashcontent indicates thedegreeofbrancontaminationinflour.However, itshouldbenotedthat theendo-spermashcontentvariesamongwheatgenotypes;therefore,ashlevelsmaynotcom-pletelycorrelatewiththedegreeofbrancontamination(Greffeuilleetal.2005).Ashcontentisalsoofinterestbecauseitiscorrelatedwithflourcolor(KimandFlores1999),anattributethataffectsmarketabilityofaflour.Flourashcontentsaretypi-callybelow0.5%andcanbedeterminedbyincineratingafloursampleinamufflefurnace,leavingonlytheash(AACCIMethods08-01and08-02).

... Protein

Proteincontentistypicallydeterminedindirectlythroughmeasuringnitrogencon-tentbymethodssuchasKjeldahl(AACCIMethod46-11A)andcombustion(AACCIMethod46-30).Acorrectionfactoraccountingforaminoacidcompositionandnon-proteinnitrogen(×5.7)isthenappliedtocalculatetheproteincontent.CalibrationofaNIRspectrophotometerusingeitherofthepreviouslymentionedmethodscanalsobedonetoprovidearapidwayofdeterminingproteincontentthatdoesnotrequirechemicalsorreagents(AACCIMethod39-11).

... sproutdamage

Sproutdamage,causedbyincreasedamountsofα-amylaseactivity,isaprobleminproductswhereahighhotpasteviscosityofthewheatflourisneeded,asinsoupthickeners.Highlevelsofα-amylasearefoundingrainthathasbeguntogerminatebecauseofexposuretomoisturebeforeharvest.Thisenzyme,whilenecessaryinagerminatingkernel,reducessoftwheatflourqualitybyhydrolyzingtheα-1,4-linkedglucosemoleculesofstarch.

Theα-amylaseactivity ingrainorflourcanbemeasuredcolorimetricallybyincubatingitwithdyedandcross-linkedamylosetablets(AACCIMethod22-05).Duetotheirease,however,methodsthatmeasuretheeffectsofα-amylaseactivityonheatedflour-waterslurriesaremorecommonlyused.TheFallingNumberSystem(PertenInstruments,Huddinge,Sweden)providesarapidmethodofassessingsproutdamagebymeasuringthetimeittakesforastirrertofallthroughaheatedwheatmealandwaterorflourandwatergel.Higherlevelsofα-amylasedecreasethevis-cosityofthegel,causingthestirrertofallfaster.WheatwithaFallingNumbervaluebelow300issuspectedtohavesomesproutdamage(KaldyandRubenthaler1987).

Instrumentsthatrecordviscositywhileheatingandstirringaflour–waterslurryincludetheAmylograph(C.W.BrabenderInstruments,Inc.,SouthHackensack,NJ)

52748.indb 10 2/6/08 2:24:36 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 26: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

and the Rapid Visco Analyzer (RVA; Newport Scientific Pty. Ltd., Warriewood,Australia)(AACCIMethods22-10and76-21,respectively).Higherα-amylaseactiv-ityresults inacurvewithlowerpeakviscosity.Theresultingcurvecanalsogiveinformationaboutstarchpastingcharacteristicsnotrelatedtosprouting.NoodlesareanexamplewheretexturehasbeencorrelatedwithAmylographandRVApastingproperties suchas thepasting temperatureandpeakviscosity (Bateyet al.1997;Morrisetal.1997;Odaetal.1980).

... damagedstarch

The level of damaged starch canbemeasuredby incubating aflour samplewithα-amylase,followedbymeasurementofthereducingsugarsorglucosethatarepro-duced (AACCI Methods 76-30A and 76-31). In soft wheat flour, damaged starchtypicallyisbelow3%.Levelsaslowaspossiblearepreferredduetotheincreasedsusceptibilityofdamagedstarchtotheactionofamylasesduringfoodprocessing.

... Polyphenoloxidase

Polyphenoloxidase (PPO), anenzyme that causes the formationof coloredcom-pounds(melanins)fromphenols(Bettge2004;Fuerstetal.2006),ismostlyremovedwiththebranduringmilling.However,somedoesmakeitswayinwiththeflour,especiallyathigherflourextractionrates.Thisenzymeactivityisespeciallydetri-mentaltothequalityofAsiannoodlesduetoitsdarkeninganddiscoloringeffects(Krugeretal.1992,1994).PPOhasalsobeenreportedtodiscolorbatters,piecrusts,andrefrigerateddoughs(Gajderowicz1979).LevelsofPPOinwheatdifferduetoboth genotype and growth environment (Baik 1994a; Park et al. 1997). AACCIMethod22-85wasdevelopedasarapidandsmall-scaletestforPPOactivitythatcanbeusedbybothbreedersand industry (Bettge2004).ThismethodmeasuresPPOactivitybyincubatingwheatorflourwithasubstrate(L-DOPA)andmonitoringthecolorchangespectrophotometrically.

... alkalineWaterretentionCapacityofflour

Alkalinewaterretentioncapacity(AWRC)isatestdevelopedtosimulatethealka-line conditions of the formula for evaluating sugar-snap cookie-making potentialofawheatflour(FinneyandYamazaki1953).Thetestisdefinedastheamountofalkalinewaterheldbytheflouragainstacentrifugalforce.Flourthatbindsalkalinewaterpoorlyisconsideredtobeofgoodquality(AACCIMethod56-10).Yamazaki(1953)foundanegativerelationshipbetweentheamountofalkalinewaterheldbythe flour and cookie diameter. However, the relationship is not as clear for morerecentlydevelopedsoftwheatvarieties(Finney1994)andfordistinguishingamongflourswithinasoftnessorhardnessclass(KittermanandRubenthaler1971).Breed-ers,though,arestillselectingforlowAWRCintheirsoftwheatlines.

... solventretentionCapacityofflour

Morerecently,amethodformeasuringthesolventretentioncapacity(SRC)ofwheatflourwasestablished topredictcommercialflourproperties (AACCIMethod56-

52748.indb 11 2/6/08 2:24:36 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 27: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

11).Thismethodusesfoursolventsindependently—water,50%sucrose,5%sodiumcarbonate,and5%lacticacid—andmeasuresaflour’sabilitytoholdthemaftercen-trifugation.Ingeneral,waterSRCisaffectedbyallflourconstituents,sucroseSRCisassociatedwithpentosancharacteristics,sodiumcarbonateSRCisassociatedwiththelevelofdamagedstarch,andlacticacidSRCisassociatedwithglutenincharac-teristics(Bettgeetal.2002;Gaines2000).

TheuseofdifferentsolventsforSRCallowstheseparationofeffectsofdiffer-entflourcomponents,andthecombinedpatternofthefourSRCprofilesprovidesapracticalflourquality assessment forpredictingbakingperformance (Bettge etal.2002;Guttierietal.2004;SladeandLevine1994).InacollaborativestudybyGaines(2000),lacticacidSRCwasfoundtocorrelatewithMixographnumber(pro-teincontentmultipliedbypeakheightandpeaktime),andsodiumcarbonateSRCwith damaged starch, softness equivalent, AWRC, and sugar-snap cookie spread.SucroseSRCcorrelatedwithdamagedstarch,AWRC,andcookiespread(Table1.1).SRCtestsarecurrentlyusedinanumberofsoftwheatbreedingprograms,includ-ingtheMichiganStateUniversityWheatQualityTestingProgram(Ngetal.2007).VariationsontheSRCmethodsusingsmallerquantitiesofmaterialandwheatmealinsteadofflourhavealsobeendeveloped,allowingforrapidscreeningofearlygen-erationbreederlinesofwheat(Bettgeetal.2002;Guttierietal.2004).

1.5.3 douGhrheoloGy

Withregardtowheatflour,rheologyisthemeasureoftheflowanddeformationofdoughs.Thesedoughpropertiescanaffectproductqualitiessuchasgeometry(e.g., cookie spread or cake volume), texture, and handling during processing.Dough rheological instrumentswereoriginallydesigned forusewithmaterialssuchasbreaddoughs,wherestrengthandelasticityarevalued.Softwheatflourproducts, however, generally require doughs that are weaker. Results obtainedfromtheserheologicalinstrumentsshouldnotbeinterpretedusingthesamecri-

taBle.CorrelationCoefficientsbetweensolventretentionCapacityandvariousflourQualityParameters

Water 0%sucrose

%sodiumCarbonate

%lacticacid

Proteincontent 0.33a 0.39a 0.31a 0.39a

Damagedstarch 0.94a 0.77a 0.95a 0.23

Flouryield 0.51a 0.41a 0.54a –0.06

AWRC 0.97a 0.81a 0.97a 0.33a

SSCdiameter –0.88a –0.76a –0.86a –0.33a

Mixographnumber 0.50a 0.49a 0.43a 0.69a

Notes:AWRC,alkalinewaterretentioncapacity;SSC,sugar-snapcookie.a Significantatthe1%level.

Source:AdaptedfromGaines,C.S.,Cereal Foods World,45,303–306,2000..

52748.indb 12 2/6/08 2:24:36 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 28: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

teriaasresultsfromhardwheatflours,astherheologicalpropertiesofsoftandhardwheatfloursarenotsimplyopposites(Hoseneyetal.1988).Dough-formingpropertiesoffloursarecommonlyevaluatedusingtheAlveograph,Mixograph,andtheFarinograph.

... alveograph

The Alveograph (Chopin Technologies, Villeneuve-la-Garenne Cedex, France)measures air pressure inside of a dough bubble as it is inflated until it bursts(AACCIMethod54-30A).Thisbiaxialextensionismeanttosimulatethedefor-mationofadoughduringfermentationandovenspringduringbaking.Itallowsforthemeasurementofthemaximumoverpressure(P),whichrelatestotheresis-tanceofdough todeformation,and theaverage lengthof thecurvebaselineatrupture(L),whichisameasureofdoughextensibility.Thedeformationenergy(W)isameasureoftheenergyneededtoinflatethedoughandisderivedfromthe area under the curve. W is related to the flour strength (Faridi and Rasper1987).Bettgeetal.(1989)investigatedtheabilityoftheAlveographtoevaluatesoftwheatvarietiesforcookiesandfoundthattheparameterbestabletopredictcookie diameter was P in combination with the flour protein content. Nemethetal.(1994)foundthatPandP/Lweresignificantlycorrelatedwithsugar-snapcookiespreadandscore.Yamamotoetal. (1996)foundthatAlveographPwasnegativelycorrelatedandLpositivelycorrelatedwithJapanesespongecakevol-ume(Table1.2).

taBle.

CorrelationCoefficientsbetweenrheologicalPropertiesandQualitiesofjapanesespongeCakesandsugar-snapCookiesMadefromsoftWheatflourgrownintheunitedstates

QualityParameter japanesespongeCakevolume sugar-snapCookiediameter

P –0.639a ns

L 0.492b 0.522b

MPT ns 0.577b

MPH –0.692a –0.590b

FWA ns –0.667a

FPT –0.490b ns

Notes: P,Alveograph maximum overpressure; L,Alveograph length; MPT, Mixograph peak time;MPH, Mixograph peak height; FWA, Farinograph water absorption; FPT, Farinograph peaktime;ns,notsignificant.

a Significantatthe1%level.b Significantatthe5%level.

Source:AdaptedfromYamamoto,H.,Worthington,S.T.,Hou,G.,andNg,P.K.W.,Cereal Chemistry,73,215–221,1996.

52748.indb 13 2/6/08 2:24:37 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 29: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

... Mixographandfarinograph

TheMixograph(NationalManufacturing,Lincoln,NE)andFarinograph(C.W.Bra-benderInstruments,Inc.,SouthHackensack,NJ)arebothmixersthatrecordchangesindoughpropertiesover time(AACCIMethods54-40Aand54-21, respectively).These instruments are able to give information regarding optimum dough waterabsorption,strength,mixingtime,andtolerancetoovermixing.Themaindifferencebetweenthetwoisinthegeometryofthemixers.TheMixographusesverticallyori-entedpinsthatmoveinaplanetarymotion,andtheFarinographusessigmoid-shapedmixingpaddles.TheMixographwasdevelopedtoprovidethemoreintensivemixingthatNorthAmericanwheatsrequire.ItisthereforemainlyusedthereaswellasinAustralia.TheFarinographiswidelyusedaroundtheworld(Ingelin1997).Hazenetal.(1997)reportedsignificantrelationshipsbetweenwire-cutcookiediametersandMixographpeaktime,andpeakheight.Uriyoetal.(2004)foundsignificantnegativecorrelationsbetweenFarinographwaterabsorptionandcookiediameter,andwithcakevolume, inproductsmade fromsoft redwinterwheat.Cake tendernesswascorrelated with Farinograph departure time and mixing stability. Yamamoto andcoworkers(1996)alsoreportedanegativecorrelationbetweencookiediameterandFarinographwaterabsorptionalongwithanegativecorrelationofcookiediametertoMixographpeakheight(Table1.2);therewasapositivecorrelationbetweencookiediameterandMixographpeaktime.OtherworkershavealsocorrelatedFarinographandMixographmeasurementswithvariouscakeandcookiequalities(FinneyandBains1999;Nemethetal.1994;Uriyoetal.2004).

1.5.4 ProduCTsrequirinGweakerProTeins

Muchresearchinthepasthasbeenfocusedondevelopingproceduresforsoftwheatquality evaluation. However, no test has proven more satisfactory than a bakingtest,whichisanall-inclusivetest.MostU.S.Easternsoftwheatshavebeentestedforcakeandcookie-makingqualities.MostofthesetestshavefollowedstandardAACCImethods.

... Cookies

Thesugar-snapcookiebakingtest(AACCIMethod10-52)wasconsidered“thestan-dard”cookietestformanyyearsandhasbeenusedtoevaluateflourforproductssuchascookies,crackers,cakes,andpies(Gaines2004).Floursthatproducecookieswithlargerspreadandsoftertexturearefavored.Astherearefewersugar-snap-typecookiesonthemarket,thewire-cutcookiebakingtestwasdevelopedwhichutilizesacookieformulationthatmorecloselyreflectsthecommercialwire-cutcookiefor-mulation(AACCIMethod10-54;SladeandLevine1994)(Table1.3).Gainesetal.(1996b)comparedthesugar-snapandwire-cutcookieformulationsandfoundthateventhoughbothtestswerecapableofevaluatingspread,thewire-cutcookiesbet-terreflecteddifferencesincookietexturebasedoninstrumentalhardnessevaluatedusinganInstronuniversaltestingmachine.

52748.indb 14 2/6/08 2:24:37 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 30: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

... high-ratioCakes

Thehigh-ratio(moresugarthanflour,wt:wt)cakebakingtest(AACCIMethod10-90)iscommonlyusedtoevaluatesoftwheatfloursforcakeproducts.Theimportantcharacteristicoftheflourusedinthesecakesisthattheymustbeabletocarry1.3to1.4timestheirweightinsugar(seeTable1.4forformula).Toaccomplishthis,cakeflourischlorinatedtomodifytheflourcomponents.Bakedcakesarescoredbasedontheirvolume,contour(symmetry),cellstructure,grain,texture,color,andflavor.

taBle.

ComparisonofMicroWire-Cut(aaCCIMethod0-)andMicrosugar-snap(aaCCIMethod0-)Cookieformulations

formulation

Ingredient Wire-Cut(g) sugar-snap(g)

Sucrose 12.8 24

Brownulatedsugar 4.0 —

Nonfatdrymilk 0.4 1.2

NaCl 0.5 0.18

Sodiumbicarbonate 0.4 0.4

SolutionAa na 0.32

SolutionBb na 0.20

Shortening 16.0 12

High-fructosecornsyrup 0.6 —

Ammoniumcarbonate 0.2 —

Water Variable Variable

Flour 40.0(13%m.b.) 40(14%m.b.)a SolutionA:7.98%sodiumbicarbonateinwater.b SolutionB:10.16%ammoniumchlorideand8.88%NaClinwater.

taBle.

high-ratioWhitelayerCakeformulation(aaCCIMethod0-0)Ingredient Weights(g) WeightPercent(flourBasis)

Flour(14%m.b.) 200.0 100.0

Sugar 280.0 140.0

Shortening 100.0 50.0

Nonfatdrymilk 24.0 12.0

Driedeggwhites 18.0 9.0

NaCl 6.0 3.0

Bakingpowderandwater Variable Variable

52748.indb 15 2/6/08 2:24:38 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 31: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

1.5.5 ProduCTsrequirinGsTronGerProTeins

Crackersandnoodlesareeconomicallysignificantcategoriesofproducts thataremadewithsoftwheatflour,thoughtheyarenotsweetgoods.Crackersreferredtoin the followingsectionareproducedby fermentationwithyeast tomake saltineandsimilarcrackers.FlourqualityfornoodleproductionisespeciallyimportantforexportofwheattocountriesintheFarEast.

... Crackers

Crackersrequirestrongerglutenthanothersoftwheatproductsandareoftenmadefromblendsofbothhardandsoftwheatflours.Thisstrongerglutenisnecessarytogivestructuretocrackersastheyarefermentedandsheeted.Thereisstillnooffi-cial testmethod for evaluatingflours for cracker-bakingpotential, although therearepublishedproceduresusingatwo-stagespongeanddoughapproachtomakingcrackers(DoescherandHoseney1985;PizzinattoandHoseney1980).Thisinvolvesfermentationofasponge(containingyeast,water,and60to70%oftheflour)for16to18hfollowedbyadditionoftheremainingingredientsandfermentationofthedoughforanother6h(CreightonandHoseney1990;DoescherandHoseney1985;RanhotraandGelroth1988).However,durationofthesetestprocedureslimitsthenumberofsamplesthatcanbeevaluatedbyanoperatorinagiventime.Leeetal.(2002)developedapracticalone-stageprocedurethatenablesanoperatortoevalu-ate15samples,ascomparedtoabout6sampleswiththetwo-stageprocedures,ina48-hperiod.Althoughthetwotypesofproceduresyieldedslightlydifferentbakingresults,thetrendswerethesameforadiversegroupoffloursamplesexamined(Leeetal.2002).Strongerdoughsmadecrackersthatwerethicker,larger,andinhardertexturethancrackersmadefromweakerdoughs.

... noodles

Asiannoodlesareanotherproduct,oftenmadefromblendsofhardandsoftwheatflours,whichrequirestrongergluten.TherearetwobasickindsofAsiannoodles:whitesalted(Udon)andalkalinenoodles(Bettge2004).Udonnoodlesareusuallymadefromflourwith8to10%proteincontentandalkalinenoodles10.5to12%pro-tein(Junetal.1998).ThetextureofAsiannoodlesisrelatedtoflourproteincontentandstarchcharacteristics.TheproteincontentofflourwaspositivelycorrelatedwithnoodlechewinessinastudybyBaiketal.(1994b).Starchpastingpropertieshavebeenshowntoaffecttheoveralltextureofnoodles,includingsoftnessandelasticity(Bateyetal.,1997;Koniketal.1992).Anotherimportantnoodlequalitydetermi-nant,especiallywiththehigherpHofalkalinenoodles,isdiscolorationfromPPOactivity.TheWesternWheatQualityLaboratoryoftheUSDA-ARS(Pullman,WA)hasdevelopedmethodsfortestingalkalineandsaltedAsiannoodles.Noodlesareproducedonalaboratory-scalemachineandareevaluatedbasedoncolor,texture,andyield.

52748.indb 16 2/6/08 2:24:38 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 32: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

. effeCtsofflourCoMPonentsonCooKIes

Flourproteins,starches,pentosans,andlipidsallaffectthesizeorspreadofcookiesaswellastheirtextureandappearance.Withthewidevarietyofcookiesproduced,thesecomponentsneedtobetakenintoaccountwhenselectingflour.

1.6.1 ProTeins

Softwheatflourwithlowproteincontentistypicallyusedintheproductionofcook-iesbecauseofthedeleteriouseffectsonqualityassociatedwiththehigherproteincontentinhardwheats.Sugar-snapcookiesmadefromhardwheatflourareusuallythicker,harderintexture,andhaveasmallerdiameter(MillerandHoseney1997).Sugar-snapcookiediameterperunitofflourproteinwasnegativelycorrelatedwithprotein content in a studybyYamamoto et al. (1996) (Figure1.3).Using awire-cutcookieformulation,Gainesetal.(1996b)foundanegativecorrelationbetweenproteincontentandcookiediameterandapositivecorrelationwithcookieheight(Table1.5). Harder texture was also positively correlated with increased proteincontentinthisstudy.Higherflourproteincontenthasbeencorrelatedwithreducedcookiespreadinotherstudiesaswell(Gaines1985;KaldyandRubenthaler1987).However,somestudieshavefoundapoorcorrelationbetweencookiequalityandproteincontent(Abboudetal.1985a;Yamazaki1954).

Cookie spread is a functionof the spread rate and the set time (Abboud et al.1985b;MillerandHoseney1997).Ascookiedoughisheated,thedecreaseinviscosity

1.4

1.3

1.2

1.1

1.0

0.96.5 7.0 7.5 8.0 8.5 9.0

Protein (%)

Cook

ie D

iam

eter

(cm

) / F

lour

Pro

tein

fIgure. Relationship between protein content and sugar-snap cookie diameter perunitflourproteinincookiesmadefrom17softwheatcultivarsgrownintheUnitedStates.(AdaptedfromYamamoto,H.,Worthington,S.T.,Hou,G.,andNg,P.K.W.,Cereal Chemis-try,73,215–221,1996.)

52748.indb 17 2/6/08 2:24:39 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 33: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

allowsforthecookietospreaduntilitrisesinviscosityandsets.Althoughglutenisnotdevelopedduringmixing(MillerandHoseney1997),itsglasstransitiontemperatureplaysanimportantpartincookiesettime.Whentheglutenreachesitsglasstransitiontemperature,theviscosityofthedoughincreasesandspreadingstops(Doescheretal.1987;Milleretal.1996).MillerandHoseney(1997)examinedthesettimeofdiffer-enthardandsoftwheatfloursandfoundthatwithinagroupofhardorsoftwheats,proteincontentaffectedthesettime.However,thedifferencesinproteincontentalonewerenotenoughtofullyexplainthedifferencesbetweenthehardandsoftwheatflourgroups.Workhasalsobeendonetoidentifyspecificcomponentsofflourproteinsthatmay affect cookiequality.Huebner et al. (1999) fractionatedgliadins andgluteninsubunitsusingsize-exclusionhigh-performanceliquidchromatography(HPLC).Theyfoundthatflourswithgluteninsubunits5+10madebetter-qualitycookies.Souzaetal.(1994)foundthatthegluteninstrengthscore,developedbyPayneetal.(1987)toevalu-atebreadflours,wasnegativelycorrelatedwithcookiediameter.Houetal.(1996b)separatedthehigh(Asubunits)andlow(BandCsubunits)molecularweightgluteninsubunitsandfoundthattheratioofthequantitiesoftheBtoCsubunitswasrelatedtosugar-snapcookiediameterinflourfromsoftwhitewinterwheat.

1.6.2 sTarCh

Therateofspreadinghasbeenfoundtobefasterincookiesmadefromsoftwheatflourcomparedtocookiesmadefromhardwheatflour(Abboudetal.1985b;Milleretal.1996;MillerandHoseney1997).Afasterspreadrateallowsthecookietospreadtoalargerdiameterbeforesettingoccurs.MillerandHoseney(1997)measuredthespreadrateofcookiesmadefromsoftwheatflourtobe7.8mm/mincomparedto4.6mm/minincookiesmadewithhardwheatflour.Thehardwheatflourswerefoundtocontainhigherlevelsofsolublestarchthanthesoftwheatflours.Removalofthesolublestarchfromhardwheatfloursresulted indecreaseddoughviscositiesandincreasedcookiespreadrates.However,althoughtheamountofsolublestarchcouldexplain thedifferencebetween thehardandsoftwheatflourgroups, it couldnotfullyexplainthedifferenceinspreadrateswithinthegroups.Higherlevelsofdam-agedstarchinmilledhardwheatwerealsoattributedtobeingpartofthedifferenceinspreadratebetweenhardandsoftwheatfloursbyMillerandHoseney(1997).

taBle.

CorrelationCoefficientsbetweenflourProteinContentandWire-CutCookieQualityCharacteristics

Parameter CorrelationCoefficient

Diameter –0.57a

Height 0.64a

Hardness 0.79a

a Significantatthe5%level.

Source:AdaptedfromGaines,C.S.,Kassuba,A.,andFinney,P.L.,Cereal Foods World,41,155–160,1996.

52748.indb 18 2/6/08 2:24:39 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 34: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

During baking, minimal gelatinization of starch occurs due to the low watercontentofcookiedough,asshownbydifferentialscanningcalorimetry(AbboudandHoseney1984).However,damagedstarch,withitsgreaterwater-holdingcapability,isknowntonegativelyaffectcookiediameter.DonelsonandGaines(1998)increasedthedamagedstarchcontentofhardandsoftwheatfloursusedtomakesugar-snapcookiesthroughtheadditionofball-milledandpregelatinizedstarch.Forbothhardandsoftwheatflours,theadditionofdamagedstarchledtoanincreaseinalkalinewaterretentioncapacityandadecreaseincookiediameter.Theyalsomadecook-ieswith100%oftheflourreplacedbycombinationsofprimeanddamagedstarch.Thesoftwheatstarchproducedcookieswithlargerdiametersthanthehardwheatstarchatallofthedifferentlevelsofstarchdamagestudied.Additionally,thehardwheatstarchdoughshadgreaterstiffnessthanthosemadefromsoftwheatstarch.Theauthorsconcludedthatthereisafundamentaldifferencebetweenhardandsoftwheatstarchesthatleadstotheirdifferentperformancesincookiebaking.

1.6.3 PenTosans

With their ability to absorb large amounts of water, pentosans also affect cookiequality.Yamazaki(1955)foundthattheadditionofpurifiedstarchtailingsfractions,rich inpentosans, increased thehydration abilityof softwheatflour and reducedcookie spread.BettgeandMorris (2000)measured total,water-soluble,andgrainmembranepentosansin13softwheatfloursamples.Theamountoftotalpentosanshadthelargestnegativecorrelationwithsugar-snapcookiespreadfollowedbythewater-solubleandgrainmembranepentosans.Thegrainmembranepentosanswerealsohighlypositivelycorrelatedwithalkalinewaterretentioncapacity.Abboudetal.(1985a),ontheotherhand,reportedapoorcorrelationbetweenpentosancontentandcookiediameter.Sucrosesolventretentioncapacity,whichisassociatedwithpento-sans,wasnegativelycorrelatedwithsugar-snapcookiespreadbyGaines(2004),eventhoughintheirstudy,alkalinewaterretentioncapacitywasnot.Usingsucrosesol-ventretentioncapacityalongwithflourproteincontentandmillingsoftness,Gaines(2004)wasalsoabletogeneratearegressionequationtopredictcookiediameter.

1.6.4 liPids

Studiesinvolvingtheremovalandreconstitutionofflourlipidshaveshownthattheyareimportanttocookiespread,topgrain(an“islanding”patternformedonthesur-faceofsugar-snapcookies),andstructure.Coleetal.(1960)bakedcookieswithflourthathadbeenextractedwithwater-saturatedbutanolandfoundthatthecookieshaddecreaseddiameters.Whenthelipidswerereplaced,thecookiespreadwasreturnedtonormal.Kisselletal.(1971)extractedfreelipidsfromsoftwheatflourandfrac-tionatedthemintopolarandnonpolarfractions.Theywerethenreintroducedintotheflourandbakedintosugar-snapcookies.Toachievenormalcookiespreadandtop grain, both the polar and nonpolar fractions were needed. Interchanging thelipidsbetweendifferentvarietiesofwheatflourdidnotaffecttheresults,indicatingthatthepresenceofthemixedlipidsismoreimportantthanthesource.FractionationstudiesbyClementsandDonelson(1981),on theotherhand,determined that thepolarlipids(digalactosyldiglycerideandphosphytidylcholinealongwithglycolip-

52748.indb 19 2/6/08 2:24:40 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 35: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

ids)weremoreimportanttosugar-snapcookiespreadthanthenonpolarlipids.Theinternalstructureofcookiesmadefromdefattedflour isalsonegativelyaffected;thesecookieshavelargercellsasopposedtothefinerandmoreuniformcellstruc-turefoundingood-qualitycookies(Clements1980).

. effeCtsofflourCoMPonentsonCaKes

Cakebattersareaeratedemulsionsoffatinwaterthatexpandduringbakingandsetintoasoft,porousgel(Mizukoshietal.1980;Shelkeetal.1990).Duringtheinitialphaseofbaking,thereisadropinbatterviscosityasshorteningmeltsandsugarsbecomedissolved.Thisisfollowedbyarapidriseinviscositywhenstarchbecomesgelatinized,absorbingfreewaterandsettingthecake(Howardetal.1968;Shelkeetal.1990).Flourproteinsandlipidsalongwiththeflourparticlesizealsoaffectcakequality.

1.7.1 FlourParTiClesize

Whenmeasuredbylaserdiffraction,softwheatflourhasbeenfoundtohaveamuchhigher percentage of particles below41µm in size than that of hardwheat flour(Hareland 1994). The particle sizes of various soft wheat flours have been nega-tivelycorrelatedtocakevolume(Yamamotoetal.1996;YamazakiandDonelson1972).Inadditiontovarietaldifferencesinparticlesizeproducedbynormalmill-ing,researchhasshownthatfurtherreductionofparticlesizethroughpostmillingprocessing(pin-millingandair-classification)canimprovethevolumeandqualityofcakes(Chaudharyetal.1981;GainesandDonelson1985a;Milleretal.1967).Althoughreducingparticlesizeisbeneficial,itisimportanttolimitstarchdamage,asdamagelevelsgreaterthan5%havebeennegativelycorrelatedwithcakequality(Milleretal.1967).

1.7.2 ProTeins

Higherproteincontentinflourisgenerallyassociatedwithpoorerqualityforcakebaking.AccordingtoKaldyandRubenthaler(1987),flourhighinproteinorwithstrongglutenresultsincakeswithlowervolumeandcoarsertextureduetoproteindisruptionofthefoamstructureincakebatter.IntheirstudyofCanadiansoftwhitewinterandspringwheats,theyfoundasignificantnegativecorrelationbetweenflourproteincontent,Japanesespongecakevolume,andoverallcakescore.Yamamotoetal. (1996)alsofoundanegativecorrelationbetweenflourproteinandJapanesesponge cake volume per unit protein (Figure1.4). Gaines and Donelson (1985b)found that thevolumeand tendernessofwhite layer cakeswerenot significantlyaffectedbyproteincontent,although thoseofangel foodcakeswere.However,adifferenceofover2%proteinwasneededtoseeaneffectintheangelfoodcakes.Althoughanexcessofproteinmayharmcakequality,solubleproteins(bothfromtheflourandfromothercakeingredients)arestillneededforthermalstabilityofthe cake foamstructure (Howardet al. 1968).Protein composition in addition tocontentwasshowntobeimportanttoJapanesespongecakevolumeinworkbyHouetal.(1996b).Thepresenceofhigh-molecular-weightglutenin(HMW-GS)subunit

52748.indb 20 2/6/08 2:24:40 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 36: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

1insoftwheatflourresultedinlargercakevolume,whilethepresenceofHMW-GSsubunit2*resultedinsmallervolume.

1.7.3 liPids

Lipidsmakeuponlyasmallfractionofflour;however,theyareimportanttocakevolumeandtexture.SpiesandKirleis(1978)foundthatextractionoffreeflourlipidsreducedvolumeandcausedpoorertextureincakesmadewithamodifiedwhitelayercakeformula.Reintroductionofthelipidsrestoredmostofthecakequalities.Inter-changingthelipidsbetweendifferentvarietiesofwheatdidnotaffect theresults,indicating that the presence of lipids is more important than the source. Takeda(1994) extracted free lipids fromflour, resulting in reduced sponge cakevolume.Thefreelipidswerealsofractionatedintopolarandnonpolarfractions.Reintroduc-tionofthepolarlipids(monogalactosylanddigalactosyldiglycerides)returnedthecakevolumetoitsnormalsize,whilethenonpolarfractionshadonlyminoreffects.SimilarresultswerereportedbySeguchiandMatsuki(1977a).

. flourChlorInatIon

Toproducegood-qualityhigh-ratiocakes,chlorinationofflourisnecessary.Cakesmadefromnonchlorinatedflourhavepoorvolume,contour,crumbgrain,andtex-ture(Donelsonetal.2000;Montzheimer1931;Smith1932).Chlorinetreatmentalsoimprovesmouthfeelofcakes,makingcakesdrierandlessstickyorgummy(Kis-

7.06.5 7.5 8.0 8.5 9.0

180

170

160

150

140

130

120

Protein (%)

Cak

e Vo

lum

e (c

c) /

Flou

r Pro

tein

fIgure. RelationshipbetweenproteincontentandJapanesespongecakevolumeperunitflourprotein incakesmade from17softwheatcultivarsgrown in theUnitedStates.(AdaptedfromYamamoto,H.,Worthington,S.T.,Hou,G.,andNg,P.K.W.,Cereal Chemis-try,73,215–221,1996.)

52748.indb 21 2/6/08 2:24:41 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 37: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

sellandYamazaki1979;SeguchiandMatsuki1977b).ChlorinationisusuallydonewithchlorinegasandcanbemonitoredbyadropinpHofflour.FlouristypicallychlorinatedtoapHrangeofabout4.5to5.2(Goughetal.1978).Starch,lipids,andproteinsareallaffectedbyflourchlorination.

1.8.1 sTarCh

Fractionation,interchange,andreconstitutionstudiesofnonchlorinatedandchlori-natedflourshaveconfirmedthattheeffectsofchlorinationonstarchareimportantto cake quality. Cakes made from chlorinated flour with the starch interchangedwiththatfromnonchlorinatedflourhadsmallervolumesandpoorercakequalities(JohnsonandHoseney1979a;Sollars1958).Theoppositewastruewhenexchang-ingchlorinatedstarchintononchlorinatedflour.GainesandDonelson(1982)usedamodifiedViscographtoexaminetheviscosityofcakebattersmadewithchlorinatedandnonchlorinatedfloursduringheating.Theapparentviscosityofheatedbattersincreasedfasterinbattersmadefromchlorinatedflourcomparedtononchlorinatedflour.Chlorinatedflourbattersalsoshowedgreaterexpansionduringbaking.Theseresultswere inagreementwith results fromKulpetal. (1972).Accelerated thick-ening of batters allows for improved setting and retention of larger cake volume(Donelsonetal.2000).

Donelson(1990)fractionatedchlorinatedandnonchlorinatedfloursandfoundthatthechlorinatedstarchfractionhadincreasedalkalinewaterretentioncapacity.Theseresultswererelatedtodecreasedsugar-snapcookiespreadinhisexperiment.Inadditiontobindingmorewater,chlorinatedstarchbindsmoreoilasaresultofincreasedstarchgranulehydrophobicity(Seguchi1984).Theoxidativedepolymer-izationofstarchthatoccursduringchlorinationhasbeeninvestigatedasoneofthereasons for these changes in starch properties (Huang et al. 1982; Johnson et al.1980).Varriano-Marston (1985)hypothesized that theoxidativedepolymerizationincreased thecapillarysizeofstarchgranules, leading to the increasedabilityofchlorinatedstarchtobindwaterandoil.

1.8.2 liPids

Variousstudieshavedeterminedthattheeffectofchlorinationonlipidsisimportanttocakequality.Kisselletal.(1979)chlorinatedflourstopH5.2,4.8,and4.0andthenextractedthefreelipidswithhexane.Whitelayercakevolumewasreducedincakesbakedwithoutlipids;however,thenormalvolumewasrestoreduponreadditionoftheextractedlipids.FlourchlorinatedtopH4.8performedthebest.Byinterchang-inglipidsfromachlorinatedflourintoanonchlorinatedone,Donelsonetal.(1984)wereabletoincreasehigh-ratiocakevolumetothatofthechlorinatedflour.Incon-trast,Johnsonetal.(1979),afterconductingalipidinterchangestudy,cametotheconclusionthatalthoughthepresenceoflipidsisimportant,theeffectofchlorinationonthemisnotimportanttocakequalityincakesbakedusingKissell’sleancakeformulation(Kissell,1959).InthestudyofJohnsonetal.(1979),cakesbakedfrombothchlorinatedandnonchlorinatedflourswiththeirlipidsextractedhadpoorgrain.Byaddingeitherofthelipidfractionsbacktothechlorinatedflour,theywereabletorestorethebakingproperties.

52748.indb 22 2/6/08 2:24:41 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 38: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

1.8.3 ProTeins

ThefractionationandinterchangestudiesofSollars(1958)foundthatchlorinationofgluten and starchwasof almost equal importance for theproductionofwhitelayercakes.Chlorinationofglutenhadaneffectonyellowlayercakesaswell,buttoalesserextent.Tsenetal.(1971)reportedthatchlorinationofflourincreasestheextractabilityofproteinsbywaterandaceticacid,andthat this increasedproteinsolubilitymaybepartoftheimprovingeffectsofchlorinetreatmentonflour.Thechanges inprotein extractabilitywere attributed to the actionsof chlorinebreak-inghydrogenbonds,cleavingpeptidebonds,degradingaminoacids,andoxidizingsulfhydrylbonds.

Theeffectofchlorinationonincreasingthehydrophobicityofproteinsinfloursmayalsobeimportant.Seguchi(1985)foundthatchangesinthehydrophobicityofstarchgranuleswereduetoconformationalchangesinsurfaceproteinsofthestarchgranules,andlater,thatchlorinationalsoresultedinanincreaseintheamountofproteinextracted(Seguchi1990).Sinhaetal.(1997)extractedgliadinsfromflourchlorinatedtopH4.8and4.3;gliadinproteinhydrophobicity,asmeasuredbyfluo-rescence spectroscopy, increased with chlorination (Figure1.5). Reversed-phaseHPLCresultssuggestedthattheincreasesinhydrophobicitywereduetoconforma-tionalchangesintheproteins(Sinhaetal.1997).

12

10

8

6

4

2

0

NonchlorinatedpH 4.8pH 4.3

Caldwell Dynasty Frankenmuth Lewjain

Hyd

roph

obic

ity In

dex

x10

fIgure. Relative hydrophobicities of gliadins extracted from chlorinated and non-chlorinatedsoftwheatflours,measuredbyfluorescencespectroscopy.(AdaptedfromSinha,N.K.,Yamamoto,H.,andNg,P.K.W.,Food Chemistry,59,387–393,1997.)

52748.indb 23 2/6/08 2:24:42 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 39: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

1.8.4 alTernaTivesToChlorinaTion

Overtheyears,alternativestochlorinationhavebeenexploredasconcernfor thesafetyofchemicallyprocessedfoodshasgrown.RussoandDoe(1970)improvedcakevolumebyheatingnonchlorinatedflour;however, thisalsoresultedincakeswithpoortexture.Theadditionofingredientssuchasstarch,eggalbumin,xanthangum,L-cysteine,andhydrogenperoxideplusperoxidasehavealsobeentestedfortheirabilitiestocompensateforalackofchlorination(JohnsonandHoseney1979b;RussoandDoe1970;Thomassonetal.1995).Intheircakeformulation,Donelsonetal.(2000)replacednonchlorinatedflourwitheithercommercialhardwheatstarchoralaboratory-producedsoftwheatstarchatalevelequaltotheareaunderanRVApastingcurvemade fromchlorinatedflour.Thiswasdone to tryandachieve theviscosity-modifyingpropertiesnormallyassociatedwithchlorination.Eggalbumin,soy lecithin, andxanthangumwerealsoadded to their cake formula to improvetextureandcontour.Theresultsafterbakingvarioustypesofcakeswereequaltoorbetterthanthosemadewithchlorinatedflours.Mostimportantly,thecakeshadcrumbswithgoodtextureratherthanthegummytexturesofcakesmadewithnon-chlorinatedflour.Theozonetreatmentofflourhasalsorecentlybeeninvestigatedwithpromisingresults(ChittrakornandMacRitchie2006).

. ConClusIon

Thedifferentcomponentsofsoftwheatflourcollectivelyplayaroleinitsquality.Softerkerneltextureandlowerproteincontentaretypicallyfavoredforsoftwheatproducts.Starchesandlipidsserveimportantfunctionsinbakedproductssuchascakesandcookies.Understandingwheatflourcompositionandhowqualityismea-suredprovidesagoodbaseforfurtherresearchandstudyofsweetgoods.

referenCes

AACCInternational.2000.ApprovedMethodsoftheAmericanAssociationofCerealChem-ists,10thed.St.Paul,MN:AmericanAssociationofCerealChemists.

Abboud,A.M.andR.C.Hoseney.1984.Differentialscanningcalorimetryofsugarcookiesandcookiedoughs.Cereal Chemistry61:34–37.

Abboud,A.M.,G.L.Rubenthaler,andR.C.Hoseney.1985a.Effectoffatandsugarinsugar-snapcookiesandevaluationofteststomeasurecookieflourquality.Cereal Chemistry62:124–129.

Abboud,A.M.,R.C.Hoseney,andG.L.Rubenthaler.1985b.Factorsaffectingcookieflourquality.Cereal Chemistry62:130–133.

Acker,L.andG.Becker.1971.Recentstudiesonthelipidsofcerealstarches.Part2.Lipidsofvarioustypesofstarchandtheirbindingtoamylose.Die Stärke23:419–424.

Alexander,R.J.1995.Potatostarch:Newprospectsforanoldproduct.Cereal Foods World40:763–764.

Baik,B.K.,Z.Czuchajowska,andY.Pomeranz.1994a.ComparisonofpolyphenoloxidaseactivitiesinwheatsandfloursfromAustralianandUnitedStatescultivars.Journal of Cereal Science19:291–296.

Baik,B.K.,Z.Czuchajowska,andY.Pomeranz.1994b.Roleandcontributionofstarchandprotein contents and quality to texture profile analysis of oriental noodles. Cereal Chemistry71:315–320.

52748.indb 24 2/6/08 2:24:43 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 40: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

Batey,I.L.,B.M.Curtin,andS.A.Moore.1997.OptimizationofRapid-ViscoAnalysertestconditionsforpredictingAsiannoodlequality.Cereal Chemistry74:497–501.

Bettge,A.,G.L.Rubenthaler,andY.Pomeranz.1989.Alveographalgorithmstopredictfunc-tionalpropertiesofwheatinbreadandcookiebaking.Cereal Chemistry66:81–86.

Bettge,A.D.andC.F.Morris.2000.Relationshipsamonggrainhardness,pentosanfractions,andend-usequalityofwheat.Cereal Chemistry77:241–247.

Bettge,A.D.,C.F.Morris,V.L.DeMacon,andK.K.Kidwell.2002.AdaptationofAACCMethod56-11,solventretentioncapacity,foruseasanearlygenerationselectiontoolforcultivardevelopment.Cereal Chemistry79:670–674.

Bettge,A.D.2004.CollaborativestudyonL-DOPA—wheatpolyphenoloxidaseassay(AACCmethod22-85). Cereal Foods World49:338,340–342.

Chaudhary,V.K.,W.T.Yamazaki,andW.A.Gould.1981.Relationofcultivarandflourpar-ticlesizedistributiontocakevolume.Cereal Chemistry58:314–317.

Chen,C.H.andW.Bushuk.1970.Natureofproteinsintriticaleanditsparentalspecies.I.Solubilitycharacteristicsandaminoacidcompositionofendospermproteins.Cana-dian Journal of Plant Science50:9–14.

Chittrakorn,S.andF.MacRitchie.2006.Ozonationofcakeflourasanalternativetochlori-nation.Poster:WorldGrainsSummit:FoodsandBeverages.SanFrancisco,CA.

Clements,R.L.1980.Noteontheeffectofremovaloffreeflourlipidsontheinternalstructureofcookiesasobservedbyaresin-embeddingmethod.Cereal Chemistry57:445–446.

Clements, R.L. and J.R. Donelson. 1981. Functionality of specific flour lipids in cookies.Cereal Chemistry58:204–206.

Cole, E.W., D.K. Mecham, and J.W. Pence. 1960. Effect of flour lipids and some lipidderivatives on cookie-baking characteristics of lipid-free flours. Cereal Chemistry37:109–121.

Cole,E.W.1967.Isolationandchromatographicfractionationofhemicellulosesfromwheatflour.Cereal Chemistry44:411–416.

Creighton,D.W.andR.C.Hoseney.1990.UseofaKramershearcelltomeasurecrackerflourquality.Cereal Chemistry67:111–114.

D’Appolonia,B.I.andS.K.Kim.1976.Recentdevelopmentsinwheatflourpentosans.Bak-er’s Digest50:45–49,53–54.

Doescher,L.C.andR.C.Hoseney.1985.Saltinecrackers:Changesincrackerspongerheol-ogyandmodificationofacracker-bakingprocedure.Cereal Chemistry62:158–162.

Doescher,L.C.,R.C.Hoseney,andG.A.Milliken.1987.Amechanismforcookiedoughset-ting.Cereal Chemistry64:158–163.

Donelson,J.R.,W.T.Yamazaki,andL.T.Kissell.1984.Functionalityinwhitelayercakeoflipidsfromuntreatedandchlorinatedpatentflours.II.Flourfractioninterchangestud-ies.Cereal Chemistry61:88–91.

Donelson,J.R.1990.Flourfractioninterchangestudiesofeffectsofchlorinationoncookieflours.Cereal Chemistry67:99–100.

Donelson,J.R.,andC.S.Gaines.1998.Starch–waterrelationshipsinthesugar-snapcookiedoughsystem.Cereal Chemistry75:660–664.

Donelson,J.R.,C.S.Gaines,andP.L.Finney.2000.Bakingformulainnovationtoeliminatechlorinetreatmentofcakeflour.Cereal Chemistry77:53–57.

Faridi,H.andV.F.Rasper.1987.The Alveograph Handbook,28-33.St.Paul,MN:TheAmer-icanAssociationofCerealChemists.

Finney,K.F.andW.T.Yamazaki.1953.Analkalineviscositytestforsoftwheatflours.Cereal Chemistry30:153–159.

Finney,P.L.andL.C.Andrews.1986.Revisedmicrotestingforsoftwheatqualityevaluation.Cereal Chemistry63:177–182.

Finney,P.L. 1989.Softwheat:View from the easternUnitedStates.Cereal Foods World34:682,684,686–687.

52748.indb 25 2/6/08 2:24:43 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 41: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Finney,P.L.1994.Grainquality:Millingandbakingrequirementsforsoftwheatproducts.InCookie Chemistry and Technology,Ed.K.Kulp,51–87.Manhattan,KS:TheAmericanInstituteofBaking.

Finney,P.L.andG.S.Bains.1999.ProteinfunctionalitydifferencesineasternUSsoftwheatcultivarsandinterrelationwithend-usequalitytests.Lebensmittel Wissenschaft und Technologie32:406–415.

Finnie, S.M., A.D. Bettge, and C.F. Morris. 2006. Influence of cultivar and environmentonwater-soluble andwater-insoluble arabinoxylans in softwheat.Cereal Chemistry83:617–623.

Fuerst,E.P.,J.V.Anderson,andC.F.Morris.2006.Delineatingtheroleofpolyphenoloxidaseinthedarkeningofalkalinewheatnoodles.Journal of Agricultural and Food Chem-istry54:2378–2384.

Gaines,C.S. and J.R.Donelson.1982.Cakebatterviscosity andexpansionuponheating.Cereal Chemistry59:237–240.

Gaines,C.S.1985.Associationsamongsoftwheatflourparticlesize,proteincontent,chlo-rine response,kernelhardness,millingquality,white layercakevolume,andsugar-snapcookiespread.Cereal Chemistry62:290–292.

Gaines, C.S. and J.R. Donelson. 1985a. Influence of certain flour quality parameters andpostmillingtreatmentsonsizeofangelfoodandhigh-ratiowhitelayercakes.Cereal Chemistry62:60–63.

Gaines,C.S.andJ.R.Donelson.1985b.Effectofvaryingflourproteincontentonangelfoodandhigh-ratiowhitelayercakesizeandtenderness.Cereal Chemistry62:63–66.

Gaines, C.S., P.F. Finney, L.M. Fleege, and L.C. Andrews. 1996a. Predicting a hardnessmeasurement using the single-kernel characterizaiton system. Cereal Chemistry73:278–283.

Gaines,C.S.,A.Kassuba,andP.L.Finney.1996b.Usingwire-cutandsugar-snapformulacookietestbakingmethodstoevaluatedistinctivesoftwheatfloursets:Implicationsforqualitytesting.Cereal Foods World41:155–160.

Gaines,C.S.,P.L.Finney,andL.C.Andrews.1997.Influenceofkernelsizeandshrivelingonsoftwheatmillingandbakingquality.Cereal Chemistry74:700–704.

Gaines, C.S. 2000. Collaborative study of methods for solvent retention capacity profiles(AACCMethod56-11).Cereal Foods World45:303–306.

Gaines, C.S., P.L. Finney, and L.C. Andrews. 2000. Developing agreement between veryshortflowandlongerflowtestwheatmills.Cereal Chemistry77:187–192.

Gaines,C.S.2004.Predictionofsugar-snapcookiediameterusingsucrosesolventretentioncapacity,millingsoftness,andflourproteincontent.Cereal Chemistry81:549–552.

Gajderowicz, L.J. 1979. Progress in the refrigerated dough industry. Cereal Foods World24:44–45.

Gough,B.M.,M.E.Whitehouse,andC.T.Greenwood.1978.Theroleandfunctionofchlo-rineinthepreparationofhigh-ratiocakeflour.CRC Critical Reviews in Food Science and Human Nutrition10:91–113.

Greer,E.N.andB.A.Steward.1959.Thewaterabsorptionofwheatflour;relativeeffectsofproteinandstarch.Journal of the Science of Food and Agriculture10:248–252.

Greffeuille, V., J. Abecassis, C. Bar L’Helgouac’h, and V. Lullien-Pellerin. 2005. Differ-encesinthealeuronelayerfatebetweenhardandsoftcommonwheatsatgrainmilling.Cereal Chemistry82:138–143.

Gruppen,H.,R.J.Hamer,andA.G.J.Voragen.1992.Water-unextractablecellwallmaterialfromwheatflour.2.Fractionationofalkali-extractedpolymersandcomparisonwithwater-extractablearabinoxylans.Journal of Cereal Science16:53–67.

Guttieri,M.J.,C.Becker,andE.J.Souza.2004.Applicationofwheatmealsolventretentioncapacitytestswithinsoftwheatbreedingpopulations.Cereal Chemistry81:261–266.

52748.indb 26 2/6/08 2:24:43 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 42: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

Hareland,G.1994.Evaluationofflourparticle sizedistributionby laserdiffraction, sieveanalysis, and near-infrared reflectance spectroscopy. Journal of Cereal Science20:183–190.

Hazen,S.P.,P.K.W.Ng,andR.W.Ward.1997.Variationingrainfunctionalqualityforsoftwinterwheat.Crop Science37:1086–1093.

Hoseney,R.C.1984.Functionalpropertiesofpentosans inbakedfoods.Food Technology38:114–117.

Hoseney,R.C.,P.Wade,andJ.W.Finley.1988.Softwheatproducts.InWheat Chemistry and Technology Volume II,Ed.Y.Pomeranz,407–456.St.Paul,MN:AmericanAssocia-tionofCerealChemists.

Hou,G.,H.Yamamoto,andP.K.W.Ng.1996a.RelationshipsofquantityofgliadinsubgroupsofselectedU.S.softwheatflourstorheologicalandbakingproperties.Cereal Chem-istry73:352–357.

Hou,G.,H.Yamamoto,andP.K.W.Ng.1996b.RelationshipsofquantityofgluteninsubunitsofselectedU.S.softwheatflourstorheologicalandbakingproperties.Cereal Chem-istry73:358–363.

Howard,N.B.,D.H.Hughes,andR.G.K.Strobel.1968.Functionofthestarchgranuleintheformationoflayercakestructure.Cereal Chemistry45:329–338.

Huang,G.,J.W.Finn,andE.Varriano-Marston.1982.Flourchlorination.I.Chlorinelocationandquantitationinair-classifiedfractionsandphysiochemicaleffectsonstarch.Cereal Chemistry59:496–500.

Huebner,F.R.,J.A.Bietz,T.Nelsen,G.S.Bains,andP.L.Finney.1999.Softwheatqualityasrelatedtoproteincomposition.Cereal Chemistry76:650–655.

Ingelin, M.E. 1997. Comparison of two recording dough mixers: The Farinograph andMixograph.InThe Mixograph Handbook,Eds.C.E.Walker,J.L.Hazelton,andM.D.Shogren,5–10.Lincoln,NE:NationalManufacturingDivisionTMCO.

Johnson,A.C.andR.C.Hoseney.1979a.Chlorinetreatmentofcakeflours.III.Fractionationandreconstitution techniquesforCl2-treatedanduntreatedflours.Cereal Chemistry56:443–445.

Johnson,A.C.andR.C.Hoseney.1979b.Chlorinetreatmentofcakeflour.II.Effectofcertainingredientsinthecakeformula.Cereal Chemistry56:336–338.

Johnson,A.C.,R.C.Hoseney,andE.Varriano-Marston.1979.Chlorine treatmentofcakeflours.I.Effectoflipids.Cereal Chemistry56:333–335.

Johnson,A.C.,R.C.Hoseney,andK.Ghaisi.1980.Chlorinetreatmentofcakeflours.V.Oxi-dationofstarch.Cereal Chemistry57:94–96.

Jun,W.J.,P.A.Seib,O.K.Chung.1998.CharacteristicsofnoodlefloursfromJapan.Cereal Chemistry75:820–825.

Kaldy,M.S.andG.L.Rubenthaler.1987.Milling,baking,andphysical-chemicalpropertiesofselectedsoftwhitewinterwheatandspringwheats.Cereal Chemistry64:302–307.

Kim,Y.S.andR.A.Flores.1999.Determinationofbrancontaminationinwheatfloursusingashcontent,color,andbranspeckcounts.Cereal Chemistry76:957–961.

Kissell,L.T.1959.Alean-formulacakemethodforvarietalevaluationandresearch.Cereal Chemistry36:168–175.

Kissell,L.T.,Y.Pomeranz,andW.T.Yamazaki.1971.Effectsofflourlipidsoncookiequality.Cereal Chemistry48:655–662.

Kissell,L.T.andW.T.Yamazaki.1979.Cakebakingdynamics:Relationofflour-chlorinationratetobatterexpansionandlayervolume.Cereal Chemistry56:324–327.

Kissell,L.T.,J.R.Donelson,andR.L.Clements.1979.Functionalityinwhitelayercakeoflipids from untreated and chlorinated patent flours. I. Effects of free lipids. Cereal Chemistry56:11–14.

Kitterman, J.S. and G.L. Rubenthaler. 1971. Assessing quality of early generation wheatselectionswithmicroAWRCtest.Cereal Science Today16:313–314,316,328.

52748.indb 27 2/6/08 2:24:44 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 43: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Konik, C.M., D.M. Miskelly, and P.W. Gras. 1992. Contribution of starch and non-starchparameterstotheeatingqualityofJapanesewhitesaltednoodles.Journal of the Sci-ence of Food and Agriculture58:403–406.

Kreis,M.,P.R.Shewry,B.G.Forde,J.Forde,andB.J.Miflin.1985.Structureandevolutionofseedstorageproteinsandtheirgeneswithparticularreferencestothoseofwheat,barleyandrye.InOxford Surveys of Plant and Molecular Cell Biology,Ed.B.J.Miflin,253–317.London:OxfordUniversityPress.

Kruger,J.E.,D.W.Hatcher,andR.Depauw.1992.Acomparisonofmethodsforthepredic-tionofcantonesenoodlecolour.Canadian Journal of Plant Science72:1021–1029.

Kruger,J.E.,D.W.Hatcher,andR.Depauw.1994.AwholeseedassayforpolyphenoloxidaseinCanadianprairiespringwheatsanditsusefulnessasameasureofnoodledarkening.Cereal Chemistry71:324–326.

Kulp,K.1968.Penstosansofwheatendosperm.Cereal Science Today.13:414–417,426.Kulp,K.,C.C.Tsen,andC.J.Daly.1972.Effectofchlorineonthestarchcomponentofsoft

wheat-flour.Cereal Chemistry49:194–200.Lee,L.,P.K.W.Ng,andJ.F.Steffe.2002.Amodifiedprocedure(one-stagefermentation)for

evaluatingflourcracker-makingpotential.Food Engineering Progress6:201–207.Lin,W. andG.Vocke. 2004. Hardwhitewheat at a crossroads/WHS-04K-01, Electronic

Outlook Report from the Economic Research Service,U.S.DepartmentofAgriculture(December):www.ers.usda.gov/publications/whs/dec04/whs04K01/whs04K01.pdf.

Martin,C.R.,R.Rousser,andD.L.Barbec.1993.Developmentofasingle-kernelwheatchar-acterizationsystem.Transactions of the ASAE36:1399–1404.

Medcalf, D.G. and K.A. Gilles. 1968. Structural characterization of a pentosan from thewater-insolubleportionofdurumwheatendosperm.Cereal Chemistry45:550–556.

Miller,B.S.,H.B.Trimbo, andK.R.Powell. 1967.Effectsofflourgranulation and starchdamageonthecakemakingqualityofsoftwheatflour.Cereal Science Today12:245–247,250–252.

Miller, R.A., R. Mathew, and R.C. Hoseney. 1996. Use of a thermo mechanical analyzertostudyapparentglasstransitionincookiedough.Journal of Thermal Analysis and Calorimetry47:1329–1338.

Miller,R.A.andR.C.Hoseney.1997.Factors inhardwheatflour responsible for reducedcookiespread.Cereal Chemistry74:330–336.

Mizukoshi,M.,H.Maeda,andH.Amano.1980.Modelstudiesofcakebaking.II.Expansionandheatsetofcakebatterduringbaking.Cereal Chemistry57:352–355.

Montzheimer, J.W. 1931. A study of methods for testing cake flour. Cereal Chemistry8:510–517.

Morris,C.F.,G.E.King,andG.L.Rubenthaler.1997.Contributionofwheatflourfractionstopeakhotpasteviscosity.Cereal Chemistry74:147–153.

Morrison,W.R.1978a.Wheatlipidcomposition.Cereal Chemistry55:548–558.Morrison,W.R.1978b.Stabilityofwheatstarchlipidsinuntreatedandchlorine-treatedcake

flours.Journal of the Science of Food and Agriculture29:365–371.Nemeth,L.J.,P.C.Williams,andW.Bushuk.1994.Acomparativestudyofthequalityofsoft

wheatsfromCanada,Australia,andtheUnitedStates.Cereal Foods World39:691–694,696–698,700.

Ng,P.K.W.,L.Siler, andE.Tanhehco. 2007.MSU wheat quality testing program report,DepartmentofFoodScienceandHumanNutrition,MichiganStateUniversity,EastLansing,MI.

Oda,M.,Y.Yasuda,S.Okazaki,Y.Yamauchi,andY.Yokoyama.1980.AmethodofflourqualityassessmentforJapanesenoodles.Cereal Chemistry57:253–254.

Osborne,T.B.1907.Theproteinofthewheatkernel.Publication No. 84.CarnegieInstitute:Washington,DC.

52748.indb 28 2/6/08 2:24:44 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 44: Food Engineering Aspects of Baking Sweet Goods

Soft Wheat Quality

Park,W.J.,D.R.Shelton,C.J.Peterson,T.J.Martin,S.D.Kachman,andR.L.Wehling.1997.Variationinpolyphenoloxidaseactivityandqualitycharacteristicsamonghardwhitewheatandhardredwinterwheatsamples.Cereal Chemistry74:7–11.

Payne,P.I.,M.A.Nightingale,A.Krattiger,andL.M.Holt.1987.TherelationshipbetweenHMW-glutenin subunit composition and the bread-making quality of British-grownwheatvarieties.Journal of the Science of Food and Agriculture40:51–56.

Perlin,A.S.1951a.Isolationandcompositionofthesolublepentosansofwheatflour.Cereal Chemistry28:370–381.

Perlin, A.S. 1951b. Structure of the soluble pentosans of wheat flours. Cereal Chemistry28:382–393.

Pizzinatto, A. and R.C. Hoseney. 1980. A laboratory method for saltine crackers. Cereal Chemistry57:249–252.

Pomeranz,Y.1988.Softwheatproducts.InWheat Chemistry and Technology Volume II,Ed.Y.Pomeranz,219–370.St.Paul,MN:AmericanAssociationofCerealChemists.

Posner,E.S.,andA.N.Hibbs.1997.Wheat Flour Milling.St.Paul,MN:AmericanAssocia-tionofCerealChemists.

Ranhotra,G.andJ.Gelroth.1988.Solubleandinsolublefiberinsodacrackers.Cereal Chem-istry65:159–160.

Russo,J.V.andC.A.Doe.1970.Heat treatmentoffloursasanalternative tochlorination.Journal of Food Technology5:363–374.

Seguchi,M.andJ.Matsuki.1977a.Studiesonpan-cakebaking.II.Effectoflipidsonpan-cakequalities.Cereal Chemistry54:918–926.

Seguchi,M.andJ.Matsuki.1977b.Studiesonpan-cakebaking.I.Effectofchlorinationofflouronpan-cakequalities.Cereal Chemistry54:287–299.

Seguchi,M.1984.Oil-bindingcapacityofprimestarchfromchlorinatedwheatflour.Cereal Chemistry61:241–244.

Seguchi,M.1985.Modelexperimentsonhydrophobicityofchlorinatedstarchandhydropho-bicityofchlorinatedsurfaceprotein.Cereal Chemistry62:166–169.

Seguchi,M.1990.Studyofwheatstarchgranulesurfaceproteinsfromchlorinatedwheatflours.Cereal Chemistry67:258–260.

Shelke,K.,J.M.Faubion,andR.C.Hoseney.1990.Thedynamicsofcakebakingasstudiedbyacombinationofviscometryandelectricalresistanceovenheating.Cereal Chem-istry67:575–580.

Sinha,N.K.,H.Yamamoto,andP.K.W.Ng.1997.Effectsofflourchlorinationonsoftwheatgliadins analyzed by reversed-phase high-performance liquid chromatography, dif-ferential scanning calorimetry and fluorescence spectroscopy. Food Chemistry59:387–393.

Slade,L.andH.Levine.1994.Structure-functionrelationshipsofcookieandcrackeringre-dients.InThe Science of Cookie and Cracker Production,Ed.H.Faridi,23–141.NewYork:ChapmanandHall/AVI.

Smith,E.E.1932.Reportofthesubcommitteeonhydrogen-ionconcentrationwithspecialreferencetotheeffectofflourbleach.Cereal Chemistry9:424–428.

Sollars,W.F.1958.Cakeandcookiefractionsaffectedbychlorinebleaching.Cereal Chem-istry35:100–110.

Sollars,W.F.andG.L.Rubenthaler.1971.Performanceofwheatandotherstarchesinrecon-stitutedflours.Cereal Chemistry48:397–410.

Souza,E.,M.Kruk,andD.W.Sunderman.1994.Associationofsugar-snapcookiequalitywithhighmolecularweightgluteninallelesinsoftwhitespringwheats.Cereal Chem-istry71:601–605.

Spies,R.D.andA.W.Kirleis.1978.Effectoffreeflourlipidsoncake-bakingpotential.Cereal Chemistry55:699–704.

52748.indb 29 2/6/08 2:24:45 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 45: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Takeda,K.1994.Effectsofvarious lipid fractionsofwheatflouronexpansionof spongecake.Cereal Chemistry71:6–9.

Thomasson,C.A.,R.A.Miller,andR.C.Hoseney.1995.Replacementofchlorinetreatmentforcakeflour.Cereal Chemistry72:616–620.

Tsen,C.C.,K.Kulp,andC.J.Daly.1971.Effectsofchlorineonflourproteins,doughproper-ties,andcakequality.Cereal Chemistry48:247–255.

Uriyo,M.B.,W.E.Barbeau,C.A.Griffey,andJ.Rancourt.2004.Examinationofrelation-shipsbetweentherheologicalpropertiesandbakingperformanceofselectedsoftwheatflours.Journal of Food Quality27:239–254.

USDAEconomicResearchService.UpdatedJuly21,2006.Wheat:Background.www.ers.usda.gov/Briefing/Wheat/background.htm#classes.

USDA Foreign Agriculture Service. 2007. World Wheat Production, Consumption, andStocks. Foreign Agricultural Service’s Production, Supply and Distribution (PSD)onlinedatabase.www.fas.usda.gov/psdonline/psdHome.aspx.

Varriano-Marston,E.1985.Flourchlorination:Newthoughtsonanoldtopic.Cereal Foods World 30:339–343.

Wang, M., H.D. Sapirstein, A. Machet, and J.E. Dexter. 2006. Composition and distribu-tion of pentosans in millstreams of different hard spring wheats. Cereal Chemistry83:161–168.

Yamamoto,H.,S.T.Worthington,G.Hou,andP.K.W.Ng.1996.RheologicalpropertiesandbakingqualitiesofselectedsoftwheatsgrownintheUnitedStates.Cereal Chemistry73:215–221.

Yamazaki,W.T.1953.Analkalinewaterretentioncapacitytestfortheevaluationofcookiebakingpotentialitiesofsoftwinterwheatflours.Cereal Chemistry30:242–246.

Yamazaki,W.T.1954.Interrelationsamongbreaddoughabsorption,cookiediameter,pro-teincontent,andalkalinewaterretentioncapacityofsoftwinterwheatflour.Cereal Chemistry31:135–142.

Yamazaki,W.T.1955.Theconcentrationofafactorinsoftwheatfloursaffectingcookiequal-ity.Cereal Chemistry32:26–37.

Yamazaki,W.T.andD.H.Donelson.1972.Relationshipbetweenflourparticlesizeandcake-volumepotentialamongeasternsoftwheats.Cereal Chemistry49:649–653.

Yamazaki,W.T.andL.C.Andrews.1982.Experimentalmillingofsoftwheatcultivarsandbreedinglines.Cereal Chemistry59:41–45.

52748.indb 30 2/6/08 2:24:45 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 46: Food Engineering Aspects of Baking Sweet Goods

2 Functions of Ingredients in the Baking of Sweet Goods

Dasappa Indrani, Gandham Venkateswara Rao

Contents

2.1 Introduction................................................................................................... 322.2 FunctionsofSugar........................................................................................ 33

2.2.1 YeastedDoughs................................................................................. 332.2.2 Cakes..................................................................................................342.2.3 Cookies..............................................................................................342.2.4 Biscuits............................................................................................... 35

2.3 FunctionsofFat............................................................................................. 352.3.1 YeastedDoughs................................................................................. 352.3.2 Cakes.................................................................................................. 352.3.3 Cookies.............................................................................................. 352.3.4 Biscuits...............................................................................................36

2.4 FunctionsofEggs..........................................................................................362.4.1 YeastedDoughs.................................................................................362.4.2 Cakes..................................................................................................362.4.3 Cookies.............................................................................................. 37

2.5 FunctionsofLeaveningAgents..................................................................... 372.5.1 YeastedDoughs................................................................................. 382.5.2 Cakes.................................................................................................. 382.5.3 Biscuits............................................................................................... 38

2.6 FunctionsofWater........................................................................................ 382.6.1 YeastedDoughs................................................................................. 382.6.2 Cakes.................................................................................................. 392.6.3 Biscuits............................................................................................... 39

2.7 FunctionsofSalt........................................................................................... 392.7.1 YeastedDoughs................................................................................. 392.7.2 Cakes.................................................................................................. 392.7.3 Biscuits............................................................................................... 39

2.8 FunctionsofNonfatDryMilk......................................................................402.8.1 YeastedDoughs.................................................................................402.8.2 Cakes..................................................................................................402.8.3 BiscuitsandCookies..........................................................................40

52748.indb 31 2/6/08 2:24:45 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 47: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

2.9 FunctionsofAdditives..................................................................................402.9.1 OxidizingAgents...............................................................................402.9.2 ReducingAgents................................................................................402.9.3 SurfactantsandEmulsifiers...............................................................402.9.4 Enzymes............................................................................................. 422.9.5 VitalWheatGluten............................................................................ 422.9.6 Hydrocolloids..................................................................................... 42

2.10 RecentStudiesontheEffectsofIngredientsonQualityofCakesandBiscuits.................................................................. 43

2.11 Conclusion.....................................................................................................44References................................................................................................................ 45

. IntroduCtIon

Sweetgoodsare,asthenameimplies,sweettotaste,madefromaformulahighinsugar.Theingredientsofsweetbakedgoodsareflour,shortening,eggs,nonfatdrymilk,yeast,salt,leaveningagents,additives,flavors,water,andvariousotherenrich-ingingredients,andsoforth.ThepercentagelevelsofingredientsusedindifferentsweetgoodsarepresentedinTable2.1.Eachoneoftheseingredientshasitsownroleandfunctioninthepreparationoftheproduct.Theroleofingredientswillvaryfromonetypeofproducttoanother.

Among thevariousyeast-raisedgoodsmade inbakeries, sweetgoodsare themostcommon.Someoftheexamplesofsweetgoodsareyeast-raisedsweetbreadsandrolls,cakes,biscuits,cookies,anddoughnuts. Yeast-raisedsweetdoughissimi-lartobreaddoughbutcontainshighsugarandfatlevels.Mostsweetgoodsusewhiteflourratherthanwholewheatflour,becausewholewheatflourcanresultinreduced

taBle.

formulations,Products,andIngredientsIngredients yeasted

sweetdoughCakes Biscuits Cookies doughnuts

Wheatflour 100 100 100 100 100

Compressedyeast 2–2.5 — — — 2–5

Sugar 10–30 60–120 15–35 50–60 5–12

Fat/shortening 10–20 50–100 10–25 50–60 10–15

Eggs 5–10 50–100 — 10 5–10

Salt 1.5–2 — 0.5 — —

Nonfatdrymilk 5–10 2–5 2–5 — 4–8

Bakingpowder — — — — 1–2

Sodiumbicarbonate — — 0.5 — —

Ammoniumbicarbonate

— — 1.0 — —

Flavor — Variable Variable Variable Variable

Water Variable Variable Variable — Variable

52748.indb 32 2/6/08 2:24:46 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 48: Food Engineering Aspects of Baking Sweet Goods

Functions of Ingredients in the Baking of Sweet Goods

volume.Thesweetnessinsweetbakedgoodsoftencomesfromsucrose.Onaflourweightbasistraditionallyknownasbaker’spercent,15to25%sugaristypicalfortheseproducts.Wholeeggsandmilksolidsareconstituentsofmostsweetdoughformulations.Theseingredientsaddrichness,flavor,andtendernesstotheproduct(Sharon,2000).

Additives are substances intentionally added to bakery products in smallerquantities,withaviewtoimprovethefunctionalperformanceoftherawmaterials,processingcharacteristics,appeal,palatability,qualityofproducts,andstoragesta-bility.Thevariousadditivescommonlyusedinbakingareoxidizingagents(potas-siumbromateorascorbicacid),reducingagents(cysteinehydrochloride,potassiummetabisulfite),vitalwheatgluten,enzymes(fungalα-amylase,protease),surfactantsand emulsifiers (glycerol monostearate, sodium stearoyl-2-lactylate, lecithin), andhydrocolloids(guargum,xanthan,hydroxylpropylmethylcellulose).

Discussedinthischapterarethefunctionsofsugar,fat,eggs,leaveningagents,water,salt,nonfatdrymilk,andadditivesinyeasteddoughs,cakes,cookies,andbiscuits.

. funCtIonsofsugar

2.2.1 yeasTeddouGhs

Sucroseisadisaccharidecomposedofaunitofdextroseplusaunitoffructose.Thetermsugariscommonlyusedtorefertosucrose.

Sugaristhemostcommonlyusedsweetenerinsweetdoughproducts.Sugar’smainfunctionistoprovidefoodforyeast.Whenaddedtoadough,sugarishydro-lyzed,orinverted,almostinstantlyintoglucoseandfructosebytheyeastenzymeinvertase.Yeastfermentsglucoseandfructoseintocarbondioxideandalcohol.Intypicalbreadproduction,2to3%sugarisadequatetosustainyeastactivity.Thisfoodsupplycancomefromaddedsugarorfromtheenzymaticconversionof thestarchtosugarorfromacombinationofboth.Eventhoughadequatecarbondioxidegasproductioncanbemaintainedwith2 to3%sugar,higher levelsarenormallyusedinsweetdoughformulations.Sugarthatremainsunfermentedbyyeastappearsasresidualsugarinthefinishedproducts.Residualsugartakespartincarameliza-tion and the Maillard reaction (i.e., the reaction between reducing sugar and theproteinsofflourtopromoterapidcolorandtasteformation).Sugarprovidessweettasteinbreadifusedabove6%(Dubois,1981b;Pyler,1988a).

Sweetgoodscontainhighlevelsofsugar,whichaffecttheactivityofyeast.Sugarhasastronginhibitoryeffectonthegassingpowerofyeast,causedbyhighosmoticpressureontheyeastcell.Sweetdoughwith20%sugarrequirestwotothreetimesmoreyeasttoobtainthesamegasproductionasthatoftypicalleandough.

Theamountofprotein,damagedstarch,andpentosansinflourwill influencetheamountofwaterthatitwillhold.Ultimately,watermakesupabout45%ofbreaddough.Duringmixing, it isknown thataconsiderableamountofwaterbecomesboundtomanydifferentingredients,suchasflour,sugar,andfat.Sugarwillservetodecreasethestrengthofglutendevelopmentduetoitscompetitionforwater.Itinhibitsthegliadin–glutenin–watercomplex,andglutenisthusweakened.

52748.indb 33 2/6/08 2:24:46 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 49: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

2.2.2 Cakes

Cake isabakedbattermade fromwheatflour, sugar,eggs, shortening, leaveningagents,salt,nonfatdrymilk,flavors,andwater.High-ratiocakes,richinsugarandfat,areextensivelyusedinthebakingindustry.Cakebatterisacomplexfat-in-wateremulsioncomposedofbubblesasthediscontinuousphaseandegg–sugar–water–fatmixturesasthecontinuousphaseinwhichflourparticlesaredispersed(Mizukoshi,1983;NgoandTaranto,1986;Shelkeetal.,1990).

Sucroseisaprincipalingredientincakes.Itprovidesenergyandsweetness.Italsofacilitatesairincorporation.Itactsasatenderizerbyretardingandrestrictingglutenformation,increasingthetemperaturesofeggproteindenaturationandstarchgelatinization,andcontributingtobulkandvolume.

Inhigh-ratiocakeformulation,sugarresultsinagoodairincorporationleadingtoamoreviscousandstablefoam(Patonetal.,1981).Inaddition,sugaraffectsthephysical structureofbakedproductsby regulatinggelatinizationof starch.Delayinstarchgelatinizationduringbakingallowsairbubblestoexpandproperlyduetovaporbeforethecakesets(KimandSetser,1992;KimandWalker,1992).Attheconcentrationused incakes (55 to60%), sugardelays thegelatinizationofstarchfrom57to92°C,whichallowstheformationofdesiredcakestructure(SpiesandHoseney,1982;Beanetal.,1978).Sugar’sabilitytolimitthewateravailabletothestarch is thought to delay gelatinization (D’Appolonia, 1972; Derby et al., 1975;Hoseneyetal.,1977).AccordingtoSpiesandHoseney(1982),sugardelaysgelati-nizationthroughacombinationoftwoindependentmechanisms:loweringthewateractivityofthesolutionandinteractingwithstarchchainstostabilizetheamorphousregionsofthegranule.

Mizukoshi(1985)studiedtheeffectofvaryingsugarcontentonshearmodulusmeasured during cake baking, while keeping the proportion of other ingredientsconstant.Heshowedthatbelow20%,sugarhasnoeffectonshearmodulus,whereas30to40%sugarreducesitappreciably,revealingtheexistenceofathresholdvalueassociatedwiththevariationofsugarcontentintheformula.

2.2.3 Cookies

Thewordcookiemeans“littlecake.”Cookiesaremadefromsoftandweakflours.Theyarecharacterizedbyaformulathatishighinsugarandfatbutlowinwater.

Sugaraddssweetness,actsasatenderizingagent,andaffectsspread.Usingafarinograph,OlewnikandKulp(1984)observedthatanincreaseinsugarcon-centrationinacookiedoughreducesitsconsistencyandcohesion.Sucroseactsasahardeningagentbycrystallizingasthecookiecoolsandmakingtheproductcrisp.However,atmoderateamounts, itactsasasoftenerduetotheabilityofsucrosetoretainwater(Schanot,1981).Sugarmakesthecookedproductfragile,becauseitcontrolshydrationandtendstodispersetheproteinandstarchmol-ecules,therebypreventingtheformationofacontinuousmass(BeanandSetser,1992).

52748.indb 34 2/6/08 2:24:46 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 50: Food Engineering Aspects of Baking Sweet Goods

Functions of Ingredients in the Baking of Sweet Goods

2.2.4 BisCuiTs

Themajoringredientsofbiscuitdoughareflour,sugar,andfat.Thequalityofbis-cuits is governed by the nature and quality of the ingredients used. A variety ofshapesandtexturesmaybeproducedbyvaryingtheproportionoftheseingredients. Rotarymoldcookiesarecharacterizedbyaformulafairlyhighinsugarandfatandverylowintheamountofwater.

Sugar is important in the tasteandstructureofmostbiscuits.Theamountofsugarthatgoesintosolutiondependsontheparticlesizeofthesugarandinfluencesthespreadofbiscuitsandmachiningpropertiesofdoughtoagreatextent(MatzandMatz,1978).Vetter(1984)studiedtheeffectofsugarqualityanditsgrainsizeonbiscuitspreading.Vetterconcludedthatfinegrainsizeandahighconcentrationofsugarcontributetosignificantspreadingofthebiscuit.

Thelimitedamountofwaterusedinbiscuitformulation,andalsoitsnonavail-ability to protein and starch, particularly contributes to the crispness of biscuits.Theadditionofsugartotheformuladecreasesdoughviscosityandrelaxationtime.Sugar promotes biscuit length and reduces thickness and weight. Biscuits rich insugararecharacterizedbyhighcohesivestructureandcrisptexture.Increasingtheamountofsugargenerallyincreasesthespreadandreducesthethicknessofbiscuits(Kisseletal.,1973;Vetter,1984).

. funCtIonsoffat

2.3.1 yeasTeddouGhs

Fatorshorteningisusedatthelevelof5to15%inbreadmaking.Itisthoughtthatfatlubricatestheglutenfibrilsandmakesthedoughmoreextensible,therebyimprovingthegasretentioncapacityofthedough.Theadditionoffatfacilitatesdoughhandlingandprocessingandimprovesloafvolume,crumbgrainuniformity,tenderness,slic-ingproperties,andshelflife.

2.3.2 Cakes

The major function of fat is to entrap air into the batter during mixing. In cakebatter, thelargestpartof thefatcrystalsremainsin theaqueousphase.Whenairstartsexpanding,fatcrystalsadsorbedtotheair–waterinterfacemeltandtherebyrelease the fat–water interface forbubbleexpansion.A largenumberofadsorbedcrystalsreleasesufficientinterfacetoallowthebubblestoexpandwithoutrupturing(Brooker,1993a,1993b).

2.3.3 Cookies

Cookiedoughcharacteristicsdependonthequalityandquantityoftheingredientsusedintheformulation.Cookiedoughhashighpercentagesofsugarorshorteningandlimitedwater.Duringbaking,cookiediameterincreaseslinearlyandbecomessuddenlyfixed(Abboudetal.,1985;Milleretal.,1996;Yamazaki,1959).Thefinalcookiediameterdependsupontherateatwhichdoughspreadsanditssettingtime

52748.indb 35 2/6/08 2:24:47 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 51: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

duringbaking.Cookiespreadratehasbeenreportedtobedependentondoughvis-cosity(Miller,1989;Yamazaki,1959).Theviscosityofcookiedoughdependsupontheratioof ingredientsusedinthecookieformula.Theadditionoffat influencesthetextureandtasteofcookies,makingthecookiescrispierbecausethisallowsthedoughtospreadasitcooksonthehotcookiesheet.

2.3.4 BisCuiTs

Fatisanessentialingredientinbiscuitmanufactureandisthelargestcomponentafterflourandsugar.Duringmixingof thebiscuitdough, fatactsasa lubricant; it alsocompeteswiththeaqueousphaseforthefloursurfaceandpreventstheformationofaglutennetworkinthedough(Wade,1988).Theadditionoffatsoftensthebiscuitdoughanddecreasestheviscosityandrelaxationtime.Fatcontributestoanincreaseinlengthandtoareductioninthicknessandweightofbiscuits,whicharethencharacterizedbyavariablestructureandareeasytobreak.Fatorshorteningcontributestotheplasticityofthedoughasalubricant.Whenpresentinlargequantities,itslubricatingeffectissopronouncedthatverylittlewaterisneededtoachieveasoftconsistency.Whenmixedwiththeflourbeforeitshydration,thefatpreventstheformationofaglutennetworkandproducesless-elasticdough.High-elasticdoughisnotdesirableinbiscuitmaking,becauseitshrinksafterlamination(MenjivarandFaridi,1994).Starchswellinganditsgelatinizationarealsoreducedathighlevelsoffat,givingacrisptexture.Fatinflu-encesthedoughmachinabilityduringprocessing,thedoughspreadaftercuttingout,andthetexturalandgustatoryqualitiesofthebiscuitafterbaking(Vetter,1984).

. funCtIonsofeggs

2.4.1 yeasTeddouGhs

Eggsinyeasteddoughsincreasenutritivevalue,improveflavorandtexture,producecolor incrumbandcrust, actasabindingagent tohold the ingredients together,aid in leavening, contribute to the emulsifying action due to the presence of thenaturalemulsifierlecithin,andproduceasoftercrumbbecauseofthefatandothersolids.Eggscontain73to75%moisture,havethenaturalabilitytobindandretainmoisture,andhenceimprovequality.Eggsareanimportantsourceofiron,calcium,phosphorus, vitamin A, vitamin D, thiamine, and riboflavin, and they supply allessentialaminoacids(Pyler,1988b).

Thecomplexcompositionofeggsimpartsnumerousfunctionaleffectsonbakedproducts.Theloafvolumeadvantageimpartedbyeggsdocumentedforsweetbakedgoodsmayrelatetoincreaseddoughwatercontentortheemulsifying,coagulating,andleaveningactionofwholeeggs(Forsythe,1970).

2.4.2 Cakes

Eggscontributestructuretoabakedproduct.Theymayservetodothisthroughtheircontributionofheat-denaturedproteins,steamforleavening,ormoistureforstarchgelatinization.Eggwhitehastheabilitytoformfoamsthatarestableenoughtosup-portlargequantitiesofflourorsugar.Thesefoamsmustbecapableofholdingthe

52748.indb 36 2/6/08 2:24:47 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 52: Food Engineering Aspects of Baking Sweet Goods

Functions of Ingredients in the Baking of Sweet Goods

otheringredientsuntilheatcoagulationcanoccurintheovenandastableproteinmatrixdevelops.Globulinsareprimarily responsible for loweringsurface tensionand increasing viscosity where air gets incorporated. As foam develops, bubblesbecomesmaller,thesurfaceisgreatlyenlarged,ovomucin(protein)undergoessur-facedenaturationtoformasolidfoam,andthevolumeoffoamincreases.Ovalbu-min,whichisreadilyheatcoagulable,setsupinheatandsupportsmanytimesitsweightofsugarandflour(MacDonneletal.,1955).

Eggsmaycontribute liquid toaproductandthusserveasa toughener. It isatoughenerpartiallyduetoitscontributiontogelatinizationofstarchandfordevel-opmentofgluten.Theeggwhiteportionappears tobeparticularlyeffectiveasatoughener.Actually,theyolkservesasatenderizerprobablyduetoitsfatcontent.Eggalsocontributes to leaveningaction through theemulsificationof fat andairincorporation,thefoamingaction,andthecontributionofwatertosteam.Eggyolkisalsoarichsourceofemulsifyingagentandthusfacilitatestheincorporationofair,inhibitsstarchgelatinization,andcontributestoadesirablegoldencolorthatgivesrichappearanceandflavor(Pyler,1988b).

2.4.3 Cookies

Eggshelpinpuffing,emulsifyingthedough,andbringingthewaterandfatphasestogethertoresultinacreamierandsmoothertextureincookies.Eggwhiteshaveadryingeffectandcontributetothestructureorshape.

. funCtIonsofleavenIngagents

Leavening isdefinedas a raisingaction that aeratesdoughorbatterduringmix-ingandbakingsothatthefinishedproductsaregreaterinvolumeandsuperiorintexture.Leaveningactioninabakedproductmaybeduetomechanicalleavening,biologicalleavening,chemicalleavening,andwatervapor.

Inmechanicalleavening,airisincorporatedbycreaming,beating,orwhiskingbyhandormachinethefat,sugar,andeggs.Cakes,spongegoods,andmeringuesareexamplesofmechanicalaeration.Inbiologicalleavening,thebaker’syeast(Sac-charomyces cereviseae)convertssimplesugarstocarbondioxideandalcohol.Thiscarbondioxideisresponsiblefortheleaveningofbreadsandotherfermentedbakeryproducts.

Chemicalleaveningincludestheuseofchemicalssuchasbakingsoda,ammo-niumbicarbonate,andbakingpowder.Bakingsoda,alsoknownassodiumbicarbon-ate,isusedinrecipesthatcontainanacidicingredient,suchasvinegar,buttermilk,chocolate, honey, or fruits.Baking soda liberates carbondioxidewhenheatedorwhenmixedwithanacid,eitherhotorcool.Ammoniumbicarbonateiscommonlyknownasvol,derivedfrom“volatilesalt,”becauseofitscompletedissociationintocarbondioxidegas,ammoniagas,andwater.Itisimportantthatalloftheammoniaisdrivenoffduringbakingorunpleasanttastesareencountered.Ammoniumbicar-bonateisthereforenotsuitableasaleaveningagentinanyproductthatleavestheovenwithmorethan5%moisture(Dubois,1981a;KichlineandConn,1970).

52748.indb 37 2/6/08 2:24:47 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 53: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Baking powder is a dry chemical leavening agent used in baking. There areseveral formulations—allcontainanalkali, typicallysodiumbicarbonate,andanacidtogetherwithstarchtokeepitdry.Whendissolvedinwater,theacidandalkalireact and emit carbon dioxide gas, which expands existing bubbles to leaven themixture.Therearetwotypesofbakingpowders—singleactinganddoubleacting.Bakingpowdersthatcontainonlythelow-temperatureacidsalts,suchascreamoftartar,calciumphosphate,andcitrate,arecalledsingleacting.Double-actingbakingpowderscontaintwoacidsalts:onereactsatroomtemperature,producingariseassoonasthedoughorbatterisprepared,andanotherreactsatahighertemperature,causingfurtherriseduringbaking.Examplesofhigh-temperatureacidsaltsarealu-miniumsalts,suchascalciumaluminiumphosphate.

Steamisasupplementaryformofleaveninginallproducts.Itisformedwhenwaterischangedtowatervaporasthetemperatureofcakebatterorbreaddoughrises in theoven, thusexertingagreaterpressure inside thecakebatterorbreaddoughandresultinginanincreaseinvolumeofthefinishedproducts.

2.5.1 yeasTeddouGhs

Yeastperformsthreeimportantfunctionsinyeasteddough:leavening,doughrip-ening,andflavordevelopment.Yeastutilizessugartoproducecarbondioxideandethylalcohol.Alongwithethylalcohol,yeastalsoproducesseveralotherorganiccompounds,includingorganicacids,aldehydes,andketones,thatimparttypicalfla-vortotheproduct.

2.5.2 Cakes

Incakemaking,threetypesofleaveningactiontakeplace.Bymechanicalmeans,airisincorporatedduringthecreamingoffatandsugarandthewhippingofeggs.Chemically,airisincorporatedbytheuseofbakingpowderwhichgeneratescarbondioxideduringbakingandbyvaporpressurecreatedbythewater.

2.5.3 BisCuiTs

Biscuits aremainly leavenedbychemicals.Theuseofbakingchemicals suchassodiumbicarbonateandammoniumbicarbonatemakesbiscuitsporousandcrisp.

. funCtIonsofWater

2.6.1 yeasTeddouGhs

Waterisanessentialingredientindoughformulation.Itisnecessaryforsolubilizingother ingredients, for hydrating proteins and carbohydrates, and for the develop-mentofaglutennetwork.Ithasbeenestimatedthatabout46%ofthetotalwaterabsorbedisassociatedwiththestarch,31%withproteins,and23%withthepento-sans(Bushuk,1966).

Wateralsoactsasasolventinthedough,andmanyofthereactionsthattakeplaceduringfermentationcannotoccurifthereisnosolvent.Forexample,wateracts

52748.indb 38 2/6/08 2:24:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 54: Food Engineering Aspects of Baking Sweet Goods

Functions of Ingredients in the Baking of Sweet Goods

asasolventforsomeofthereleasedcarbondioxidegastoformcarbonicacid.Car-bonicacidcontributestotheacidpHofthedoughduringfermentation,providingafeasibleatmospherefortheactionofenzymesandyeastinthedoughsystem.

2.6.2 Cakes

Waterispresentinsufficientquantityincakebatterstodissolvesugar,nonfatdrymilk,salt,andotherdryingredients.Wateraddsmoisturetothefinishedcakesandalsoregulatestheconsistencyofthebatter.Itdevelopstheproteinintheflourtoaverylimitedextentinordertoretainthegasproducedbybakingpowder.

2.6.3 BisCuiTs

Waterhasacomplexroleinbiscuitsbecauseitdeterminestheconformationalstateofbiopolymers,affectsthenatureofinteractionsbetweenthevariousconstituentsoftheformula,andcontributestodoughstructuring(EliassonandLarsson,1993).Itisalsoanessentialfactorintherheologicalbehaviorofflourdoughs(Webbetal.,1970).Bloskma(1971)observedthataddingwatertotheformulareducestheviscosityandincreasesdoughextensibility.Iftheproportionofwateristoolow,thedoughbecomesbrittle,notconsistent,andexhibitsamarked“crust”effectduetorapiddehydrationofthesurface.Anincreaseinwaterresultsintheexpansionofbiscuitslengthwisewithasmallerthickness.

. funCtIonsofsalt

2.7.1 yeasTeddouGhs

Saltisusedforflavorandtaste,notnecessarilyitsown,buttobringoutorenhancetheflavoroftheotheringredientsusedinthedough.Usagelevelsarenormallybetween1.0and2.5%.Saltalso inhibits fermentationdue toosmoticpressureeffect.Yeastcellswillpartiallydehydrateduetotheosmoticpressure.Thefactthatsaltinfluencesthefermentationcanbeusedtocontrolthefermentationrate.Salttoughenstheglu-ten.AccordingtoPreston(1989),saltcauseselectrostaticshieldingofchargedaminoacidsonthesurfaceofglutenproteins,resultinginincreasedinterproteinhydropho-bicandhydrophilicinteraction,whichresultsinanincreaseindoughstrength.

2.7.2 Cakes

Salt isusedasanadjustmentofsweetnessincakes,bringsouttheflavorofotheringredientsincakes,lowersthecaramelizationtemperatureofthebatter,andaidsinobtainingcrustcolor.

2.7.3 BisCuiTs

Salt isusedinallbiscuitrecipesforitsflavorandflavor-enhancingproperties.Itsmosteffectiveconcentrationisaround0.5to1.0%.Saltalsotoughenstheglutenandhencereducesstickiness.

52748.indb 39 2/6/08 2:24:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 55: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

. funCtIonsofnonfatdryMIlK

2.8.1 yeasTeddouGhs

Nonfat dry milk provides a richer color and a more tempting appearance to thefinished product. It is recommended for use in all sweet dough formulas for theincreasedtolerancesitgivestofermentationandmakeup.Milkishighinlysineandcalcium,andtheoverallqualityofthemilkproteinisexcellent.Milkimprovesthenutritionalqualityof theproduct.MilkhasabuffereffecthencemorestablepH,strengtheningof thegluten if serumproteinhasbeen removedbyheat treatment(Pyler,1988c).

2.8.2 Cakes

Nonfat dry milk in cakes performs the function of structure formation and con-tributestocrustbrowningbecauseofitsproteinandsugarcontent.Milkcontainslactosesugarthatregulatescrustcolor.

2.8.3 BisCuiTsandCookies

Nonfatdrymilkisaminordoughingredientinbiscuitsandcookies,usedtogivesubtleflavorandtexturalimprovementsandtoaidsurfacecoloring.

. funCtIonsofaddItIves

2.9.1 oxidizinGaGenTs

Theuseofoxidizingagentsimprovesthestrengthofsweetdough.Asaresult,theywillimprovedoughhandlingforbettermachiningandcontributetoimprovedgasretention,givingbettervolumeandamoreuniformgrainofthecrumb.AccordingtoCole(1973),oxidantspromotetheformationofdisulfidebondsamongextendedmolecules, therebyimpartinggas-retaininganddough-strengtheningproperties toglutenfilm.Oxidizingagentsarenotbeneficialincakes,cookies,orbiscuits.

2.9.2 reduCinGaGenTs

Theuseofareducingagentreducesdisulfidebondstothesulfhydrylgroup.Theaddi-tionofL-cysteinehydrochlorideandpotassiummetabisulfiteweakensthedough;itnormallyreducesresistancetoextensionandextensographareaandincreasesexten-sibility(MitaandBohlin,1983).Reducingagentsareusefulincertaintypesofbis-cuitdough.Areducingagentsuchassodiummetabisulfiteincreasescookiespreadbydecreasingdoughstability.

2.9.3 surFaCTanTsandemulsiFiers

Inyeasteddoughs,asurfactantformscomplexeswiththeproteinandstarchportionsoftheviscoelasticwheatflourdoughandstrengthenstheextensiblegluten–starchfilmanddelays thesettingof thedoughduringbaking.Theuseofsurfactants in

52748.indb 40 2/6/08 2:24:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 56: Food Engineering Aspects of Baking Sweet Goods

Functions of Ingredients in the Baking of Sweet Goods

yeast-raisedproductsresultsinincreasedproductvolume,amoretendercrustandcrumb,afinerandmoreuniformcellstructurewiththincellwallswhichcausesabrightercrumbcolor,andareductionintherateofcrumbfirmingduetothecomplexformingabilitywithanamylosemoietyofastarchmoleculeandtopreventionofitsleachingoutofthestarchgranuleduringstorage.

Incakebaking,emulsifiersaidtheincorporationandsubdivisionofairintotheliquidphasetopromotefoamformationandalsopromoteuniformdispersionoffatthatcontainsentrappedaircells,therebyprovidingmoresitesfortheexpansionofgas,resultingingreatervolumeandsofttexture(Pyler,1988d).Emulsifiersprovidenecessaryaerationandgasbubblestabilityduringtheprocessuntilthecakestruc-tureisset(SahiandAlava,2003).Emulsifiersalsocoattheexterioroffatparticlessothatthesurfacesoftheparticlesarenolongerdisruptivetotheproteinfilm(Woottonetal.,1967).KimandWalker(1992)reportedthatpolysorbate-60(PS-60)increasedbatterviscositymorethandidsucroseesters.Thismayhavebeencausedbymoreairbubblesbeingincorporatedoramoreair-viscouscontinuousphaseinteractingwithwater.Thevolumeofhigh-ratiocakeandoverallqualityincreasedandcrumbfirmnessdecreasedwithPS-60addition.Jyotsnaetal.(2004)reportedthattheuseofemulsifiergelspreparedusingsodiumstearoyl-2-lactylate(SSL),distilledglyc-erolmonostearate(DGMS),propyleneglycolmonostearate(PGMS),polysorbate-60(PS-60),andsorbitolmonostearate(SMS)incakemakingresultedinadecreaseinbatterdensity,anincreaseinthenumberofevenlydistributedaircellbubbles,andanimprovementinspecificvolumeandtextureofcake.Amongdifferentemulsifiergels,cakeswithPS-60showedamaximumincreaseinspecificvolumefollowedbycakeswithSSL,DGMS,PGMS,andSMSgels.

Considerableinformationisavailableontheeffectofdifferentemulsifiersonthequalityofcookies.Tsenetal.(1975)showedthatemulsifiersimprovedthecookiespreadand,moresignificantly,topgrainscorewhentheywerecreamedintoashort-eningandsugarmixture.Ablendofsurfactantsinsemisweetbiscuitswasshowntohaveseveraladvantages,suchasincreasedmixingtime,greatermixingstability,reducedrateofdoughbreakdown,uniformfatdistribution,preventionofmoisturemigration,andimprovementintexture.Emulsifiersareusedtoreducetheshorteningrequirementsandincreasetheshorteningeffectoffatsbypromotingthetendencyoffattocreamandspreadamongslightlymoistparticlesofsugars,fiber,andotheringredients.Emulsifierstendtomakecookiesdrierandimprovetheirmachinability(KamelandPonte,1993).

SaiManoharandHaridasRao(1999)studiedtheeffectofemulsifiersonrheologicalcharacteristicsofbiscuitdoughandqualityofbiscuits.Theyreportedthattheadditionofanyoftheemulsifiersglycerolmonostearate,lecithin,orsodiumstearoyl-2-lactylateloweredtheelasticvalue,indicatingtheircontributiontotheshorteningeffectonglu-ten,andalsoresultedinareductioninconsistencyandhardnessandmadethedoughmorecohesive.Glycerolmonostearateandlecithinbroughtaboutagreaterimprove-mentinthequalityofthebiscuitwhencomparedwithsodiumstearoyl-2-lactylate.

52748.indb 41 2/6/08 2:24:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 57: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

2.9.4 enzymes

The functions of enzymes in baked products include flour quality improvement,retardationofstaling,doughimprovement,andmoreefficientmachinability.Fungaland bacterial enzymes available for use in bakery processing includeα-amylase,protease,amyloglucosidases,pentosanase,glucanase,andphytase.Themostimpor-tantoftheseareα-amylaseandprotease.

α-amylaseenzymeisbeneficialinbread,buns,androlls.Supplementationofα-amylaseincreasesfermentablesugars,improvescrustcolor,increasesloafvolume,enhancesflavor,improvesgasretentionthroughstarchmodification,increasesmois-tureretentionofcrumb,andretardsstalingofyeasteddoughproducts.

Supplementationofdoughwithproteaseenzymehelpstobreakdowntheglutenproteinsothatthedoughissofterandmoreextensible(Mathewson,2000).Proteaseenzymeisusedtodecreasethemixingrequirement(inbread),improvethemachin-abilityofadough(insaltinecrackers), increasedoughflowintheoven(cookies),increasepanflow(buns), andcounteract the tendency to springbackwhenpizzadoughisbeingsheeted(Dubois,1980).

2.9.5 viTalwheaTGluTen

Vitalwheatglutenisthenaturalwheatproteinextractedfromflourwhichstillretainsallofitsgluten-formingcharacteristics.Itisaddedtothedoughtostrengthenweakflourandtocarryextraingredientssuchassugars,fibers,andgrains.Vitalwheatglutenisusedinyeasteddoughproductsformulationatlevelsvaryingfrom2to4%basedonflour.Itincreasesthewaterabsorptionofthedoughandimpartsgreatersta-bilitytothedoughduringfermentation.Thesefunctionalpropertiesofvitalglutenareeventuallyreflectedinincreasedloafvolume,improvedgrain,improvedtexture,andsoftnessofcrumb.

2.9.6 hydroColloids

Hydrocolloidsorgumshavebeenwidelyusedinthefoodindustryinordertoimprovefoodtexture,slowtheretrogradationofthestarch,increasemoistureretention,andextendtheshelflife.

The addition of hydrocolloids increases the water absorption capacity of theflour. The highest increase in water absorption was observed by hydroxyl propylmethylcelluloseandalginate(Guardaetal.,2004).Theincreaseinwaterabsorptionisduetothehydroxylgroupinthehydrocolloidstructurewhichallowsmorewaterinteractionthroughhydrogenbonding(Friendetal.,1993).Useofguargumuptoa levelof1%greatlyimprovedtheoverallbread-makingqualityof theflourwithspecialreferencetowaterabsorptioncapacityofthedough,yieldofbread,crumbsoftness,andcrustappearance(VenkateswaraRaoetal.,1985).

Hydrocolloidsmodifythepastingpropertiesof thestarch.Thesestarchprop-erties, including gelatinization temperature, pasteviscosity, and retrogradationofstarch,affectcakebakingandthefinalqualityofcakes(Christiansonetal.,1981;Rojasetal.,1999;Roselletal.,2001).Shelkeetal.(1990)studiedtheeffectsofxan-than,guargum,andcarboxymethylcellulose(CMC)onthequalityofwhitelayer

52748.indb 42 2/6/08 2:24:49 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 58: Food Engineering Aspects of Baking Sweet Goods

Functions of Ingredients in the Baking of Sweet Goods

cakes.Theadditionofhydrocolloidsincreasedbatterviscosityatambienttempera-tureoverthecontrolvalues,andxanthangavehigherbatterviscositiesthanguarandCMC.Highviscosityduringheatingwouldgivethebattergreatercapacitytoretainexpandingairandnucleiandresistthesettingofstarchgranules,therebyimprovingbothcakevolumeandcrumbgrain.

High-quality cakes have various attributes, including high volume, uniformcrumb structure, tenderness, long shelf life, and tolerance to staling (Gelinas etal.,1999).Theseattributesdependonthebalancedformulas,aerationofcakebat-ters,andstabilityoffluidbattersintheearlystagesofbakingandthethermal-set-tingstage.Then,thequalityofafinishedcakecanbeinfluencedbytheadditionofsubstances(suchashydrocolloids)thataffecttheseproperties.Gomezetal.(2007)studiedthefunctionalityofdifferenthydrocolloids—sodiumalginate,carrageenan,pectin,hydroxy-propyl-methylcellulose(HPMC),locustbeangum,guargum,andxanthangum—onthequalityandshelflifeofyellowlayercakes.Theadditionofhydrocolloidsreducedthequantityofairretainedoncakebatterasdemonstratedbytheincreaseinitsdensity.Cakeswithhydrocolloidshadhighervolumethanthecon-trolexceptwhenalginatewasused.Theyconcludedthattheeffectofhydrocolloidsonyellowlayercakevolumeincreasehastoberelatedtotheincreaseinbattervis-cosityandthechemicalinteractionbetweengumsandstarchthataltersthesettingtemperature.Theoverallqualityoftheyellowlayercakedependednotablyonthetypeofgumadded.ThehighestincreaseintheoverallqualityscorewasobservedwithHPMCfollowedbyxanthanandalginate.Pectinshowedaloweroverallaccep-tancescorethanthecontrol.

.0 reCentstudIesontheeffeCtsof IngredIentsonQualItyofCaKesandBIsCuIts

In response to somepopulation sectorswithparticularnutritionalnecessities, thefoodindustryisbeingchallengedtoredesigntraditionalfoodsforoptimalnutritionalvalueandfortastethatisasgoodasorbetterthanthatoftheoriginal.Onewaytoachieveahealthyfoodproductistoreduceortoomitsomeofthecalorie-contain-ingingredients—especiallysugarandfat—because,atpresent,obesityisfrequentlycitedasaserioushealthproblem(Rondaetal.,2005).Thereareanumberoffatandsugarreplacersinthemarket;however,itisimportanttoconsiderthefunctionalityofthesefatandsugarreplacersinavarietyofhigh-sugar-andhigh-fat-containingprod-uctstoobtainproductswithsimilarqualityparameters(KamelandRasper,1988).

Eggsplayamultifunctionalroleinthecakesystem,affectingfoaming,emulsi-fication,texture,waterbinding,color,andflavor.However,inrecentyears,concernsoverhighcholesterolandhighcostforpeoplewithspecificdietaryneedsorrestric-tions(vegetarians,peoplewithhighcholesterollevels)andfoodsafetyissueshaveled to the replacementofeggs incakes.Theuseofvegetableproteins forpartialortotalsubstitutionofeggsincakeformulationswasreportedbyArozarenaetal.(2001). They suggested the use of white lupine protein, emulsifiers, and xanthangumtoproduceegg-freecake.Studiesbyseveralauthorshavesuggestedtheuseofbovinebloodplasmatosubstituteforeggwhite(Leeetal.,1993)andsoyaflourtosubstituteforegg(GlibertsonandPorter,2001).

52748.indb 43 2/6/08 2:24:49 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 59: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Totakethenextsteptowardcaloriereduction,sugarandfatreplacersareusedinthebakingindustry.Polydextrose,asugarandfatreplacer,isacross-linked,par-tiallymetabolizedglucosepolymer thataddsbodyand texture to reduced-caloriefoods.Itprovides1Kcal/gincomparisonwith4Kcal/gbysucroseand9Kcal/gbyfat.Koceretal.(2007)studiedtheeffectofpolydextroseasasugarandfatreplaceronthequalityofhigh-ratiocake.Theyreportedthatthemajoroutcomeofpolydex-trosesubstitutionwasadecreaseintheaverageporesizeandporesizeuniformityofthecakecrustduetothecombinedeffectofreducedbatterstabilityandinterferencewith thegelatinizationmechanism.Thehigh-ratiocakesystemwithpolydextroseallowed25%fatand22%sugarreplacement,resultingin22%reductionincalorificvaluebasedontotalsugarandfatcontent.

Rondaetal.(2005)studiedtheeffectsofsevenbulkingagents—maltitol,man-nitol,xylitol,sorbitol, isomaltose,oligofructose,andpolydextrose—onthequalityofsugar-freespongecake.Theyobtainedthebestresultswithxylitolandmaltitol,resulting inspongecakesmoresimilar to thecontrol,manufacturedwithsucroseandwiththehighestacceptancelevelinsensoryevaluations.Theyalsoconcludedthatmannitolproved tobe theworst substituteof sucrose amongall thebulkingagentstested.

Gallagheretal.(2003a)studiedtheevaluationofraftilose,anoligosaccharidesuccessfullyusedinfoodproductsasasugarreplacerinshortdoughbiscuitproduc-tion,wherethesugarwasreplacedby20to30%.Theyreportedthatatthelowerandmedium levelsof sugar replacement, raftilosecanbeused successfully to reducesugarinshortdoughbiscuits.

Gallagheretal.(2003b)developedaformulationforabiscuitcontainingreducedfat and sugar levels as well as exhibiting functional properties using Novelose®,sodiumcaseinate,Raftilose®,andSimplesse®.Theyopinedthatacombinationoftheabovefourfunctionalingredientsproducedabiscuitofextremelyhighstandards.

. ConClusIon

Ingredientsplayamajorroleinthedevelopmentofaproduct.Sugarconferssweet-ness,fatlubricatesdoughandshortensthecontinuityofgluten,waterisnecessaryforhydratingproteins,carbohydratesarenecessaryforthedevelopmentoftheglutennetworkandthesolubilizingofotheringredients,nonfatdrymilkprovidesarichercolorandamoretemptingappearancetothefinishedproduct,leaveningagentsaer-atethedoughorbatterandcontributelightnesstotheproduct,andadditivesbringaboutimprovementsinthemachinabilityofthedoughandthequalitycharacteris-ticsofproducts.Replacersoffat,sugar,andeggareusedinthebakeryindustrytoimprovethenutritionalstatusofbiscuitsandcakes.Manyofthefunctionsofingre-dientsdescribedinthischapterwillbeusefulforabakingtechnologistindevelop-ingnovelformulationsforsweetgoods,understandingtheroleofingredientsinthebuildingupoftheproduct,counteractingtheproblemsthatmayariseduringpro-cessing,improvingtheproductquality,maintainingtheconsistencyinthequalityoftheproduct,andhandlingbulkproductionsconfidently.

52748.indb 44 2/6/08 2:24:49 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 60: Food Engineering Aspects of Baking Sweet Goods

Functions of Ingredients in the Baking of Sweet Goods

referenCes

Abboud,A.M.,R.C.Hoseney, andG.L.Rubenthaler. 1985.Factors affecting cookieflourquality.Cereal Chemistry 62:130–133.

Arozarena, I.,H.Betholo, J.Empis,A.Bunger,and I.DeSousa.2001.Studyof the totalreplacementofeggbywhitelupeineprotein,emulsifiersandxanthanguminyellowcakes.European Food Research Technology213:312–316.

Bean,M.M.,W.T.Yamazaki,andD.H.Donelson.1978.Wheatstarchgelatinizationinsugarsolution. II. Fructose, glucose and sucrose: Cake performance. Cereal Chemistry55:945–952.

Bean, M.M. and C.S. Setser. 1992. Polysaccharide sugars and sweeteners. In: Bowers, J.(Ed.).Food Theory and Applications,pp.69–198.Macmillan,NewYork.

Bloskma, A.H. 1971. Rheology and chemistry of dough. In: Pomeranz, Y. (Ed.). Wheat Chemistry and Technology, 2nd ed., pp. 558–560. American Association of CerealChemistry,St.Paul,MN.

Brooker,B.E.1993a.Thestabilizationofairincakebatters—Theroleoffat.Food Structure12:285–296.

Brooker,B.E.1993b.Thestabilizationofairinfoodscontainingfat—Areview.Food Struc-ture12:115–122.

Bushuk,W.1966.Distributionofwaterindoughandbread.Baker’s Digest40:38–40.Christianson,D.D.,J.E.Hodge,D.Osborne,andR.W.Detroy.1981.Gelatinizationofwheat-

starchasmodifiedbyxanthangum,guargum,andcellulosegum.Cereal Chemistry58:513–517.

Cole,M.S.1973.Anoverviewofmoderndoughconditioners.Baker’s Digest47:21–23,64.D’Appolonia,B.L.1972.Effectofbread ingredientsonstarchgelatinizationpropertiesas

measuredbytheamylograph.Cereal Chemistry49:532–543.Derby,R.I.,B.S.Miller,B.F.Miller,andH.B.Trimbo.1975.Visualobservationsofwheat–

starchgelatinizationinlimitedwatersystems.Cereal Chemistry 52:702–713.DeBois,D.K.1980.Enzymesinbaking.II.Applications.Technical Bulletin.AmericanInsti-

tuteofBaking2(11):1–6.Manhattan,KS.Dubois,D.K.1981a.Chemicalleavening.Technical Bulletin. AmericanInstituteofBaking

3:1–6.Manhattan,KS.Dubois,D.K.1981b.Fermenteddoughs.Cereal Foods World 26:617–622.Eliasson, A.C. and K. Larsson. 1993. Cereal in Bread Making: A Molecular Colloidal

Approach,Chap.6,pp.261–266.MarcelDekker,NewYork.Forsythe,R.H.1970.Eggsandeggproductsasfunctionalingredients.Baker’s Digest44:40.Friend,C.P.,R.D.Waniska,andL.W.Rooney.1993.Effectsofhydrocolloidsonprocessing

andqualitiesofwheattortillas.Cereal Chemistry70:252–256.Gallagher,E.,C.M.Obrien,A.G.M.Scannel,andE.K.Arendt.2003a.Evaluationofsugar

replacersinshortdoughbiscuitproduction.Journal of Food Engineering 56:261–263.Gallagher,E.,C.M.Obrien,A.G.M.Scannel,andE.K.Arendt.2003b.Useofresponsesur-

facemethodologytoproducefunctionalshortdoughbiscuits.Journal of Food Engi-neering56:269–271.

Gelinas,P.,G.Roy,andM.Guillet.1999.Relativeeffectsofingredientsoncakestalingbasedonanacceleratedshelf-lifetest.Journal of Food Science64:937–940.

Glibertson, D.B. and M.A. Porter. 2001. Replacing eggs in bakery goods with soy flour.Cereal Foods World 46:431–435.

Gomez,M.,F.Ronda,P.A.Caballero,C.A.Blanco,andC.M.Rosell.2007.Functionalityofdifferenthydrocolloidsonthequalityandshelf-lifeofyellowlayercakes.Food Hydro-colloids 21:167–173.

Guarda,A.,C.M.Rosell,C.Benedito,andM.J.Galotto.2004.Differenthydrocolloidsasbreadimproversandantistalingagents.Food Hydrocolloids18:241–247.

52748.indb 45 2/6/08 2:24:50 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 61: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Hoseney, R.C., W.A. Atwell, and D.R. Lineback. 1977. Scanning electron microscopy ofstarchisolatedfrombakedproducts.Cereal Foods World22:56–60.

Jyotsna,R.,P.Prabhasankar,D.Indrani,andG.VenkateswaraRao.2004.Improvementofrheologicalandbakingpropertiesofcakebatterswithemulsifiergels.Journal of Food Science 69:SNQ16–19.

Kamel,B.S.andV.F.Rasper.1988.Effectsofemulsifiers,sorbitol,polydextroseandcrys-tallinecelluloseon the textureof reducedcaloriecakes.Journal of Texture Studies19:307–320.

Kamel,B.S.andJ.G.PonteJr.1993.Emulsifiersinbaking.In: Kamel,B.S.,andStauffer,C.E.(Eds.).Advances in Baking Technology,pp.195–199.BlackieAcademicandProfes-sional,VCH,NewYork.

Kichline,T.P.andJ.F.Conn.1970.Somefundamentalaspectsofleaveningagents.Baker’s Digest 44:36–40.

Kim,S.S.andC.S.Setser.1992.Wheatstarchgelatinizationinthepresenceofpolydextroseorhydrolysedbarleyβ-glucan.Cereal Chemistry 69:447–451.

Kim,C.S.andC.E.Walker.1992.Interactionsbetweenstarches,sugarsandemulsifiersinhigh-ratiocakemodelsystems.Cereal Chemistry69:206–212.

Kissel,L.T.,B.D.Marshall,andW.T.Yamazaki.1973.Effectofvariabilityinsugargranula-tionontheevaluationofflourcookiequality.Cereal Chemistry50:225–264.

Kocer,D.,Z.Hicsasmaz,A.Bayindirli,andS.Katnas.2007.Bubbleandporeformationofthehighratiocakeformulationwithpolydextroseasasugarandfatreplacer.Journal of Food Engineering78:953–964.

Lee,C.C.,J.A.Love,andL.A.Johnson.1993.Sensoryandphysicalpropertiesofcakeswithbovineplasmaproductssubstitutedforegg.Cereal Chemistry70:18–21.

MacDonnel, L.R., R.E. Fenny, H.L. Hanson, A. Campbell, and T.F. Sugihara. 1955. Thefunctionalpropertiesoftheeggwhiteproteins.Food Technology9:49–53.

Mathewson, P.R. 2000. Enzymatic activity during bread baking. Cereal Food World45:98–101.

Matz,S.A.andT.D.Matz.1978.Cookie and Cracker Technology.AVI,Westport,CT.Menjivar,J.A.andH.Faridi.1994.Rheologicalpropertiesofcookieandcrackerdoughs.In:

Faridi,H.(Ed.).The Science of Cookie and Cracker Production,pp.315–316.Chap-manandHall,NewYork

Miller,R.A.1997.Factorsinhardwheatflourresponsibleforreducedcookiespread.Cereal Chemistry 74:330–336.

Miller, R.A., R. Mathew, and R.C. Hoseney. 1996. Use of a thermomechanical analyzerto studyanapparentglass transition in cookiedough.Journal of Thermal Analysis 47:1329–1338.

Mita,T.andL.Bohlin.1983.Shearstressrelaxationofchemicallymodifiedgluten.Cereal Chemistry 60:93–97.

Mizukoshi,M.1983.Modelstudiesofcakebaking.IV.Foamdrainageincakebatter.Cereal Chemistry60:399–402.

Mizukoshi,M.1985.Modelstudiesofcakebaking.VI.Effectsofcakeingredientsandcakeformulaonshearmodulusofcake.Cereal Chemistry62:247–251.

Ngo,W.H.andM.V.Taranto.1986.Effectofsucroselevelontherheologicalpropertiesofcakebatters.Cereal Food World 31:317–322.

Olewnik,M.C.andK.Kulp.1984.Theeffectofmixing timeand ingredientvariationonfarinogramofcookiedoughs.Cereal Chemistry 61:532–537.

Paton,D.,G.M.Larocque,andJ.Holme.1981.Developmentofcakestructure:Influenceofingredientson themeasurementof cohesive forceduringbaking.Cereal Chemistry58:527–529.

Preston,K.R.1989.Effectsofneutralsaltsofthelyotropicseriesonthephysicaldoughprop-ertiesofCanadianredspringwheatflour.Cereal Chemistry66:144–148.

52748.indb 46 2/6/08 2:24:50 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 62: Food Engineering Aspects of Baking Sweet Goods

Functions of Ingredients in the Baking of Sweet Goods

Pyler,E.J.1988a.Sugarsandsyrups.In:Pyler,E.J.(Ed.).Baking Science and Technology,vol1,pp. 412–413.Sosland,KansasCity,MO.

Pyler,E.J.1988b.Eggsandeggproducts.In:Pyler,E.J.(Ed.).Baking Science and Technol-ogy,vol1,pp.540–541.Sosland,KansasCity,MO.

Pyler,E.J.1988c.Dairyproductsandblends.In:Pyler,E.J.(Ed.).Baking Science and Tech-nology,vol1,pp.513–519.Sosland,KansasCity,MO.

Pyler,E.J.1988d.Bakeryshortenings.In:Pyler,E.J.(Ed.).Baking Science and Technology,vol1,pp.474–477.Sosland,KansasCity,MO.

Rojas,F.,C.M.Rosell,andC.BeneditodeBarber.1999.Pastingpropertiesofdifferentwheatflour–hydrocolloidssystems.Food Hydrocolloids13:27–33.

Ronda,F.,M.Gomez,C.A.Blanco,andP.A.Caballero.2005.Effectsofpolyolsandnondi-gestibleoligosaccharidesonthequalityofsugar-freespongecakes.Food Chemistry90:549–555.

Rosell, C.M., J.A. Rojas, and C. Benedito de Barber. 2001. Combined effect of differentantistakingagentsonthepastingpropertiesofwheatflour.Food Research Technology212:473–476.

Sahi, S.S. and J.M. Alava. 2003. Functionality of emulsifiers in sponge cake production.Journal of the Science of Food and Agriculture 83:1419–1429.

SaiManohar,R.andP.HaridasRao.1999.Effectofemulsifiers,fat levelandtypeontherheologicalcharacteristicsofbiscuitdoughandqualityofbiscuits.Journal of the Sci-ence of Food and Agriculture79:1223–1231.

Schanot,M.A.1981.Sweeteners:FunctionalityinCookiesandCrackers.Technical Bulletin.AmericanInstituteofBaking3:4.Manhattan,KS.

Sharon, G. 2000. Formulating irresistible sweet baked goods. Food Product Design: Design Elements. September—SnackMixes,1–9.www.foodproductdesign.com/arti-cles/463/463-1000de.htm.

Shelke,K.,J.M.Faubion,andR.C.Hoseney.1990.Thedynamicsofcakebakingasstudiedbyacombinationofviscometryandelectricalresistanceovenheating.Cereal Chem-istry67:575–580.

Spies,D.andR.C.Hoseney.1982.Effectofsugarsonstarchgelatinization.Cereal Chemistry59:128–131.

Tsen,C.C.,L.J.Bauck,andW.J.Hoover.1975.Usingsurfactantstoimprovethequalityofcookiesmadefromhardwheatflours.Cereal Chemistry52:629–637.

Venkateswara Rao, G., D. Indrani, and S.R. Shurpalekar. 1985. Guar gum as an additiveforimprovingthebreadmakingqualityofwheatflours.Journal of Food Science and Technology22:101–104.

Vetter,J.L.1984.Technical Bulletin.VI.AmericanInstituteofBaking,Manhattan,KS.Wade,P.1988.Biscuits, Cookies and Crackers, the Principles of the Craft,vol1.Elsevier

AppliedScience,London.Webb,T.,P.WHeaps,P.W.RussellEggitt,andJ.B.M.Coppock.1970.Arheologicalinvestiga-

tionoftheroleofwaterinwheatflourdoughs.Journal of Food Technology5:65–76.Wootton, J.C.,N.B.Howard, J.B.Martin,D.E.McOsker,andJ.Holme.1967.The roleof

emulsifiersintheincorporationofairintolayercakebattersystems.Cereal Chemistry44:333–343.

Yamazaki,W.T.1959.Theapplicationofheatinthetestingoffloursforcookiequality.Cereal Chemistry32:26–37.

52748.indb 47 2/6/08 2:24:50 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 63: Food Engineering Aspects of Baking Sweet Goods

52748.indb 48 2/6/08 2:24:51 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 64: Food Engineering Aspects of Baking Sweet Goods

3 Chemical Reactions in the Processing of Soft Wheat Products

Hamit Köksel, Vural Gökmen

Contents

3.1 Introduction................................................................................................... 493.2 LeaveningSystems:ChemicalLeaveningversusYeastLeavening..............50

3.2.1 GasesActingintheLeaveningofBakeryProducts.......................... 513.2.2 ChemicalLeavening.......................................................................... 51

3.2.2.1 AmmoniumBicarbonate...................................................... 523.2.2.2 SodiumBicarbonate............................................................. 523.2.2.3 PotassiumBicarbonate.........................................................543.2.2.4 SodiumCarbonate................................................................54

3.2.3 BakingPowders.................................................................................543.2.3.1 Single-ActingandDouble-ActingBakingPowders.............563.2.3.2 LeaveningAcids...................................................................563.2.3.3 DoughReactionRateandBatterReactionRate.................. 613.2.3.4 NutritionalValuesofBakingPowders................................. 613.2.3.5 UtilizationofBlendsofChemicalLeaveningAgents

andPremixes........................................................................ 623.2.3.6 EffectofBatterViscosityandCO2ProductionRateon

theQualityofSoftWheatProducts..................................... 633.3 MaillardReaction.........................................................................................65

3.3.1 FormationofColor.............................................................................663.3.2 FormationofFlavorandAromaCompounds.................................... 673.3.3 FormationofAntioxidants.................................................................683.3.4 LossofNutritionalQuality................................................................693.3.5 FormationofToxicCompounds........................................................69

3.3.5.1 Acrylamide...........................................................................693.3.5.2 Hydroxymethylfurfural(HMF)........................................... 73

References................................................................................................................ 76

. IntroduCtIon

Foodchemistrytracesthecontinuousseriesofchemicalreactionsinthechemicalsystemthatwecall“food” throughvariousstagessuchasharvesting,processing,storage,andconsumption.Abroadrangeofreactionsoccurparticularlyduringfood

52748.indb 49 2/6/08 2:24:51 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 65: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

processing.Thesechemicalreactionstakeplaceinlipids,proteins,carbohydrates,andotherfoodconstituentswhichprimarilyinvolveoxidation,degradation,dena-turation,aggregation,hydrolysis,andpolymerization.Theyhavekeyimportanceinproducingdesirableandundesirablechangesinfoodproductsandmustbeunder-stoodfromthelegalandtoxicologicalpointsofview.Agoodunderstandingofthechemistryofafood-processingsystemisexpectedtohavesignificantcontributionstothesuccessfulcontroloftheprocessaswellasthequalityofthefinalfoodproduct.

Thebakingqualityof softwheatproductsdependson the interactionsof thevariouschemicalsinflourandtheothersubstancesusedintherecipe.Batteranddough systems, used in theproductionof softwheat products, serve as chemicalreaction pools with their wealthy composition. The wide range of ingredients inthemaffectsthepHandresultsincharacteristicflavorsandcolors,oftendesirablebut sometimesundesirable.Baking results invarious typesofchemical reactionsandphysicalchangesduetosimultaneousheatandmasstransfer.Thefirststageofbakingischaracterizedbyaphysicalchangeindoughstructurefrom“moist-soft”to“dry-hard.”Evaporativecoolingpreventsthetemperatureofdoughfromexceeding100°Cinearlystages.Hence,thetypesandprogressionsofchemicalreactionsaredifferentindifferentstagesofbaking.Itshouldberealizedthatanunderstandingofthechemistryofanyfood-processingsystemisnecessarytoattainsuccessfulcontroloftheprocess.Therefore,thedevelopmentofawell-controlledmanufacturingpro-cessofsoftwheatproductsmakesitnecessaryforthefoodengineerortechnologisttounderstandthemainreactionsinchemical leavening(i.e.,foamgenerationandbatteranddoughstabilization),nonenzymaticbrowning,andvariousotherreactionsthataffectdifferentpropertiesofsoftwheatproducts,suchasstructure,texture,fla-vor,taste,andcolor.Manyofthesereactionsinitiatedbyprocessingaremediatedbyfreeradicalsandinvolvesite-specificreactionsthatleadtofunctionalornutritionalchangesinfoods.However,thischapterisnotintendedtocoverallofthechemicalreactionsthatoccurduringtheprocessingofsoftwheatproducts.Themainaimwastocoverchemicalleaveningreactionsandnonenzymaticbrowningreactions.

. leavenIngsysteMs:CheMICal leavenIngversusyeastleavenIng

Gasmustbegeneratedwithinthebatterordoughduringmixingandtheearlystagesofbakinginordertoobtainalight-texturedproductwithacharacteristicporouscel-lularstructure.Theproductwillhavealargenumberofgascellsanddesiredeatingcharacteristicswithsuitableleaveningaction.Theprocessstartswiththeincorpo-rationofair(orothergases)intothebatterofdoughtoformanucleusofgascells.Thesegascellswillexpandwiththeeffectoftheleaveningsystemandalsoduringbakingtocreatethestructureofthefinalproduct(Hoseneyetal.,1988).

Mainly,twotypesofleaveningsystemsareusedinbakedgoods:yeastleaven-ing and chemical leavening. Anaerobic fermentation of sugars by yeast producesCO2andethanol.Carbondioxideproducedbyyeastisthemajorleavenerforbread.Water–ethanolazeotrope,whichhasaboilingtemperatureof78°C,mightalsocon-tribute to the expansionof yeast-leavened products. It vaporizes and expands thedoughwhileitisheatedintheoven(Hoseneyetal.,1988).

52748.indb 50 2/6/08 2:24:51 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 66: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

Yeast leaveningiswidelyusedinbread-typeproductsbut ishardlyeverusedinsoftwheatproductsduetoitsundesirableinfluenceondoughrheologyandthetextureofthefinalproduct.Peoplealsopreferchemicalleaveningtoyeastleaveningduetoacoupleofotherreasons.Yeastgenerallyrequires2to3hoffermentationtoproduceCO2bubbles,andtheactionofchemicalleaveningagentsisalmostinstan-taneous.Chemicallyleavenedcookiescanbeeaten15minaftermixingabatchofdough.Thedoughsusedinsoftwheatproductsareusuallyrichinfatandsugarbutusually lowinwatercontent.Theirsugarcontentmightexceed50%(flourbasis).Therefore,yeastisnotsuitableasaleavenerinmostofthesoftwheatproducts.

3.2.1 GasesaCTinGinTheleaveninGoFBakeryProduCTs

Variousgasesareusedfortheleaveningofbakedgoods.Themainonesareair,carbondioxide,waterandethanolvapor,andammonia.Airisamixtureofgases(nitrogen78%,carbondioxide0.03%,oxygen21%,othergases<0.1%).Itispresentinallbakedproductsandhassomeleaveningaction.Amongthesegases,carbondioxideandoxygendonotcontributemuchtotheformationofbubblesinabatteror dough because they are quite soluble in water. In contrast, nitrogen, the mainconstituentofair,isnotverysolubleinwaterandisincorporatedintodoughorbat-terduringmixingtocreatebubbles.Waterisalsopresentinthebatteranddoughofallbakedproducts.Evaporationofwaterinabatterordoughaffectstheexpansionprocesstosomeextent.Theexpansionofgascellsbywaterdependsontheexcessvaporpressureintheproductduringbaking.Thus,thetemperatureinsidethebatterordoughisimportantbecausewatervaporpressurewillincreasegraduallyastem-peratureincreasestowardtheboilingpointofwater.However,theleaveningeffectofwaterisratherlowduetoitsrelativelyhighboilingpoint.Itmayserveasanefficientleaveneronlyifthebatterordoughsystemisheatedveryrapidly(e.g.,wafers).

3.2.2 ChemiCalleaveninG

ChemicalleaveningsystemsproduceCO2byeitherchemicaldecompositionthroughtheapplicationofheatorareactionofanacidiccompoundwithabase.Gascanformduringallphasesoftheprocessing(e.g.,mixing,forming,andbaking).Thepointatwhichgas formationoccurs is controlled largelyby the compounds used.Thecompositionoftheleaveningsystemaswellastherateandstageatwhichthegasisreleasedinfluencethequality(appearance,texture,color,andeventheflavor)ofthefinalproduct(CauvainandYoung,2006).

Chemicalleaveningprovidesahighlevelofcontrolofthereactionatthedesir-ablestage(duringthemixing,atthebench,orintheoven).Themajordevelopmentareainchemicalleaveninghasbeenhowtocontrolthereactionanditsspeed.Com-monsourcesofcarbondioxidearesodiumandammoniumbicarbonates.Althoughcarbonatesarealsopotentialsourcesofcarbondioxide,theyarenotcommonlyusedduetotheirhighalkalinity(Hoseneyetal.,1988).

Carbondioxidecanexisteitheringaseousform(asfreeCO2)orintwodifferentionic forms (bicarbonate: HCO3

−1 or carbonate: CO3−2). Their relative proportion

dependsonthepHandtemperatureofthesystem.Thegaseousform(CO2)ispre-dominantatverylowpHvalues,andthecarbonateionispredominantatveryhigh

52748.indb 51 2/6/08 2:24:51 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 67: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

pHvalues.IfthepHisabove8.0,noleaveninggas(CO2)willbeavailable.ThepHvaluesofmostofthesoftwheatproductsarearound7.0,andonlypartofthecarbondioxideisintheleaveninggasform(CO2).Becausesodiumbicarbonateisalkaline,thepHofthebatterordoughincreasestoavalueatwhichnoleaveninggas(CO2)isreleased.Thebatterordoughmustincludeanacidtoreleasesignificantamountsofgas.Someoftheingredientsusedinsoftwheatproductsareacidic(e.g.,acidicfruits,buttermilk).Therequiredacidityisusuallyprovidedusingtheseingredientsinhomebaking.However,incommercialapplicationsofchemicalleaveningsystems,acidsoracidiccompoundsareaddedtoprovideconsistentandcontrolledgasproduction(CauvainandYoung,2006;Hoseney,1994).

... ammoniumBicarbonate

Ammoniumbicarbonate(ABC),ammoniumsaltofcarbonicacid,decomposescom-pletelyintoammonia,carbondioxide,andwaterwhenheatedtoabove40°C.

NH HCO NH CO H O4 3 3 2 2→ + +

Itisalsocalled“volatilesalt”(sal volatileor“Vol”inshortform)becauseofthiscompletedissociation.

Onecaneasily smell thepungentodor escaping from thedoughandproductduringprocessing.Thepungentodorisduetoammoniagas(NH3)thatcombineseasilywithwatertoformammoniumhydroxide(NH4OH).Afterthedecomposition,thereisnoresidualsalt.Thisisadvantageousbecauseresidualsaltsmightinfluencethedough rheologyand the tasteof thefinalproduct.Products includingammo-nium bicarbonate as a chemical leavener must be baked thoroughly. Ammoniumbicarbonatedissipates in low-moistureproducts, suchascookiesandcrackers. Inhigher-moistureproducts,ontheotherhand,waterretainstheammoniaandammo-niumhydroxideisformed(especially in themoistcrumbofbakedgoods),givingtheproductanundesirableflavorandodor.Thecrumbtakesonagreenishcolorandproducesanalkalinetaste.

Somegasisreleasedfromammoniumbicarbonateatroomtemperatureduringmixingandforming,butmostisgeneratedduringbaking.Thedissociationisfasterduringbakingasthetemperaturesreachtoaround60°Candabove.Acidiccondi-tionsacceleratethereactionatlowertemperatures.Therapidreleaseofgasresultsinrelativelylargecells.Ammoniumbicarbonatenotonlyincreasesthevolumeorheight,butalsoislikelytoincreasethespreadincookies.

Ammoniumbicarbonate ismarketedasawhitecrystallinepowder thathasatendencytolumping.Therefore,itisnotsuitableforstorageevenatdryconditions.Itisbettertodissolveammoniumbicarbonateinwaterbeforeusingtoavoidproblemsthatmightbecausedduetoseverelumping.

... sodiumBicarbonate

Sodiumbicarbonate(bakingsoda;NaHCO3)isthemostpopularleaveningagent.Itisawhitecrystallinealkalinecompoundthatreactsbyeffervescing(fizzing)when

52748.indb 52 2/6/08 2:24:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 68: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

itcomesintocontactwithacids,thusproducingcarbondioxide.Thischemicalreac-tion facilitates the rising action inbakedgoods.There arevarious advantagesofsodiumbicarbonate(Hoseneyetal.,1988;Hoseney,1994):

Commercialbakingsodaisrelativelyinexpensive,anditisreadilyobtain-ableathighpurityandvarioussizegrades.Itisstableduringstorageandeasytohandle.Itdoesnotaffectthetasteofthefinalproducttoalargeextent.Itisnontoxic.

Whenwaterandacidiccompoundsarenotavailable,sodiumbicarbonatewillreleasesomeofitsCO2andwillbeconvertedintosodiumcarbonateuponheating.Thisoccursathightemperatures(≥90°C)andcannotbeusedforchemicalleaven-ing.Itcanberepresentedbythefollowingequation:

2 3 2 3 2 2NaHCO Na CO CO H Oheat → + +

WhenanaqueoussolutionofNaHCO3isheated,justafractionofCO2willbereleased.Ifthissolutioniscooled,complexsaltcrystals(Na2CO3⋅  2NaHCO3⋅ 2H2O)containingonepartNa2CO3andtwopartsNaHCO3willbeformedwhichcanberepresentedasfollows:

4 23 2 3 3 2 2NaHCO heat Na CO NaHCO CO H O → + +.

Ontheotherhand,ifwaterandacidiccompoundsareavailable,sodiumbicarbonatewillreactwithacidiccompoundstoliberateCO2anddecomposetogivewaterandthesodiumsaltoftheacidiccompound:

NaHCO H Na CO H O3 2 2+ → + ++ +

ThisreactionismoredesirablebecausereactionwithanacidconvertsallofthesodiumbicarbonatetoCO2andwater,whilethefirsttworeactionsconvertsodiumbicarbonatetosodiumcarbonate,CO2,andwater.Sodiumcarbonateresidueisnotdesirableinthefinalproductduetoitsbitterandsoapytaste(Hoseney,1994).

TheCO2releasedisusuallyrequiredasaraisingagentandanearlyreactionisnotdesirable.Therefore,sodiumbicarbonateshouldbekeptawayfromotheringre-dientsaslongaspossible.Forexample,sodiumbicarbonateisaddedatthelaststageofmultistagemixingprocedures.Ifsodiumbicarbonateisaddedatthelaststage,itmustbesievedtoevenlydistributeitintothedoughorbattersystemandtoeliminatelumps.

Therearevariousparticlesizegradesofsodiumbicarbonatesuitableforbakeryproducts.Useofthecoarsergradescanreducethetendencyofsodiumbicarbonatewithacidforprereactionandincreasethesystem’sstability.However,sodiumbicar-

•••

52748.indb 53 2/6/08 2:24:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 69: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

bonatewithcoarsergranulationmaynotdissolvequicklyduringthepreparationofthebatterordoughandmaycausedarkerspecksonthesurfaceofcookies.Anexcessiveamountofsodiumbicarbonatewillresult incookieswithanalkalinecharacteristicandyellowishcrumbandcrustcoloration.Thisisaccompaniedbyanunpleasanttaste(knownassoda-bite).Ifthelevelofsodaisexcessive,highpHvaluesmayalsocausesoapyflavorsproducedbyreactionwiththefatsinformula.Ifthelevelistoolow,itwillallowtheacidicflavorstocomethrough.Therefore,itisusuallyaimedtoachieveapHvalueofaround7.0±0.5 incookiesby theuseofanappropriateamountofsodiumbicarbonate(CauvainandYoung,2006;Manley,1991).However,afewspecialtypesofproductsdeflectfromthispHvalue(sodacrackersarealkaline,cheesecrack-ersareacidic).Sodiumbicarbonatecanbeencapsulatedbyusingfat-basedcoatingstoincreaseitsstability,particularlyforrefrigerateddoughs.Theencapsulatedformsarequitesuccessfulbutcostly,sotheyareusuallyusedinvalue-addedproducts.

... PotassiumBicarbonate

Potassiumbicarbonate(KHCO3)isapotentialsourceofcarbondioxide,especiallyinreduced-sodiumproducts.Becauseithasagreatermolecularweightthansodiumbicarbonate,itrequiresapproximately20%morefortheequivalentleaveningaction(forneutralizationoftheacidsusedintheformula).PotassiumbicarbonateresultsinahighercrumbpHthansodiumbicarbonateandmaycontributeasharpaftertastetoproducts.Itishygroscopic.Itisnotcommonlyusedbecauseithasatendencytoimpartslightbitternesstotheproducts.Thereactionofpotassiumbicarbonatewithacidissimilartothatofsodiumbicarbonate:

KHCO H K CO H O3 2 2+ → + ++ +

... sodiumCarbonate

Sodiumcarbonate(Na2CO3) isalsoapotentialsourceofcarbondioxide.It isnotusedduetoitshighalkalinity,whichincreasestheriskofgettingalocalizedregionofveryhighpHindough.SuchhighpHregionsmightbedetrimentaltothequalitycharacteristicsofthefinalproduct.

3.2.3 BakinGPowders

Anumberofleaveningacids(oracidsalts)canbeincorporatedintotheleaveningsystemtoobtainalargeryieldofgasandtocontroltherateofCO2release.Bakingpowdersconsistofmixturesofsodiumbicarbonate,oneormoreacidiccompounds(acidicsaltsoracids),andaninertdiluentsuchasstarchorcornflour.Thediluentphysicallyseparatestheacidandbaseandpreventstheirearlyreactionduringstor-ageofthebakingpowder.Thesaltdissociatestogiveanacidicreactioninsolutionatdifferentstagesofprocessing.Thepurposeofpreparingsuchamixtureofchemi-calsistoproduceCO2bubblesduringmixing(atroomtemperature)orasthedoughorbatterisheatedintheoven.Creamoftartar,calciumphosphate,andcitrateare

52748.indb 54 2/6/08 2:24:58 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 70: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

commonlow-temperatureacidsalts.High-temperatureacidsaltsareusuallyalumi-numsalts,suchascalciumaluminumphosphate.Theycanbefoundinmanybak-ingpowders.Althoughdietaryaluminumisnotdefinitelyknowntobeharmfultohumanhealth,bakingpowdersareavailablewithoutaluminumsaltsforpeoplewhoareafraidofconsumingaluminum,andalsoforthosesensitivetothetaste(Conn,1981;Hoseney,1994).

Strongacidssuchassulfuricacidorhydrochloricaciddissociatecompletelyandgivehighlevelsofhydrogenioninsolution.Theyreactveryrapidlywithsodiumbicarbonate. On the other hand, weak acids such as tartaric acid and lactic aciddissociateincompletelyandgeneratelowerlevelsofhydrogenionascomparedtostrongacids.Asaconsequence,theyreactslowlywithsodiumbicarbonate.Otheracidiccompounds,suchaspartiallyneutralizedacids,haveanintermediateposition.Neutral salts suchas sodiumaluminumsulfatecan functionasacids through thehydrolysisreactionthatcreateshydroxidesandhydrogenions:

NaAl SO H O Al OH Na SO H( ) ( ) ( )4 2 2 3 423 2 3

3

+ → + + ++ − +

HH NaHCO Na CO H O+ ++ → + +3 3 3 33 2 2

Theamountof acidneeded in a formulation isdeterminedby theamountofsodiumbicarbonateandtheneutralizingvalueofacidoracidsaltusedinthefor-mula.Becausetheacidityisusuallyprovidedbyacidicsalts,insomecases,stoichi-ometryofthereactionisnotclear.Therefore,theconceptofneutralizingvalue(NV)wasintroducedinordertodeterminetheamountofacidneededinaformulation,tocomparetheCO2-releasingpowerofvariousleaveners,andtoallowthecorrectlevelofusage.NVisameasureoftheacidrequiredwithinaspecificbakeryformulation(Conn,1981;Hoseney,1994).

Theneutralizingvalueofaleaveningacidistheamount(g)ofsodiumbicarbon-ateneededtocompletelyneutralize100gofthatacid(Equation3.1).TheneutralizingvaluesofvariousleaveningagentsarepresentedinTable3.1(Conn,1981;Thacker,1997).Inmostapplications, thegoal is tohavelittleornosodiumbicarbonateorleaveningacidremaininginthefinishedproduct.However,sometimesanadditionalamountofsodiumbicarbonateoracidisusedtoprovideaspecificpH-relatedeffect,suchascolororflavormodificationoradjustment.

Neutralization value g of NaHCO

g acidic3=

100 ssalt×100

(3.1)

OtheringredientsincludedintheformulationalsoaffectthepHofaproduct,sotheadditionofleaveningacidsandbasesinneutralproportionsdoesnotassureaneutral pH in thefinalproduct.Changing thepHmay influence the speed andreactivityoftheleaveningsystem.Thedegreeofflourbleachingandaddingingre-dientslikeacidicfruits,buttermilk,cocoapowder,orhigh-fructosecornsyrupcansignificantlyalterthepHofthefinalproductandaffectitsvolume.Manyingredientscontainorganicacidsthatwillreactrapidlywiththesodiumbicarbonate.Therefore,

52748.indb 55 2/6/08 2:24:59 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 71: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

itisimportanttomakesureifthepHofthebatterordoughiscorrectafterformula-tion.ItmaybenecessarytoregulatethepHtogettherightresultinthefinalproduct(Hoseney,1994).

... single-actinganddouble-actingBakingPowders

Baking powders might be either single acting or double acting. Combinations ofacidscanbeusedtocreatedouble-actingbakingpowders.Inthistypeofleaveningsystem,oneacidreactsatroomtemperature,usuallyreleasingasmallamountofgas,andanotheracidreactswhenbatterordoughisheatedintheoven,releasingtherestofthegas.Theinitialgasrelease(duringmixing)providessmallgascells(nucle-ation)thatpromotehomogeneousexpansionoftheproductduringbaking.Thisgascellnucleationcanalsooccurby incorporatingairduringmixing.Thebetter thedispersionofthesenucleatinggascells,thefinerthegraininthefinalproduct.Dur-ingbaking,therateatwhichCO2isformedandthecontinuityofCO2productionarebothimportant.IfanexcessiveamountofCO2isproducedatthebeginningandthereactionfinishes,thecakewillcollapsewhenitistakenfromtheoven.There-fore,somebakingpowdershavetwodifferentacidstoguaranteefastinitialreactionand continuity of the CO2 production during baking (Cauvain and Young, 2006;Hoseney,1994).

... leaveningacids

Theoriginalleaveningacidsforbakingwerethelacticacidinsouredmilkandcreamoftartar.Thetechnologicaldevelopmentsledtotheutilizationofothercompoundsthatarelessexpensiveorlessreactive.Hence,CO2isreleasedwhentheproductis

taBle.

neutralizingvaluesofleaveningagentsleaveningacids reactionrate neutralizingvaluea

Monocalciumphosphate Veryfast 80

Sodiumaluminumphosphate Slow 100

Sodiumaluminumsulfate Medium 100

Glucono-δ-lactone Continuous 45

Sodiumacidpyrophosphate Medium 72

Dicalciumphosphatedihydrate Slow 33

Creamoftartar Veryfast 45

Calciumacidpyrophosphate Medium 67

Adipicacid Veryfast 115

Fumaricacid Medium 145

Citricacid Veryfast 159a Gramsofsodiumbicarbonateneededtoneutralize100gofleaveningacid.

Source:FromConn,J.F.,Cereal Foods World,26,119–123,1981;Thacker,D.,inThe Technology of Cake Making,6thed.,Chapman&Hall,London;NewYork,1997,100–106.

52748.indb 56 2/6/08 2:25:00 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 72: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

placedintheovenratherthanduringmixing.Severalcommercialproductsareusedasleaveningacids.Theyvaryinneutralizingvalue,reactionrateatvarioustempera-tures,andeffectonthefinishedproduct(Table3.1).

3.2.3.2.1 Creamoftartar (KHC4H4O6; Monopotassium Salt of Tartaric Acid, Potassium Acid Tartrate, or Potassium Bitartrate)

H C C

C

C

C

C

O

O O

O

O O

H

H

H

H

H

HH

H

C

C

C

C

OH

OH

OH

OH OH

OHOHOH

OH

OH

OHOH

OH

HOHO

HOHO

CH2OH

CH2OH

HOOC—CH—CH—COO_

K+

CH2OH

CH2OH

D-Glucose α-D-Glucopyranose D-Glucono-1,5-lactone D-Gluconate

1/2O2 H2O2

Cream of tartarCreamoftartarhastraditionallybeenusedinbakingapplications,butitsusein

commercialapplicationsislimitedduetoitshighcostandveryfastreactionrate.Itisobtainedasaby-productofwineproduction.Itreactsquicklyatroomtemperature.

KHC H O NaHCO KNaC H O CO H O4 4 6 3 4 4 6 2 2+ → + +

Cream of Sodium Potassium tarter bicarbonate sodium tartrate

Inreduced-temperaturebatters,creamoftartarhaslimitedsolubilityresultinginlimitedgasdevelopmentduringtheinitialstagesofmixingatlowertemperatures.Therateofreactionincreasesathighertemperatures(roomtemperatureandabove).Becauseofthesecharacteristics,anditspleasanttaste,creamoftartarisusedinsomebakingpowdersandintheleaveningsystemsofanumberofbakedgoodsanddrymixes.

3.2.3.2.2 tartaricacid (H2C4H4O6)

C

C

C

C

C

C

C

C

C

O

O

O

OH H H

H

H

H H

H

H

H

H

HO HO HOH

OH

OH OH OH

OH

OH

OH

CH2OH CH2OHCH2OH

α

β

γ

δ

ε

α

β

γ

δ

ε

+ H2O + H2O

H2O,

COOH C

C

C

C

C

D-Glucono-1,5-lactone(delta lactone)

D-Gluconic acid D-Glucono-1,4-lactone(gamma lactone)

OH OH

HOOC—CH—CH—COOH

52748.indb 57 2/6/08 2:25:02 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 73: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Tartaric acidTartaricacidissolubleinbothcoldandhotwater.Incoldwater,itreactswith

sodiumbicarbonateinstantly.Thesaltremainingafterthereaction(sodiumtartrate)hasalaxativeeffect.Hence,somepeopledonotchoosetouseitinbakingapplica-tions.However,thequantitiesusedinbakingareverysmallandshouldnothaveasignificantlaxativeeffect.

H C H O NaHCO Na C H O CO H O2 4 4 6 3 2 4 4 6 2 22 2+ → + +

Tartaric Sodium Sodium acid bicarbonate tartrate

3.2.3.2.3 MonocalciumPhosphate (MCP)MCPalsoreactsquicklyatroomtemperaturewiththesodiumbicarbonatewhendis-solved,releasingapproximatelytwothirdsoftheCO2inthefirst2min:

3 8 4 82 4 2 3 3 4 2 2 4Ca H PO NaHCO Ca PO Na HPO C( ) ( )+ → + + OO H O2 2+

Hence,MCPoftenactsasanucleatingacid.Itisoftencombinedwithaslower-actingacidinproductsrequiringadouble-actingleavener,suchaspancakebatter.Itisalsocalledcalcium biphosphateoracid calcium phosphate(ACP),andthecom-mercialproductisusuallyinthemonohydrateform,monocalciumorthophosphatemonohydrate,withthechemicalformulaCa(H2PO4)2⋅H2O.ItisnecessarytouseafinelypowderedformofACPtoeliminatetheriskofblackspeckformationonthesurfaceoftheendproduct.

The monohydrate form of ACP reacts as fast as cream of tartar, but the saltobtainedbydryingthemonohydrateform(anhydroussalt)reactsatonlyabout80%ofthisrate.Coatedanhydrousmonocalciumphosphatemaybeusedinapplicationswheretheinitialgasreleasemustbeslowed.Theinitialreactionreleasesabout20%oftheCO2,withapproximately50%releasedafter10to15min.Thistypeofproductisusedincakemixesandself-risingflourorcornmeal.

3.2.3.2.4 sodiumaluminumsulfate(SAS)SASwasusedasthesecondacidindouble-actingbakingpowdersincombinationwithMCP.Itreactstooslowlytobeusedextensivelyincommercialapplications,althoughsometimesitisusedinformulationssuchasretailcakemixes.Themaindisadvantages of SAS are its slight astringent taste and its weakening effect oncrumbtexture:

NaAl SO NaHCO Al OH Na SO CO( ) ( )4 2 3 3 2 4 23 2 3+ → + +

3.2.3.2.5 sodiumacidPyrophosphate (SAPP; Na2H2P2O7 ⋅ H2O)SAPPhasaslowrateofreaction,especiallyundercoldconditions.ItreleasesmostoftheCO2duringbaking:

52748.indb 58 2/6/08 2:25:04 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 74: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

Na H P O NaHCO Na P O H Oheat

2 2 2 7 3 2 2 7 22 2 2 + → + + CCO2

Sodium Sodium Sodium pyrophosphate bicarbonate phosphate

ThereareseveraltypesofSAPPs.Theyshowvariousratesofreaction,depend-ingonhow theyaremade.Theydiffer in termsofprocessingconditions,poros-ity,andgranulation,buttheyarechemicallythesame(Na2H2P2O7).SAPPtypicallyreleases20to40%oftheCO2gasinthefirst2minofmixing,littleornoneduringholding, and the rest duringbaking.High levelsofSAPPcan result in a slightlybitteraftertaste(pyrotaste)inthefinishedproduct.Thepyrotastedoesnotcomefrompyrophosphates.Thepyrophosphatesarebrokendowntosodiumphosphatebyenzymesinthedough.Itappearsthattheaftertasteisduetotheexchangeofcalciumwiththesodiumfromthesurfaceoftheteeth.Theproblemhasbeenpartiallysolvedbyaddingvariousformsofcalcium(e.g.,calciumlactate)tothebakingpowderinsmallamounts.SAPPsmightalsocauseascratchysensationatthebackofthethroatandapepperyaftertaste,whichisnoticeableinproductswithlowersugarcontentandmaybemaskedbyhighlevelsofsweetness.SAPPsareoftenusedinrefrigeratedandfrozendoughandcakedoughnuts.

3.2.3.2.6 sodiumaluminumPhosphate (NaH14Al3(PO4)8 . 4H2O, Sodium Acid Aluminum Phosphate, SALP)SALPisaneutralsalt.Ithashighneutralizingvalue(Table3.1)andiseconomicaltouse.TheproductionofacidfromSALPcanberepresentedbythefollowing:

NaH Al PO H O H O Al OH Na H14 3 4 8 2 2 34 5 3 4( ) . ( )+ + +→ +22 4 4

24 11PO HPO H− − ++ +

SALPreactsslowlyanddoesnotresultinoff-flavorsoraftertasteinthefinishedproduct.Itissuitableforuseindoughsorbattersthatmightstandforlongperiodsbeforebaking.SALPiscommonlyusedasthesecondacidindouble-actingbakingpowders.It isusedinplaceofSAPPinproducts likecakeandmuffinmixesandgiveswhitercrumbthanSAPP.SALPhasatenderizingeffectonbakedproducts.Itinitiallyreleasesabout20%ofthecarbondioxide,withtherestgeneratedduringbaking.

SALPismostcommonlyusedforproducing“self-raising”flourduetoitsgreaterresistancetoreactingwithsodiumbicarbonatewhenmixedinflourthatusuallyhas14%(orlower)moisturecontent.

3.2.3.2.7 dicalciumPhosphatedihydrate (DPD; CaHPO4 ⋅ 2H2O)Dicalciumphosphateisneverusedbyitselfasaleaveningacid,butitcanbeusedincombinationwithotherleaveningacidstoreleaseCO2laterinbaking,usuallyafter20minbakingtime.Itiscommonlyusedindehydratedform,anditisnotanacidicsalt.However,athigher temperatures,DPDdisproportionatesandgivesanacidicreaction,resultinginaleaveningeffect.Itisusedinspecialbakingapplicationsthatrequireveryslowgasrelease.Ithasnoactivityduringmixingoronthebench,and

52748.indb 59 2/6/08 2:25:05 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 75: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

itreactsonlywhenthetemperatureexceeds57°C.Thismeansthatitcanbeusedonlyinproductsthathaveextendedbakingtimes.ItisusefulforadjustingthepHofthefinalproduct.

3.2.3.2.8 glucono-δ-lactone (GDL; C6O6H10)Glucono-δ-lactone is an intramolecular ester of gluconic acid. Glucose oxidaseenzymeoxidizesD-glucoseintoD-glucono-δ-lactone.

H C C

C

C

C

C

O

O O

O

O O

H

H

H

H

H

HH

H

C

C

C

C

OH

OH

OH

OHOHOH

OH

OH

OHOH

OH

HOHO

HOHO

CH2OH

CH2OH CH2OH

CH2OH

D-Glucose α-D-Glucopyranose D-Glucono-1,5-lactone D-Gluconate

1/2O2 H2O2

ItisproducedcommerciallybyfermentationinvolvingAspergillus nigerorA. sub-oxydans.Althoughitisnotanacid,inaqueoussolutionitslowlyhydrolyzestoanequilibriummixtureofgluconicacidanditsδ-andγ-lactones.Atroomtemperature,thishydrolysisreactiontakesaround2handyieldsabout60%gluconicacid.Thehydrolysisrateincreasesathighertemperatures.

C

C

C

C

C

C

C

C

C

O

O

O

OH H H

H

H

H H

H

H

H

H

HO HO HOH

OH

OH OH OH

OH

OH

OH

CH2OH CH2OHCH2OH

α

β

γ

δ

ε

α

β

γ

δ

ε

+ H2O + H2O

H2O,

COOH C

C

C

C

C

D-Glucono-1,5-lactone(delta lactone)

D-Gluconic acid D-Glucono-1,4-lactone(gamma lactone)

Ithasaslowbutcontinualreactionrate.Themaingasreleaseoccursduringbak-ingastheingredientisslowlyhydrolyzed.Italsohasanadvantageinthatthereisnoaftertaste.AlthoughGDLisrelativelyexpensive,therearecertainspecializedtypesofproductssuchaspizzadough,cakedoughnuts,andrefrigeratedandfrozendoughsforwhichitisverysuitableasanacidcomponentoftheleaveningsystem.

3.2.3.2.9 CalciumacidPyrophosphate(CAPP)CAPPisutilizedinafewspecificapplicationssuchaswithryeflourdoughs,crack-ers,andfrozen(yeast)doughs,andfordoughstrengthening.

3.2.3.2.10 dimagnesiumPhosphate (DMP)Thisisaslow-actingacidsaltthatisheatactivated(40to44°C).Itmayneedtobeusedincombinationwithafasterleaveningagent.

52748.indb 60 2/6/08 2:25:07 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 76: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

3.2.3.2.11 otheracidsVariousorganicacids,suchasadipic,fumaric,citric,andlacticacids,canbeusedasleaveningacids.Theymightalsobeconstituentsofformulaingredients(e.g.,souredmilkandcream,fruitjuices).Theyoftenactasnucleatingacidsforbakingpowders,andtheycanlowerthepHforspecialapplications.

... doughreactionrateandBatterreactionrate

Doughrateofreaction(DRR)isusedtomeasuretheCO2generatedduringmixingandholdingstagesinadoughsystem.Inordertobetterunderstandtheselectionofleavening acid for specificproduct applications, it is important tounderstand theDRR.ThetestquantifiesthepercentofCO2releasedfromdoughversustimefromthestartofmixing. Itmeasures the reactivityof leaveningacids (CO2generated)withsodiumbicarbonateduringmixingandthesubsequentbenchtimeofthedough(Conn,1981;Parksetal.,1960).LeaveningacidswiththesameneutralizingvaluesmighthavedifferentDRRvalues.Hence,theymayresultindifferentCO2releasingratesduringmixingandholdingstages.Thetestisusefulinthedevelopmentofleav-eningacidswithdifferentreactionratesintheactualdoughsystem.

DifferentformulaingredientsmayinfluencetheDRRvalueduetotheirdiffer-encesinacidity.Theflouristhemainconstituentprovidingtheacidity.Thelevelofgasproducedbytheflourdependsonfactorssuchasextractionrateandageoftheflour.Other formula ingredientsmayalsoaffect theDRRvalue.SugarmightdecreasetheCO2reactionratesupto10%dependingupontheamountofsugarintheformula.Becauseofitsacidity,milkhasasmalleffectonDRRvalue.However,calciumionscontributedbymilkslowthesolutionrateofmostleaveners,andthismightalsoaffecttheDRRvalue(Conn,1981;Parksetal.,1960).

Batterreactionrate(BRR)isdefinedasthetimerequiredforagivenpercentofreactiontotakeplaceatagiventemperaturebetweenaleaveningacidandsodiumbicarbonate.Usuallythetimeneededfor60%ofthereactiontotakeplaceismea-sured.BRRcanbeusedtoestimatewhenacertainpercentofreactionwilloccur.Thiscaneasilybedonebydeterminingtheproducttemperatureatdifferentstagesoftheprocess,especiallyduringbaking(Conn,1981;Parksetal.,1960).Thetestisusefultoinvestigatethebehaviorandsuitabilityofdifferentleaveningacidsinactualbattersystemswithvariousformulations.

... nutritionalvaluesofBakingPowders

Althoughmostbatteranddoughformulationsincludeonlyasmallquantityofbak-ingpowder(around1to2%),chemicalleaveningagentssupplyconsiderableamountsof calcium,phosphorus, sodium,andpotassium to softwheatproducts.Calcium,phosphorus,andsodiumcontentsofabakingpowdercontainingsodiumbicarbon-ate,SAS,MCP,andcalciumsulfatearearound60mg/g,15mg/g,and100mg/g,respectively (no potassium). On the other hand, calcium, phosphorus, and potas-siumcontentsofalow-sodiumbakingpowdercontainingpotassiumbicarbonateandacidicpotassiumsaltsarearound50mg/g,70mg/g,and110mg/g,respectively(nosodium).Hence,apieceofsoftwheatproductcontaining3gbakingpowdermaycontributearoundonequarterof theRecommendedDailyAllowances(RDAs)of

52748.indb 61 2/6/08 2:25:07 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 77: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

calciumandphosphorus.(Foradults,theRDAforcalciumandphosphorusis800mg.) This contribution might be important, but consumers should read labels onproducts,becausethereisawidevariationintheircalciumcontents.Forexample,bakingpowderswithtartratecontainnocalcium.Somepeoplemayhavetousealow-sodiumbakingpowderinordertorestrictdietarysodiumintake.Fortunately,low-sodium baking powders are available in which the sodium salts have beenreplacedbypotassiumsalts.Theselow-sodiumbakingpowdershavesimilarleaven-ingproperties(Ensmingeretal.,1995).

... utilizationofBlendsofChemicalleaveningagentsandPremixes

Blendsofacidulantsarealsomarketedundervarioustrademarks.Thesecommercialblendsareusuallymixedwithadiluentsuchasstarch.Therefore,whenpurchasinganacidicsalt,theinformationshouldbeclearastowhetheritispurechemicalorindilutedform.Lackofknowledgemightcausecomplicationsduetotheincorrectproportionofsodiumbicarbonateacidmixturesindoughorbatter.

Somecookieformulationsincludealotofingredients,someofwhichareusedinverysmallquantities.Therefore,theweighingoperationsmightcauseproblems.Inmostindustrialprocessingunits,thesmallquantitiesofingredientsaremanuallyadded,andvarioussystemshavebeendevelopedtostreamlineoperations.Inevitableerrorsmightbeencounteredbecausethesesmallquantitiesofingredientsmustbeweighedrepeatedly,usuallyforeachbatcheveryday.Theerrorsmightoccurbothinaccuracyandinomission.Theoperationcanbesimplifiedbypreparingblendsofingredientssuitableforeachrecipe.However,thepreparationofahomogenousandstableblendisaprerequisite(Manley,1991).

Someoftheingredientsandleaveningagentsdonotdispersecompletelydur-ingdoughmixingduetovariousreasons.First,theirquantitiesareverysmallandthemixingactionof themixermightbeinsufficient todisperse themcompletely.Chemicalleaveningagentssuchassodiumbicarbonateandammoniumbicarbonatehaveatendencytolumpduringstorageorwhenwetted.Hence,itisoftennecessarytogrind,sieve,ordissolvetheminwaterbeforeaddingthemtothemixer.Therefore,therearesomeadvantagesofpreparingpremixes(Manley,1991):

ReducethenumberofseparateweighingoperationsforeachbatchofdoughReducetheincidenceofmeteringerrorsReducetheincidenceofingredientomissionsReducethemix-cycletimeforeachbatchofdoughbyallowingashortermixerloadingtimeImprovethemeansofmeteringleaveningagents(e.g.,pumpingratherthanmetering)andthepotentialforautomaticmetering

Because it is easier to meter liquids than solids, there is an interest in usingthedoughwaterasacarrier inpremixes.However, thesolubilityof thechemicalleaveningagentsmustbeconsideredbecausemostofthesesolublechemicalsformsaturatedsolutionsatquitelowconcentrations(e.g.,solubilityofsodiumbicarbon-ateisaround10gper100mlofwateratroomtemperature).Mixturesofchemical

••••

52748.indb 62 2/6/08 2:25:07 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 78: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

leaveningagentsandotheringredientsmightbeincompatibleduetothepHofthepremixorchemicalreactionsresultinginlossofCO2orothergases.Furthermore,insomecases,theamountofwaterintherecipemightnotbesufficienttodissolvetheitemstobeincorporatedinthepremix(Manley,1991).

... effectofBatterviscosityandCoProduction rateontheQualityofsoftWheatProducts

Acakebatterisacomplexmixtureofingredients.Itisprincipallyanaqueoussys-tem,butithasanumberofdispersedphasessuchasstarchgranules,fat,andair.Iftheviscosityofthebatterisverylow,thephasesseparateeasily,evenbeforeenter-ingtheoven,resultingincakeswithinferiorquality.Suitablebatterviscosityslowstheseparationofphasessothattheseparationseemstobestoppedduringthetimerequiredtomakeacake.Duringmixing,airisincorporatedintothebatter.Afteritismixed,chemicalleaveningagentscannotgeneratenewgasbubblesinbatterordough.Duringmixing,airmustbeincludedinbatterordoughinordertosupplypreexistingbubbles.Airbubbleswithinthebatterordoughareessentialtoprovidenuclei.Othergases,producedbyyeastorchemicalleaveners,candiffuseintothesebubblesandexpandthem(Hoseney,1994).However,aircellscanbelostfromthebatterbyrisingtothesurfaceandalsobythecoalescingoftwocellsintoone.

As the batter is heated in the oven, at the beginning its viscosity decreases.Starchisdenseandmaysettle,formingatoughlayeratthebottomofthepanandalightfoam-likestructureatthetop.Abatterwithalowerviscositycannotkeepthegasbubblescollidingwith sufficient force to join together to form largerbubbles(coalesce).Althoughsmallgasbubblescanbetrappedinthebatter,largebubbleswillhavesufficientbuoyancytorisetothesurfaceofthebatterandtheyarelost.The heating of the batter is continued in the oven, and its viscosity increases inlaterstages.Thisiscausedmainlybystarchgelatinization.Asstarchgelatinizes,itswater-bindingcapacityincreasestoalargeextent.Hence,theviscosityofthebatterincreasestremendously,resultinginasolid-likeappearance.Thisiscalledsetting.Mostof theavailableCO2mustbereleasedduringexpansionandup toacertainstageofbakingbeforethedoughorbatterreachesitsset-pointtemperature.Thisismoreimportantforcakesthancookies.Ifthegas-releasingrateistoofast,acoarsestructure may result. The structure may collapse if the gas release is completedbeforethestructuresets.Ifthegas-releasingrateisextremelyslow,thevolumeofthefinalproductisusuallysmallerandstructuralrupturingorcrackingmayoccurduetotheeffectsofgasesreleasedaftersetting(Thacker,1997).Ofcourse,itshouldbekept inmindthatcarbondioxidegasexpandsmorequicklyathigheraltitudesandthereforehasgreaterleaveningaction.Therefore,thequantityofbakingpowdershouldbedecreasedwhenbakingathigheraltitudes.

Thebalanceof leaveningacidsandsodiumbicarbonateisalsoimportantandreachedbyusingtheneutralizingvalue tomatchtheamountof leaveningacid totheamountofsodiumbicarbonatesothatthehighestlevelofCO2isproduced.Ifaninsufficientamountofleaveningacidisadded,asmalleramountofCO2ispro-duced,andtheremainingsodiumbicarbonateincreasesthepHofthefinalproduct.Ifanexcessiveamountofleaveningacidisadded,gasproductionismaintainedat

52748.indb 63 2/6/08 2:25:08 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 79: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

thesamelevel,butsomeoftheleaveningacidssuchasSAPPandGDLwillleaveabitteraftertasteinthefinalproduct.Forexample,theNVofpureSAPPis72,butitisalsoavailableinstandardizedformwithanNVof50.Foranapplicationthatutilizessodiumbicarbonateat2%offlourweight,standardizedSAPPwithanNVof50shouldbeaddedat4%offlourweighttoprovidetherightleaveningbalance:

250

100 43% %NaHCO SAPP× = (3.2)

ThetypeofleaveningacidusedintheformulationofbakingpowderalsoaffectstherateofCO2production,whichinturnaffectstheproduct.Forexample,dough-

Aldose Sugar N-substituted glycosylamine

Amadori rearrangement

Amadori rearrangement product (ARP)1-amino-1-deoxy-2-ketose

Reductones Fission products(acetol, diacetyl)

Schiff’s base ofhydroxymethylfurfural

(HMF) or furfural

Aldehydes HMF or Furfural

Aldols andN-free polymers

Aldimines and Ketimes

Melanoidins (brown nitrogenous polymers)

+ amino compound+ H2O

+ H2O

–2H2O > pH 7 –3H2O ≤ pH 7> pH 7

–2H +2H

– aminocompound+ amino

compound

+ aminocompound

+ aminocompound

–CO2 Strecker degradation

Dehydroreductones

+α amino acid

Figure 3.1 The major steps in the Maillard reaction.

52748.indb 64 2/6/08 2:25:10 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 80: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

nutsrequirelittleleaveningduringmixing,andthenafastrateofCO2productionisrequiredsothatthebatterisleavenedquicklyandwillhavebuoyancytofloatonthehotoilduringfrying,ensuringacrispproduct.SAPPisgenerallyusedastheleaveningacid,sometimestogetherwithadditionalMCPforearlyactivityorGDLfordelayedactivity.

. MaIllardreaCtIon

AMaillardreactionisanonenzymaticchemicalreactioninvolvingcondensationofanaminogroupandareducinggroup,resultingintheformationofintermediatesthatultimatelypolymerizetoformbrownpigments.ThereactionwasfirstdescribedbyMaillard(1912).Hodge(1953)presentedaquitecompleteschemeoftheseveralstagesofthereaction,whichwasfullyapplied,anditisstillvalidtointerpretmanycharacteristicsoftheproductsandoftheMaillardreactionkinetics(Figure3.1).

ThechemistryoftheMaillardreactionincludesacomplexseriesofreactionsleading to the formationofavarietyofcompounds, includingflavorsandcolors,whichareoffundamentalimportancetodefinethequalityoffoodproducts.Therearethreemajorstagesofthereaction.Thefirststageconsistsofglycosylamineforma-tionandrearrangementofN-substituted-1-amino-l-deoxy-2-ketose(Amadoricom-pound).Thesecondstageinvolveslossoftheaminetoformcarbonylintermediates,whichupondehydrationorfissionformhighlyreactivecarbonylcompoundsthroughseveralpathways.Thethirdstageoccurringuponsubsequentheatinginvolvestheinteractionofthecarbonylflavorcompoundswithotherconstituentstoformbrownnitrogen-containingpigments,calledmelanoidins.

InadditiontothedesiredconsequencesoftheMaillardreaction,suchasthefor-mationsofcolorandflavor,thereareundesirableconsequencesinthermallyprocessedfoodsincludingbakeryfoods.Thechangescommonlyencounteredinthermallypro-cessedfoodsasaresultoftheMaillardreactionaresummarizedinFigure3.2.

MaillardReaction

Sensorial properties

Nutritional properties

• Formation of brown color• Formation of flavors

• Formation of antioxidants• Formation of antimicrobials• Loss of nutrients; i.e., lysine• Formation of toxic compounds,

such as acrylamide, HMF

Figure 3.2 Results of the Maillard reaction in bakery foods.

52748.indb 65 2/6/08 2:25:11 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 81: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

3.3.1 FormaTionoFColor

Thecoloredproductsof theMaillardreactionareof twotypes: thehigh-molecu-lar-weightmacromoleculematerialscommonlyreferredtoasmelanoidinsandthelow-molecular-weightcoloredcompoundscontainingtwoorthreeheterocyclicrings(Amesetal.,1998).Colordevelopmentincreaseswithincreasingtemperature,timeofheating,increasingpH,andintermediatemoisturecontent(aw0.3to0.7).Ingen-eral,browningoccursslowly indrysystemsat lowtemperaturesand is relativelyslowinhigh-moisturefoods.ColorgenerationisenhancedatpH7.Ofthetwostart-ingreactants,theconcentrationofreducingsugarshasthegreatestimpactoncolordevelopment.Ofalltheaminoacids,lysinemakesthelargestcontributiontocolorformation,andcysteinehastheleasteffectoncolorformation.

Changeofcolorinbakeryfoodsduringbakingisadynamicprocessinwhichcertaincolortransitionsoccurasthebakingproceeds.ColorisusuallymeasuredinLabunits,whichisaninternationalstandardforcolormeasurementsadoptedbytheCommissionInternationaled’Eclairage(CIE) in1976(Papadakisetal.,2000). Incookies,thelightnessparameter(L)tendstodecreasewhilethechromaticparam-eters(aandb)increaseasthebakingproceeds,asillustratedinFigure3.3.

10 min 15 min 20 min 25 min 30 min

CIE

Col

or V

alue

Baking time, min

L

a

b

80

70

60

50

40

30

20

10

0

–100 5 10 15 20 25 30

Figure 3.3 Change of color in cookies during baking at 160°C. (See color insert after p. 158.)

52748.indb 66 2/6/08 2:25:12 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 82: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

3.3.2 FormaTionoFFlavorandaromaComPounds

FlavorcompoundformationintheMaillardreaction(MR)dependsonthefollowing:

TypeofsugarsandaminoacidsinvolvedReactiontemperature,time,pH,andwatercontent(Jousseetal.,2002)

In general, the first factor mentioned determines the type of flavor compoundsformed,andthesecondfactorinfluencesthekinetics.

The most common route for formation of flavors via the Maillard reactionincludes the interactionofα-dicarbonylcompounds(intermediateproducts in theMR,stage2)withaminoacids through theStreckerdegradationreactions.AlkylpyrazinesandStreckeraldehydesbelongtocommonlyfoundflavorcompoundsfromtheMR.Forexample,lowlevelsofpyrazinesareformedduringtheprocessingofpotatoflakeswhen the temperature is less than130°C,but increase tenfoldwhenthe temperature is increased to160°C,anddecreaseat190°C,probablyowing toevaporationorbindingtomacromolecules.Thearomaprofilevarieswiththetem-perature and the time of heating. At any given temperature–time combination, auniquearoma,whichisnotlikelytobeproducedatanyothercombinationofheatingconditions,isproduced(vanBoekel,2006).

Thetotalamountofaminoacidsandreducingsugarsandtheirrelativepropor-tionsonthesurfaceofdoughduringbakingarethelimitingfactorsincrustaromaquality.Bothdependontheirformationfromenzymaticactivitiesandtheirinvolve-mentinmetabolicprocesses.Intensityofreactiondependsontemperatureandmois-ture in the oven (Kaminski et al., 1981). The type of aroma is influenced by theaminoacidstructure(El-Dash,1971),soglucoseplusleucine,arginine,orhistidinegivesafreshbreadaroma,whiledihydroxyacetoneplusprolinegivesacracker-typearoma(Coffman,1965).Sugartypeaffectsreactionratemorethanaromatype(El-Dash,1971).

Manycompoundshavebeendetectedindoughsandbreads(crustandcrumb),andtheyweresummarized(Coffman,1965;HansenandHansen,1994;Lundetal.,1989;Maga,1974;SchieberleandGrosch,1985,1987).Wheatandryeflourdoughsandbreadscontainmanycommoncomponents,butryeflourleadstoadditionalcom-ponentsnotidentifiedinwheatproducts(Maga,1974;SchieberleandGrosch,1985,1987).Thecompoundsidentifiedinpreferments,doughs,andbreadsarebasedonacids,alcohols,aldehydes,esters,ethers,furanderivatives,ketones,pyrrolederiva-tives,pyrazines,andsulfurcompounds(Maga,1974;SchieberleandGrosch,1985,1987).

Carbonyls(aldehydesandketones)canresultfrommanydifferentreactionsinbreadmaking (Maga, 1974).Someproceed from fermentation, such as acetoinordiacetyl (Lawrence et al., 1976), but the majority are produced during nonenzy-maticbrowningreactions(Johnsonetal.,1966).Also,somecarbonylcompoundsgeneratedduringfermentationcanvolatilizeduringbakingandappearagaindur-ingbrowningreactions(Johnsonetal.,1966).Breadcrustusuallycontainsalargernumberofcarbonylcompoundsthanbreadcrumb(El-Dash,1971).Lipoxygenaseisasourceofcarbonylsbydecompositionofhydroperoxides.Thus,linoleicacidpro-

••

52748.indb 67 2/6/08 2:25:13 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 83: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

duceshexanal,inadditiontopentanolandotherproductsfromthepartialoxidationofhexanal.Likealdehydes,ketonesaremainlyformedduringMaillardreactions.Allaminoacidspromoteacetoneformationinthecrust,whichisalsoformedduringfermentation,aswellas2-butanone(Maga,1974).

Furanderivativesresultfromthermaldegradationofsugarsinbreadcrust.Someare intermediate compounds in Maillard reactions undergoing condensation withaminoacids.Theircharacteristicsaremoreinfluencedbyaminoacidthanbysugartype(Maga,1974).

Pyrrolederivatives,pyrazines,andsulfurcompoundsalsoproceedfromMail-lardreactions;somepyrazinescanbeprovidedbyflourormilksolidsincludedinformulation(Maga,1974).

Pyrazinesresultingfromthermalreactionsalsohavetypicalaromafeaturesabletobeimpartedtobread(Maga,1974).Finally,theleastvolatilefractions,suchasmelanoidins,dihydroxyacetone,ethylsuccinate,andsuccinicandlacticacids,con-tributemoretothetastethantothearomaofbread(Bakeretal.,1953).

3.3.3 FormaTionoFanTioxidanTs

ThereareseveralreportsontheformationofantioxidativeMaillardreactionprod-uctsinfoodprocessing.Pronyl-lysine,aMaillardreactionproduct,presentinbreadcrusthasbeendemonstrated tohavebeneficial effectsonhumanhealth (Linden-meieretal.,2002).Theadditionofaminoacidsorglucosetocookiedoughhasbeenshowntoimproveoxidativestabilityduringthestorageofthecookies(Summaetal.,2006).

Although the antioxidant effect of the Maillard reaction products has beenextensivelyinvestigated,theexactnatureoftheantioxidantsformedisnotyetwellknown.ItwasreportedthattheintermediatereductonecompoundsofMaillardreac-tionproductscouldbreaktheradicalchainbydonationofahydrogenatom.Maillardreactionproductswerealsoobservedtohavemetal-chelatingpropertiesandretardlipidperoxidation.Melanoidineswerereportedtobepowerfulscavengersofreactiveoxygenspecies(Hayaseetal.,1989).Recently,itwassuggestedthattheantioxidantactivityofxylose–lysineMRPsmaybeattributedtothecombinedeffectofreduc-ingpower,hydrogenatomdonation,andscavengingofreactiveoxygenspecies(YenandHsieh,1995).IntheMaillardreaction,highantioxidantcapacitywasgenerallyassociatedtotheformationofbrownmelanoidins(Aeschbacher,1990;Aneseetal.,1993,1994;Eichner,1981;GomyoandHorikoshi,1976;Hayaseetal.,1989;Kiri-gayaetal.,1968;Yamaguchietal.,1981;YenandHsieh,1995;YenandTsai,1993).Although in its early stages theMaillard reaction leads to the formationofwell-knownAmadoriandHeyn’sproducts(Ames,1988;Rizzi,1994),littleinformationisavailableonthechemicalstructureofthehundredsofbrownproductsformedbyaseriesofconsecutiveandparallelreactionsincludingoxidations,reductions,andaldolcondensationsamongothers(Eriksson,1981;Yaylayan,1997).

Anumberofparameterscanhelpinselectingtheprevalentmechanismoftheoverallreactionanditsrate,leadingtotheformationofdifferentchemicalspeciesthat are expected to exert different antioxidant properties. Inparticular, the anti-oxidantpropertiesofMaillardreactionproductshavebeenreportedtobestrongly

52748.indb 68 2/6/08 2:25:13 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 84: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

affectedbythephysicochemicalpropertiesofthesystemandbytheprocessingcon-ditions (EichnerandCiner-Doruk,1981;Hommaet al.,1997;Huyghebaert et al.,1982;KimandHarris,1989;LingnertandEriksson,1981;Manzoccoetal.,1999;Obretenov et al., 1986; Stamp and Labuza, 1983; Waller et al., 1983). Moreover,itmustbekept inmind thatpolyphenols,ascorbicacid,andothercarbonylcom-pounds—evenifformedduringoxidativereactions—cantakepartintheMaillardreaction (Eriksson,1981;Rizzi,1994;Yaylayan,1997).Thecontributionof thesecompoundstotheformationofheat-inducedantioxidantsisstillunknown.

3.3.4 lossoFnuTriTionalqualiTy

The loss of available lysine is the most significant consequence of the Maillardreaction,anditisofthegreatestimportanceinthosefoodswherethisaminoacidis limiting, such as in cereals (Henle et al., 1991). Evaluation of the early stagesof the Maillard reaction can be achieved by determination of the furosine (ε-N-(furoylmethyl)-L-lysine)aminoacidformedduringacidhydrolysisoftheAmadoricompound,fructosyl-lysine,lactulosyl-lysine,andmaltulosyl-lysineproducedbythereactionofe-aminogroupsoflysinewithglucose,lactose,andmaltose(Erbersdo-blerandHupe,1991).Forthisreason,theestimationoftheextentofproteindamagecausedbyheatinginthefirststagesofthatreactionareoftenbasedondetermina-tionsoftheamountoffurosinethatisformedduringtheacidhydrolysisoffoods.Furosinedeterminationhasbeenusedincerealstocontroltheprocessingofpasta(Resmini and Pellegrino, 1994), bakery products (Henle et al., 1995), baby cere-als(Guerra-HernándezandCorzo,1996;Guerra-Hernándezetal.,1999),andbread(Ramirez-Jimenezetal.,2000;Ruizetal.,2004).

3.3.5 FormaTionoFToxiCComPounds

... acrylamide

OneofthemostsignificantconsequencesoftheMaillardreactionistheformationofacrylamide(Mottrametal.,2002;Stadleretal.,2002),whichwasfirstdiscoveredinthermallyprocessedfoodsinApril2002bySwedishresearchers(Tarekeetal.,2002).AcrylamideisclassifiedasaprobablehumancarcinogenbytheInternationalAgencyforResearchonCancer(IARC,1994).

Studiestodateclearlyshowthattheaminoacidasparagineismainlyrespon-sible for acrylamide formation in cooked foods after condensation with reducingsugars or a carbonyl source (Figure3.4). Moreover, the sugar–asparagine adduct,N-glycosylasparagine,generateshighamountsofacrylamide,suggestingtheearlyMaillardreactionasamajorsourceofacrylamide(Stadleretal.,2002).Inaddition,decarboxylated asparagine,whenheated, cangenerate acrylamide in the absenceofreducingsugars(Zyzaketal.,2003).Arecentstudyrevealedthat,besidesacryl-amide,3-aminopropionamide,whichmaybeatransientintermediateinacrylamideformation,wasalsoformedduringheatingwhenasparaginewasreactedinthepres-enceofglucose(GranvoglandScieberle,2006).

Incertainbakeryproducts,acrylamidecontentsup to1000mg/kghavebeenobserved(Croftetal.,2004).Thehighestcontentshavebeenfoundinproductspre-

52748.indb 69 2/6/08 2:25:13 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 85: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

NH2 COOH

COOH

O NH2

Asparagine

Carbonyl compound

O

O

O

R

NH2 OH

N

H OH

R

N-Glycosyl conjugate

H2O

NH2 COOH

O

O

N

H

R

CO2

Schiff base

NH2

O

H

N

O

RR

O

O

H

NO

NH2

NH2

Decarboxylated Schiff base

Acrylamide

Figure 3.4 Formation of acrylamide during the pyrolysis of asparagine with glucose. (Adapted from Gökmen, V., and Senyuva, H.Z., European Food Research and Technology (DOI 10.1007/s00217-006-0486-7), 2007. With permission.)

52748.indb 70 2/6/08 2:25:15 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 86: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

paredwiththebakingagentammoniumhydrogencarbonate,suchasgingerbreadproducts(Amreinetal.,2004;Koningsetal.,2003).Modelexperimentsshowedthatammonium bicarbonate strongly promotes acrylamide formation in sweet bakery(Biedermann and Grob, 2003; Weisshaar, 2004). Replacing this baking agent bysodiumhydrogencarbonatepresentsaveryeffectiveway to limit theacrylamidecontentofbakerygoods(Amreinetal.,2004;Vassetal.,2004).Inadditiontothebakingagent,thecontentofreducingsugarsandfreeasparagineaswellasthepro-cessconditionsinfluencetheacrylamideformationinbakerygoods(Amreinetal.,2004;Gökmenetal.,2007;Surdyketal.,2004;Vassetal.,2004).

Eventhoughthebakingtemperatureishighenoughtoproduceacrylamideinthecrust,thetotalbakingtimeisnotlongenoughtoincreasethecentertemperatureabove120°C,atwhichpointacrylamidebeginstoform.However,itwasshownthatacrylamide is present in both zones of the biscuit, but apparently lower amountsarefoundin thecenterof thebiscuit (Taeymansetal.,2004).Similar tobiscuits,thecrustandcrumbofbreadcontainsignificantlydifferentamountsofacrylamide(Surdyketal.2004).Thecrustlayershavebeenshowntocontainupto718μg/kgofacrylamidewhilethecrumbwasfreeofacrylamide(ŞenyuvaandGökmen,2005).Theseresultssuggestthatacrylamideformationinbakedcerealsmostlyoccursbyasurfacephenomenon.

Whenbiscuitsaretoastedtoanearburntstate,theacrylamideconcentrationisdecreasedbyupto50%(Taeymansetal.,2004).Similarresultshavebeenshownforseveralotherformsofcereals.Acrylamidelevelsinbiscuitsareincontrastwiththoseforthepotatobutareconsistentwiththesuggestionmadeelsewherethattheacrylamidecontentresultsfromabalancebetweenformationandelimination,withthelatterbeingmorerapidathighertemperature(Taeymansetal.,2004).

Ingredientsplayanimportantroleinacrylamideformationinbakeryfoods,asdifferentingredientshavevariousamountsoffreeasparagineandreducingsugars

SucroseGlucose

0 10 20 30 40

300

250

200

150

100

50

0

Amount of sugar in the recipe, g

Acry

lam

ide f

orm

ed, n

g/g

Figure 3.5 Effect of sugar type and amount on acrylamide formation in cookies dur-ing baking. (From Gökmen, V., Açar, Ö.Ç., Köksel, H., and Acar, J., Food Chemistry, 104, 1136–1142, 2007. Reprinted with permission from Elsevier.)

52748.indb 71 2/6/08 2:25:16 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 87: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

precursors.Sugarsseemtobethemostimportantingredientinthedoughformulafromtheviewpointofacrylamideformation,because thefreeasparagine levelofwheatflourisrelativelylow.Notietal.(2003)reportedlevelsof150to400mg/kgofasparagineintensamplesofwheatflour.Surdyketal.(2004)measuredasparaginelevelsof170mg/kginwhitewheatflour.Figure3.5showstheformationofacryl-amideincookiesduringbakingasinfluencedbythetypeandamountofsugarsintherecipe.

Bakingtemperatureandtimearealsocloselyrelatedwithacrylamideformationinthebakingprocess.Thereisnoacrylamidepresentinuncookeddough,buttheacrylamidelevelriseswithtime.Incookiescontainingsucrose,acrylamideconcen-trationsshowedarapidincreaseafteraninitiallowerrateperiod,reachingaplateauwithin a baking time of 15 to 20 min at 200°C (Figure3.6). When sucrose wasreplacedwithglucose,theinitial lowerrateperioddisappearsandtheacrylamideconcentration of cookies increases rapidly, attaining the plateau values earlier asshowninFigure3.6(Gökmenetal.,2007).

Thetwomajorapproachestoreducingacrylamidelevelsincookiesarereplac-ingNH4HCO3byNaHCO3,andusingsucroseinsteadofreducingsugars(Grafetal.,2006).Incrackers,acombinationofthefirsttwoapproacheshasbeenevenmoreeffective(Vassetal.,2004),whichcouldalsoapplytootherproducts.Themeasurefocusingon the replacementof reducing sugarsby sucrose is limited toproductswherebrowningisnotofprimaryimportance.Theadditionofglycineduringdoughmakinghasbeenshowntoreduceacrylamideinflatbreadsandbreadcrustsupto90%(Bråthenetal.,2005).Amoderateadditionoforganicacidsmayalsobecon-sideredformitigationofacrylamideincookiesiftherecipeisformulatedwiththeinvertsyrupinsteadofsucrose.LoweringpHmayresultinexcessivehydrolysisof

420

360

300

240

180

120

60

0

0 5 10 15 20 25

Sucrose

Glucose

Baking time, min

Acry

lam

ide f

orm

ed, n

g/g

Figure 3.6 Changes in acrylamide concentration in cookies during baking at 200°C with time. (Adapted from Gökmen, V., Açar, Ö.Ç., Köksel, H., and Acar, J., Food Chemistry, 104, 1136–1142, 2007. Reprinted with permission from Elsevier.)

52748.indb 72 2/6/08 2:25:17 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 88: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

sucrose,whichwillmakethecompositionmorefavorabletoformacrylamideduringbaking(Gökmenetal.,2007).Forcookiedoughthatincorporatessucrose, lower-ingthepHvaluefrom7.40to3.28bytheadditionofcitricacidhasbeenshowntoalmostdoubletheamountofacrylamideformedincookiesduringbaking.However,theadditionofcitricacidhaslimitedtheformationofacrylamideforcookiesincor-poratingglucose(Figure3.7).

... hydroxymethylfurfural(hMf)

Among themanyproducts formed,HMF,apossiblemutagen (Surhet al., 1994),seemsparticularly interestingbecauseof itsaccumulationduring thebakingpro-cess.AlthoughthetoxicologicalrelevanceofHMFisnotclear,asin vitrostudiesongenotoxicityandmutagenicityhavegivencontroversial results (Cuzzonietal.,1988;Janzowskietal.,2000;Leeetal.,1995),itspresenceisundesiredinthermallyprocessedfoods.

HMF is naturally formed as an intermediate in the Maillard reaction (Amesetal.,1998),andfromdehydrationofhexosesundermildacidicconditions(Kroh,1994)duringthermaltreatmentappliedtofoods(Figure3.8).HMFlevelsfoundincerealproductsarehighlyvariable.

Duringthebakingofbread,thewatercontentonthesurfacebecomeslowerthanthatinthecenter;thiscombinedwiththehightemperatureisoneofthefactorsthatmakesthecrustdifferentfromthecrumb(ThorvaldssonandSkjoldebrand,1998).HMFlevelsincrumbhavebeenfoundbetween0.6and2.2mg/kgandthoseincrustwerenotablygreater,from18.3tothe176.1mg/kginwhitebread(Ramírez-Jiménezetal.,2000).

300

240

180

120

60

0

3.28 4.37 7.40

pH

Sucrose

Glucose

Figure 3.7 The effect of dough pH on the amount of acrylamide formed in cookies hav-ing different sugars during baking at 205°C for 11 min. (From Gökmen, V., Açar, Ö.Ç., Kök-sel, H., and Acar, J., Food Chemistry, 104, 1136–1142, 2007. Reprinted with permission from Elsevier.)

52748.indb 73 2/6/08 2:25:18 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 89: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Carbonyl compound

R2

R2

R2

R2

R1R1

R1

R1

O

O

O

O

O O OH

COOHCOOH

COOH

OH

N

N

H

H

N

H

R2R1

O

N

H

OHN-Glycosylated

H2O

CO2

Schiff base

NH2

Amino compound

Hydroxymethylfurfural

Decarboxylated Schiff Base

Figure 3.8 Formation of hydroxymethylfurfural (HMF) as a consequence of (a) the Maillard reaction and (b) the pyrolysis of sugar.

α-D-Glucofuranose Hydroxymethylfurfural

OHOOO

OH

OH

OH

HO

HO–3H2O

52748.indb 74 2/6/08 2:25:20 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 90: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

Sugar amount in the recipe, g

Sucrose

Glucose

3.0

2.5

2.0

1.5

1.0

0.5

0.00 4010 20 30

HM

F, m

g/g

Figure 3.9 Effect of sugar type and amount on hydroxymethylfurfural (HMF) forma-tion in cookies during baking. (From Gökmen, V., Açar, Ö.Ç., Köksel, H., and Acar, J., Food Chemistry, 104, 1136–1142, 2007. Reprinted with permission from Elsevier.)

Baking time, min

HM

F, µg

/g

24

20

16

12

8

4

0

Sucrose

Glucose

0 5 10 15 20 25

Figure 3.10 Changes in hydroxymethylfurfural (HMF) concentration in cookies during baking at 210°C with time. (Adapted from Gökmen, V., Açar, Ö.Ç., Köksel, H., and Acar, J., Food Chemistry, 104, 1136–1142, 2007. With permission.)

52748.indb 75 2/6/08 2:25:21 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 91: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Thepresenceofahighamountofreducingsugarsintherecipemakesthedoughmoresusceptible to formHMFduringbaking (Figure3.9). Increasing thebakingtemperaturesalsoincreasestherateofHMFformationduringbaking(Figure3.10).

Thedoughcompositionanditschangesduringbakingarethemostcriticalfac-torsaffectingtheformationofHMFinbakeryfoods.Asthewateractivityofcook-iesdecreasesduringbaking, theconditionsbecomemorefavorabletoformHMF(Ameuretal.,2006).Theremovalofwatertoalevelcorrespondingtowateractivityof0.4ismostprobablyreflectingastageinbakingwherethetemperatureofcookiesbeginstoriseabove100°C,whichacceleratesHMFformationthermodynamically.Keepingthetemperaturebelow200°Cmaypreventanexcessivedecompositionofsucrose,andthusanexcessiveformationofHMFduringbaking.

referenCes

Aeschbacher,H.U.1990.Anticarcinogeniceffectofbrowningreactionproducts.InThe Mail-lard Reaction in Food Processing, Human Nutrition and Physiology,Ed.P.A.Finot,H.U.Aeschbacher,R.F.Hurrel,andR.Liardon,335–348.BirkhäuserVerlag,Basel.

Ames,J.,R.J.Bailey,andJ.Mann.1998.RecentadvancesintheanalysisofcoloredMaillardreactionproducts.InThe Maillard Reaction in Foods and Medicine,Eds.J.O’Brien,H.E.Nursten,M.James,C.Crabbe,andJ.Ames,76–82.London:RoyalSocietyofChemistry.

Ames,J.M.1988.TheMaillardBrowningReaction—AnUpdate.Chemiistry & Industry5:558–561.London.

Ameur,L.A.,G.Trystram,andI.Birlouez-Aragon.2006.Accumulationof5-hydroxymethyl-2-furfuralincookiesduringthebakingprocess:Validationofanextractionmethod.Food Chemistry98:790–796.

Amrein,T.M.,B.Schönbächler,F.Escher,andR.Amado.2004.Acrylamideingingerbread:Criticalfactorsforformationandpossiblewaysforreduction.Journal of Agricultural and Food Chemistry52:4282–4288.

Anese,M.,M.C.Nicoli,andC.R.Lerici.1994.InfluenceofpHontheoxygenscavengingpropertiesofheat-treatedglucose/glycinesystems.Italian Journal of Food Science3:339–343.

Anese,M.,P.Pittia,andM.C.Nicoli.1993.Oxygenconsumingpropertiesofheatedglucose/glycineaqueoussystems.Italian Journal of Food Science 1:75–79.

Baker,J.C.,H.K.Parker,andK.L.Fortmann.1953.Flavorofbread.Cereal Chemistry30:22–30.

Becalski,A.,B.P.Y.Lau,D.Lewis,andS.W.Seaman.2003.Acrylamideinfoods:Occurrence,sourcesandmodeling.Journal of Agricultural and Food Chemistry51:802–808.

Biedermann,M.andK.Grob.2003.Modelstudiesonacrylamideformationinpotato,wheatflourandcornstarch;waystoreduceacrylamidecontentsinbakeryware.Mitteilungen aus Lebensmitteluntersuchung und Hygiene94:406–422.

Bråthen,E.,A.Kita,S.H.Knutsen,andT.Wicklund.2005.Additionofglycinereducesthecontentofacrylamideincerealandpotatoproducts.Journal of Agricultural and Food Chemistry53:3259–3264.

Cauvain,S.andL.Young.2006.Baked Products: Science, Technology and Practice.Black-wellScientific,Oxford.

Coffman,J.R.1965.Breadflavor.In The Symposium on Foods: The Chemistry and Physiol-ogy of Flavors. Westport.CT:TheAVIPublishingCo.185–202.

Conn, J.F. 1981. Chemical leavening systems in flour products. Cereal Foods World 26:119–123.

52748.indb 76 2/6/08 2:25:22 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 92: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

Croft,M.,P.Tong,D.Fuentes,andT.Hambridge.2004.Australiansurveyofacrylamideincarbohydrate-basedfoods.Food Additives and Contaminants21(8):721–736.

Cuzzoni, M.T., G. Stoppini, G. Gazzani, and P. Mazza. 1988. Influence of water activityand reaction temperature of ribose-lysine and glucose-lysine Maillard systems onmutagenicity,absorbanceandcontentoffurfurals.Food and Chemical Toxicology26:815–822.

Eichner, K. 1981. Antioxidative effect of Maillard reaction intermediates. In Progress in Food Nutrition and Science 5,Ed.C.Ericksson,441–451.PergamonPress,Oxford.

Eichner,K.andM.Ciner-Doruk.1981.EarlyindicationoftheMaillardreactionbyanalysisof reaction intermediates and volatile decomposition products. In Progress in Food Nutrition and Science 5,Ed.C.Eriksson,115–135,PergamonPress,Oxford.

El-Dash,A.A.1971.Theprecursorsofbreadflavor:Effectoffermentationandproteolyticactivity.Bakers’ Digest45(6):26–31.

Ensminger,A.H.,M.E.Ensminger,J.L.Konlande,J.R.K.Robson.1995.Concise Encyclope-dia of Foods and Nutrition,2nded.,CRCPress,BocaRaton,FL.

Erbersdobler,H.F.,andA.Hupe.1991.Determinationoflysinedamageandcalculationoflysinebio-availabilityinseveralprocessedfoods.Z. Ernaehrungswiss.30:46–49.

Eriksson, C. 1981. Maillard reaction in food: Chemical, physiological and technologicalaspects.InProgress in Food Nutrition and Science 5,Ed.C.Eriksson,441–451,Per-gamonPress,Oxford.

Gökmen,V.andH.Z.Senyuva.2007.Effectsofsomecationsontheformationofacrylamideandfurfuralsinglucose-asparaginemodelsystem.European Food Research and Tech-nology.225:815–820.

Gökmen,V.,Ö.Ç.Açar,H.Köksel,andJ.Acar.2007.Effectsofdoughformulaandbak-ingconditionsonacrylamideandhydroxymethylfurfuralformationincookies.Food Chemistry104:1136–1142.

Gomyo,T.andM.Horikoshi.1976.Ontheinteractionofmelanoidinswithmetalions.Agri-cultural Biology and Chemistry40:33–40.

Graf,M.,T.M.Amrein,S.Graf,R.Szalay,F.Escher,andR.Amadò.2006.Reducingtheacrylamidecontentofasemi-finishedbiscuitonindustrialscale.LWT39:724–728.

Granvogl,M.andP.Scieberle.2006.Thermallygenerated3-aminopropionamideasatran-sientintermediateintheformationofacrylamide.Journal of Agricultural and Food Chemistry54:5933–5938.

Guerra-Hernández,E.andN.Corzo.1996.Furosinedeterminationinbabycerealbyion-pairreversedphaseliquidchromatography.Cereal Chemistry73:729–731.

Guerra-Hernández,E.,N.Corzo,andB.García-Villanova.1999.Maillardreactionevalua-tionbyfurosinedeterminationduringinfantcerealprocessing.Journal of Cereal Sci-ence 29:171–176.

Hansen,A.andB.Hansen.1994.Influenceofwheatflourtypeontheproductionofflavourcompoundsinwheatsourdoughs.Journal of Cereal Science 19:185–190.

Hayase,F.,S.Hirashima,G.Okamoto,andH.Kato.1989.Scavengingofactiveoxygensbymelanoidines.Agricultural Biology and Chemistry53:3383–3385.

Henle,T.,H.Walter,I.Krause,andH.Klostermeyer.1991.Efficientdeterminationofindi-vidual Maillard compounds in heat-treated milk products by amino acid analysis.International Dairy Journal1:125–135.

Henle,T.,G.Zehetner,andH.Klostermeyer.1995.Fastandsensitivedeterminationoffuro-sine.Z Lebensm Untersuch Forsch200:235–237.

Hodge, J.E. 1953. Dehydrated foods, chemistry of browning reactions in model systems. Journal of Agricultural and Food Chemistry.1:928–943.

Homma, S., N. Terasawa, T. Kubo, N. Yoneyama-Ishii, K. Aida, and M. Fujimaki. 1997.Changesinchemicalpropertiesofmelanoidinbyoxidationandreduction.Bioscience, Biotechnology, and Biochemistry61:533–535.

52748.indb 77 2/6/08 2:25:22 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 93: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Hoseney,R.C.1994.Principles of Cereal Science and Technology,2nded.AmericanAsso-ciationofCerealChemists,St.Paul,MN.

Hoseney,R.C.,P.Wade, and J.W.Finley.1988.Softwheatproducts. In Wheat Chemistry and Technology,3rded.,Ed.Y.Pomeranz,407–456.AmericanAssociationofCerealChemists,St.Paul,MN.

Huyghebaert,A.,L.Vandewalle,andG.VanLandshoot.1982.Comparisonoftheantioxida-tiveactivityofMaillardandcaramelizationreactionproducts.InRecent Developments in Food Analysis, Ed. W. Baltes, P.B. Czedik-Eysenberg, and W. Pfannhauser, 409,WeinheimVerlag,Chemie.

InternationalAgencyforResearchonCancer(IARC).1994.Acrylamide.IARCmonographson the evaluation of the carcinogenic risk of chemicals to humans, vol. 60, Lyon,France,389–433.

Janzowski, C., V. Glaab, E. Samimi, J. Schlatter, and G. Eisenbrand. 2000. 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential andreactivitytowardscellularglutathione.Food and Chemical Toxicology38:801–809.

Johnson,J.A.,L.Rooney,andA.Salem.1966.Chemistryofbreadflavor.Flavor Chemistry 56:153.

Jousse,F.,W.Jongen,W.Agterof,S.Russell,andP.Braat.2002.SimplifiedkineticschemeofflavourformationbytheMaillardreaction.Journal of Food Science67:2534–2342.

Kaminski,E.,R.Przybilsky,andL.Gruchala.1981.Thermaldegradationofprecursorsandformationofflavourcompoundsduringheatingofcerealproducts.Changesofaminoacidsandsugars.Nahrung25:507–518.

Kim,N.K.,andN.D.Harris.1989.Antioxidanteffectofnon-enzymaticbrowningreactionproductsonlinoleicacid.InTrends in Food Science,Ed.A.H.Ghee,19–23.SingaporeInstituteofFoodScienceandTechnology,Singapore.

Kirigaya,N.,H.Kato,andM.Fujimaki.1968.Studiesonantioxidantactivityofnon-enzy-maticbrowningreactionproducts.PartI.Reactionofcolourintensityandreductoneswith antioxidant activity of browning reaction products. Agricultural Biology and Chemistry32:287–290.

Konings,E.J.M.,A.J.Baars,J.D.vanKlaveren,M.C.Spanjer,P.M.Rensen,M.Hiemstra,J.A.vanKooij,andP.W.J.Peters.2003.AcrylamideexposurefromfoodsoftheDutchpopulationandanassessmentoftheconsequentrisk.Food and Chemical Toxicology41(11):1569–1579.

Kroh,L.W.1994.Caramelisationinfoodandbeverages.Food Chemistry51:373–379.Lawrence,R.C.,T.D.Thomas,andB.E.Terzagui.1976.Reviewsoftheprogressofdairysci-

ence:Cheesestarters.Journal of Dairy Science43:141–193.Lee,Y.C.,M.Shlyankevich,H.K.Jeong,J.S.Douglas,andY.Surh.1995.Bioactivationof

5-hydroxymethyl-2-furaldehydetoanelectrophilicandmutagenicallylicsulfuric-acidester.Biochemistry and Biophysics Research Communications 209:996–1002.

Lindenmeier,M.,V.Faist,andT.Hofmann.2002.Structuralandfunctionalcharacterizationofpronyl-lysine,anovelproteinmodificationinbreadcrustmelanoidinsshowinginvitroantioxidativeandphaseI/IIenzyme.Journal of Agricultural and Food Chemistry50:6997–7006.

Lingnert,H.andC.E.Eriksson.1981.AntioxidativeeffectofMaillardreactionproducts.InProg-ress in Food Nutrition and Science 5,Ed.C.Eriksson,453–466.PergamonPress,Oxford.

Lund,B.,A.Hansen,andM.J.Lewis.1989.Theinfluenceofdoughyieldonacidificationandproductionofvolatilesinsourdough.Food Science and Technology22:150–153.

Maga,J.A.1974.Breadflavor,5:55–142.Critical Reviews in Food Science and Technology, 5: 55–142.

Maillard,L.C.1912.Actiondesacidesaminessurlessucresformationdesmelanoidinesparvoiemethodique.Council of Royal Academy Science Series2154:66–68.

52748.indb 78 2/6/08 2:25:22 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 94: Food Engineering Aspects of Baking Sweet Goods

Chemical Reactions in the Processing of Soft Wheat Products

Manley,D.1991.Technology of Biscuits, Crackers and Cookies,2nded.EllisHorwoodLtd.,NewYork.

Manzocco,L.,M.C.Nicoli,andE.Maltini.1999.DSCanalysisofMaillardbrowningandproceduraleffects.Journal of Food Processing and Preservation23:317–328.

Mottram,D.S.,B.L.Wedzicha,andA.T.Dodson.2002.AcrylamideisformedintheMail-lardreaction.Nature419:448–449.

Noti,A.,S.Biedermann-Brem,M.Biedermann,K.Grob,P.Albisser,andP.Realini.2003.Storageofpotatoesatlowtemperatureshouldbeavoidedtopreventincreasedacryl-amide during frying or roasting. Mitteilungen aus Lebensmitteluntersuchung und Hygiene94:167–180.

Obretenov,T.,S.Ivanov,andD.Peeva.1986.AntoxidativeactivityofMaillardreactionprod-uctsobtainedfromhydrolysates.InAmino-Carbonyl Reactions in Food and Biological Systems,Eds. M.Fujimaki,M.Namiki,E.Kato,281–299.Elsevier,Tokyo.

Papadakis,S.E.,S.Abdul-Malek,R.E.Kamdem,andK.L.Yam.2000.Aversatileandinex-pensivetechniqueformeasuringcoloroffoods.Food Technology54(12):48–51.

Parks, J.R.,A.R.Handleman, J.C.Barnett, andF.H.Wright.1960.Method formeasuringreactivityofchemicalleaveningsystemsI.Doughrateofreaction.Cereal Chemistry34:503–518.

Ramírez-Jiménez,A.,E.Guerra-Hernández,andB.García-Villanova.2000.Browningindi-catorsinbread.Journal of Agricultural and Food Chemistry48:4176–4181.

Resmini, P. and L. Pellegrino. 1994. Occurrence of protein-bound lysilpyrrolaldehyde indriedpasta.Cereal Chemistry7:254–262.

Rizzi,G.P.1994.TheMaillardreactioninfood.InMaillard Reaction in Chemistry Food and Health.Eds.T.P.Labuza,G.A.Reineccius,V.M.Morrier,J.O’Brien,andJ.W.Baynes,11–19.TheRoyalSocietyofChemistry,Cambridge.

Ruiz,J.C.,E.Guerra-Hernández,andB.García-Villanova.2004.Furosineisausefulindica-torinpre-bakedbreads.Journal of the Science of Food and Agriculture84:366–370.

Schieberle,P.,andW.Grosch.1985.Identificationofvolatileflavourcompoundsofwheatbreadcrust.Comparisonwithryebreadcrust.Zeitschrift für Lebensmittel Untersuc-hun und Forschung180:474–478.

Schieberle,P.andW.Grosch.1987.Evaluationoftheflavorofwheatandryebreadcrustsbyaromaextractdilutionanalysis.Zeitschrift für Lebensmittel Untersuchun und Forsc-hung185:111–113.

Şenyuva,H.Z.andV.Gökmen.2005.SurveyofacrylamideinTurkishfoodsbyanin-housevalidatedLC-MSmethod.Food Additives and Contaminants22(3):204–209.

Stadler,R.H.,I.Blank,N.Varga,F.Robert,J.Hau,P.A.Guy,M.C.Robert,andS.Riediker.2002.AcrylamidefromMaillardreactionproducts.Nature419:449–450.

Stamp, J.A. andT.P.Labuza.1983.KineticsofMaillard reactionbetweenaspartameandglucoseinsolutionsathightemperatures.Journal of Food Science48:543–544.

Summa,C.,T.Wenzl,M.Brohee,B.DeLaCalle,andE.Anklam.2006.Investigationofthecorrelationof theacrylamidecontentand theantioxidantactivityofmodelcookies.Journal of Agricultural and Food Chemistry54:853–859.

Surdyk,N.,J.Rosén,R.Andersson,andP.Åman.2004.Effectsofasparagine,fructose,andbaking conditions on acrylamide content in yeast-leavened wheat bread. Journal of Agricultural and Food Chemistry52(7):2047–2051.

Surh,Y.J.,A.Liem,J.A.Miller,andS.R.Tannenbaum.1994.5-Sulfooxymethylfurfuralasa possible ultimate mutagenic and carcinogenic metabolite of the Maillard reactionproduct,5-hydroxymethylfurfural.Carcinogenesis15:2375–2377.

52748.indb 79 2/6/08 2:25:23 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 95: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Taeymans,D.,J.Wood,P.Ashby,I.Blank,A.Studer,R.H.Stadler,P.Gonde,P.VanEijck,S.Lalljie,H.Lingnert,M.Lindblom,R.Matissek,D.Müller,D.Tallmadge,J.O’Brien,S.Thompson,D.Silvani,andT.Whitmore.2004.Areviewofacrylamide:Anindustryperspectiveonresearch,analysis,formationandcontrol.Critical Reviews in Food Sci-ence and Nutrition44(5):323–347.

Tareke,E.,P.Rydberg,P.Karlsson,S.Eriksson,andM.Törnqvist.2002.Analysisofacryl-amide,acarcinogenformed inheatedfoodstuffs.Journal of Agricultural and Food Chemistry50:4998–5006.

Thacker,D.1997.Chemicalaeration.InThe Technology of Cake Making,6thed.,Ed.A.J.Bent,100–106.Chapman&Hall,London;NewYork.

Thorvaldsson,K.andC.Skjoldebrand.1998.Waterdiffusioninbreadduringbaking.LWT31:658–663.

VanBoekel,M.A.J.S.2006.FormationofflavourcompoundsintheMaillardreaction.Bio-technology Advances24:230–233.

Vass,M.,T.M.Amrein,B.Schönbächler,F.Escher,andR.Amadó.2004.Waystoreducetheacrylamideformationincrackerproducts.Czech Journal of Food Science22:19–21.

Waller,G.R.,R.W.Beckel,andB.O.Adeleye.1983.Conditionsforthesynthesisofantioxida-tivearginine-xyloseMaillard reactionproducts. InThe Maillard Reaction in Foods and Nutrition,Eds.G.R.WallerandM.G.Feather,127–140.ACSSymposiumSeries215,AmericanChemicalSociety,Washington,DC.

Weisshaar,R.2004.Acrylamid inBackwaren-ErgebnissevonModellversuchen.Deutsche Lebensmittel-Rundschau100(3):92–97.

Yamaguchi,N.,Y.Koyama,andM.Fujimaki.1981.Fractionationandanti-oxidativeactiv-ityofbrowningreactionproductsbetweenD-xyloseandglycine.InProgress in Food Nutrition and Science 5,Ed.C.Ericksson,429–439.PergamonPress,Oxford.

Yaylayan,V.A.1997.ClassificationoftheMaillardreaction:Aconceptualapproach.Trends in Food Science and Technology8:13–18.

Yen,G.C.andP.Hsieh.1995.Antioxidativeactivityandscavengingeffectsonactiveoxygenofxylose-lysineMaillardreactionproducts.Journal of the Science of Food and Agri-culture67:415–420.

Yen,G.C.andL.C.Tsai.1993.AntimutagenityofapartiallyfractionatedMaillardreactionproduct.Food Chemistry47:11–15.

Zyzak,D.V.,R.A.Sanders,M.Stojanovic,D.H.Tallmadge,B.L.Eberhart,D.K.Ewald,D.C.Gruber,T.R.Morsch,M.A.Strothers,G.P.Rizzi, andM.D.Villagran.2003.Acryl-amideformationmechanisminheatedfoods.Journal of Agricultural and Food Chem-istry51:4782–4787.

52748.indb 80 2/6/08 2:25:23 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 96: Food Engineering Aspects of Baking Sweet Goods

4 Cake Emulsions

Sarabjit S. Sahi

Contents

4.1 Introduction................................................................................................... 814.2 WhatAreEmulsions?................................................................................... 824.3 EmulsifierTypesandForms......................................................................... 834.4 ConceptofHydrophilic–LipophilicBalance(HLB)....................................854.5 FactorsAffectingtheStabilityofFoamsandEmulsions

inCakeBatters..............................................................................................874.5.1 InterfacialTension.............................................................................874.5.2 InterfacialRheology..........................................................................884.5.3 StabilizationbySolidParticles..........................................................884.5.4 SurfaceCharges.................................................................................884.5.5 DisproportionationandOstwaldRipening........................................ 894.5.6 FilmThinning.................................................................................... 894.5.7 FilmRupture...................................................................................... 89

4.6 ApplicationofEmulsifiersinCakeProduction............................................904.6.1 DispersionofShortening...................................................................904.6.2 ReductioninMixingTime................................................................904.6.3 ToReduceFatandEggContent.........................................................904.6.4 ToPrepareCakeMixes...................................................................... 91

4.7 MethodstoCreateCakeBattersandtheRolesPlayedbySpecificIngredients..................................................................................................... 914.7.1 FatsandShortening...........................................................................924.7.2 Water-SolubleProteins.......................................................................934.7.3 WheatFlour.......................................................................................93

4.8 ApplicationofEnzymestoGenerateSurface-ActiveMaterials...................944.9 Conclusion.....................................................................................................97SuggestedFurtherReading......................................................................................98References................................................................................................................98

. IntroduCtIon

Cakebattersareacomplexmixtureofnumerousairbubblesanddispersedfatpar-ticlesinacontinuousaqueousphase.Thebatterscanbedividedintotwocategories,those with high and low fat content. In batters with high levels of fat, the air ispredominantlybeatenintothefatphase,thuscreatinganunusualsystemwherethefoamistrappedinsidetheemulsifiedfatphasewhichisthenmixedintoanaque-ousphase.Inlow-fatorfatlessbatters,theairisoccludeddirectlyintotheaqueous

52748.indb 81 2/6/08 2:25:24 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 97: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

phaseandthusformsaconventionalliquidfoam.Thedispersionofairandfatgener-atesconsiderableareaintermsofgas–liquidandliquid–liquidinterfaces,andthesenewlycreatedsurfaceshavetobestabilizedtopreventthedispersedphasesfromre-unitingandseparatingoutoftheaqueousphase.Duringbaking,afurtherincreaseininterfacialareaoccursasaresultofbubbleexpansion,andthisareaalsohastobestabilizedtopreventbubblesfromcoalescingandimpactingoncakequality.Interfa-cialpropertiesthereforeplayacrucialroleinboththebatterandthebakingstagesofcakeproduction.Thischapterreviewsinbriefanumberofthechemicalandphysi-calpropertiesofsurface-activematerialsandexplainssomeofthefunctionalrolesthatarerelevanttocakeemulsionsystems.Thetypeofimprovementsrequiredfromsurface-activematerialsarediscussed,andthewaystheseimprovementsarebroughtaboutareexplained.Theproductionofsurface-activematerialsin situbytheuseofenzymesisspecificallycovered.

. WhatareeMulsIons?

Bydefinitionanemulsionisadispersionofdropletsofoneimmiscibleliquidwithinanother.Theemulsionmaybeoil-in-watersuchasmilk inwhich theoildropletsaredispersedinacontinuousaqueousphase.Itmayalsobeawater-in-oilemulsioninwhich theaqueousphase isdispersed inacontinuousoilphase(e.g.,amarga-rine).Evenasimplefoamwhereairisdispersedinacontinuousliquidphasecanbeclassedasanemulsion.Withthesedefinitionsinmind,acakebattercanbeconsid-eredasacomplexemulsionsysteminwhichfatandairaremechanicallydispersedinacontinuousaqueoussugarphase.

Formationofanemulsionrequirestwoprocesses:First, theimmisciblephaseneeds to be dispersed into small uniform droplets. This is normally achieved byexpenditureofmechanicalenergy.Suchbreakdownoftheimmisciblephaseresultsinconsiderableincreaseintheinterfacialarea.Thisisathermodynamicallyunsta-blesituation,andthereisastrongtendencyforthedropletstocoalesce,eventuallyleadingtocompletephaseseparation.Thenewlycreatedinterfacialareaisstabilizedbysurface-activematerials,commonlyreferredtoasemulsifiersinthefoodindus-try.Surfactantsoremulsifiersarematerials thatconsistofmolecules thatpossessdualsolubilitywithinthesamemolecule.Thisispossibleasthemoleculesconsistofbothhydrophilicandhydrophobicparts.Thehydrophobicpartofthemoleculemayconsistofafattyacid,thelengthofwhichcanrangefrom12to18carbonatoms.Thehydrophilicpartofthemoleculemayconsistofglycerol,sucrose,orotherchemicalgroupings.Suchmaterialsaresurfaceactive—thatis,theyhaveastrongtendencytodiffusefromthebulkphase(usuallythecontinuousphase),inwhichtheyaredis-persed,toaccumulateatinterfacesbetweentheimmiscibleliquids.Theconcentra-tionoftheemulsifiermoleculesattheinterfaceresultsintheformationofinterfacialfilms.Itisthecompositionandthephysicalpropertiesofthesefilmsthatplayacru-cialroleinstabilizingdispersedphasesoncetheyareformedbymechanicalaction.

In thesamewayasanemulsioncannotbecreatedwithout theapplicationofmechanicalenergy,foamcreationrequirestheexpenditureofenergy,althoughfoamcanalsobecreatedby thevigorous introductionof air intoa liquidorwhengastrappedinaliquidissubjectedtoasuddendropinpressure.Emulsionsandfoams

52748.indb 82 2/6/08 2:25:24 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 98: Food Engineering Aspects of Baking Sweet Goods

Cake Emulsions

arethermodynamicallyunstable,andintheabsenceofadequatestabilization,itisonlyamatteroftimebeforethedispersedphaseisseparatedfromthecontinuousphase.Theonlyoptionafoodtechnologisthasistoslowtherateatwhichthevariousprocessesdestabilizefoamandemulsions.Thisisachieved,toadegree,bytheuseofsurfactantsoremulsifiers.

Thekeyphysicaleventsthatareimportantinrelationtoemulsionstabilityarecreaming(orsedimentation),coagulation,andcoalescenceof thedispersedphasedroplets.Creamingresultsfromdifferencesindensitybetweentheoilandtheaque-ousphases.Theinequalitybetweenthetwophasesshouldbekeptassmallaspos-sibletoassistinmaintainingtheuniformdispersionofthedispersedfraction.Theprocessofcoalescenceissomewhatmorecomplex.Coalescenceisinitiatedbydrop-letcoagulation,whichisfollowedbydisplacementofinterfacialmaterialfromtheregionofdropletcontact.Materialdisplacementwouldbeexpectedtobeeasierwithanexpandedfilmthanwithaclose-packedfilm.Thestabilityofanemulsioncantherefore be influenced by the correct selection of emulsifiers that form a close-packedor a condensedfilmat an interface.Optimumfilmproperties areusuallyachievedbyamixtureofsurfactants,typicallybycombiningoil-solubleandwater-solublesurfactantswhichgivestherequiredbalanceofhydrophilicandhydrophobicpropertiesintheemulsifiersystemforaspecificrecipeformulation.

Foamsconsistofliquidlamellaefilledwithgasandaredestabilizedandeven-tuallydestroyedbydrainageofliquidfromthelamellaeregionwhichleadstofilmrupture.Toslowtherateatwhichafoamcollapses,thedrainagehastobeopposed.Surfactantscandothisbycreatingsurfacetensiongradients.Theroleofsurfaceten-sionincreatingandstabilizingfoamsisunclear.Itiswidelyknownthatsurfactantsthatarehighlyeffectiveinreducinginterfacialtension,whichwouldbeexpectedtostabilize,actuallydonot,whereasothersthathavesimilarsurfaceactivityhavegoodfoamingpropertiesandstabilizefoamseffectively.Itwouldappearthatitistherateatwhichthesurfacetensionchangeswithsurfactantconcentration,ratherthanhowmuchitchanges,thatplaysakeyroleindistinguishingfoamingandemulsificationbehaviorofonetypeofsurfactantfromanother.

. eMulsIfIertyPesandforMs

Thereare twomain typesof surface-activematerials that areused in cakeman-ufacture: those derived from lipid-based materials and those based on proteins.Lipid-based emulsifiers have become increasingly important ingredients as cakemanufacturinghasbecomeamoreandmoremechanizedprocess.Intheearlydaysofcakeproduction,thekeyemulsifierswereeggsandlecithin.Thefunctionalityofthesematerialsisbasedonthepresenceofsurface-activelipoproteinsandphospho-lipids.However,thesenaturalemulsifierslackedtheeffectivenessandthedegreeoffunctionalityrequiredtowithstandtheseverityofcommercialmanufacturingopera-tionstoproduceproductswithsufficientlylongshelflife.

Thefirstwidelyusedchemicalemulsifiersweremono-anddiglycerides,formedbythereactionbetweenthefattyacidsoftriglyceridemoleculesandthealcoholglyc-erol.Theseearlyemulsifierscontainedapproximately40%oftheactiveingredient,themonoglyceride,therestbeingthenonsurface-activediglyceridewhichhaslittle

52748.indb 83 2/6/08 2:25:24 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 99: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

ornoemulsifyingproperties.Forthisreason,theseearlyemulsifierswereusedatarelativelyhighlevelofabout3%.Thedevelopmentofthedistilledmonoglyceridesinwhichtheactivecomponentwasincreasedto90%ledtoconsiderablebenefitstothecakeindustry,allowingincreaseduseoffatandsugarintherecipeformulationresultingintheproductionofhigh-ratiocakes.High-ratiocakesarerichandmoisteatingandwithmuchimprovedkeepingqualities.Continuedimprovementsinemul-sifierproductshaveproducedfurtherbenefitstothemanufacturingprocessesaswellastothequalityofthecakes.Asignificantstepwastheemulsifierglycerolmonostea-rate(GMS),producedbyreactingstearicacid(C18)withglycerol.Itwasfoundthatestersformedwiththesaturatedfattyacidspossessedgoodcomplexingpropertieswiththeamylosefractionofstarch,resultinginimprovedantistalingproperties.

Otherderivativesofmonoglyceridesthathavebeenfoundtogiveusefuladvan-tagestocakequalityhavealsobeenproduced.Replacingglycerolwithpropyleneglycol and reacting it with stearic acid generates the emulsifier propylene glycolmonostearate(PGMS).Thisemulsifierhasfoundspecificusesintheproductionofenriched sponges—that is, spongesmadewithoil.ThePGMSwasdemonstratedtoformastrongfilmaroundthedispersedoildropletsand isolate themfromtheaqueousphase,hencepreventingtheoilfrominterferingwiththeprotein-stabilizedfoam.Anotherderivativeof themonoglycerides ismadeby reactingpolyglycerolwithselectedfattyacidtoproducepolyglycerolesters(PGE)offattyacids.

Thephysicalformofemulsifierssuchasthemonoglyceridesisimportantinordertoachievetheoptimumfunctionality.ItisgenerallyrecognizedthatemulsifierslikeGMSgivethebestperformancewhenhydratedtothemostactiveandwater-dispers-ibleα-crystallineform.ThisismostconvenientlyachievedbydispersingtheGMSpowderinaboutthreetimesitsweightofwaterheatedtoabout60to65°C,whenatransparenthomogenousliquidcrystallinelamellarphaseisformed(KrogandLars-son,1968).Inthisform,theemulsifierconsistsofbilayersofmonoglyceridemol-eculesseparatedbywaterlayersbetweenthepolargroups.Oncooling,thelamellarphasesetstoagelphase,theα-crystallinephasethathasthemostefficientwhippingandbatter-stabilizingproperties.Thisphaseisknowntobeunstableandonstoragebeginstoconverttotheβ-crystallineforminwhichthelipidbilayersarestackedontopofeachotherandthecrystalsarerelativelylarge,givingthiscrystallinephasepooraerationandcreamingproperties.Itisthereforenotusefulincakeproduction.TheactiveGMS isavailablecommercially inconvenient ready-to-usepaste forminwhichtheactiveformismaintainedbyincludingotheremulsifierssuchaspoly-glycerolestersorpolypropyleneglycolesters.Thepastecontainswater,andthishastobeaccountedforwhenadding thecorrectamountof theactive ingredient toaparticularrecipe.Inthisform,theytendtobemosteffectiveinfoamingpropertiesandemulsificationoftheoilintotheaqueousbatterphase.Emulsifiersthatformtheα-phasewhenhydratedarereferredtoasα-tending—examplesincludemonoglyc-erides,polyglycerolesters,andpolyglycolmonostearate.Ithasbeensuggestedthatthefilmsconsistingoftheseemulsifiers,afterexceedingthesolubilitylimit,solidifyasaresultofcrystallizationofthealignedmolecules.Whenthishappenstothefilmaroundoildroplets,thefilmessentiallyformsasolidphysicalbarrierbetweentheoilandwaterphase,preventingthetwofromcomingtogether.Thisprocesseffectively

52748.indb 84 2/6/08 2:25:24 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 100: Food Engineering Aspects of Baking Sweet Goods

Cake Emulsions

preventstheoilfrominterferingwiththestabilityoffoamstabilizedbyproteinsinthebatterstage.

Proteinmaterialwithemulsifyingpropertiescanbederivedfromegg,cereals,ordairysources,butthekeyrequisitepropertyissolubility.Proteinsmustbesolubleintheaqueousphaseinorderforthesurfacepropertiestobeexpressed.Theemul-sifyingpropertiesofeggyolkhavebeenattributedmainlytolipoproteinsbecauseoftheirabilitytointeractatthesurfacesofoildropletstoformproteinlayers,butotherproteinsarelikelytobeinvolved.Thepresenceoflipovitellin,lipovitellenin,andlivetincontributestoareductioninthedrainageoftheemulsifierfilminoil-in-wateremulsions.Lipovitelleninprovidesthebestoverallemulsionstability.Otherproteinsthathavebeenusedinoil-in-wateremulsionstabilityarecaseins,albumins,andglobulins.Moreinformationregardingtheroleofproteininfoamandemulsionswillbediscussedlaterinthechapter.

Itmustbepointedoutthatindividuallyboththelipid-basedemulsifiersandpro-teinsarecapableofformingfoamsandemulsions.However,foaminstabilityresultswhen the two types of surface-active materials are present together, particularlywhenthelipidemulsifiersarepresentatlowconcentration.ThisisdemonstratedinFigure4.1whereGMSwasaddedat0.25and0.75%tospongecakebattermixedtoadensityof0.65g/ml.Theeggisconsideredtobethefoamingagentinspongebatters(Figure4.1a),andthepresenceofsmallamountsofoilorfatreducesfoamstability.Figure4.1bshowssignsoffoaminstabilitywithbubblescoalescingtoformlargerbubbles.Cakesbakedwith0.25%GMSdisplayedseverecoresorcollapse,indicatingbreakingofthefoamcreatedduringmixing.CakesmadewithnoGMSwereofgoodvolumebutwithfairlyopencrumbstructure.ThiswouldsuggestthattheproteinandGMSdonotcombinetogethertostabilizeinterfacialfilmsaroundthegasbubbles.At0.75%additionofGMS,Figure4.1c,thereweregreaternumbersofgasbubbleswithuniformsizedistributioncomparedwith0.25%addition.Thespongecakespro-ducedgoodvolumeandcrumbstructurewithnocoringpresent.TheresultswouldindicatethattheGMSat0.25%isnotpresentinsufficientquantitytostabilizegasbubblesatthebatterorthebakingstagebutisabletointerferewiththeprotein–pro-teininteractionsstabilizingthegasfilms.Atthe0.75%level,theGMScompletelyreplacestheproteinfilmsandisabletosaturatetheair–liquidinterfacecreatedbythemixingprocessandmaintainstabilityduringthebakingstage.

. ConCePtofhydroPhIlIC–lIPoPhIlICBalanCe(hlB)

Inchemical terms,themolecularstructureofemulsifiersconsistsofpolar(water-loving) and nonpolar (oil-loving) groups. Emulsifiers can be classed by a systemcalledhydrophilic–lipophilicbalance (HLB). It is awayof indicating theoverallattractionofanemulsifiertoeitherwateroroil.TheHLBscalerangesfrom0to20,with1indicatingatotallyoil-solublematerialand20indicatingahighlywater-sol-ublematerial.GMS,forexample,hasaHLBvalueof3.8andisoilsoluble,whereashigh-monoester-contentsucroseesterpossessesaHLBof15andissolubleinwater.Incidentally,diglycerideestershaveaHLBvalueof0andthereforehavepooremul-sificationproperties.Infact,ifpresentinsufficientamountswithmonoglycerides,diglycerides can actually be detrimental to the functionality of monoglycerides,

52748.indb 85 2/6/08 2:25:25 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 101: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

andhencethewidespreaduseofdistilledmonoglyceridesthatcontainlowlevelsofdiglycerides.HLBnumbersarealsoindicativeofwhichtypeofemulsionaparticularemulsifieroramixtureofemulsifierswouldbemostlikelytoform.Forexample,theoil-solubleGMSwouldstabilizeawater-in-oilemulsionsuchasmargarine.Ontheotherhand,thewater-solublesucrosemonostearatewouldbesuitableasastabilizerofanoil-in-wateremulsionsuchasacakebatteroramayonnaise.EmulsifiertypesofintermediateHLBarenotgoodemulsifiersbuthavegoodwettingproperties.TheHLBsystemworkswellwithbasicemulsionsystemswherethereductionofinterfa-

200 µm

a

200 µm

b

200 µm

c

fIgure. Influence of glycerolmonostearate (GMS) concentrationongasbubblesinspongebatters:(a)control batter—protein-stabilizedaqueousfoam;(b)0.25%GMS—dis-ruption of protein-stabilized bubble;(c) 0.75% GMS—foam stabilizationby emulsifier alone. (Courtesy ofCampden&ChorleywoodFoodRA,ChippingCampden,UK.)

52748.indb 86 2/6/08 2:25:27 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 102: Food Engineering Aspects of Baking Sweet Goods

Cake Emulsions

cialtensionandthestabilizationofthedispersedphasearethekeyrolesrequiredoftheemulsifiersystem.However,cakesystemsaremorecomplex,andotherfactorsinadditiontotheinterfacialpropertiesareinvolved.Thisisdemonstratedbythefactthatthebestresultsareusuallyobtainedbytheuseofablendofemulsifierswithdifferenthydrophilicandlipophilicproperties.Also,theHLBsystemcannotpredictwhichHLBvaluewillproduceoptimumemulsifierstability.Thisandotherimpor-tantfactors,suchasconcentrationoftheemulsifierstobeused,therelativeratioofthetwoimmisciblephases,andthemeansbywhichtheemulsificationprocessistobeachieved,havetobedeterminedexperimentally.

. faCtorsaffeCtIngthestaBIlItyof foaMsandeMulsIonsInCaKeBatters

Cakebattersmadewithfatoroilrepresentaclassicalemulsionsystemoffatdis-persedinacontinuouswaterphase.Coupledwiththatisafoamsystem,initiallyinthefatphasebutbeingtransferredtotheaqueousphasewhenthefatmeltsduringbaking,resultinginacomplexemulsionandfoamsystem.Ithasbeendemonstratedthattheaircellsinafatparticlewillcoalescewithinthefatparticleratherthantrans-ferasdiscreteaircellstotheaqueousphase(ShepherdandYoell,1976).Inthesamepublication,itwasobservedthatairbubblesreleasedfromthefatphaseonmeltingremainedattachedtothefatsurface,suggestingthatthefatsurfacemaybecoatedwitheggproteinsoraddedemulsifiersduringmixingwhicharetransferredtothegasbubbleswhentheytransferfromthefattotheaqueousphase.Continuedheat-ingofthebatterduringbakingcausesrapidexpansionofthebubbles.Atthispoint,theviscoelasticpropertiesofthefilmssurroundingthegascellsbecomeimportantinthemaintenanceoftheintegrityofthebubbles.Expansionceaseswhenthecakestructureissetandthediscretefoamsystemsbreaktoformanopennetworksponge.Atpresent,thereisnoestablishedmechanismtoexplainhowcomplexsystemslikecakeemulsionsarestabilized,butsomeprogresshasbeenmadetohelpexplaintheessentialrolesplayedbykeyingredients.However,thereareanumberoffundamen-talfactorsthatgovernemulsionstability,andthesearealsolikelytoaidthestabilityofthedispersedfractionsinacakebattertosomedegree.

4.5.1 inTerFaCialTension

Itisacceptedthattheinterfacialtensionbetweenthedispersedphaseandthecontinu-ousphaseisanimportantfactorincontrollingstabilityinsuchsystems.Ahighten-sionbetweenthetwophasesislikelytobedetrimentaltoemulsionandfoamstability,whereasa low tension,asa resultofsurface-activemoleculesaccumulatingat theinterface,islikelytobebeneficialinstabilizingsuchsystems.Theinterfacialtensionbetweenoilandwaterinthepresenceofemulsifierscanrangefrom1to10mN/m.Surface-activematerialsnaturallypresent inkey ingredientsused incakesystemsandaddedemulsifierscanthereforestabilizeemulsions.Interfacialmeasurementsaresensitivetothecompositionoftheinterfaceandcanbeusedtoidentifythenatureofthepredominantmaterial,forexamplelipid-basedsurfactantorproteins.MethodstomeasuresurfaceorinterfacialtensionsincludetheRingmethod,theWilhelmyplate

52748.indb 87 2/6/08 2:25:27 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 103: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

method(Shaw,1980),aswellasanumberofmethodsbasedonimagingapendantdrophangingfromthetipofacapillarytube(AmbwaniandFort,1979).

4.5.2 inTerFaCialrheoloGy

Therheologicalpropertiesoftheinterfacialfilmsplayakeyroleinstabilizingdis-persed phases.The rheology is chiefly governed by the composition of the inter-facialregion.Proteinadsorptionataninterfaceusuallyresultsintheformationofa two-dimensional viscoelastic film, whereas lipid-like materials form relativelythinmobilefilms.Filmrheologycanbemeasuredusingeithershearordilatationalmethods.Surfaceshearmeasurementsareusuallyperformedwitharingorabiconelocatedattheinterface,andthefilmisdeformedwithanoscillatorystressorstrain.Theanalysisoftheappliedstressorstrainandtheresultingresponsecharacterizestheviscoelasticpropertiesoftheinterface.Thistechniquewasusedtodemonstratethedisruptiveinfluenceofflourlipidsonprotein-stabilizedinterfacialfilms,givingan insight into the negative effect that such materials can haveon foam stability(Sahi,1994).Thedilatationalapproachagaininvolvesoscillatorymethods,butherethe surfaceareaof the interface ischangedand thechange in surfaceor interfa-cial tension ismonitored.Thismethod isuseful for studyingmixedfilmsystemssuchasprotein–lipidmixtures.Whereasdispersedphasesstabilizedbylipid-basedmaterials(emulsifiers)influenceemulsionandfoamstabilitythroughtheireffectsoninterfacialtension,protein-basedstabilizationarisesfromthephysicalpresenceoftheadsorbedfilmratherthanfromareductioninthetensionofthedispersedphaseinterfaces. Such films can be many layers thick and viscoelastic and are able todampenperturbationsexperiencedintheinterface.

4.5.3 sTaBilizaTionBysolidParTiCles

Emulsionscanalsobestabilizedbythepresenceofsolidparticlesattheinterface.Finelydispersedsolidsthathaveacontactanglebetween0and180°haveanaturaltendencytocollectatanoil–waterinterface.Whendispersedparticlescomeclosetooneanother,thephysicalpresenceofthesolidparticlespreventsonedropletfromtouchinganother.Suchamechanismmaybesignificantincakeemulsionswherethepresenceofeggandflourparticlescouldcontributetoemulsionstability.

4.5.4 surFaCeCharGes

Electrical double-layer repulsion is an important stabilizingmechanism inoil-in-wateremulsions.Thesurfacechargesonthedropletscanrepeldropletswhentheycomeclosetogetherbythemutualrepulsionoftheirelectricaldoublelayers(Ber-genstahlandClaesson,1990).Theemulsifiersinacakerecipeformulation,presentbothnaturallyandasadditives,onadsorptiontoanoil–waterinterfacewillhaveanoverallnegativeelectricalcharge.Inthisrespect,flourcancontributelipoproteinsaswellaspolarlipids;forexample,phospholipidsandsimilartypesofmaterialsarealsopresentinegg.Whensuchmaterialsareadsorbedontooilorfatdroplets,anoverallnegativechargeresults,whichwillpreventclosecontactofthedropletand

52748.indb 88 2/6/08 2:25:28 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 104: Food Engineering Aspects of Baking Sweet Goods

Cake Emulsions

contributetowardemulsionstability.Chemicallysynthesizedemulsifiersareabletorepeloildropletsinasimilarfashion.

4.5.5 disProPorTionaTionandosTwaldriPeninG

Disproportionationistheprocessbywhichlargegasbubblesgrowattheexpenseofsmallbubbles.ThisispredictedbyLaplace’sequationthatstatesthatthepressureinabubble(Pbubble)willbe

P P 4

Rbubble a= +γ

(4.1)

wherePaistheatmosphericpressure,γisthesurfacetensionoftheliquid,andRistheradiusofthebubble.

Gaswilldiffusefromasmallerbubbletoalargebubbleincontactwitheachotherdrivenbythepressuredifferentialbetweenthebubbles.Thismechanismsug-geststhatinordertoobtainauniformdistributionofbubblesinacakebatter,theinterfacialtensionmustbeaslowaspossibleinordertodecreasethevalueoftheexcesspressurethatwouldincreaseasbubblesizebecomessmall.

Ostwaldripeningoccursinemulsionsandiscausedbythediffusionofliquidfromsmallerdroplets into largerones.Largerbubbles thusgrow larger and thenaremoresusceptibletocoalescence.AuniformdistributionofdropletsizehelpstostabilizeanemulsionwithrespecttoOstwaldripening.

4.5.6 FilmThinninG

Filmthinningbehaviorprovidesinsightintothefactorsthatpromotefoamandemul-sionstability.Thinningoccursasaresultofgravitationalforces,andtheviscosityoftheaqueousphaseplaysanimportantrole:thehighertheviscosityoftheaqueousphase,thesloweristherateoffilmthinning.Thecompositionofthefilmplaysanimportant role incontrollingandmaintaining thickness.Forexample, lipid-stabi-lized films exhibit rapid drainage (Clark et al., 1990), whereas protein-stabilizedfilmsdisplayslowdrainage(Clarketal.,1994).

4.5.7 FilmruPTure

Filmthinningeventuallyresultsinfilmrupture.Asmentionedpreviously,proteinsformstrongviscoelasticfilmsthatresistrupture.However,lipidfilmstendtopossesslowlateralcohesion,andlocalizedstressesofthefilmcauseittoexpand,resultinginadecreaseofsurfactantconcentrationintheregionofstressandanincreaseinsurface tension(theGibbseffect).Becauseafinite time is requiredforsurfactantmoleculestodiffusetothisregiontorestoretheoriginalsurfacetension(theMaran-gonieffect), the increasedsurface tensionmaypersist longenough torecover theoriginalthickness.TheabsenceoftheGibbs–Marangonieffectisthemainreasonwhypureliquidsdonotfoam.

52748.indb 89 2/6/08 2:25:28 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 105: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

. aPPlICatIonofeMulsIfIersInCaKeProduCtIon

Therearenumerousreasonswhyemulsifiersareusedinthemanufactureofcakes.Primarily, theseincludefoaming,emulsification,andbatterstability.Furtherben-efits include thehomogeneousdispersionof fat in thebatter, greater tolerance torecipeformulationchanges,andthepossibilityofchangingfrommultistagemixingtoanall-inmixingmethod.Emulsifiersalsogivecakesatendereatingqualityaswellashelptoimproveshelflife.Thelatterisimportantforindustriallyproducedcakes,asthereisconsiderablelengthoftimebeforetheyreachtheconsumer.Theuseofemulsifiershasalsoledtokeychangesintherecipeformulationsfromtheearlierpoundcaketothehigh-ratiocakesmadetoday.Someofthekeyfunctionsofemulsifiersaredescribedinmoredetailbelow.

4.6.1 disPersionoFshorTeninG

Usingshorteningaloneinahigh-ratio-typerecipecanresultinthebattercurdlingduringmixing.Thiscanbeavoidedbyinclusionofanemulsifierduringproduc-tionoftheshortening,suchashorteningbeingreferredtoashigh-ratioshortening.EmulsifierssuchasGMSandmono-anddiglyceridesareusedinsoftfatsatlevelsupto10%tomanufacturehigh-ratioshortenings.Becauseofthefunctionalityoftheemulsifier,theseshorteningscanbeeasilydispersedinhigh-ratiobatterswith-outcurdling.Cakemargarinesalsocontainemulsifiersaddedbythemanufacturer,bothtomaintainasmoothproductandtofacilitateeasydispersioninthebatter.Inaddition,emulsifierinclusioncanimprovecreamingpropertiesinbothshorteningsandmargarines.

4.6.2 reduCTioninmixinGTime

Specific emulsifiers such as GMS, polyglycerol esters, and lactic acid esters ofmonoglyceridespossessmarkedfoam-promotingproperties.Whenaddedtospongebatters (0.5 to1.0%ofbatterweight),whisking timecanbegreatlyreduced.Theemulsifiersdo thisby reducing the interfacial tensionof the aqueousphase, thusallowingthemixingactiontobreaktheinterfacemoreeasilyandtoincorporateairintothebatter.Theloweringoftheinterfacialtensionalsoaidsthebreakupoftheairbubbles toproduceasmallerandmoreuniformcellularstructureof thecake.Anadditionaladvantageisamorestablebatter,resistanttomechanicaldepositingstressesandmoretoleranttovariationsinholdingtimeaftermixing.

4.6.3 ToreduCeFaTandeGGConTenT

Foam-promoting emulsifiers such as GMS, polyglycerol esters, propylene glycolesters,orblendsofthesecanhelptoreducethefatcontentofacakeorsubstitutionofthefatbyasmallerquantityofvegetableoil.Oiladditionwasoriginallyfoundtogivelowvolume,opengrain,andpoorstructureofthecake.However,theuseofthecorrectemulsifierorblendsofemulsifierscanproducecakesofgoodquality,usingoilinsteadofhardfat.Emulsifierscanalsobeusedtoreplacepartoftheegginspongecakes.Insuchacase,theaerationpropertiesoftheeggareperformedbythe

52748.indb 90 2/6/08 2:25:29 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 106: Food Engineering Aspects of Baking Sweet Goods

Cake Emulsions

emulsifier,andeggcontentcanbereducedsufficientlytosupportthefoamstructureandcontributetotheeatingqualityofthecake.

4.6.4 ToPrePareCakemixes

Emulsifiersare includedindrycake-mixformulationsto improvebatteraeration.Specialcold-water-dispersibletypesareavailableconsistingofamixtureofemul-sifierssimilar to those found inpasteemulsifiersbutdriedontoacarrier suchasskimmedmilkpowder.Spray-driedemulsionsofcakeemulsifierssuchasdistilledmonoglycerides,propyleneglycolmonostearate,andlactylatedmonoglyceridescon-taininganonfatmilkpowderasacarrierareusedinspongecakeswiththesamebenefitasaqueousgels.

Practical experience shows that combinationsof emulsifiers areusuallymoreeffective than any single emulsifier used alone, suggesting synergistic effectsbetweenblendsofemulsifiers.Ablendoftwooreventhreeemulsifierscanbeused;anexampleofablendwidelyusedismono-diglycerideestersandpolyglycerolestersofmonoglycerides.

. MethodstoCreateCaKeBattersand therolesPlayedBysPeCIfICIngredIents

A cake batter is formed from a basic formula consisting of flour, fat, sugar, andegg.Theingredientscanbemixedinstagesusingthecreamingmethod(sugarandshortening),theflourbattermethod,ortheall-inmethodwherealltheingredientsareaddedsimultaneouslyintothemixingbowl.Inthecreamingmethod,thefatandsugararefirstmixedtogethertoaeratethemixture.Smallairbubblesareintroducedintothedispersedparticlesoffat.Optimumaerationof thebatterdependsonthesizeofthefatcrystals,andsmallcrystals(β′-form)givethebestaerationproperties(Hoerr,1960).Suchcrystalsareable toorientate themselvesaround thegascellsandprovideaprotectiveshell.Theamountofairtrappedinthecreamingprocessisimportanttothestructuredevelopmentofthecakeasnonewgascellsarecre-atedduringtheremainingstagesofthecake-makingprocess(Carlin,1944).Intheflourbattermethod,theshorteningandtheflouraremixedtoformanaeratedmass,andinaseparatecontainertheeggandsugararewhippedintoafoam.Thetwoarecombinedwiththeadditionoftheotheringredientsatthesametime.Intheall-inmethod, all thekey ingredients aremixed intoa smoothbatter.Themixingof afat-containingbatterresultsintheformationofafatemulsionwithairbubblesalsobeingtrappedintheemulsifiedfat.Aerationoffatlessrecipesoccursintheaqueousphase,with eggproteinsplaying an important role aswhipping agents and foamstabilizers.Theimportantprocessesarethehomogenousmixingoftheingredientstocreateasilkysmoothbattercontainingalargevolumeofairintheformofsmallcellsinthefatphaseortheaqueousphasedependingontherecipe.Intherespectivemixingmethods,themajoringredientsplayakeyroleateachstage.Thecontributionofeachingredientisexaminedwithrespecttofoamformationandemulsification.

52748.indb 91 2/6/08 2:25:29 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 107: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

4.7.1 FaTsandshorTeninG

Thefunctionalpropertiesoffatsplayakeyroleinbakeryproductsingeneral,andthisisespeciallyimportantintheproductionofcakes.Thefunctionalityofplasticfatsisinfluencedbytheratioofliquidoiltocrystallinesolidsaswellasthecrystal-lineformachievedduringtheprocessing.Thetwofundamentalfunctionalproper-tiesoffatsarecreamingandemulsification.Theprocessofcreamingfatwithsugarresultsinthebreakupofthefataswellasthetrappingofairintothedispersedpar-ticlesoffat.Thisstageofthemixingthereforehasacrucialbearingonthevolumeofcakethatcanbeachievedattheendofbaking.Theplasticityofthefatandtheparticlesizeofthesugararebothimportantinachievingoptimumfatparticlesizeandairincorporation.Castersugarwithparticlesizespecificationof<10%above425μmand<22%below212μmistypicallyusedasitpossessestheoptimumsur-faceareatobreakdownthefat.

Inadditiontotheaerationcapacityofthecakeshortening,thecrystallinityofthefathasbeensuggestedtocontributetostabilizationofthefoaminthebatteranddur-ingbaking.Thefatcrystalswiththebestfunctionalityaresmallandneedleshapedandcanalignthemselvesattheinterfaceofairbubblestrappedintothefatdroplets(Brooker,1993),thusstabilizingtheairbubblestrappedduringthecreamingpro-cess.Thesameresearcheralsohypothesizedthatthefatcrystalscomeoutofthefatdroplets,andas theyemergeintotheaqueousphaseof thebatter,becomecoatedwithsurface-activewater-solubleproteins.This thenconferssurfaceproperties tothefatcrystals,whichthenalignattheair–waterinterfaceinthebatter.Duringthebakingprocess,theairbubblesexpand,generatingnewinterfacialareathatneedstobestabilizedtopreventruptureofthefoambeforesufficientexpansionhasbeenachieved.Thetimelymeltingofthefatcrystalsreleasesthesurface-activeproteinsadsorbed on the fat crystal. This protein then becomes available to stabilize theexpandingairbubbles.Thefatcrystalsthereforeactasareservoirofsurface-activematerialthatisincloseproximitytothegasbubblesastheyexpand.

Recentworkontheroleoffatinthestabilizationofairin“all-in-one”cakebat-tershasshownthatfatcrystalsareejectedfromtheemulsifiedshorteningduringmixing,becomeenvelopedbyafat(crystal)–waterinterface,andareabletostabilizelargenumbersofsmallairbubblesbyadsorbingtotheirsurface.Duringbaking,airbubblescanexpandwithoutrupturingbecauseofextrainterfacialmaterialprovidedbytheadsorbedfatcrystalswhentheymelt.Theoutcomeofthismechanismisthatabattercanexpandduringbakingwithoutcollapsetoproduceahigh-volumecakeoffinecrumbstructure.

Theuseoffluidshorteningsisontheincreaseincakemanufacturingandotherbakerysystems.Inthepast,theywerefoundtobedetrimentaltocakequality,result-inginpoorcrumbqualityandlowcakevolume(Knightly,1988).Thiswaslargelyovercomebytheuseofareducedamountoftotalfatintherecipeandacarefulcom-binationofhydrophilicandhydrophobicemulsifiersdispersedinfluidshortenings.Fluidshorteningsaremixturesofhardfatandsurfactantsinvegetableoil.Typicalsurfactantsusedareacombinationofmonoglycerides, lactylatedmonoglycerides,andpropyleneglycolesters.Thelevelofemulsifierusedcanbequitehighat10to15%oftheoilweight.Theadditionoftheemulsifierintheα-crystallineformispar-

52748.indb 92 2/6/08 2:25:29 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 108: Food Engineering Aspects of Baking Sweet Goods

Cake Emulsions

ticularlyeffective.Inthisform,theemulsifiersystemisabletoemulsifytheoilintofineparticlesintheaqueousphaseand,asaresult,shieldtheprotein-stabilizedfoamfromthedestabilizingeffectoftheoil.Otherbenefitsoftheseshorteningshavealsobeenrealizedinrecenttimes.Healthconcernsregardingtheintakeofsaturatedfatsandtransfatshaveledtoreplacementoftheplasticshorteningsandthechallengetotheindustryhasbeentoachievethiswithoutlosingthebenefitsderivedfromthem.Fluidshorteningsthatproducefinishedproductsidenticaltothosemadewithplasticshorteningshavebeendevelopedbyusingα-stableemulsifiergels.

4.7.2 waTer-soluBleProTeins

Proteinnaturallypresentineggandflouraregoodfoamandemulsionpromotersandstabilizers.Inorderfortheproteintobesurfaceactive,itmustpossessgoodsolubil-ityinanaqueoussystem.Examplesofsuchproteinsincludealbuminsandglobulins.Themechanismbywhichproteinsfunctionatinterfacesisdifferentthanthatofthelipid-basedemulsifiers.Proteinmoleculesdiffusefromthebulkofthesolutiontotheair–wateroroil–water interface.Onreaching the interface,somesegmentsofthemoleculesattachthemselvesandsomeunfoldingoftheproteinchainmayalsooccur.Intermolecularinteractions,forexampleH-bondingbetweensectionsoftheprotein chains, link theneighboringpolypeptide chains together.Further adsorp-tionofproteinsunderneaththeprimaryinterfaciallayercanleadtotheformationofathick,viscoelasticinterfaciallayerthatisabletostretchwithoutbreakingandhenceabsorbfluctuationsintheinterfacialregion.Thephysicalpresenceofthethickproteinfilmalsopreventsbubblescoalescingoncontactwitheachother.Itmustbeemphasizedthatproteinsarenotaseffectiveaslipid-basedsurfactantsinreducinginterfacial tension. For example, commonly used emulsifiers can lower air–watertensionto30mN/morlower,whereasthelargeproteinmoleculeswithlimitednum-berofhydrophobicsitesintheirpolypeptidechainscanonlyattainvaluesofabout45mN/m.However,theloweringoftheinterfacialtensionisnottheonlyrequire-mentinfoamandemulsionsystems.

4.7.3 wheaTFlour

Wheatflourusedincakeproductioncontainsnumerouscomponentsthatcanplayvariousroles infoamandemulsionstability.Theproteinsand lipidsareasourceof surface-active materials that have the capacity to accumulate at the air–waterandoil–water interfaces.Wheatflouralsocontains threemajor typesofpolysac-charides—starches,hemicelluloses,andβ-glucans.Starchesfromheat-treatedandchlorinatedfloursallowbetterabsorptionofliquidinthebatter;hence,battersmadefromtreatedflourshaveahigherviscositycomparedwithbattersmadewithuntreatedflour.Thishasapositivebenefitonaerationofthebatter,asaircanbetrappedandsubdividedmoreeasilyand thebubbleshavea lesser tendency tofloatoutof thebattercomparedwitha less-viscoussystem.Batterviscosity isalso influencedbythehemicellulosematerialthatispresentat2to3%oftheflourmass(MontgomeryandSmith,1956).Thehemicelluloseshavetwoforms,denotedbytheirsolubilityinwater: insolublematerialsandsolublematerials.Botharecomposedofmainlyarabinoxylansandarecommonlyknownaspentosans.Inlinewithotherhydrocol-

52748.indb 93 2/6/08 2:25:30 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 109: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

loids,theyhavetheabilitytobindeighttotentimestheirownweightinwater.Thisisbeneficialatthebatterstagewherewaterabsorptionbythesematerialsincreasesbatterviscosity.Theβ-glucansalsocontributetobatterviscosityinasimilarfash-ion.Thehemicelluloseshavealsobeenshowntopossesssurface-activeproperties.Izydorczyketal.(1991)reportedthatarabinoxylansandarabinogalactansreducedthesurfacetensionofwaterfrom72to52and50mN/m,respectively.Thesevaluesaresimilartothesurfacetensionvaluesreportedforsomeproteins,suggestingthatthesematerialsinwheatflourcouldpotentiallyactasfoamandemulsionstabilizingmaterials.Hemicellulosetypesofmaterialsarebelievedtostabilizefoamfilmsbyretardinggasdiffusion through thegas–film interfaceoractingasstericstabiliz-ersof thefilmssurrounding thegasbubbles(Prins,1988).Although thefoamingpropertiesofthearabinoxylansandarabinogalactanswereinferiorcomparedtotheproteinbovineserumalbumin,theviscosityandelasticityoftheinterfacialfilmsur-roundingthegasbubblesislikelytobeimportantforfoamstability.

Thestarchfractionin thewheatflourdoesnotappear toplayadirectrole inthe stabilization of foam or emulsion systems in cake batters. However, starchdoesabsorbwaterintherecipe,andtheamountofwaterabsorbedisincreasedbychlorinationorheattreatmentofthecakeflour.Thisgivesincreasedviscositythathelps to trapand subdivideair in thebatterduringmixing. Itmightbeexpectedthat,becausestarchgranuleshavealargesurface-area-to-volumeratio,interactionsbetweenstarchandemulsifiersmayinfluencegasbubblestability.However,thereisnoreportedevidencetosuggestthatthestarchgranulesinteractwithairbubblestrapped in thebatter.The reason for thismay be that the starchgranules have arelativelysmallsurfaceareacomparedwiththatofthegasbubbles,especiallywhenthebubblesbegintoexpand.However,withthemechanismofstabilizationbysolidparticles in mind, the potential contribution of starch granules toward interfacialstabilitycannotberuledout.

. aPPlICatIonofenzyMesto generatesurfaCe-aCtIveMaterIals

Inadditiontonaturalorsyntheticsurface-activeagents,highlyactivematerialscanalsobecreatedin situbytheactionofspecificenzymesonsubstratesthatarepresentinrawmaterials,suchasflour,egg,orshortenings.Suchenzymeshavethepoten-tialtoreplaceaddedemulsifiers.Thisisofconsiderableimportanceintermsofthehealthimageofaproduct,becauseenzymeshavenofunctioninthefinalproductanddonothavetobedeclaredonthepackaging.Thishasledtotheapplicationofenzymestoproducetherequiredsurface-activematerialsin situ.Thereareanumberofesterhydrolasesthatcanmodifythechemicalstructureofphospholipids—namely,phospholipasesA1,A2,C,andD.PhopholipaseAhasbeenusedbythefoodindustryformanyyearstoimprovethefunctionalityofeggyolkbybreakingdownthelipidcomplexes.Lipaseenzymesarepresentincerealsinsmallconcentrationsandareknowntoproducefattyacidsinfloursstoredforlongperiods.Theactionoflipaseistocleavethebondbetweenthefattyacidestersandglycerol.Thenetresultistheproductionofamixtureoffattyacidsandthesurface-activemonoglycerides,whichitisclaimed,maybeusedtoreplacemonoglyceridesusuallyaddedasaningredient.

52748.indb 94 2/6/08 2:25:30 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 110: Food Engineering Aspects of Baking Sweet Goods

Cake Emulsions

Thefunctionalityofthemonoglyceridesproducedwouldbedependentonthesourceofthetriglycerideactingasthesubstrate.Saturatedfattyacidswith14to18carbonatomsintheirchainsarethemosteffectiveantistalingmonoglycerides.

However,itisnotcleariftherequiredconcentrationlevelsofemulsifierscouldbeproducedbyaddedlipase,orwhetherthelargeamountsoffattyacidsproducedatthesametimewouldbedetrimentalorbeneficialtothebakingprocess.

Continuingprogressinbiotechnologyhasproducedanewgenerationoflipasesthatactonthenonpolartriglyceridesandpolarlipidsnaturallypresentinwheatflour.Wheatflourcontains2to3%lipidmaterialconsistingofbothpolarandnonpolarfrac-tions.However,alargeproportionofthislipidisfoundinthestarchgranularstructureandhence isnot availableas substrate for lipaseaction.Thenonstarch lipid formsabout1.6%oftheflourweight,andoutofthisabout0.6%iscomposedofthefunction-allyimportantpolarfraction.Examplesofthepolarlipidsfoundinflourincludethephospholipidlecithinandthegalactolipiddigalactosyldiglyceride.Actionofthenewlipaseontriglyceridemoleculeswouldbeexpectedtoproducemono-anddiglyceridesaswellasfreefattyacids.Theseby-productsofenzymeactionaresimilartothosegeneratedbythetraditional1,3specificlipase.However,itistheactiononthepolarlipidswhichisofinterestintermsofincreasingthesurfaceactivityofthesematerials.Theactionofthenewlipaseonlecithincleavesoneofthefattyacylchainstoproducelysolecithin,amoresurface-activematerialcomparedtotheoriginalsubstrate.Like-wise,thecleavageofanacylchainfromadiglyceridedigalactosylmoleculeproducesthemoresurface-activedigalactosylmonoglyceride.Theutilityofthisenzymetopro-ducesurface-activematerialsin situwasinvestigatedinthemanufactureofhigh-ratiocakesusingarangeofflours.Initially,theperformanceoftheenzymewasassessedbyitseffectonthebatterdensitywithmixingtime.Mixingtimetoachievethetargetbatterdensity(0.72g/ml)wasreducedbyaminimumof24%at90ppmadditionoftheenzymeforoneflourandupto35%foranotherflourbasedonthemixingtimewithnoenzymeadded.Twootherfloursexaminedhadmixingtimereducedtointermediatevaluesbetweenthetwoextremes.Theuseofemulsifierstoreducemixingtimeofbat-tersiswellrecognizedinthecake-makingindustry,andthesameeffectobservedwiththeuseofthenewlipasewouldsuggesttheproductionofsurface-activematerialsbytheenzyme.Fundamentalstudieswithcakebattersuggestedthepresenceofsurface-activematerials.Thesematerialsloweredthesurfacetensionandthesurfaceviscosity(Table4.1),probablybydisplacingtheproteincomplexeswithmono-acyllipidssuchas fattyacids, lysolecithin, anddigalactosylmonoglycerides (GuyandSahi,2006).Thepresenceofthesematerialswasconfirmedbyanalysisoffreefattyacidsandanincreaseinamylose–lipidcomplexesfoundinthebakedproduct.

Enzymeadditionalsoincreasedbatterviscosityinproportiontotheamountofenzymeused,and thiswouldbenefit thestabilizationof thebubbles in thebatteraftermixingandduringtheirexpansioninthebakingprocess.Itisthoughtthatthesurface-activematerialsmayhavewetted-out theproteins andhelped to increasetheirhydrationvolumes,becausetheincreasesinviscositywerelostathighshearlevelsinthebatter.Initialbakingtrialswiththreeheat-treatedfloursusedtomanu-facturehigh-ratiocakesshowedimmediatebenefitsinincreasedcakevolume(Fig-ure4.2).Intotal,thisimprovementwasfoundwithsixdifferentflours,fromthreedifferentcommercialmillingcompanies(GuyandSahi,2006).Analysisofthecake

52748.indb 95 2/6/08 2:25:30 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 111: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

crumbstructuresuggestedthatthecellsweremorestable,becausetheyweregener-allysimilarinnumberinthecakes,buthadincreasedinsizetogiveextravolume(Figure4.3).

Enzymaticmodificationofproteinshasalsobeenattemptedinordertoimprovetheir emulsifying and foaming properties. This usually involves incorporation ofsubstituentgroupsintotheproteinstructureinordertoimprovethesolubility.Forexample,thesulfhydralgroupsofproteinshavebeenmodifiedtoimprovesolubilityandotherfunctionalproperties(RegensteinandRegenstein,1984).Enzymeshavebeenusedtomodifygelatinproteinsproducingamixtureofpolypeptidesknownasenzymaticallymodifiedgelatin-6(EMG-6)andEMG-12.Breadbakingtrialsdem-onstratedthatEMG-12couldimproveloafvolume(AraiandWatanabe,1988),butnotrialswereperformedoncakesystems.

taBle.

effectofnewlipaseonsurfacePropertiesoftheaqueousPhasesofhigh-ratioCakeBattersat°C

sample surfacetension(mn/m) surfaceviscositya(unm.s/m)

Water 72.5±0.3

Controlbatter 31.7±0.2 118±10

Batterwith60ppmlipase 31.1±0.1 80±5

Batterwith90ppmlipase 30.1±0.2 38±5a Surfaceviscosityachievedafter30min.

0 60 90Lipopan level, ppm

900

850

800

750

700

650

600

Volu

me o

f cak

e, m

l

Flour 1 Flour 3 Flour 4

fIgure. Effectofnewlipaseadditiononthevolumeofhigh-ratiocakes.

52748.indb 96 2/6/08 2:25:32 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 112: Food Engineering Aspects of Baking Sweet Goods

Cake Emulsions

. ConClusIon

Thischapterpresentedanoverviewoftheinterfacialpropertiesrelevanttothefor-mationandthestabilityofemulsionsandfoamsinrelationtocakeemulsions.Theroleofemulsifiersandotherkeyrecipeingredientsandtheircomponentsinrelationto influencing interfacial properties was discussed. The interactions of emulsifiermolecules at air–water andoil–water interfaces are crucial to stabilizing thedis-persedairandfatphasesincakebatters.Emulsifierinteractionsatamolecularlevelwithothercomponentssuchasfatandproteinshavebeenshowntobeimportanttofoamandemulsionstability.Chemicallysynthesizedemulsifiershaveplayedakeyroleinthemanufactureofcakesformanyyears.However,thetrendofconsumerdemandfornaturalingredientshasledtoalternativewaysofproducingemulsifiers.Theuseofmethodstoproducesurface-activematerialsin situwiththeapplicationofenzymesislikelytoincrease.Initially,thismayservetopartiallyreplacechemicallysynthesizedemulsifiers,withfullreplacementpossibleonlyinrecipeformulationsthatdependonrelativelylowlevelsofaddedemulsifiers.However,developmentsinbiotechnologymayleadtoenzymesthatcangenerategreateramountsofsurface-activematerialsin situ,whichalongwithchangesinrecipeformulationorprocess-ingmethodsmayleadtofullreplacementofchemicallysynthesizedemulsifiers.

0 60 90Lipopan level, ppm

900

850

800

750

700

650

600

Volu

me o

f cak

e, m

l

Flour 1 Flour 3 Flour 4

fIgure. Functionality of new lipase in high-ratio cakes. (Courtesy of Campden &ChorleywoodFoodRA,ChippingCampden,UK.)

52748.indb 97 2/6/08 2:25:32 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 113: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

suggestedfurtherreadIng

Bennion,E.B.andG.S.T.Bamford.1997. In:Technology of Cake Making,Ed.A.J.Bent,BlackieAcademic&Professional:Glasgow.

Friberg,S.,K.Larsson, and J.Sjoblom (Eds.). 2003.Food Emulsions (Food Science and Technology),4thed.CRCPress:BocaRaton,FL.

Shaw,D.J.1980.Introduction to Colloid and Surface Chemistry,3rded.Butterworth-Heine-mann:Oxford.

Whitehurst,R.J.(Ed.).2004.Emulsifiers in Food Technology.Blackwell:Oxford.

referenCesAmbwani,D.S.andT.FortJr.1979.Pendantdroptechniquesformeasuringliquidboundary

tensions.In:Surface and Colloids Science,vol.II,Eds.R.J.GoodandR.R.Stronberg,Plenum:NewYork,93–119.

Arai,S.andW.Watanabe.1988.Emulsifyingandfoamingpropertiesofenzymaticallymodi-fiedproteins.In:Advances in Food Emulsion and Foams,Eds.E.DickinsonandG.Stainsby,ElsevierAppliedScience:NewYork,189–220.

Bergenstahl,B.A.andP.M.Claesson.1990.Surfaceforcesinemulsions.In:Food Emulsions,Eds.K.LarssonandS.E.Friberg,MarcelDekker:NewYork,41–96.

Brooker,B.E.1993.Thestabilisationofairincakebatters—Theroleoffat.Food Structure12:285–296.

Carlin,G.T.1944.Amicroscopicstudyofthebehaviouroffatsincakebatters.Cereal Chem-istry21:189–199.

Clark,D.C.,M.Coke,A.R.Mackie,A.C.Pinder,andD.R.Wilson.1990.Moleculardiffusionandthicknessmeasurementsofprotein-stabilisedthinliquidfilms.Journal of Colloid Interface Science138:207–218.

Clark,D.C.,A.R.Mackie,P.J.Wilde,andD.R.Wilson.1994.Differencesinthestructureanddynamicsoftheadsorbedlayersinprotein-stabilisedmodelfoamsandemulsions.Faraday Discussions98:253–262.

Guy,R.C.E.andS.S.Sahi.2006.Applicationsofalipaseincakemanufacture.Journal of the Science of Food and Agriculture.SpecialIssue:EnzymesinGrainProcessing86(11):1679–1687.

Hoerr,C.W.1960.Morphologyoffats,oilsandshortenings.Journal of American Oil Chem-ists Society37:539–546.

Izydorczyk,M.,C.G.Biliaderis,andW.Bushuk.1991.Physicalpropertiesofwater-solublepentosansfromdifferentwheatvarieties.Cereal Chemistry68(2):145–150.

Knightly,W.H.1988.Surfactantsinbakedfoods:Currentpracticeandfuturetrends,Cereal Foods World,33, 405–412.

Krog,N.andK.Larsson.1968.Phasebehaviourandrheologicalpropertiesofaqueoussys-temsofindustrialdistilledmonoglycerides.Chemistry Physics Lipids2:129–143.

Montgomery,R.andF.Smith.1956.Hemicelluloses inflour.Journal of Agricultural and Food Chemistry47:716–720.

Prins,A.1988.Principlesoffoamstability.In:Advances in Food Emulsions and Foams,Eds.E.DickinsonandG.Stainsby,ElsevierAppliedScience:London,91–122.

Regenstein,J.M.andC.E.Regenstein.1984.Sulphydralchemistry.In:Food Protein Chem-istry,AcademicPress:London,p83.

Sahi,S.S.1994.Interfacialpropertiesoftheaqueousphasesofwheatflourdoughs.Journal of Cereal Science20:119–127.

Shaw,D.J.1980.Liquid–gasandliquid–liquidinterfaces.In:Introduction to Colloid Chem-istry,3rded.Butterworths:London,pp.60–90.

Shepherd,I.S.andR.W.Yoell.1976.Chapter5:CakeEmulsions.In:Food Emulsions,EdS.Friberg,MarcelDekker:NewYork,pp/270–274..

52748.indb 98 2/6/08 2:25:32 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 114: Food Engineering Aspects of Baking Sweet Goods

5 Cake Batter Rheology

Serpil Sahin

Contents

5.1 Introduction...................................................................................................995.2 RheologicalMethods.................................................................................. 1005.3 FactorsAffectingRheologyofCakeBatters.............................................. 102

5.3.1 EffectsofIngredients....................................................................... 1025.3.1.1 Flour................................................................................... 1025.3.1.2 FatandFatReplacer........................................................... 1045.3.1.3 Emulsifiers.......................................................................... 1075.3.1.4 Sugar................................................................................... 1105.3.1.5 Hydrocolloids..................................................................... 1105.3.1.6 Egg...................................................................................... 113

5.3.2 EffectsofMixingandDosing......................................................... 1135.3.3 EffectofTemperature...................................................................... 115

5.4 Conclusıon................................................................................................... 117References.............................................................................................................. 117

. IntroduCtIon

Understandingtherheologicalcharacteristicsoffoodmaterialsisnecessaryforplantandproductdesign.Itisimportanttodeterminetherheologicalpropertiesofcakebatterbecausethequalityattributesofcakessuchasvolumeandtexturecanbecor-relatedwithrheologicalpropertiesofbatter.

Thebasic ingredients incakebattersareflour, fat,egg,milk,sugar,andsalt.Flour,eggwhite,milksolids,andsaltareused to toughen thecake,whilesugar,fat,andeggyolkareusedtotenderizethecake.Cakebattercanbeconsideredasacomplexoil-in-wateremulsionwithacontinuousaqueusphasecontainingdissolvedorsuspendeddryingredientssuchassugar,flour,salt,andbakingpowder.Theoilphaseremainsdispersedinclumpsthroughoutthecontinuousorliquidphaseanddoesnotbecomepartoftheliquidphase(Painter,1981).Theinteractionofingredi-entsandstructuredevelopmentoccursduringthemixingandbakingstages.

Theincorporationofaircellsinthesystemduringmixinggivesrisetoafoam.It is important to obtain a large number of small cells to provide higher volume(Handlemanetal.,1961).Duringbaking,anaeratedemulsionofcakebatteriscon-vertedtoasemisolidporous,softstructuremainlyduetostarchgelatinization,pro-teincoagulation,andcarbondioxidegasproducedfromchemicalsdissolvedinthebatter,airocclusionduringmixing,andtheinteractionamongtheingredients.

Viscosityofcakebatteristhecontrollingfactorforthefinalcakevolume.Therateofbubbleriseduetobuoyancyforceisinverselyproportionaltotheviscosity.

52748.indb 99 2/6/08 2:25:33 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 115: Food Engineering Aspects of Baking Sweet Goods

00 Food Engineering Aspects of Baking Sweet Goods

Inthepresenceofless-viscousbatter,carbondioxideevolves,andthewatervaporproducedmightnotbetrappedinthesystemduringbaking,thusresultingincakeswithlowvolume.Highercakebatterviscositieshelptoretainmoreairbubblesinthebatterandretardtheriseofbubblestothesurface.Inaddition,thevelocitygradientinthebatterduringbakinginducesconvectioncurrentatanygiventimedependingonitsviscosity,withlowerbatterviscosityresultinginmoreconvectionflow(FryeandSetser,1991).Itisalsoknownthathigherbatterviscositypreventstheentrappedairfromcoalescingduetodrainageofsurroundingbatterduringbakingandreducesshrinkage. In fact, there is an optimum viscosity of cake batter to achieve cakeswithhighvolume.Iftheviscosityofthebatteristoolow,battercannotholdtheairbubblesinsideandcakescollapseintheoven.Althoughahighlyviscousbattercanholdtheairbubblesinside,theexpansionofthisbatterisrestrictedbecauseofitshighviscosity(SahiandAlava,2003).

Therearemanystudiesintheliteratureinwhichrheologicalpropertiesofcakebatterarecorrelatedwiththequalityofcakes(ValiandChoudhary,1990;SahiandAlava,2003;Lakshminarayanetal.,2006).Batterswith lowspecificgravityandhighviscosityproducedcakeswithhighervolumes(ValiandChoudhary,1990).Theincreaseinbatterdensity(decreaseinaircontentincorporatedinbatter)decreasedthestorage(elastic)and loss (viscous)moduliofcakebatterandalso thespecificvolumeofcake(SahiandAlava,2003).Batterwithlowviscosityproducedcakewithlowvolumeandfirmertexture(Lakshminarayanetal.,2006).

Inthischapter,rheologicalmethodsusedincakebatterwillbeexplainedbriefly,andthentheparametersaffectingtherheologyofcakebatterwillbesummarized.

. rheologICalMethods

Foodmaterialsexhibitflow,deformation,orbothunderexternalforce.Rheologyisthesciencedealingwiththedescriptionofthemechanicalpropertiesoffoodmateri-alsunderwell-defineddeformationconditions.Basicrheologyconceptscanbeclas-sifiedintoviscousflow,elasticdeformation,andviscoelasticity.

Non-Newtonianshearthinning(pseudoplastic)behaviorwasobservedincakebattershavingdifferentformulations,andtherheologicalbehaviorofcakebatterswaswelldescribedbythepowerlawmodel(Baixaulietal.,2007;Gujraletal.,2003;Sakiyanetal.,2004;ShepherdandYoell,1976;Turabietal.,2007).Thepowerlawmodel(Ostwald–deWaeleequation)isexpressedas

τ γyzz

n

yznk

dvdy

k=

= ( )

(5.1)

wherekistheconsistencycoefficient(Pa⋅sn),nistheflowbehaviorindex(n <1forshearthinningfluids),τyzistheshearstress(N/m2),and γyz istheshearrate(1/s).

Baiketal.(2000)observedthattheflowbehaviorofcakebattershavingdiffer-ent formulationswaspseudoplasticwithayieldstress,and theshearstress–shearraterelationshipwasfittedwellwiththeCassonmodel:

52748.indb 100 2/6/08 2:25:34 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 116: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology 0

( ) . . .τ τ γyz c yzk0 5

00 5 0 5

=( ) + ( ) (5.2)

whereτ0istheCassonyieldstress(N/m2),Kcistheconsistencycoefficent(Pa·s)0.5.Inricecakebatters,bothpowerlawmodelandCassonmodelwerefoundtobe

suitabletoexplaintheirrheologicalbehavior(Turabietal.,2007).IdealelasticsolidsdisplayHookeanbehavior.Whenaforceisappliedtoasolid

materialhavingthisbehavior,astraight-linerelationshipbetweenstressandstrainwasobserved.ThisrelationshipisknownasHooke’sLaw:

τ γ= G (5.3)

whereG istheshearmodulus(N/m2), τ isshearstress(N/m2),and γ isshearstrain.Cakebatter,likemanycomplexstructuredfoodmaterials,displaysbothviscous

andelasticpropertiesandisknownasaviscoelasticmaterial.Differentmethods,suchasthedynamic(oscillatory)test,creeprecoverytest,stressrelaxation,andsoforth, canbeused to study theviscoelasticbehaviorof foodmaterial (SahinandSumnu,2006).InthestudyofLeeetal.(2004),therheologicalpropertiesofcakebatterswerestudiedusinganoscillatorytest.

Inthestressrelaxationtest,stressismeasuredasafunctionoftimeasthemate-rial issubjectedtoaconstantstrain.Stress inviscoelasticsolidswilldecaytoanequilibriumstressσe,whichisgreaterthanzero,buttheresidualstressinviscoelas-ticliquidsiszero.

Ifaconstantloadisappliedtobiologicalmaterialsandifstressesarerelativelylarge,thematerialwillcontinuetodeformwithtime.Inthecreeprecoverytest,aninstantaneousconstantstressisappliedtothematerial,theresultingstrainismea-suredasafunctionoftime,calledcreep,andthenthestressisremovedwhilethestrainiscontinuedtoberecordedasafunctionoftime,calledrecovery.Idealelasticmaterials show complete recovery, and ideal viscous materials show no recoverywhentheappliedstressisremoved.Viscoelasticmaterialsareinbetween—thatis,theyshowpartialrecoveryaftertheremovalofstress.

Inthedynamic(oscillatory)test,materialissubjectedtodeformationorstressthatvariesharmonicallywithtime.Then,thetransmittedshearstressordeforma-tioninthesample,whichalsovariesharmonically,ismeasured,respectively(Fig-ure5.1).Storagemodulus(G′),whichishighforelasticmaterials,andlossmodulus(G′′),whichishighforviscousmaterials,aredefinedasfollows:

′ =G τ θγ

0

0

cos (5.4)

′ ′ =G τ θγ

0

0

sin (5.5)

where τ0 isshearstress(inputoroutput), γ0 isshearstrain(outputorinput),and θ istimelag(phaseshift).

52748.indb 101 2/6/08 2:25:38 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 117: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

. faCtorsaffeCtIngrheologyofCaKeBatters

Rheologicalpropertiesoffluidfoodsarecomplexanddependonmanyfactorssuchascomposition,shearrate,durationofshearing,andpreviousthermalandshearhis-tories.Themost importantparametersaffectingtherheologicalpropertiesofcakebattersaretypeandconcentrationsoftheingredients,levelofairincorporation,andtemperature.Airincorporationisaffectedbytimeandspeedofmixing,designofthemixer,andsurfacetensionofthebatter.Studiesrelatedtotheeffectsofingredients(flour,fat,fatreplacer,emulsifiers,sugar,hydrocolloids,andegg),beatingandmixing,dosing,andtemperatureoncakebatterrheologyaresummarizedinthissection.

5.3.1 eFFeCTsoFinGredienTs

... flour

Flourisoneofthemostimportantingredientsaffectingtherheologicalpropertiesofcakebatterand,consequently,thequalityofcakes.Freshlymilledwheatflourhasapaleyellowcolorduetoitscarotenoidcontentandyieldsstickydough.Duringstorage,asaconsequenceofoxidativereactions,flourgraduallyturnswhite,andtherheologi-calpropertiesofdoughand,consequently,qualityofthebakedproductareimproved.Theageofflourisknowntoaffecttheviscosityofcakebatter.Shelkeetal.(1992)observedthatfreshlymilledflourshadlowwater-bindingcapacityandproducedbat-terswithlowviscosityatambienttemperatureandalsoduringheating.Batterviscos-ityatambienttemperatureandduringheatingincreasedwithflourage.Viscosityof

γ0

τ0

ShearStrain(Input)

ShearStress

(Output)

Phase Shift(Time Lag)

fIgure. Harmonicshearstressversusstrainforaviscoelasticmaterialindynamictest.

52748.indb 102 2/6/08 2:25:39 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 118: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology 0

battersatambienttemperaturesincreasedasafunctionofpostmillingtime.However,theageofwheatatmillingdidnotsignificantlyaffectbatterviscosity.

In making cakes, doughnuts, cookies, crakers, wafers, pretzels, and similarproducts,softwheatflourisused.Softwheatflourhaslowglutencontent,lowwater-absorptioncapacity, and lowgranulation size. It is commonlychlorinated for theproductionofcakes.Chlorinationisusuallydonewithchlorinegasandcanbemoni-toredbyadropinpHofflour.

Chlorinetreatmentofsoftwheatfloursimprovescakevolumeandproducesastiffer,moreresilientcrumb(Donelsonetal.,2000).Chlorinetreatmentofcakeflouris functionallybeneficial to theproductionofhigh-ratiocakes.White layercakesbakedusinguntreatedflourareunsatisfactoryinvolume,contour,crumbgrain,andtexture.Chlorine-treatedflourproducescakecrumbwithadrier,lessstickymouth-feel(KissellandYamazaki,1979).

Starch,lipid,andproteinsareallaffectedbychlorination.Theoxidativedepo-lymerizationofstarchwhichincreasesthewater-bindingcapacityofstarchisoneof the important changes that occur during chlorination (Huang et al., 1982). Attemperatures90°Candabove,swellingpowerandsolubilityofhighstarchfractionincreased as a result of chlorination (Huang et al., 1982).Water activitiesofbat-tersmadewithchlorinatedoruntreatedflourswerethesameuntilthetemperaturereached80°C.Batterscontainingchlorinatedflourhadhigherwateractivityat80°C.Storagemodulus(G′)increasedinthecaseofchlorine-treatedbatter,butitdecreasedinthecaseofuntreatedsamplebetween90and100ºC(Ngoetal.,1985).Thebatterpreparedwithchlorine-treatedflourhadamuchhigherlossmodulus(G′′)thandidthebattermadefromuntreatedflour.Alterationofstarchacceleratesthethickeningoftheviscosityofthebatterwhichresultsinhighervolume(GainesandDonelson,1982).Shelkeetal.(1992)alsoobservedthatthechlorinatedflourhadhigherviscos-itythanuntreatedflour.Freshlymilledfloursproducedbatterswithlowminimumviscosity,andminimumviscosityoffloursincreasedduringaging.Minimumvis-cosityofbatterduringheatingisanimportantpropertybecauseitreflectstheabilityofthebattertoretaingasbubblesandtoresistsettlingofstarch.

Chlorinationaffectsthehydrogenbondsoftheproteinsandcausesgreatersol-ubilityof the softwheatproteins (Kissell,1971).Hydrophobicityofproteinsalsoincreases with chlorination (Sinha et al., 1997). Chlorine treatment enhances thegel-formingproperties(Frazieretal.,1974).Chlorinationalsochangesthehexane-extractableflourlipidswhichresultsinhigherbatterexpansionduringbaking(Kis-selletal.,1979).

GainesandDonelson(1982)studiedtheeffectsofbleachingofflourandbatterliquidlevelsoncakebatterviscosityandexpansionduringheating.Floursobtainedfromtwodifferentvarietiesofwheatwereusedinthisstudy.Apparentviscositiesofthecakebatterspreparedusingdifferentwaterlevelsweremeasuredwithamodi-fiedviscographbetween20and100ºCcontinuously.Flourbleachingincreasedbat-terexpansioninbothflour types.Therewasanoptimumwater levelbetweentheextremeliquidlevelsgivingmaximumcakeexpansionforbothflourtypes.Bleachedfloursattheoptimumliquidlevelsachievedhigherpastingviscositiesmorerapidlythanunbleachedflours.Fasterpastingmaycontributetothestabilityandreducedshrinkageofbleached-flourcakesoncooling(KissellandYamazaki,1979).There

52748.indb 103 2/6/08 2:25:40 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 119: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

wasalsoanoptimumviscosityforcakeexpansion.Thatis,cakeexpansionincreaseduptoacertainlevelandthenstartedtodecreaseasbatterviscosityincreased.

Ratswere fedwith cakesmadewith chlorine-treatedflour at ingestion levelsequivalenttotheconsumptionofcakeinthehumandietinordertotestthesafetyofconsumptionofchlorinatedflour,andnoadversereactionwasobserved(Danielsetal.,1963).However,athigheringestionlevels,reducedgrowthrate,increasedliver,kidney,andheartweights,andreductioninovaryweight(amongfemalemice)wereobserved(Cunninghametal.,1977;Ginocchioetal.,1983).Therefore,productionofbakedproductsusinguntreatedwheatflourisofgreatconcernforsafetyaspects,andithasbeenremovedfromthepermittedlistoffoodingredientsintheEuropeanUnion for cake manufacture. However, in order to produce cakes having similarpropertiestothoseproducedusingchlorine-treatedflour,someadditionalingredi-entsmaybeaddedtountreatedflourorheatedflourmaybeusedasanalternativetochlorine-treatedflour.Improvedcakevolumeandcontourwereobservedwhenuntreatedflour–starchblendwasused(JohnsonandHoseney,1979).Whenacer-tainamountof(12to43%dependingonthetypeoftheuntreatedflour) starchwasaddedtotheuntreatedflour,itwaspossibletoobtainpastingcurveareasequivalentto those obtained in the case of chlorine-treated flours in Rapid Visco Analyzer(Donelsonetal.,2000).Starchactsasawatersinkduringbaking,contributingtothesettingofthestructureofthecakeduringbaking.

Heat-treated flour has been introduced as an alternative to chlorinated flour.Heattreatmentimprovesflourperformanceasinthecaseofchlorinetreatment.Heattreatment of flour denatures wheat proteins and reduces their solubility in water.Therefore, batters made from heat-treated flour have higher viscosity comparedwithbattersmadewithuntreatedflour,andhigherviscosityhelpstotrapandsub-divideairinthebatterduringmixing.Thetemperatureofthefirstriseofviscositydecreaseswithheat-treatedflourinBrabenderAmylographanalysis(Seguchi,1990).Heat treatment may split some of the linkages of starch amylose or amylopectinchains resulting in lowering theoptimumviscosityofwheatflour.Thomasson etal. (1995) added xanthan gum, L-cysteine, or hydrogen peroxide plus peroxidaseenzymetoheat-treatedflourandobtainedcakeshavingcomparablevolumewiththeonesproducedusingchlorine-treatedflour.

... fatandfatreplacer

Oils are refined and may be partially hydrogenated. Cake margarines and short-eningsareformulatedfromblendsofprocessedoilsandfats.Incakemargarines,the aqueous phase contains skim milk. Shortening normally contains a mixtureofglycerideshavingwidelydifferentmeltingpoints.Inacakesystem,shorteningservesthreemajorfunctions:toentrapairduringthecreamingprocess,tophysicallyinterferewiththecontinuityofstarchandproteinparticles,andtoemulsifytheliq-uidinformulation.Thus,shorteningaffectsthetendernessandmoisturecontentofthecake.Theadditionoflipidimprovesairincorporationandfoamstabilitywhichaffectbakingquality.Inaddition,fatsandemulsifiersareknowntodelaygelatiniza-tionbydelayingthetransportofwaterintothestarchgranuleduetotheformationofcomplexesbetweenthelipidandamyloseduringbaking(Larsson,1980).

52748.indb 104 2/6/08 2:25:40 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 120: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology 0

Thefunctionsoffatandoiloncakestructuredevelopmentaredifferent.Increaseinfatcontentincreasesshearmodulus,andincreaseinoilcontentdecreasesshearmodulus (Mizukoshi, 1985).The effect of different fats andoil on specificgrav-ityandviscosityofcakebattersand,consequently, thevolumeand tendernessofbakedcakewerestudiedbyValiandChoudhary(1990).Cakebatterwithmargarinecouldholdagreateramountofairandshowedlowspecificgravity,andthatwithoilandhydrogenatedfatshowedhighspecificgravity.Batterswithlowspecificgravityshowedhighviscosity,andtheyproducedcakeswithgreatervolumes.

Theeffectsofconcentrationoffat(0%,12.5%,25%,37.5%,50%)ontherheo-logicalpropertiesofcakebatterwerestudiedbySakiyanetal.(2004).Itwasfoundthatcakebatterwithdifferentfatconcentrationsexhibitedshearthinningandtime-independentbehavior.Theincreaseinfatcontentcausedadecreaseintheapparentviscosity.Figure5.2showsthedecreaseinapparentviscositywithappliedshearrateforcakebatterscontainingemulsifierblend,Lecigran®,anddifferentamountsoffat.Thistrendwasalsoobservedforthesamplescontainingnoemulsifier.Adecreaseinviscositywiththeincreaseinfatconcentrationwasanexpectedresult,becauseanincreasedamountoffatcausedmoreairentrapmentduringthecreamingprocess.Thereductionofapparentviscositywiththeadditionoffatwasalsoexplainedbythelubricationeffectofuniformlydispersedfatparticles.

Fataidsintheentrapmentofairduringmixingand,asaresult, improvestheleaveningofproduct.Fatalsoimpartsdesirableflavorandsoftertexturetothecakes.Althoughfatplaysanimportantroleinimprovingtheproductquality,thetrendistowardthereductionoffatforhealthconcerns.Severaltypesoffatreplacersareavail-ableinthemarketforthispurpose.Fatreplacerscanbecategorizedascarbohydrate

0 50 100 150 200 250

8

7

6

5

4

3

2

1

0

Shear rate (1/s)

Appa

rent

visc

osity

(Pa.

s)

fIgure. Effectsof fatcontentonapparentviscosityofcakebattercontainingLeci-gran®.(Linerepresentsthepowerlawmodel,0%fat,12.5%fat,25%fat,37.5%fat, * 50%fat.)(ReprintedfromSakiyan,O.,Sumnu,G.,Sahin,S.,andBayram,G.,European Food Research and Technology, 219, 635–638, 2004, Figure1. With permission fromSpringerScienceandBusinessMedia.)

52748.indb 105 2/6/08 2:25:41 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 121: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

based (e.g., cellulose, dextrin, maltodextrin, fiber, gums, Oatrim, starch), proteinbased(e.g.,microparticulatedprotein,modifiedwheyprotein,Simplesse®),andlipidbased (e.g., caprenin, salatrim, olestra, emulsifiers, sucrose polyesters). DetailedinformationaboutthefunctionsoffatreplacerscanbefoundinChapter12.Rheo-logicalstudiesonfatreplacersincakebatterarelimitedtocarbohydrate-basedfatreplacers in literature.Carbohydrate-basedfat replacers, in thepresenceofwater,formasmoothgelresultinginlubricantandflowpropertiessimilartofats(Swansonetal.,1999).Theyincreaseviscosityandprovidecreamy,slipperymouthfeelsimilartothatoffat.

White layercakebatterscontainingstarch-based fat replacersandnoemulsi-fiershadhigherspecificgravitiesandlowerviscositiesbothatambienttemperatureandduringheating(Bathetal.,1992).Thelowviscosityofbattersmadeusingfatreplacersbothatambienttemperatureandduringheatingwasresponsiblefortheirrapidrateofheatinginelectricalresitanceovens.Cakeswithoutfatbecameflatandhadlowvolume.

Khouryiehetal.(2005)studiedtheeffectofincorporatingxanthangum,malto-dextrin, and sucralose tomakeno-sugar-addedand low-fatmuffinsandobservedthatremovingthefatfromthemuffinswasresponsiblefortheincreaseinhardnessandchewiness.Grigelmo-Miguel et al. (2001)useddietaryfiber as anoil substi-tuteinmuffinsandfoundthatitincreasedthehardnessandchewinessofmuffins.ShearerandDavies(2005)observedanincreaseinbatterviscosityandadecreaseinfirmnessandelasticityofthemuffinwiththeincreaseinflaxseedmealusedasasourceoffiber.Masoodietal.(2002)studiedtheeffectsofusingapplepomace atdifferentconcentrationsandparticlesizesasasourceofdietaryfiberonthequalityof cakes.Batterviscosity increasedwith increasingconcentrationanddecreasingparticlesizeofpomace.

Lakshminarayan et al. (2006) investigated the effects of fat replacement bymaltodextrinoncakebatterviscosityandthequalityofthebakedproduct.Thevis-cosityofbatterwasreducedsignificantlywhenfatwasreplacedwithequalquan-tities of maltodextrin. Batter with low viscosity produced cake with low volumeandfirmertexture.Whentheamountofreplacementwaslowerintheformulation,viscosityofthebatterwasrelativelyhigherandqualityoftheresultantcakeswasrelativelybetter.

Kimetal.(2001)studiedtheeffectsofreplacementofshorteningwithmalto-dextrin,amylodextrin,octenylsuccinylatedamylodextrin,ormixturesof themon yellowlayercakebatterandbakedproductproperties.Thespecificgravityandvis-cosityofcakebatterandvolumeindexofbakedcakeweresignificantlyreducedbymaltodextrin,butthecakewithamylodextrinandoctenylsuccinylatedamylodextrinshowedhighervolumeindexthanthecontrolcakecontainingshortening.

Thesolublefiberinoatbran,β-glucan,isawell-recognizednutraceutical.Nutrimoatbran,whichisahydrocolloidobtainedfromoats,providesaviablesourceofβ-glucanforuseinthefoodindustry.Flaxseedisagoodsourceofomega-3fattyacids,α-linoleicacid,dietaryfiber,andlignanswhichhavebeneficialhealtheffects.TheeffectsofreplacementofshorteningwithNutrimoatbranandflaxseedpowderonthephysicalandrheologicalpropertiesofcakeswereinvestigated(Leeetal.,2004).Cakebatters showed shear thinningbehavior.Slightlyhigher shearviscosity and

52748.indb 106 2/6/08 2:25:41 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 122: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology 0

oscillatorystorageandlossmoduli wereobservedinbatterscontainingNutrimoatbran than in thecontrol,and thereplacementofshorteningwithflaxseedpowderreducedviscosityandoscillatorystorageandlossmoduli ofthecontrolcakebatter.Cakeshavingsimilarqualityparameterswith thecontrolcakecouldbeobtainedwithupto40%fatreplacement.

Inanotherstudy,theeffectsof‚replacementofshorteningwith20%,40%,and60%byweightofOatrim(oatβ-glucanamylodextrin)onthephysicalandrheologi-calpropertiesofcakeswereinvestigated(Leeetal.,2005).ThespecificgravityofthecakebattersincreasedasmoreshorteningwasreplacedwiththeOatrim,andnosignificanteffectwasobservedinthecaseof20%Oatrimcontent.Shearthinningbehaviorwasobservedinalltypesofbatters.Thecontrolcakehadthehighestvis-cosity,andanincreaseinthelevelsofshorteningreplacementwithOatrimcausedareductioninviscosityofcakebatters.Themeansizeoftheairbubbles,1.5×10−9m2,wasnotsignificantlyaffected,butthenumberofairbubblesincorporatedinthesamplewassignificantlyaffectedfromthereplacementofshortening.

The cake batters containing more Oatrim displayed a higher gelatinizationtemperatureduetoamylodextrinsintheOatrimandtheyhavelowervolume.Therheologicalpropertiesofthecakeswerestudiedduringheatingtomimicthebakingprocess.Theoscillatoryshearstoragemodulidecreaseduponinitialheating,thenincreasedduetostarchgelatinization,andfinallyreachedaplateauvaluethatvariedbasedonthesamplecomposition.IncreasedreplacementofshorteningwithOatrimresultedinhigherobservedoscillatoryshearstoragemoduli.Correlationsbetweenoscillatory shear storagemoduli and thedifferential scanningcalorimetry (DSC)thermogramswereinvestigated.

... emulsifiers

Emulsifiersarecommonlyusedinthebakingindustry.Theyhavetheabilitytopro-videthenecessaryaerationandgasbubblestabilityduringtheprocess.Anemulsi-fierreducestheinterfacialtensionbetweenoilandwaterandthereforefacilitatesthedisruptionofemulsiondropletsduringhomogenization.Theemulsifieradsorbsonthesurfacesofemulsiondropletstoformaprotectivecoatingthatpreventsthedrop-letsfromaggregatingwitheachother.Emulsifiersaidintheincorporationofairanddispersetheshorteninginsmallerparticlestogivethemainnumberofavailableaircells(Painter,1981).Airincorporation,volume,anddispersionofingredientswereaffectedbytheamountandtypeofemulsifier(Clokeetal.,1984).

Theadditionoflipid-likeemulsifierstocakesystemsaffectsboththeinterfacialand bulk properties of the batter. The effects of two different types of emulsifi-ers(glycerylmonostearate[GMS]andpolyglycerolester[PGE])onthestructureofspongebatterswerestudiedbySahiandAlava(2003).Theadditionofanemulsifierimprovedwaterbindinganddecreasedthefluidityofthebatter.Adynamicoscilla-torytestwasperformedtodeterminetheviscoelasticpropertiesofthebatters,anditwasobservedthattheadditionofanemulsifierresultedinanincreaseinelasticandviscousmoduli(Table5.1). Thedecreaseinbatterdensity(increaseinaircon-tentincorporatedinbatter)increasedtheviscousandelasticmoduliofcakebatterand also the specific volumeof the cake.Bubbles in batter samples immediately

52748.indb 107 2/6/08 2:25:42 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 123: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

aftermixingwereimagedusinganopticalmicroscopeandacharge-coupleddevice(CCD)videocamera.Itwasobservedthattheadditionofanemulsifieratlowlevels(0.25%glycerylmonostearate)resultedinanincreaseinbubblesizeandheterogene-ityofbubbles.Increasingtheconcentrationoftheemulsifier(0.75%glycerylmono-stearate)providedsmallerbubbleswithmoreuniformbubblesizedistribution.

WhenGMSorsodiumsteroyllactate(SSL)wasusedasanemulsifierincakeformulationsinwhich25%fatwasreplacedwithmaltodextrin,theviscosityofcakebatterincreased(Lakshminarayanetal.,2006).However,adecreaseinthecakebat-terviscositywasobservedwhenfatreplacementwithmaltodextrinwas50%ormoreinthecaseofGMSadditionand75%inthecaseofSSLaddition(Figure5.3). SSLismorehydrophilicinnaturewithahydrophilic–lipophilicbalance(HLB)valueof10to12,anditwasmoreefficientinincreasingbatterviscosityinasystemwhenthefatlevelwasrelativelylow.GMSisamorelipophilicemulsifierwithanHLBvalueof3to4.Boydetal.(1972) observedthatoil-in-wateremulsionsweremorestablewhenemulsifierswithhigherHLBvalueswereused.

Thebest result is obtainedusing a blend of emulsifierswithdifferent hydro-philic–lipophilicpropertiesincomplexsystemslikecake.Theeffectsofdifferenttypesofemulsifierblends(Purawave®andLecigran®)ontherheologicalpropertiesofcakebatterhavebeenstudiedbySakiyanetal.(2004).Purawave(Puratos,Bel-gium) wascomposedoflecithin,soyprotein,mono-anddiglycerides,andvegetablegums.Lecigran(RicelandFoods,Arizona)wascomposedofoil-freesoybeanleci-thin,wheatflour,andhydrogenatedvegetableoil.Alltypesofcakebatterspreparedwithandwithoutemulsifiersexhibitedshearthinningandtime-independentbehav-ior.Experimentaldataprovidedagoodfitwiththepowerlawmodel.Theadditionofemulsifiercausedadecreaseintheapparentviscosity.Figure5.4showstheeffects

taBle.

resultsofdynamicoscillatoryMeasurementsofspongeCakeBattersatafrequencyof−hzemulsifiertype Concentration

(%batterwt)elasticModulus

(Pa)viscousModulus

(Pa)Phaseangle

(deg)

Control — 59±8 83±7 55±2

GMSa 0.25 115±16 142±11 51±2

GMS 0.75 487±60 392±57 39±3

GMS 1.50 1223±111 1037±217 40±4

PGEb 0.25 111±11 158±11 55±1

PGE 0.75 306±10 321±12.9 46±1

PGE 1.50 1047±65 878±70 40±2a Glycerylmonostearate.b Polyglycerolester.

Source:ReprintedfromSahi,S.S.andAlava,J.M., Journal of the Science of Food and Agriculture,83,1419–1429,2003.Copyright2003SocietyofChemicalIndustry.Reproducedwithpermis-sion.PermissionisgrantedbyJohnWiley&SonsLtd.OnbehalfoftheSCI.)

52748.indb 108 2/6/08 2:25:42 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 124: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology 0

ofemulsifiersonapparentviscosityofcakebatterhaving37.5%fatcontent.Effectsofemulsifiersonapparentviscosityofcakebattershavingdifferentfatconcentra-tionswerealsostudied,andthesametrendwasobservedinotherfatconcentrations.Adecreaseinviscositybyemulsifieradditionwasexplainedbytheincreaseinairentrapmentincakebatter,becausetheemulsifieraidsintheincorporationofairanddispersestheshorteninginsmallerparticlestogivethemainnumberofavailableairbubbles.

GuyandSahi(2006)studiedtheeffectofusinglipaseenzymeinsteadofemul-sifiers toimprovetheperformanceofhigh-ratiolayercakebattersmadewithheat-treated flours. It was reported that the commercial lipase, Lipopan F®, producesmonoacyllipidsfromlecithinandmono-anddigalactosyldiglyceridesfromthetri-glycerides.Asthelipaseconcentrationincreased,viscosityofthebatterincreased,which indicated the formationof surfactants.The surfactants producedby lipasemayhelp tohydratewheatproteinsand increase theirhydrodynamicvolumeandviscosityintheaqueousphase,aswellasstabilizetheairbubblesbyformingnewinterfacialmembranes(GuyandSahi,2006).Theadditionofenzymereducedthemixingtime,whichwasdefinedasthetimetakenforthebatterdensitytofalltoatargetvalueof0.85kg/Lwhilebeingmixed.

Gujraletal. (2003)studied theeffectof theadditionofsodiumlaurylsulfatewhichisananionicsurfactanttoeggalbumenduringthemixingstageontherheol-ogyofspongecakebatter.Therheologicalbehaviorwaswelldescribedbythepowerlawequation.Sodiumlaurylsulfateisusedtoimprovethefoamingpropertiesofegg

1715

1970 1940

1395

1650

1065

1360

830

1230

25 50 75

2500

2000

1500

1000

500

0

Fat reduction (%)

Cake

bat

ter v

iscos

ity (A

U)

MD MD+GMS MD+SSL

fIgure. Combinedeffectofmaltodextrin(MD)andemulsifiers(GMSandSSL)ontheviscosityofcakebatter.(ReprintedfromLakshminarayan,S.M.,Rathinam,V.,andKrish-naRau,L., Journal of the Science of Food and Agriculture,86,706–712,2006.Copyright2006SocietyofChemicalIndustry.Reproducedwithpermission.PermissionisgrantedbyJohnWiley&SonsLtd.onbehalfoftheSCI.)

52748.indb 109 2/6/08 2:25:43 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 125: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

whites,marshmallows,andangelfoodcakemixes.Increasingtheconcentrationofsodiumlaurylsulfate loweredthespecificgravity,consistencycoefficient,andairbubblediameterofcakebatter.Theflowbehaviorindexincreasedsignificantlywithincreasingsodiumlaurylsulfateconcentration.

... sugar

Theadditionofsugarreducestheavailablewaterforstarchwhichaffectsrheologicalproperties,delaysstarchgelatinization,retardsstructuraldevelopment,andcontrolstheheat-settingtemperatureofeggproteinsduringbaking.Effectsofcakeingre-dientsontheshearmodulusofcakewerestudied,anditwasobservedthatsugardecreasedtheshearmodulusofadegassedbatter(Mizukoshi,1985).Batterviscos-ity at ambient temperature increased with an increase in the sugar concentration(Shelkeet al.,1990).An increase in sugar concentrationalso increased theonsettemperature.Sucrosewasmoreeffectiveascomparedtoglucoseandfructosewhentheonsettemperaturesofbatterscontainingdifferenttypesofsugarswerecomparedatthesameconcentration.

... hydrocolloids

Hydrocolloids are high-molecular-weight water-soluble polysaccharides used forviscosity control in many food systems. They are added to cake batters in smallamountstoimproveproductvolumeandtexture,toincreasemoistureretentiondur-ingbaking,andtopreventstaling.

100500 150 200 250

14

12

10

8

6

4

2

0

Appa

rent

visc

osity

(Pa.

s)

Shear rate (1/s)

fIgure. Effectsofemulsifiersonapparentviscosityofcakebatterat37.5%fatcontent.(Linerepresentsthepowerlawmodel,noemulsifier,Purawave®, Lecigran®.(ReprintedfromSakiyan,O.,Sumnu,G.,Sahin,S.,andBayram,G., European Food Research and Tech-nology, 219, 635–638, 2004,Figure4.Withpermission fromSpringerScience andBusinessMedia.)

52748.indb 110 2/6/08 2:25:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 126: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology

Theeffectofxanthangumon the rheologyofwhite layercakebatterduringheatingwasstudiedusinganoscillatoryprobeviscometerinconjuctionwithelectricresistanceovenheating(MillerandHoseney,1993).Duringheating,batterviscositydecreasedtoaminimumandthenincreasedsharplytoamaximum.Theadditionofxanthantothebatterincreasedtheminimumandmaximumpoints.Batterviscosityatambienttemperatureandtheonsettemperatureofrapidincreaseinviscositywerenotsignificantlychangedwiththeadditionofxanthan.Theadditionofxanthangumimprovedthecakevolume.

Riceisoneofthemostfrequentlyusedcerealsasawheatsubstituteingluten-freebakedproductsforpatientswhohaveceliacdisease.However,somefoodaddi-tivessuchasstarches,gums,hydrocolloids,ordairyproductsshouldbeadded tothegluten-freebakedproductstoreducethepoorqualityduetothelackofglutenintheformulation.Turabietal.(2007)studiedtheeffectsofdifferentgums(xanthangum,guargum, locustbeangum,κ-carrageenan,hydroxy-propyl-methylcellulose[HPMC],xanthan–guargumblend,andxanthan–κ-carrageenangumblend)andanemulsifierblend,Purawave®(Puratos,Belgium),whichiscomposedoflecithin,soyprotein,mono-anddiglycerides,andvegetablegums,onrheologicalpropertiesofricecakebatterandqualitycharacteristicsofricecakesbakedinaninfrared–microwavecombinationoven.Inthisstudy,alltheformulationscontainingdifferentkindsofgumsandemulsifierblendshowedshear-thinningbehavior,whichmeansthatappar-entviscositydecreasedastheshearrateincreased.Theflowbehaviorofthericecakebatterswasdescribedbythepowerlawmodel.Table5.2showsthepowerlawmodelconstantsforalltheformulationscontainingdifferentkindsofgumsandemulsifierblend.Theflowbehaviorindexofbattersrangedfrom0.399to0.623.Battercontain-ingHPMCgumhadthelowestconsistencyindex.TheCassonmodelwasalsofoundtobeasuitablemodeltoexplaintherheologicalbehaviorofricecakebatters.ThecoefficientofdeterminationvaluesandthemodelconstantsfortheCassonmodelaregiveninTable5.2.ThelowestCassonyieldstresswasfoundforHPMC-containingbatters. Using the values of flow behavior index and consistency index, apparentviscositiesatashearrateof150s−1werecalculatedfordifferentformulationsfortheCassonmodelandaregiveninFigure5.5.Thehighestviscositieswereobtainedforbatterscontainingxanthanandxanthan–guarblend.Thisresultwasexplainedbythexanthan’sunique,rod-likeconformation,whichismoreresponsivetoshearthanarandom-coilconformation(UrlacherandNoble,1997).Thehigherviscosityvaluesofxanthan-containingbattersimprovedcakestructure,andthisresultedinhighervolumes.InthestudyofMillerandHoseney(1993),itwasalsoobservedthatxanthangumsignificantlyimprovedcakevolume.Synergisticinteractionbetweenxanthanandguargumresultedinhigherapparentviscosityascomparedtoothergums.Thissynergisticeffectwasnotobservedinthexanthan–κ-carrageenanblendwhichgavelowerapparentviscosityvalues(Figure5.5).Whenlocustbeangumwasusedintheformulations,itgavelowerapparentviscosityvaluesascomparedtotheguar-gum-containing batters.Thiswas explainedby thehighermolecularweightofguargum.HPMC-containingbattershadthelowestspecificgravityvaluesduetomoreair incorporationduringmixingand the lowestapparentviscosityvalues(Figure5.5).ThisresultedinthecollapseofHPMC-containingcakes.Theadditionofanemulsifierblendtothexanthan–guargumblendandthexanthan–carragenan

52748.indb 111 2/6/08 2:25:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 127: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

gumblenddecreasedtheapparentviscosityofcakebattersignificantly(Figure5.5).Whenthefirmnessvaluesofcakeswereinvestigated,xanthan-andemulsifier-blend-containing cakeswere softer than those preparedwith other formulations,whichwerealsocorrelatedwithapparentviscosityresults.

Cakebatterscontainalargenumberofcomponentsthatcaninteractwitheachother.KimandWalker(1992)studiedtheinteractionsofstarches,sugars,andemul-sifiersinahigh-ratiocakemodelsystem.Modelcakeswerepreparedusingdifferent

taBle.

PowerlawandCassonModelConstantsforCakeBatterswithdifferentformulations

PowerlawModel CassonModel

formulation n K(Pa·sn) r2 zo(Pa) K(Pa·s)1/2 r2

Control 0.421 38.356 0.977 63.03 0.817 0.999

Xanthan 0.563 61.870 0.997 107.848 1.798 0.997

Guar 0.399 100.524 0.987 170.459 1.171 0.997

Xanthan+guar

0.552 69.580 0.994 126.293 1.811 0.992

Carrageenan 0.418 52.568 0.965 84.339 0.957 0.997

Locustbeangum

0.496 35.730 0.994 63.915 1.047 0.994

HPMC 0.596 12.898 0.991 20.025 0.952 0.999

Xanthan+carrageenan

0.541 53.091 0.986 86.902 1.569 1.000

Xanthan+emulsifier

0.610 46.980 0.997 78.711 1.871 0.997

Guar+emulsifier

0.399 111.830 0.991 213.131 1.149 0.949

Xanthan+guar+

emulsifier

0.545 59.377 0.997 114.833 1.595 0.981

Carrageenan+emulsifier

0.495 52.740 0.996 102.394 1.227 0.975

Locustbeangum+

emulsifier

0.513 35.710 0.997 65.398 1.113 0.993

HPMC+emulsifier

0.611 12.780 0.997 20.994 0.983 0.999

Xanthan+carrageenan+

emulsifier

0.623 29.520 0.997 47.967 1.557 0.999

Source:ReprintedfromTurabi,E.,Sumnu,G.,andSahin,S.,Food Hydrocolloids,22:305–312,2008.Copyright2008,withpermissionfromElsevier.

52748.indb 112 2/6/08 2:25:49 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 128: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology

typesofstarch(wheat,corn,orpotatostarch),sugar(lactoseordextrose,orreplace-mentof50%oflactoseordextrosewithsucrose),andemulsifiers(sucroseesterF-160orpolysorbate60).Thepototostarch,lactose,andpolysorbate60combinationproducedasignificantincreaseinbatterviscosity.Increaseinviscositytendedtoaidinairincorporation.

... egg

Eggproteinsarecritical for the structureof cakebatter.Eggwhiteproteinsmayenhancefoamstabilityandalsoacttocoagulateduringheatsetting.Lipoproteinsin egg yolk act as emulsifiers and assist in aeration and foaming (Shepherd andYoell,1976).Substitutionof10%ofeggwhiteinangelfoodcakebyfreeze-driedwheatwatersolubles,recoveredfromaby-productofagluten-starchwashingplant,decreasedbatterviscosity(Maziyadixonetal.,1994).Whippingtimeincreasedaspercentofsubstitutionincreased.

5.3.2 eFFeCTsoFmixinGanddosinG

Therheologicalpropertiesofbattersdependnotonlyonthetypesandconcentra-tionsof the ingredientsbutalsoon thebeatingandmixingprocess.Physicaland

Gum type

Appa

rent

visc

osity

(Pa.

s)0% emulsifier 3% emulsifier8

7

6

5

4

3

2

1

0x g x+g c lbg hpmc x+c control

abb

ded

a

c

g

f

g

g

h

h

d

ef

h

fIgure. Apparent viscosities (Pa.s) of formulations at 150 s−1 constant shear rateaccordingtotheCassonmodel.(x:xanthan,g:guar,x+g:xanthan+guar,c:carrageenan,lbg:locustbeangum,HPMC:hydroxyl-propyl-methylcellulose,x+c:xanthan+carrageenan,*barswithdifferentlettersaresignificantlydifferentp≤0.05.)(ReprintedfromTurabi,E.,Sumnu,G.,andSahin,S.,Food Hydrocolloids,22:315–312,2008.Copyright2008,withper-missionfromElsevier.)

52748.indb 113 2/6/08 2:25:50 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 129: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

structural changes during aerated batter processing may alter batter performanceduringbakingormayalterthequalityofthefinalproduct.

Duringmixing,thesizeofbubblesdecreases.Providingnecessaryaerationbymeansofmixingandalsothestabilityofthegasbubblesduringthebakingprocessuntilthestructureissetareimportantfactorsinconsideringrheologicalpropertiesofcakebatters.Air incorporationduringmixing reduces thespecificgravityandapparentviscosityofbatter.

Viscoelasticpropertiesofmanuallydosedbattersaredifferentthanthoseofbat-ters passed through the automatic dosing unit. Baixauli et al. (2007) studied theeffectoftheuseofanautomaticdosingunitontherheologicalpropertiesofanaer-atedmuffinbatter.Flowandviscoelasticpropertiesofbattersdosedautomaticallyweremeasuredandcomparedwiththesepropertiesofthebattersdosedmanually.Inbothcases,shearthinningbehaviorwasobservedandthedatafittothepowerlawequationverywell.Theconsistency indexof thebattersdosedautomaticallywassignificantlyhigher,andtheflowindexwasnotaffectedfromthedosingtype.Passingthebatterthroughtheautomaticdosingunitproducedanincreaseinbothstoragemodulus(G′)andlossmodulus(G′′)at25°C(Figure5.6),buttherewasnosignificantdifferencebetweendifferentdosingtypesat85°C(Figure5.7).Itwasalsoobservedthatusinganautomaticdosingunitaffectsthemicrostructureofbatters.Battersshowedgreatercompactness,smallerfatglobules,andpartialdeformationinstarchgranuleswhenpassedthroughanautomaticdosingunit.

0.01 0.1 1 1010

100

1000

Frequency (Hz)

G,

G

(Pa)

fIgure. Mechanical spectra of manually dosed batter (circles) and batter that haspassedthroughtheautomaticdosingunit(triangles)at25°C.G′valuesarerepresentedbysolid symbols;G′′ are representedbyopen symbols.Shear stresswaveamplitude:0.1Pa.(Reprinted fromBaixauli,R.,Sanz,T.,Salvador,A.,andFiszman,S.M.,Food Hydrocol-loids,21,230–236,2007.Copyright2007,withpermissionfromElsevier.)

52748.indb 114 2/6/08 2:25:52 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 130: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology

5.3.3 eFFeCToFTemPeraTure

Rheologicalbehaviorsofcakebattersatdifferent temperatures(27to50°C)havebeenstudiedbyShepherdandYoell(1976).Non-Newtonianshearthinningbehaviorwasobserved.Adrasticchangeintheflowbehaviorindexwasobservedbetween35°Cand40°C.Thiswasexplainedbythemeltingoffatsurroundingtheairbubbleswhenthetemperaturewasabove35°Cwhichmadethebubblesmoremobileandabletomigratetotheaqueousphase.

Achange inbatter rheologyduringheating is very important. Generally, thebatterviscositydecreasesatthebeginningofheatingandthenstartstoincreaseatthestarchgelatinizationtemperature(Changetal.,1990).NgoandTaranto(1986)measuredviscoelasticpropertiesofcakebattersusingadynamic(oscillatory)test. Theyobservedthatthestoragemodulus(G′)andlossmodulus(G′′)increasedwhenthecakebattertemperatureincreasedfrom30to45°Candthengraduallydecreased,reachingaminimumvalueatatemperaturearound85°Cwhichvariedwithsugarcontent.Whenheatingwascontinued,G′andG′′increasedrapidlyuntilthebattertemperaturereached100ºC.ItwasexplainedthattheincreasesinG′andG′′whenthetemperatureincreasedfrom30to45°Cmightbecausedbygluten,milk,oreggproteininteractions,becausethistrendwasnotobservedinthecaseofthestarchpastesystem.

Thebakingprocessconsistsofthreestages—initial,middle,andfinalstages—accordingtoMizukoshi(1986).Theviscosityofthebatterdecreasedwithincreasing

0.001 0.01 0.1 1 10 10010

100

1000

Frequency (Hz)

G,

G

(Pa)

fIgure. Mechanical spectra of manually dosed batter (circles) and batter that haspassedthroughtheautomaticdosingunit(triangles)at85°C.G′valuesarerepresentedbysolidsymbols;G′′are representedbyopensymbols.Shearstresswaveamplitude:0.6Pa.(Reprinted fromBaixauli,R.,Sanz,T.,Salvador,A.,andFiszman,S.M.,Food Hydrocol-loids,21,230–236,2007.Copyright2007,withpermissionfromElsevier.)

52748.indb 115 2/6/08 2:25:54 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 131: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

temperatureintheinitialstagesduetofoamdrainageandbubblecoalescence.Then,inthemiddlestagesofbaking,viscositystartedtoincreaseduetostarchgelatini-zation.Theincreasedshearmodulusofthecontinuousphasestabilizedthebubblestructureandreducedfoamdrainage(Mizukoshi,1983).Inthefinalbakingstage,starch gelatinization and protein coagulation were accelerated. The loss modulus(G′′)reacheditsmaximumvaluesasthefoamstructureofcakechangedfromdis-continuoustocontinuous.

Yasukawaetal.(1986)measuredthedynamicviscoeleasticpropertiesofcakebatter inamodelcakesystemduringbaking.Bothstoragemodulus(G′)andlossmodulus(G′′)startedtoincreaseatthegelatinizationtemperature.Initialstructuraldevelopmentwasduetostarchgelatinization.G′′reachedamaximumpointat88°C,whichisveryclosetothegasreleasetemperature.Thetemperatureatwhichbatterexpansionceasedcoincidedcloselywithitsgasreleasetemperatureandthetempera-tureatwhichG′′reacheditsmaximumvalue.

Major ingredients affect batter viscosity during heating in different ways.Effects of ingredients and additives (sugar type and concentration, shortening,eggwhite,hydrocolloids,emulsifier)onthedynamicsofcakebakingwerestudied(Shelkeetal.,1990).Batterviscositywasdeterminedusingacontinuousoscillatoryrodviscometerinconjuctionwithelectricresistanceovenheating.Batterviscositydecreasedasthetemperatureincreasedfromambientto60°Cduringtheearlyheat-ing,butviscosityincreasedsharplywithtemperatureastheheatingcontinuedabove60°Cduetothegelatinizationofstarch.Theonsettemperatureoftherapidviscosityincrease that is, starchgelatinizationwasnot affected significantlyby shorteninglevel.However,theincreaseintherateofviscositydecreasedwithincreasedshort-eninglevels,becauseshorteninglimitedthestarchswelling.Increasingshorteninglevelsdecreasedcakevolume.Batterscontainingsurfactantshadhigherviscosity.Nosignificanteffectontheonsettemperaturewasobservedwiththeadditionofsur-factant,buttherateofviscosityincreasedecreasedaftertheonset.Batterviscosityatambienttemperatureincreasedwithanincreaseinsugarconcentration.However,viscosityofbatterdecreasedwithanincreaseinsugarconcentrationduringheating.Atambienttemperature,notallofthesugarwasdissolved.Adecreaseinviscosityduringheatingwasexplainedwithdissolvingsugar.Theonsettemperatureincreasedasthesugarconcentrationincreased.Sucrosewasthemosteffectivesugarwhentheonsettemperaturesofbatterscontainingdifferenttypesofsugars(glucose,fructose,andsucrose)werecomparedatthesameconcentration.Theuseofeggwhiteincakebatterincreasedthebatterviscosityatambienttemperatureandminimumviscosityduringheating.Viscosityofthebatteratambienttemperaturewashigherwhenfresheggwhitewasused.Onsettemperaturewasnotaffectedbytheadditionofdriedorfresheggwhite.Theadditionofhydrocolloids (xanthan,guar,carboxymethylcel-lulose[CMC])increasedtheviscosityatambienttemperature.Whentheminimumviscositiesofheatedbatterswerecompared,xanthanwasable tomaintainhigherbatterviscositiesthanguarandCMCatthesameconcentrations.Higherviscosityduringheatingwouldgivethebattersgreatercapacitytoretainexpandingairandresistsettlingofstarchgranulesthatimprovecakevolumeandcrumbgrain.

52748.indb 116 2/6/08 2:25:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 132: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology

. ConClusIon

Rheologicaldataarerequiredinproductqualityevaluation,engineeringcalculations,andprocessdesign.Inrheologicalstudies,cakebattersmostlyshowednon-Newto-nianshearthinningbehavior,andacorrelationwasobservedbetweenrheologicalpropertiesofcakebatterandfinalcakequality.Therheologicalpropertiesofcakebattersaremainlyaffectedby the typeandconcentrationsof the ingredients, thelevelofairincorporation,andtemperature.Theviscosityofbattersatambienttem-peraturesincreasesasafunctionofpostmillingtime.Softwheatflouriscommonlychlorinatedfortheproductionofcakes.Chlorinatedflourhadhigherviscositythanuntreatedflour.Heat-treatedflourcanalsobeusedasanalternativetochlorinatedflourastheyshowsimilarrheologicalproperties.Theadditionoffatimprovesairincorporation and foam stability and causes a decrease in apparent viscosities ofcakebatters.Usingfatreplacers,emulsifiers,sugars,andgumsalsoaffectstherheo-logicalbehaviorofcakebatters.Airincorporationduringmixingreducestheappar-entviscosityofbatter.Viscoelasticpropertiesofmanuallydosedbattersaredifferentthanthoseofbatterspassedthroughanautomaticdosingunit.Generally,thebatterviscosity decreases at the beginning of heating and then starts to increase at thestarchgelatinizationtemperature.

referenCes

Baik,O.D.,M.Marcotte, andF.Castaigne.2000.Cakebaking in tunnel typemulti-zoneindustrial ovens. Part II. Evaluation of quality parameters. Food Research Interna-tional33:599–607.

Baixauli,R.,T.Sanz,A.Salvador,andS.M.Fiszman.2007.Influenceofthedosingprocessontherheologicalandmicrostructuralpropertiesofabakeryproduct.Food Hydrocol-loids21:230–236.

Bath,D.E.,K.Shelke,andR.C.Hoseney.1992.Fatreplacersinhigh-ratiolayercakes.Cereal Foods World37:495–500.

Boyd,J.,P.Sherman,andC.Parkinson.1972.FactorsaffectingemulsionstabilityandtheHLBconcept.Journal of Colloid Interface Science41:359–370.

Chang,C.N.,S.Dus,andJ.L.Kokini.1990.Measurementandinterpretationofbatterrheo-logicalproperties.InBatters and Breadings in Food Processing, Ed.K.KulpandR.Loewe,199–226.AmericanAssociationofCerealChemists,St.Paul,MN.

Cloke, J.D.,E.A.Davis,andJ.Gordon.1984.Relationshipofheat transferandwater-lossratestocrumb-structuredevelopmentasinfluencedbymonoglycerides.Cereal Chem-istry61:363–371.

Cunningham,H.M.,G.A.Lawrence,andL.Tryphonas.1977.Toxiceffectsofchlorinatedcakeflourinrats. Journal of Toxicology and Environmental Health2:1161–1171.

Daniels,N.W.R.,D.L.Frap,P.W.RussellEggitt,andJ.B.M.Coppock.1963.Studiesonthelipidsofflour.II.Chemicalandtoxicologicalstudiesonthelipidofchlorine-treatedcakeflour.Journal of the Science of Food and Agriculture14:883–893.

Donelson,J.R.,C.S.Gaines,andP.L.Finney.2000.Bakingformulainnovationtoeliminatechlorinetreatmentofcakeflour.Cereal Chemistry77:53–57.

Frazier,P.J.,F.A.Brimblecombe,andN.W.R.Daniels.1974.Rheologicaltestingofhigh-ratiocakeflours.Chemistry and Industry24:1008–1010.

Frye,A.M.andC.S.Setser.1991.Optimizingtextureofreduced-calorieyellowlayercakes.Cereal Chemistry61:363–371.

52748.indb 117 2/6/08 2:25:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 133: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Gaines,C.S.,andJ.R.Donelson.1982.Cakebatterviscosityandexpansionuponheating.Cereal Chemistry59:237–240.

Ginocchio,A.V.,N.Fisher,J.B.Hutchinson,R.Berry,andJ.Hardy.1983.Long-termtoxicityandcarcinogenicitystudiesofcakemadefromchlorinatedflour.Food and Chemical Toxicology21:435–439.

Grigelmo-Miguel,N.,E.Carreras-Boladeras,andO.Martin-Belloso.2001.Influenceoftheadditionofpeachdietaryfiberincomposition,physicalpropertiesandacceptabilityofreduced-fatmuffins.Food Science and Technology International7:425–431.

Gujral,H.S.,C.M.Rosell,S.Sharma,andS.Singh.2003.Effectofsodiumlaurylsulphateonthetextureofspongecake.Food Science and Technology International9:89–93.

Guy,R.C.E.andS.S.Sahi.2006.Applicationofalipaseincakemanufacture.Journal of the Science of Food and Agriculture86:1679–1687.

Handleman,A.R., J.F.Conn,andJ.W.Lyons.1961.Bubblemechanics in thick foamsandtheireffectsoncakequality.Cereal Chemistry59:500–506.

Huang,G.,J.W.Finn,andE.Varriano-Marston.1982.Flourchlorination.II.Effectsofwaterbinding.Cereal Chemistry59:500–506.

Johnson,A.C.andR.C.Hoseney.1979.Chlorinetreatmentofcakeflour.II.Effectofcertainingredientsinthecakeformula.Cereal Chemistry56:336–338.

Khouryieh,H.A.,F.M.Aramouni,andT.J.Herald.2005.Physicalandsensorycharacteristicsofno-sugaradded/lowfatmuffin.Journal of Food Quality28:439–451.

Kim,C.S.andC.E.Walker.1992.Interactionsbetweenstarches,sugars,andemulsifiersinhigh-ratiocakemodelsystems.Cereal Chemistry 69:206–212.

Kim,H.Y.L.,H.W.Yeom,H.S.Lim,andS.T.Lim.2001.Replacementofshorteninginyellowlayercakesbycorndextrins.Cereal Chemistry78:267–271.

Kissell,L.T.1971.Chlorinationandwatersolublescontentinfloursofsoftwheatvarieties.Cereal Chemistry48:102–108.

Kissell,L.T.andW.T.Yamazaki.1979.Cakebakingdynamics:Relationofflourchlorinationratetobatterexpansionandlayervolume.Cereal Chemistry56:324–327.

Kissell,L.T.,J.R.Donelson,andR.L.Clements.1979.Functionalityinwhitelayercakeoflipids from untreated and chlorinated patent flours. I. Effects of free lipids. Cereal Chemistry56:11–14.

Lakshminarayan,S.M.,V.Rathinam,andL.KrishnaRau.2006.Effectofmaltodextrinandemulsifiersontheviscosityofcakebatterandonthequalityofcakes.Journal of the Science of Food and Agriculture86:706–712.

Larsson, K. 1980. Inhibition of starch gelatinization by amylose-lipid complex-formation.Starch/Staerke32:125–126.

Lee,S.,G.E.Inglett,andC.J.Carriere.2004.Effectofnutrimoatbranandflaxseedonrheo-logicalpropertiesofcakes.Cereal Chemistry81:637–642.

Lee,S.,S.Kim,andG.E.Inglett.2005.EffectofshorteningreplacementwithOatrimonthephysicalandrheologicalpropertiesofcakes.Cereal Chemistry82:120–124.

Masoodi,F.A.,B.Sharma,andG.S.Chauhan.2002.Useofapplepomaceasa sourceofdietaryfiberincakes.Plant Foods for Human Nutrition57:121–128.

Maziyadixon, B.B., C.F. Klopfenstein, and C.E. Walker. 1994. Freeze-dried wheat watersolublesfromastarch-glutenwashingstream—Functionalityinangelfoodcakesandnutritionalpropertiescomparedwithoatbran.Cereal Chemistry71:287–291.

Miller,R.A.andR.C.Hoseney.1993.Theroleofxanthanguminwhitelayercakes.Cereal Chemistry70:585–588.

Mizukoshi,M.1983.Modelstudiesofcakebaking.IV.Foamdrainageincakebatter.Cereal Chemistry60:399–402.

Mizukoshi,M.1985.Modelstudiesofcakebaking.VI.Effectsofcakeingredientsandcakeformulaonshearmodulusofcake.Cereal Chemistry62:247–251.

52748.indb 118 2/6/08 2:25:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 134: Food Engineering Aspects of Baking Sweet Goods

Cake Batter Rheology

Mizukoshi,M.1986.Rheologicalstudiesofcakebaking.InFundamentals of Dough Rheol-ogy,Eds. H.FaridiandJ.M.Faubion,73–76.AmericanAssociationofCerealChem-ists,Inc.,St.Paul,MN.

Ngo, W., R.C. Hoseney, and W.R. Moore. 1985. Dynamic rheological properties of cakebatters made from chlorine-treated and untreated flours. Journal of Food Science50:1338–1341.

Ngo,W.H.andM.V.Taranto.1986.Effectofsucroselevelontherheologicalpropertiesofcakebatters.Cereal Foods World31:317–322.

Painter, K.A. 1981. Functions and requirements of fats and emulsifiers in prepared cakemixes.Journal of the American Oil Chemists’ Society58:92–95.

Sahi, S.S. and J.M. Alava. 2003. Functionality of emulsifiers in sponge cake production.Journal of the Science of Food and Agriculture83:1419–1429.

Sahin,S.,andS.G.Sumnu.2006.Physical Properties of Foods, Food Science Text Series,Springer:NewYork.

Sakiyan,O.,G.Sumnu,S.Sahin,andG.Bayram.2004.Influenceoffatcontentandemulsi-fier typeon the rheologicalpropertiesofcakebatter,European Food Research and Technology219:635–638.

Seguchi,M.1990.Effectofheat-treatmentofwheatflouronpancakespringiness.Journal of Food Science 55:784–785.

Shearer,A.E.H.andC.G.A.Davies.2005.Physicochemicalpropertiesoffreshlybakedandstoredwhole-wheatmuffinswithandwithoutflaxseedmeal.Journal of Food Quality28:137–153.

Shelke,K.,J.M.Faubion,andR.C.Hoseney.1990.Thedynamicsofcakebakingasstudiedbyacombinationofviscometryandelectricalresistanceovenheating.Cereal Chem-istry67:575–580.

Shelke,K.,R.C.Hoseney,J.M.Faubion,andS.P.Curran.1992.Agerelatedchangesinthepropertiesofbattersmadefromflourmilledfromfreshlyharvestedsoftwheat.Cereal Chemistry69:145–147.

Shepherd, I.S.andR.W.Yoell.1976.Cakeemulsions. InFood Emulsions,Ed.S.Friberg,215–275.MarcelDekker:NewYork.

Sinha,N.K.,H.Yamamoto,andP.K.W.Ng.1997.Effectsofflourchlorinationonsoftwheatgliadins analyzed by reversed-phase high-performance liquid chromatography, dif-ferential scanning calorimetry and fluorescence spectroscopy. Food Chemistry59:387–393.

Swanson,R.B.,L.A.Carden,andS.S.Parks.1999.Effectofacarbohydratebasedfatsub-stituteandemulsifyingagentsonreduced-fatpeanutbuttercookies.Journal of Food Quality22:19–29.

Thomasson,C.A.,R.A.Miller,andR.C.Hoseney.1995.Replacementofchlorinetreatmentforcakeflour.Cereal Chemistry72:616–620.

Turabi E., G. Sumnu, and S. Sahin. 2008. Rheological properties and quality ofricecakesformulatedwithdifferentgumsandanemulsifierblend.Food Hydrocolloids 22:305–312.

Urlacher,B.andO.Noble.1997.Thickeningandgellingagentsforfood.InXanthan,Ed.A.Imeson,284–311,Chapman&Hall:London.

Vali,N.S.S.A.andP.N.Choudhary.1990.Qualitycharacteristicsofcakespreparedfromdif-ferentfatsandoil.Journal of Food Science and Technology–Mysore27:400–401.

Yasukawa,T.,M.Mizukoshi,andK.Aigami.1986.Dynamicviscoelasticpropertiesofcakebat-terduringexpansionandheatsetting.InFundamentals of Dough Rheology,Eds.H.FaridiandJ.M.Faubion,63–72.AmericanAssociationofCerealChemists,St.Paul,MN.

52748.indb 119 2/6/08 2:25:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 135: Food Engineering Aspects of Baking Sweet Goods

52748.indb 120 2/6/08 2:25:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 136: Food Engineering Aspects of Baking Sweet Goods

6 Cookie Dough Rheology

Meryem Esra Yener

Contents

6.1 Introduction................................................................................................. 1216.2 RheologicalMethods.................................................................................. 122

6.2.1 EmpiricalMeasurementMethods.................................................... 1226.2.1.1 DoughTestingEquipment.................................................. 1226.2.1.2 TextureProfileAnalysis..................................................... 1236.2.1.3 Compression....................................................................... 1236.2.1.4 Penetration.......................................................................... 123

6.2.2 FundamentalMeasurementMethods.............................................. 1236.2.2.1 ModifiedPenetrometer....................................................... 1236.2.2.2 TransientTests....................................................................1246.2.2.3 DynamicTests....................................................................1246.2.2.4 ExtensionalViscosity......................................................... 126

6.3 EffectsofIngredients.................................................................................. 1276.3.1 Water................................................................................................ 1276.3.2 SugarandSugarReplacers.............................................................. 1286.3.3 FatandFatReplacers....................................................................... 1326.3.4 ProteinContentinFlourandProteinModifiers.............................. 139

6.4 InterrelationshipbetweenRheologicalPropertiesofDoughandQualityofCookies...................................................................................... 145

6.5 Conclusion................................................................................................... 145References.............................................................................................................. 145

. IntroduCtIon

Cookiesandbiscuitsareproductsmadefromsoftflours.Lowcontentofprotein(8to10%inthegrain),lowwaterabsorption,andlowresistancetodeformationarethecharacteristicsthatdescribethesuitabilityofwheatforbiscuitproduction(Pedersenetal.,2004).Cookiesarecharacterizedbyaformulahighinsugarandfatandlowinwater.Cookiedoughiscohesivebuttoalargedegreelackstheextensibilityandelasticitycharacteristicsofbreaddough.Relativelyhighquantitiesoffatandsugarin dough provide dough plasticity and cohesiveness without the formation of theglutennetwork,andtheyproducelesselasticdough(Faridi,1990).Ahighlyelasticdoughisnotdesirableinbiscuitmakingbecauseitshrinksafterlamination.Inaddi-tion,andagaindependingontheformulation,cookiedoughtendstospread(becomelargerandwider)asitbakesratherthantoshrinkasdoescrackerdough.Spreadisanimportantqualityparameterforcookies.

52748.indb 121 2/6/08 2:25:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 137: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Determiningrheologicalpropertiesofdoughyieldsvaluableinformationcon-cerningthequalityoftherawmaterials,themachiningpropertiesofthedough,andpossiblythetexturalcharacteristicsofthefinishedproduct(Faridi,1990).Mixingtimeormixingprotocolhasanimportanteffectonrheologicalpropertiesofbiscuitdough(Maache-Rezzougetal.,1998a;ManoharandRao,1999a).Generally,alongmixingtimeresultsinthesofteningofdoughandreductionsinbothviscosityandrelaxationtime.However,theeffectofmixingtimecannotbedifferentiatedfromthecompositionofcookiedoughandwillbediscussedasintegratedtotheeffectsof ingredients.Themainingredients thataffect therheologyofcookiedougharewater,sugar,fat,andtheproteincontentoftheflour.Theeffectsoftheseingredientsonrheologicalpropertiesofcookiedoughandspreadofcookiesarediscussed inthischapter.Briefdescriptionsoftherheologicalmethodscommonlyusedforthispurposearealsogiven.

. rheologICalMethods

6.2.1 emPiriCalmeasuremenTmeThods

Empiricalinstrumentsarecommonlyusedtodeterminetheflowbehavioroffoodproducts.Becausetheydonotmeasurefundamentalrheologicalproperties,theyaremostlyindexers.However,theresultsareusedbothinqualitycontrolandincorrela-tiontosensorydata(Steffe,1996).

... doughtestingequipment

Cereal chemists are familiar with dough testing equipment and use it widely toinvestigatedoughbehavior.This equipment includes the farinograph,mixograph,extensograph,andalveograph.

The farinograph and mixograph are torque-measuring devices that provideempiricalinformationaboutmixingpropertiesofflourbyrecordingtheresistanceof dough to mixing. In the farinograph, there is a kneading type of mixing; themixographinvolvesaplanetaryrotationofverticalpins.The informationderivedfromfarinogram(consistencyversustimecurve)andmixogram(torqueversustimecurve)isgivenbySahinandSumnu(2006)indetail.Incookiedough,theheightofthefarinogrambandisusedasameasureofdoughconsistency,andbandwidthisusedasameasureofdoughcohesiveness(JacobandLeelavathi,2007;OlewnikandKulp,1984).Deducedparametersofthemixogramssuchasinstantaneousspecificenergyandtotalspecificenergywereusedtoanalyzerheologicalbehaviorofbiscuitdoughaswell(Maache-Rezzougetal.,1998a,1998b).Instantanenousspecificenergyisdefinedastheenergy(J/kg.s)transmittedtothebiscuitdoughduringthemixingcycle.Totalspecificenergyistheintegraloftheinstantaneousspecificenergydur-ing theentiremixingoperation.Softandstickydough is reported tohavehighertotalspecificenergythanfirmandinhomogeneousdough,becausesoftdoughsticksandwrapsitselfroundthemixerblades,increasingthetransmittedenergy.

Theextensographandalveographmeasurerheologicalpropertiesofdoughaftermixing.Theextensographmeasuresthedoughresistancetostretchingandextensi-bility;thealveographmeasuresthepressurerequiredtoblowabubbleinasheeted

52748.indb 122 2/6/08 2:25:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 138: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

piece of dough. The typical extensogram and alveogram are given by Sahin andSumnu(2006).Extensibilityofcookiedough(inmm)wasobtainedbyextensographbyPedersenetal.(2004).AlveographP(maximumoverpressureneededtoblowadoughbubble) isanindexofresistancetodeformation,L (theaverageabscissaatbubblerupture)isanindexofdoughextensibility,W(thedeformationenergy)isanindexofdoughstrength,andtheP/L(curveconfigurationratio)isanindexoftheelastictoviscouscomponentofdough(i.e.,glutenbehavior)(Agyareetal.,2004).

... textureProfileanalysis

Intextureprofileanalysis(TPA),abitesizeoffood(usuallya1-cmcube)iscompressedtwotimesbetweentwoplates,usuallyto80%ofitsoriginalheight.Becausethistestisintendedtoreflectthehumanperceptionoftexture,thefirstandsecondcompressionsarereferredtoasthefirstandsecondbites.Atextureprofilecurve,whichisforceversustime,isanalyzedtogivetexturalproperties(SahinandSumnu,2006;Steffe,1996).Two-biteTPAwasperformedtomeasureconsistency,hardness,cohesiveness,adhesiveness,andstickinessofbiscuitdoughusingeithertheInstronUniversalTestingMachine(ManoharandRao,1997a,1997b,1999a,1999b,1999c)oratextureanalyzer(Zouliasetal.,2000).

... Compression

Acompressiontestmeasuresthedistancethatafoodiscompressedunderastan-dardcompressionforceortheforcerequiredtocompressafoodastandarddistance(SumnuandSahin,2006).TheInstronUniversalTestingMachinewasusedtomea-suretheforcerequiredtocompresscookiedough50%(Gaines,1990)or80%(JacobandLeelavathi,2007),andthisforcewasusedasameasureofconsistencyandhard-nessofthecookiedough,respectively.

... Penetration

Penetrometersaredesignedtomeasurethedistancethataconeoraneedlesinksintoafoodundertheforceofgravityforastandardtime(SumnuandSahin,2006).Atextureanalyzerwasusedtomeasuretheforcethata6-mm-diametercylinderprobepenetratestoadistanceof20mmincookiedough(Zouliasetal.,2000).

6.2.2 FundamenTalmeasuremenTmeThods

Fundamentalmeasurementmethodsincludemeasurementofstrain(ε)whenastress(σ)isappliedtoamaterial,orviceversa.Stressisdefinedastheforceappliedperunitarea;strainisdefinedastheamountofdeformationrelativetotheinitialdimensions(height,length,orvolume).Generally,therelationbetweenthetwoisexpressedasmodulus(σ/ε)orascompliance(ε/σ).Forviscoelasticmaterialslikedough,thefundamentaltestsareperformedunderunsteady-stateconditions,liketransientanddynamictests.

... ModifiedPenetrometer

Generally, the penetrometer is used to determine the consistency of fats on thebasisofdistancemovedbytheconeorneedlethroughthematerialinaparticular

52748.indb 123 2/6/08 2:25:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 139: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

time(Steffe,1996).ThepenetrometerwasmodifiedbyManoharandRao(1992)toperformauniaxialcompressionbetweentwoplates.Theoptimumcompressionweightwasfoundtobe410gforbiscuitdough(2.2cmdiameter×1cmheight).Theinitialheight(h1)andtheheightofthedoughaftercompressionof10sec(h2)wererecorded.Thecompressionplatewasliftedup,thedoughwasallowedtorecoverfor1min,andtherecoveredheight(h3)wasmeasured.Thecomplianceandelasticrecoverywerecalculated(ManoharandRao,1992)as

Compliance (%)= −

×h h

h1 2

1100 (6.1)

Elastic recovery (mm)= −( )×h h3 2 10 (6.2)

ThereadershouldrealizethatEquation6.1isthedefinitionofstrainbutnotcompli-ance.However,definingcomplianceasinEquation6.1doesnotchangetheinterpre-tationofthephysicalmeaning.

... transienttests

Intransienttests,theresponseofamaterialasafunctionoftimeismeasuredaftersubjectingthematerialtoaninstantanenouschangeineitherstrainorstress.Creeprecoveryandstressrelaxationarethetwocommontransienttests.Increeprecovery,aconstantstressisappliedtoamaterial,anditsstrainisrecordedasafunctionoftime (creep).Then the stress is removed,and the strain is recordedasa functionoftime,calledrecovery.Incookiedough,themaximumstrainisameasureofitsextensibility,andpercentrecoveryisthemeasureofitselasticity.Instressrelaxation,aconstantstrainisappliedtoamaterial,andthestressrequiredtokeepthisstrainconstantisrecordedasafunctionoftime.Anelasticsolidneverrelaxes,andanidealliquidimmediatelyrelaxestozero.Thelargertherelaxationtime,themoreelasticisthematerial.Amechanicalanalogofanelasticsolidisspring,andthatofanidealliquidisdashpot.ThebehaviorofviscoelasticmaterialsisexpressedbymechanicalmodelssuchasMaxwell,Kelvin-Voight,andBurgermodels.ThereadercanobtainmoredetailedinformationaboutthesemodelsinSteffe(1996).

Maache-Rezzougetal.(1998a,1998b)performedastressrelaxationtestunderlubricateduniaxialcompressionandusedtheMaxwellmodeltodetermineviscosity(η)andrelaxationtime(λrel).Pedersenetal.(2004,2005)performedcreeprecoverymeasurementswithacreepandrecoverytimeof300sandastressvalueof10Patodeterminemaximumstrainandpercentrecoveryofcookiedough.

... dynamictests

Indynamictests,anoscillatorystrainisappliedtoamaterialandtheresultingstressismeasured.Whenviscoelasticmaterialsaredeformed,partoftheenergyisstored(asinanelasticsolid)andpartofitisdissipatedasheat(asinaliquid).Therefore,whenalinearviscoelasticmaterialissubjectedtoaperiodicallyvarying(frequency,

52748.indb 124 2/6/08 2:25:59 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 140: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

ω)stress,thestrainwillalsovaryperiodicallybutoutofphasewithstress.Theresultisexpressedwithastressequation(Steffe,1996)as

σ ω= ′ + ′′( )G Gγ γ (6.3)

whereγisshearstrain, γ isshearrate,G′isthestoragemoduluswhichisthemeasureofelasticbehaviorofamaterial,andG″ isthelossmoduluswhichisthemeasureofliquidbehaviorofamaterial.Storagemodulus(G′)andlossmodulus(G″)arefunc-tionsofthephaselag(δ)betweenstressinput(σ0)andstrainoutput(γ0),asfollows:

′ =

( )G

σδ0

cos

(6.4)

′′ =

( )G

σ

γδ0

0

sin (6.5)

δis0°foranidealelasticsolidand90°foraNewtonianfluid.Tangentofthephaselagis(tanδ)alsoapopularmaterialfunctiontodescribeviscoelasticbehaviorandisdefinedas

tanδ =

′′′

GG (6.6)

Thedynamic testsshouldbeperformedwithin the linearviscoelastic regionofamaterialanddeterminedbyastresssweep.Frequencysweepwithinthelinearvis-coelasticregionisusedtodeterminetheeffectsofdifferentingredientsinacookiedoughformulation.Temperaturesweepexplainsthedoughbehaviorduringbaking.

Rheological properties of short doughs (standard, firm-fat, lowfat, liquid oil,sugar-free, and starch doughs) were determined by using a controlled stress rhe-ometeratsmalldeformation(Baltsaviasetal.,1997).Therheometerwasoperatedinastresssweepatafixedangularfrequencyof6.28rad/s(1Hz),intimesweepatafixedstrainamplitudeof2×10−4andanangularfrequencyof6.28rad/s,infre-quencysweepatafixedstrainamplitudeof2×10−4.Thelinearviscoelasticregionofshortdoughswerefoundtobeverylimited—nonlinearitystartedatastrainabout2×10−4exceptwithliquid-oildoughwherethisvaluewas4×10−4.

Agyareetal. (2004)determined theeffectof substitutingcanolaoil/caprylic-acid-structuredlipidforpartiallyhydrogenatedshorteningonrheologyofsoftwheatflourdoughbyperformingfrequencysweepfrom0.01to20Hzat25°Cusingastrainof0.02.LeeandInglett(2006)studiedtheeffectofreplacingshorteningincookiesby20%jet-cookedoatbran,whichisacarbohydrate-basedfatreplacer.Viscoelasticpropertiesofdoughweredeterminedbyusingacontrolledstrainrheometer,byper-formingoscillatorytestingoverafrequencyrangeof0.01to10Hzatastrainof5×10−3,whichwasinthelinearviscoelasticregionforallsamples.

Pedersenetal.(2004)studiedrheologicalpropertiesofsemisweetbiscuitdoughfromdifferentcultivarsand theeffectofchemicalandenzymaticmodificationon

52748.indb 125 2/6/08 2:26:01 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 141: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

doughrheology(Pedersenetal.,2005)byusingacontrolledstressrheometer.Thelinearviscoelasticregionwasdeterminedtobeuptostrainof1.5×10−3byperform-ingastrainsweepatafrequencyof1Hz.Atargetstrainof1×10−3correspondingtoastressvalueof10Pawasusedinalltheexperiments.Afrequencysweepwasper-formedintherangefrom0.1to60Hz;scatteringofdatawasobservedabove30Hz.

... extensionalviscosity

Extensionalflowisanimportantaspectofdoughprocessingduringsheeting,anditdoesnotinvolveshearing.Althoughtherearethreebasictypesofextensionalflow—uniaxial,planar,andbiaxial (Steffe,1996)—biaxialextensionalviscosity iscom-monlymeasuredincookiedough(Baltsaviasetal.,1999a,1999b;LeeandInglett,2006;ManoharandRao,1997a,1997b,1999a,1999b,1999c).Biaxialextensionalflow is achieved in a lubricated squeezing flow between parallel plates (uniaxialcompression).Thesamplebetweentheplatesiscompressedwithaconstantvelocity(constantdeformationrate)ofthetopplate.Thisiscalledcrossheadspeed,andthetypicalvaluesusedforcookiedoughare6,18,and60mm/min(LeeandInglett,2006);50mm/min(ManoharandRao,1997a,1997b,1999a,1999b,1999c);and1,10,and100mm/min(Baltsaviasetal.,1999a,1999b).Whencompressingthesamplewithaconstantvelocity,theforceexertedonthesampleisrecordedasafunctionof

time F t( )( ) .Thestressexertedisdefinedas

σπ

=F t

R( )

2 (6.7)

whereRistheradiusofthesampleinthecaseofconstantarea(Steffe,1996)asusedbyBaltsaviasetal.(1999a,1999b),or

σ=

F tA t

( )( )

(6.8)

inthecaseofconstantvolume(Steffe,1996)asusedbyManoharandRao(1997a,1997b,1999a,1999b,1999c)andLeeandInglett(2006).Thebiaxialstrainrate, εB (1/s),isgiven(Steffe,1996)by

εB

vh t

vh vt

= =−2 2 0( ) ( )

(6.9)

where v isthecrossheadspeed(m/s)and h0 istheinitialheightofthesample.Theapparentbiaxialextensionalviscosity(Pa.s)isgivenby

η

σεB

B=

(6.10)

52748.indb 126 2/6/08 2:26:05 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 142: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

The apparent biaxial extensional viscosity of cookie dough is expressed bythe power law model (Baltsavias et al., 1999a, 1999b; Lee and Inglett, 2006)atlargedeformation,as

η εB B

nK= − 1 (6.11)

whereKistheconsistencyindex,andn istheflowbehaviorindex.

. effeCtsofIngredIents

6.3.1 waTer

Water is an essential ingredient in dough formation, because it is necessary forsolubilizingotheringredientsforhydratingproteinsandcarbohydratesandforthedevelopmentofglutennetwork.Thedough,having12.5%fatcontaining13.3%to15.5%water,wasnot consistentbecause they lackedhydration.Thedoughswithhighwatercontent(>21%)wasextremelysoftandsticky,making it impossible towork.An increase inwatercontent led toasignificantdecrease indoughviscos-ity (η)andaslight reductionof the relaxation time(λrel), indicating reductionofelasticity (Table6.1). The biscuits expanded lengthwise, with a smaller thickness(Maache-Rezzoug,1998b).Similarly,increasingwatercontentofbiscuitdoughby3%increasedcomplianceanddecreasedextrusiontime,apparentbiaxialextensionalviscosity (ηB), and consistency, indicating a decrease in dough viscosity. Doughbecamemorecohesivebutsoft,adhesive,andsticky.Onthecontrary,anincreaseinelasticrecoveryindicatedincreasedelasticpropertiesofdough(ManoharandRao,1999b).

Theeffectofwatercontentondoughpropertieswasreportedtovarywiththequantitiesandrelativedistributionoffat(OlewnikandKulp,1984).Indepositdough,

taBle.

effectofWaterContentonviscosity(η)andrelaxationtime( λrel)of

BiscuitdoughWaterContent

(%)η ×0- 

(Pa.s)λrel (s)

17.0 8.8 2.05

18.0 4.7 1.85

19.0 3.8 1.63

20.0 3.2 1.45

21.0 2.8 1.30

22.5 1.7 1.03

Source:AdaptedfromMaache-Rezzoug,Z.,Bovier,J.M.,Allaf,K.,andPatras,C.,Journal of Food Engineering,35,23,1998b.Withpermission.

52748.indb 127 2/6/08 2:26:07 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 143: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

whichhas63%fat,water(9to13%)didnotaffecttheconsistencyandcohesivenessvery much, due to the dominating effect of fat. In wire-cut dough that has 45%fat,water(14to20%)increasedconsistency,becausetheadditionofwaterreducedthepercentageoffat,allowingthehydrationofflouranddevelopmentofaglutennetwork.Inrotary-moldeddoughthathas27%fat,thesmearingoffatoverthepar-ticlesofsugarandflourwasretardedduringmixingbecausethedoughwaslowfat.Theincompleteformationoffatfilmincreasedtheaccessibilityofsugarcrystalstowater,resultinginfaster,moreextensiveformationofsugarsyrup.Doughconsis-tencywasreducedasthequantityofwaterincreasedfrom13to16%.Moredoughliquiddecreaseddoughconsistencyandincreasedcookiespreadofsugar-snapcook-ies,aswell(Gaines,1990).

6.3.2 suGarandsuGarrePlaCers

Sugarisanimportantingredientofshortdoughbiscuits.Itcontributestotexture,fla-vor,sweetness,andcolorofbiscuits(ManoharandRao,1997).Theeffectofsugarondoughbehaviorisanimportantfactorinbiscuitmaking.Sugarcausessofteningofthedough,dueinparttocompetitionbetweentheaddedsugarandtheavailabilityofwaterinthesystem.Sugarrestrictsthedevelopmentofglutennetworkbycompetingforwaterthatotherwisewouldhavebeenabsorbedbygluten.Thelimitedamountofwaterusedinbiscuitformulation,andalsoitsnonavailabilitytoproteinandstarch,partiallycontributestothecrispnessofbiscuits.

In the farinograph,consistencyofwire-cutdough remained fairlyconstantat30%,45%,and60%addedsugar,butcohesivenessincreasedat the60%level.Indepositcookiedough,addedhighlevelsofsugarupto55%increasedconsistencyandcohesivenesssharply.However,inrotary-moldeddough,highlevelsofsucroseupto50%causedasharpreductionindoughconsistencyandcohesiveness.Thisisbecauseofextrawater(10%weightofdough)addedintothefarinographbecauselowfatandwaterlevelsinthiscookieformularesultedincrumblydoughsthatwereunsuitablefordirectfarinography(OlewnikandKulp,1984).

Mixogramsofbiscuitdoughshowedthatthedoughchangedfromasolidandcon-sistenttexturetoanextremelysofttextureassugarcontentincreasedfrom20to50%(Maache-Rezzougetal.,1998b).Theadditionofsugartotheformuladecreaseddoughviscosity(η).Atsugarcontentslessthanorequalto30%,relaxationtime(λrel)ofdoughwas constant; at sugar contents between 30 and 50%, relaxation time was reduced(Table6.2).

Theeffectsofmixingtime,sugar level,andtypeonrheologicalpropertiesofbiscuitdoughpreparedfromweakflour(8.8%gluten)weredeterminedbyManoharandRao(1997a,1997b).Prolongedmixingofdoughhaving300gsugar/kgofflourresultedinincreasedelasticproperties.Theoptimummixingtimewasselectedas180samong90,180,and300s(ManoharandRao,1997a).Increasingsugarcontentdecreased extrusion time, elastic recovery, apparent biaxial extensional viscosity,(ηB),consistencyandhardness,andincreasedcompliance,cohesiveness,adhesive-ness,andstickinessofbiscuitdough(Table6.3).Theseresultsindicatedthatincreas-ing thesugarconcentration resulted insoft (with lessviscosityandelasticity)butcohesivedoughthatwasadhesiveandsticky.Incorporationof20gofreducingsug-

52748.indb 128 2/6/08 2:26:07 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 144: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

arsperkilogramofflour,insteadof300gsugarperkilogramofflour,likedextrose,liquidglucose(LG),invertsyrup(IS),andhigh-fructosecornsyrup(HFCS),affectedtherheologicalcharacteristicsinthesamewayasincreasingthesugarcontentintheformulation (Table6.4).However, thesyrupshadagreater influenceon the rheo-logicalcharacteristics(ManoharandRao,1997b).Spreadaswellasthicknessofthebiscuitsincreased,butdensitydecreasedsignificantlybytheadditionofsugar.

Zouliaset al. (2000) studied theeffectof sucrose replacementby fructoseorpolyolsondoughrheologyinlow-fatcookies.Polydextrosewasusedtoreplace35%offatinlow-fatcookies.Mannitoldoughwasveryfirmanddifficulttosheet;how-ever,itpresentedmoderatevaluesofhardnessandconsistencyandthelowestadhe-siveness.Maltitolandfructoseresultedindoughwithhighvaluesofhardnessandconsistencyandlowadhesivenessandcohesiveness,whilelactitol,sorbitol,andxyli-tolhadtheoppositeeffects.Thexylitoldoughpresentedsomeproblemsinsheetingfortheformationofcookiesduetoitshighadhesiveness.Therheologicalpropertiesofdoughspreparedbylactitolandsorbitolweresimilartothosepreparedbysucrose(Table6.5).Cookieswithfructoseorpolyolswerelesssweetthansucrose-contain-ingones,butsupplementationwithacesulfame-K,whichdidnotinterferewiththedough rheology, increased sweetness and improved perceived flavor and generalacceptance.Thepropertiesofcookiespreparedwithmaltitol,lactitol,andsorbitolwereacceptable.Mannitolrestrictedspreadofcookies.

Whenrheologicalbehaviorofstandardandsugar-freeshortdoughswascom-paredatsmalldeformation,sugar-freedoughhadhigherstoragemodulus(G′)andlowerphaseangle(tanδ)thanthestandarddough(Table6.6),indicatingthatsugar-free dough was more solid and elastic (Baltsavias et al., 1997). The frequencydependency of storage modulus (G′) and phase angle (tanδ) of the sugar-freedoughweresimilartothoseofthestandarddough.Theydecreasedwithincreas-ing frequency up to 3 rad/s and then remained constant. At large deformation,shortdoughsbehaved likestrain rate thinning liquids (Baltsaviasetal.,1999a).Whentheapparentbiaxialextensionalviscosityofthedoughs(ηB

*)expressedwiththepowerlaw(Equation6.11),theconsistencyindex(K)ofthesugar-freedough

taBle.

effectofsugarContentonviscosity(η)andrelaxationtime(λrel )ofBiscuitdough

sugarContent(%)

η×0-

(Pa.s)λrel (s)

20 5.1 1.52

30 4.8 1.51

35 3.9 1.38

40 3.5 1.14

50 3.0 1.03

Source: AdaptedfromMaache-Rezzoug,Z.,Bovier,J.M.,Allaf,K.,andPatras,C.,Journal of Food Engineering,35,23,1998b.Withpermission.

52748.indb 129 2/6/08 2:26:09 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 145: Food Engineering Aspects of Baking Sweet Goods

0 Fo

od

Engin

eering A

spects o

f Bakin

g Sweet G

oo

ds

taBle.effectofsugarContentonrheologicalCharacteristicsofBiscuitdoughsugar(g/kg)

extrusiontime

(s)

Compliance(%)

elasticrecovery×0

(mm)

ηB×0−

(Pa.s)Consistency

(n.s)hardness

(n)Cohesiveness adhesiveness

(n.s)stickiness

(o)

250 70a 35.9a 5.51a 2.54a 866a 814a 0.138a 35.8c 44.8c

300 45b 40.6b 4.60b 1.91b 786b 662b 0.194b 54.3b 50.3b

350 23c 49.8a 3.80c 1.41c 616c 512c 0.223a 57.6a 69.5a

1 Valuesforaparticularcolumnfollowedbydifferentlettersdiffersignificantly(p<0.05). ηB:Apparentbiaxialextensionalviscosity,at50%compression.Source: AdaptedfromManohar,R.S.,andRao,P.H.,Journal of the Science of Food and Agriculture,75,383,1997b.Withpermission.

taBle.

effectofdifferenttypesofreducingsugarsonrheologicalCharacteristicsofBiscuitdough

sugartype extrusiontime(s)

Compliance(%)

elasticrecovery×0

(mm)

ηB×0−

(Pa.s)Consistency

(n.s)hardness

(n)Cohesiveness adhesiveness

(n.s)stickiness

(o)

Control 45a 40.6c 4.60a 1.91a 786a 662a 0.194d 54.3c 50.3c

Dextrose 36b 44.2b 4.10b 1.64b 654b 586b 0.202cd 55.8bc 54.8b

LG 26c 48.8a 3.80d 1.42c 524c 492c 0.220ab 57.8b 70.5a

IS 24c 48.6a 3.95c 1.41c 538c 476c 0.210bc 62.5a 69.8a

HFCS 22c 49.8a 3.80d 1.36d 530c 474c 0.230a 64.3a 71.5a

1Valuesforaparticularcolumnfollowedbydifferentlettersdiffersignificantly(p<0.05).

2Controlis300gsugar/kgofflour;reducingsugarsareat20g/kgofflourlevel;LG,liquidglucose;IS,invertsugar;HFCS,high-fructosecornsyrup.

3ηB:Apparentbiaxialextensionalviscosity,at50%compression.

Source: AdaptedfromManohar,R.S.,andRao,P.H.,Journal of the Science of Food and Agriculture,75,383,1997b.Withpermission.

52748.indb 1302/6/08 2:26:10 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 146: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

washigher,butitsflowbehaviorindex(n)waslowerthanthoseofstandardandsucrosesyrupdoughs(Table6.7).TheeffectsofsucrosecontentandmixingtimeontherheologicalpropertiesofshortdoughswerefurtherstudiedbyBaltsaviasetal.(1999b)atlargedeformation.Doughswithdifferentsugarlevelswerepreparedbydissolvingsucrose inwaterbeforeadding to thedough.Thedoughsdenotedas sucrose syrup 1, 2, and 3 corresponded to 64.6, 50, and 40% sucrose solu-tions,respectively.Thedoughscalledsugar-free1,2,and3containednosucrose,but thecompositionsof theother ingredientswerethesamein theformulations(Table6.8andTable6.9).Regardlessof thedough type,mixing timedecreased

taBle.

effectofsweetenersonrheologicalPropertiesoflow-fatCookiedoughsweetener Fpenetration

(n)FtPa

(n)Consistency

(n·s)adhesiveness

(n·s)Cohesiveness

Sucrose 2.4a 66.8ab 69.6ab 6.79c 0.656b

Fructose 3.0a 69.9b 78.3b 4.42b 0.548a

Maltitol 3.2a 69.3b 74.5b 4.83b 0.534a

Lactitol 2.9a 58.2ab 60.2ab 6.40c 0.693b

Sorbitol 2.9a 51.3ab 51.0ab 6.06c 0.665b

Xylitol 2.4a 46.2a 47.5a 7.38c 0.638b

Mannitol 9.7b 59.0ab 55.9ab 1.55a 0.643b

1Valuesforaparticularcolumnfollowedbydifferentlettersdiffersignificantly(p<0.05).

Source:Zoulias,E.I.,Piknis,S.,andOreopoulou,V.,Journal of the Science of Food and Agriculture,80,2049,2000.Withpermission.

taBle.

dynamicrheologicalPropertiesofshortdoughsatsmalldeformation

g‘×0−

(n/m)tanδ

Standarddough 6.69 0.255

Firm-fatdough 8.73 0.277

Low-fatdough 4.34 0.390

Liquid-oildough 0.22 0.525

Sugar-freedough 7.50 0.238

Starchdough 5.36 0.202

1 Resultsweretaken1haftertheendofmixing,T=20°C, ω = 6.28rad/s, γmax =2×10−4.

Source: Baltsavias,A.,Jurgens,A.,andvanVliet,T.,Journal of Cereal Chemistry,26,289,1997.Withpermission.

52748.indb 131 2/6/08 2:26:11 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 147: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

thedoughconsistencysignificantly(Table6.8).Inaddition,itdrasticallychangedtheshapeofthestress–straincurveforsugar-freedough(Figure6.1).Thestress–straincurvesforthesugar-freedoughsindicatedastrongerelasticcontributiontothedeformation thandid thoseforsucrosesyrupdoughs.Sucrosesyrupdoughsexhibitedprominentyieldingandflowbehavior.Theirapparentbiaxialextensional

viscosity(ηB)decreasedwithincreasingsucrosecontent(Table6.9).

6.3.3 FaTandFaTrePlaCers

Fatformsoneofthebasiccomponentsofacookieformulationandispresentatrelativelyhigh levels.Fat acts as a lubricant andcontributes to theplasticityofthecookiedough.Itpreventsexcessivedevelopmentoftheglutennetworkduring

taBle.

ConsistencyIndex(K)andflowBehaviorIndex(n)forapparentBiaxialextensionalviscosity(ηB)ofshortdoughs

K(Pasn) nStandarddough 1.1 0.10

Firm-fatdough 2.9 0.15

Low-fatdough 12.1 0.31

Sucrosesyrupdough 1.2 0.12

Sugar-freedough 1.4 0.03

Starchdough 0.8 0.09

1 ValueswerecalculatedatεB=0.2

Source: Baltsavias,A.,Jurgens,A.,andvanVliet,T.,Journal of Cereal Science, 29,33,1999a.Withpermission.

taBle.

effectofMixingonConsistencyIndex(K)andflowBehaviorIndex(n)forapparentBiaxialextensionalviscosity(ηB)ofsucrosesyrupandsugar-freedoughs

Mixingtime(min) K×0−(Pasn) n

Sucrosesyrup1(64.6%)

2 1.8 0.12

8 1.3 0.14

20 0.7 0.09

Sugar-free1

2 4.7 0.08

8 1.6 0.04

20 1.0 0.02

1Variousdoughsmixedfor8min;valueswerecalculatedatεB=0.2

Source: Baltsavias,A.,Jurgens,A.,andvanVliet,T.,Journal of Cereal Science, 29,43,1999b.Withpermission.

52748.indb 132 2/6/08 2:26:11 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 148: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

mixing.Thepresenceof fatcontributes to the reductionof theelasticnatureofdoughandthereforetheshrinkingofthedoughduringmolding.Althoughintech-nological respects (consistency of dough), fat has similar effects to sugar, theirphysicochemicalrolesaredifferent.Theglobulesoffatsurroundtheproteinsandstarch,isolatethem,andpreventtheformationofpolymers,therebyreducingthedensityofthenetwork(Maache-Rezzougetal.,1998b).

Mixographresultsshowedthatan increase in thefatcontentofbiscuitdoughfrom 5 to 25% decreased the mixing energy. Dough was more homogenous andsoftwhenthefatcontentincreasedfrom15to20%.Theadditionoffatsoftenedthedoughanddecreasedviscosity(η)andrelaxationtime(λrel)(Table6.10).Fatcontrib-utedtoanincreaseinlengthandtoareductioninthicknessandweightofthebiscuits

taBle.

ConsistencyIndex(K)andflowBehaviorIndex(n)forapparentBiaxialextensionalviscosity(ηB

* )ofshortdoughsK×0−(Pasn) n

Sucrosesyrup1(64.6%) 1.3 0.14

Sucrosesyrup2(50%) 1.2 0.08

Sucrosesyrup3(40%) 1.4 0.08

Sugar-free1 1.6 0.04

Sugar-free2 1.6 0.07

Sugar-free3 2.2 0.09

1Mixingtime=8min;ValueswerecalculatedatεB=0.2

Source: Baltsavias,A.,Jurgens,A.,andvanVliet,T.,Journal of Cereal Science, 29,43,1999b.Withpermission.

0 0.2 0.4 0.6 0.8 1.0εb (–)

10

20

30

40

σ (k

N/m

2 )

fIgure. Stress–straincurvesforvariouscookiedoughformulations:sucrose-syrup1(opensymbols),sugar-free1(closedsymbols);mixingtime=2min(triangles);mixingtime=8min(diamonds);mixingtime=20min(circles).Initial εb =2.8×10−41/s.(FromBaltsavias,A.,A.Jurgens,andT.vanVliet,Journal of Cereal Science,29,43,1999b.Withpermission.)

52748.indb 133 2/6/08 2:26:13 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 149: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

(Maache-Rezzougetal.,1998b).Increasingtheleveloffatfrom150g/kgflourto250g/kgflourincreasedcompliance,cohesiveness,andadhesivenessanddecreasedextrusiontime,elasticrecovery,apparentbiaxialextensionalviscosity(ηB),consis-tency,hardness,andstickiness(ManoharandRao,1999c).Therefore,increasingfatcontentproducedsoft,lessviscous,andlesselasticdough.

Astheamountoffatincreasedinwire-cutdoughsfrom40to50%,consistencyofthedoughvariedwithinafairlynarrowrange;however,cohesivenesswasconsid-erablyreduced.Depositdoughshadagreaterreductioninconsistencywithincreasedfatcontentfrom58to68%,aswellascohesiveness.Rotary-moldeddoughshaving27to29%fathadthehighestconsistencyandcohesivenessthantheothertwobutfollowedthesamepatternasthefatcontentincreased(OlewnikandKulp,1984).

Theeffectoffattypeoncookiedoughrheologywasstudiedbypreparingsugar-snapcookieswith fourdifferent fat types: emulsifiedbakery fat, emulsifiedmar-garine, nonemulsified hydrogenated fat, and sunflower oil (Jacob and Leelavathi,2007).Themoisture,protein, andglutencontentsof theflourwere11.9,9.7, and7.3%,respectively.Atthebeginningofmixing,themostconsistentdoughwasthatcontainingbakeryfat;theleastconsistentdoughwastheonecontainingsunfloweroil.However,consistencyofthedoughcontainingsunfloweroilincreasedwhiletheconsistencyof thedoughscontainingmargarineandbakery fatdecreasedduringmixing.Theconsistencyofthedoughcontaininghydrogenatedfatremainedalmostconstant.Attheendofmixing,thedoughcontainingsunfloweroilhadthehighestconsistency. The consistency of the dough containing hydrogenated fat remainedalmostconstant (Table6.11).The increase inconsistencyof thedoughcontainingsunfloweroilwasexplainedbyitslackingabilitytosmearalltheflourparticleslead-ingfordevelopmentofglutennetworkduringmixing.Thedecreaseinconsistencyofthedoughcontainingbothmargarineandbakeryfatwasduetothewellaerationofthedoughduringmixing.Althoughthedoughcontainingsunfloweroilwastheleast

taBle.0

effectoffatContentonviscosity(η)andrelaxationtime(λrel)ofBiscuitdough

fatContent(%)η ×0−

(Pa.s)λrel(s)

5 8.7 1.58

10 5.7 1.60

12.5 5.3 1.50

15 4.0 1.20

20 2.5 1.10

25 2.1 1.07

Source: Adapted fromMaache-Rezzoug,Z.,Bovier, J.M.,Allaf,K., andPatras,C.Journal of Food Engineering,35,23,1998b.Withpermission.

52748.indb 134 2/6/08 2:26:14 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 150: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

cohesiveatthebeginning,itscohesivenessincreasedandremainedconstantduringmixing.Theleastcohesivedoughwasthatcontainingmargarineaftermixing.Whenthehardnesswasconsidered,thedoughcontaininghydrogenatedfatwasthehigh-est(Table6.11).ManoharandRao(1999c)reportedthatcookiedoughpreparedbyhydrogenatedfatwasthehardestamongthedoughspreparedbyotherfattypes,aswell.Cookiesmadebyemulsifiedbakeryfatandemulsifiedmargarinethatshowedconsistencydecreaseduringmixinghad the smaller spread ratio than theothers.Theadditionofemulsifierswithalevelof5g/kgflourtobiscuitdoughwasreportedtodecrease elastic recovery, indicating their contribution to the shortening effecton gluten (Manohar and Rao, 1999c). Furthermore, emulsifiers decreased extru-sion time, consistency, and apparent biaxial extensional viscosity (ηB), indicatingdecreaseindoughviscosity.Thedoughsbecamemorecohesivebutsoftwithloweradhesivenessandstickiness.

The rheological properties of short doughs prepared with different fat types,firm-fat,low-fat,andliquidoil,weredeterminedbothatsmalldeformation(Baltsav-iasetal.,1997)andatlargedeformation(Baltsaviasetal.,1999a).Atsmalldeforma-tion,lossmodulus(G″)tendedtobelinearoverawiderrangeofstraincomparedwithstoragemodulus(G′).Regardlessofcomposition,phaseangle(tanδ)increasedwithincreasingstrain,indicatingamoreliquid-likebehavior.Thestoragemodulus(G′)andlossmodulus(G″)curvesofthestandarddoughcrossedoveratastrainrateof10−1,showingthatthematerialchangedfromsolid-liketomoreliquid-like.Thechangesinducedbyshearwerereportedtobelesssevereinthecaseofthelow-fatandtheliquid-oildough.Butbothhadasignificantlylowerstoragemodulus(G′)andhigherphaseangle(tanδ)thanthestandarddough,indicatingthattheyweremoreliquid-likeandmoreeasilydeformed(Table6.6).Thefirm-fatdoughwasrelativelymoreliquid-likethanthestandarddough,withthephaseangle(tanδ)beingslightlyhigher.Butonthecontrary,higherstoragemodulus(G′)wasexplainedbyhigherairvolumefractioninthestandarddough.Reducingthefatcontentorreplacingsolidfatwithliquidoilbroughtaboutsubstantialchangesintheresultingdough.Theelasticcomponentbecamemorefrequencydependent,andthephaseangle(tanδ)increased

taBle.

effectoffattypeonrheologicalPropertiesofsugar-snapCookiedough

fattypefarinographdoughConsistency(Bu)

farinographdoughCohesiveness(Bu)

Compressionforce(hardness)

(kg)

0min 0min 0min 0min

Bakeryfat 440 360 60 80 3.0

Margarine 380 270 60 60 2.1

Hyodrogenatedfat 310 300 80 80 4.5

Sunfloweroil 200 400 20 120 2.9

Source: AdaptedfromJacob,J.andLeelavathi,K.,Journal of Food Engineering,79,299,2007.Withpermission.

52748.indb 135 2/6/08 2:26:15 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 151: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

withincreasingangularfrequencyabove3rad/s.Thisbehaviorwasexplainedbytheformationofmorefat-disperseddoughbyloweringthefatcontentorreplacingsolidfatwithliquidoil.Atlargedeformation,alldoughsbehavedmorelikestrain-ratethinningliquids(Table6.7).Thedoughsshowedlargedifferencesinapparentbiax-

ialextensionalviscosity(ηB)dependingonfattype.Low-fatdoughhadthehighestconsistencyindex(K)andflowbehaviorindex(n).

Agyareetal.(2004,2005)studiedtheeffectofsubstitutingcanolaoil/caprylicacidstructuredlipid(SL)forpartiallyhydrogenatedshortening(at0,25,50,75,and100%)ontherheologyofsoftwheatflourdough(28.4%totallipidonflourbasis,43%moisturecontent).Figure6.2showsthattheadditionofpartiallyhydrogenatedshortening to untreated dough resulted in a significant decrease in resistance todeformation(AlveographP),doughextensibility(AlveographL),anddoughstrength(AlveographW).Thiswasattributedtothelubricationactionoftheaddedshorten-ing.SLsubstitution for shorteningdidnot significantlyaffectdoughdeformation

P (mm)

L (mm)

W (X 10^–4 J)P/L (X 10^–2)

Variation 0 Variation 1 Variation 2 Variation 3 Variation 4 Variation 5

Treatment

Alv

eogr

aph

Char

acte

ristic

0

20

40

60

80

100

120

140

160

180

fIgure. Effect of substituting varying levels of structured lipid (SL) for partiallyhydrogenatedshorteninginsoftwheatflourdoughonAlveographcharacteristics:Variation0:formulationwithoutshortening;Variation1:formulationwith100%shortening,0%SL;Variation2:formulationwith75%shortening,25%SL;Variation3:formulationwith50%shortening,50%SL;Variation4: formulationwith25%shortening,75%SL;Variation5:formulationwith0%shortening,100%SL.(FromAgyare,K.K.,Addo,K.,Xiong,Y.L.,andAkoh,C.C.Journal of Cereal Science,42,309,2005.Withpermission.)

52748.indb 136 2/6/08 2:26:20 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 152: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

(AlveographP)anddoughstrength(AlveographW).However,doughextensibility(AlveographL)wasgreaterforformulationswith50%and75%SL.Inaddition,theratioofelastictoviscouscomponent(AlveographP/L)waslowerinformulationwith50%SLcomparedtothestandardshortening.Thisindicatedthatdoughwithformu-lations50%and75%SLhadgreaterextensibilityandlowelasticitythantheothers.This was also proved with large diameters (high spread) with the cookies bakedfromformulationswith50%and75%SL(Agyareetal.,2005).Indynamictesting,frequencysweepshowedthatallthedoughformulations,regardlessofthecontentofSL,gavehighervaluesofstoragemodulus(G′)andlossmodulus(G″)athigherfre-quencies,indicatingthattherecoveryofstresseddoughwasaslowprocess—thatis,thenetworkwasnotcompletelyelastic.Theadditionofshorteningtodoughloweredstoragemodulus(G′)andlossmodulus(G″)over theentirefrequencyrange,andincreasedSLsubstitutionfurtherdecreasedstoragemodulus(G′)andlossmodulus(G″),indicatingthatthedoughwasbeinglessviscousandlesselastic.ThiswastheresultofshorteningbeingsolidfatandSLbeingliquidatroomtemperature.

Leeand Inglett (2006)studied theeffectof replacingshortening (10,20,and30%)incookieswith20%jet-cookedoatbran,alsocalledNutrimOB(NU),whichisacarbohydrate-basedfatreplacer.Foralldoughs,storagemodulus(G′)andlossmodulus(G″)increasedwithfrequency(Figure6.3).Alldoughshadhighervaluesofstoragemodulus(G′)thanthoseoflossmodulus(G″),suggestingthattheyhadmoreelasticpropertiesthanviscousproperties.Thecontrolhadthehigheststoragemodulus(G′).IncreasingreplacementofshorteningwithNUfrom10to30%causedadecreaseinbothstoragemodulus(G′)andinlossmodulus(G″).ThisdecreaseinthedynamicviscoelasticpropertiesofcookiedoughscontainingNUwasattributedtotheirincreasedmoisturecontent.Thesamebehaviorwasobservedinextensional

Frequency (Hz)0.01 1000.1 1 10

CON 10NU 20NU 30NU

1.0E+06

1.0E+05

1.0E+04

1.0E+03

1.0E+00

1.0E–01

1.0E–02

tan δ

tan δ

G´,

G˝ (

Pa) G´

fIgure. EffectofNutrimOB(NU)onthedynamicviscoelasticpropertiesofcookiedough.(FromLee,S.andInglett,G.E.,International Journal of Food Science and Technol-ogy,41,553,2006.Withpermission.)

52748.indb 137 2/6/08 2:26:21 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 153: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

viscosity.Atallstrainratestested,thebiaxialextensionalviscosity(ηB)decreasedasshorteningwasreplacedwithmoreNU.Atlargedeformation,thedoughsbehavedasshear thinningliquids.Consistencyindex(K)decreased,but theflowbehaviorindex (n) was not significantly decreased with shortening replacement with NU(Table6.12).However,duringbaking,afterstarchgelatinizationaround80to90°C,storagemodulus(G′)increasedwithtemperature.At120°C,whilethecontrolhadtheloweststoragemodulus(G′),increasingNUreplacementfrom10to30%gaverise to the increase instoragemodulus (G′), indicating that thedoughcontainingNUwasmoreelasticthanthecontrol,whichresultedinadecreaseindiameterofthecookiesmadebyNUcomparedtothecontrol(Figure6.4).Thisreversedelastic

Temperature (ºC)0 50 100 150 200

1,000,000

100,000

10,000

G´ (

Pa)

1,000

100

CON 10NU 20NU 30NU

fIgure. Changesinthestoragemodulusofcookieswithshortening(CON)anddiffer-entlevelsofNutrimOB(NU).(FromLee,S.andInglett,G.E.,International Journal of Food Science and Technology,41,553,2006.Withpermission.)

taBle.

ConsistencyIndex(K)andflowBehaviorIndex(n)forapparentBiaxialextensionalviscosity(ηB)ofCookiedoughsContainingshortening(Con)anddifferentlevelsofnutrimoB(nu)

K(Pasn) nCON 3.77a 0.19a

10NU2 3.67ab 0.20a

20NU3 3.34bc 0.20a

30NU4 3.11c 0.21a

1Valueswiththesamesuperscriptinthesamecolumnarenotsignificantlydifferentatthe5%level;210%NutrimOB;320%NutrimOB;430%=NutrimOB

Source:Lee,S.andInglett,G.E.,International Journal of Food Science and Technology,41,553,2006.Withpermission.

52748.indb 138 2/6/08 2:26:22 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 154: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

behaviorduringbakingwasnotseeninthecookiesmadebyreplacingshorteningwithSL(Agyareetal.,2004).

6.3.4 ProTeinConTenTinFlourandProTeinmodiFiers

Generally,glutenisresponsiblefortherheologicalpropertiesofdough.Theeffectofproteincontentwasstudiedbyusingflourcontaining11.2%protein(0%addedgluten)to21.9%protein(15%addedgluten)(Maache-Rezzougetal.,1998a).Chang-ingtheproteincontentoftheflourfrom14to20%increasedthedoughviscosity(η)becauseitfavoredthestructuringoftheglutennetworkduringmixing.Upto14%andbeyond20%,theproteincontentappearedtohavenoeffectonrelaxationtime(λrel),whereasitincreasedlinearlybetween14and20%,indicatingthatwithinthisrangeproteincontentincreaseddoughelasticity(Table6.13).Consequently,proteincontentproducedanoverallreductioninthespreadofbiscuits.

Pedersenet al. (2004) studied the rheologicalpropertiesof semisweetbiscuitdoughsfromdifferentcultivars.Amongtheusedcultivars(Table6.14),Galateahasnohigh-molecular-weight(HMW)glutenins,andhenceitproducesdoughwithalmostnoglutenstructure.AlthoughRitmoisahardendospermcultivarclassifiedasbreadwheat,itisfrequentlyusedasbiscuitwheat.Forallcultivars,adecreaseinmaxi-mumstrainandincreaseinpercentrecoverywereobservedwithincreasingagingtime(Figure6.5).GalateahadthehighestextensibilityduetoitslowHMW-glutenincontentwhichresultsinahigherproportionofgliadins.Itiswellestablishedthatgliadinscontributetotheextensibilityandviscouspropertiesofwheatflourdough.ExtensibilityofRitmo,thehardendospermcultivar,wassignificantlylessthantheextensibilityofGalatea.However,itshowedthehighestpercentrecovery,beingmoreelasticduetotheelasticityinitsglutennetwork.ThecultivarsGalateaandEncore,

taBle.

effectofProteinContentonviscosity(η)andrelaxationtime( λrel )ofBiscuitdough

ProteinContent(%) addedgluten(%)η ×0−

(Pa.s) λrel (s)

11.2 0 3.3 1.10

12.8 2 3.5 1.15

14.4 4 3.8 1.11

15.8 6 7.1 1.22

17.3 8 7.6 1.40

18.7 10 9.0 1.60

20.0 12 9.4 1.70

21.2 14 9.4 1.72

21.9 15 9.4 1.70

Source:Adapted fromMaache-Rezzoug,Z.,Bovier, J.M.,Allaf,K.,andPatras,C.Journal of Food Engineering,35,23,1998b.Withpermission.

52748.indb 139 2/6/08 2:26:24 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 155: Food Engineering Aspects of Baking Sweet Goods

0 Fo

od

Engin

eering A

spects o

f Bakin

g Sweet G

oo

ds

taBle.

CreepandrecoveryCharacteristicsofsemisweetBiscuitdoughfromdifferentCultivarsCultivar Protein

inflour(%drymatter)

gluten(%offlour)

sed(ml) Wa(%offlour)

e(mm) r(Bu) Maximumstrain(%)

recovery(%)

Encore 9.0±0.7 17.7±0.3 21±5 54.8±2.0 117±11 187±59 1.19b 35.7c

Ritmo 9.1±0.9 21.2±2.7 32±6 56.8±3.0 128±16 232±108 0.87c 48.5a

Galatea 9.2±0.5 20.5±1.5 <10 53.7±3.5 — — 1.48a 35.7c

Claire 9.2±0.4 21.2±2.7 19±2 51.5±2.7 135±10 262±68 0.77c 40.3bc

Banker 9.4±0.6 21.6±4.3 21±3 53.7±3.3 128±4 177±49 1.26b 38.3bc

1SED,sedimentationvalue.2WA,waterabsorption(measuredbyFarinograph).3E,extensibilityafter45mindoughresting(measuredbyExtensograph).4R,resistanceafter45mindoughresting(measuredbyFarinograph).5Valuesforparticularcolumnfollowedbydifferentlettersdiffersignificantly(p<0.001);allyears1998,1999,2000.

Source: AdaptedfromPedersen,L.,Kaack,K.,Bergsøe,M.N.,andAdler-Nissen,J.,Journal of Cereal Science,39,37,2004.Withpermission.

52748.indb 1402/6/08 2:26:24 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 156: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

withveryweakglutenstructure,recoveredlessthantheothersdid.Clairewaslessextensiblethantheothersoftendospermcultivarsandrecoveredtoahighdegree.Resultsoffrequencysweeptestsfortwodistinctivecultivars,RitmoandGalatea,areshowninFigure6.6.Increasingfrequencyincreasedbothstoragemodulus(G′)andlossmodulus(G″).Correlationbetweenfrequencyandphaseangle(δ)dependedonthefrequencyrange.Thephaseangle(δ)decreasedatfrequencieslessthan0.5Hz,wasnearlyconstantbetween0.5and1Hz,andincreasedatfrequencieshigherthan1Hz.Thesedifferencesimplythatthedoughactedmorelikeasolidwhenimposedtoslowchangesinstresses,butveryfastchangeswouldmakethedoughactasaliquid.Measurementsofstoragemodulus(G′)wereunabletodistinguishbetweendoughs,whichhavedifferentstrengthofglutennetwork.However,phaseangle(δ)distinguishedbetweenthecultivarsthatweredifferentinthegliadin–gluteninratio.

When flourwas replacedby starch in a short dough formulation, the storagemodulus(G′)ofthedoughdecreased(Table6.6)becauseoftheabsenceofgluten.(Baltsavias et al., 1997). However, the frequency dependency of storagemodulus(G′)wassimilartothatofthestandarddough.

Pedersen et al. (2005) examined the effect of adding sodium metabisulfite(SMS),whichisadisulfitecleavingagent,andproteasetosemisweetcookiedough

0 100 200 300 400 500 600 700

1.601.401.201.000.800.600.400.200.00

Stra

in [%

]

Time [sec]

Ritmo

0 100 200 300 400 500 600 700

1.601.401.201.000.800.600.400.200.00

Time [sec]

Galatea

Stra

in [%

]

fIgure. Creeprecoverycurvesofbiscuitdoughfromtwocultivarswithdifferentrest-ingtimes:()10min,()25min,()35min(FromPedersen,L.,Kaack,K.,Bergsøe,M.N.,andAdler-Nissen,J.Journal of Cereal Science,39,37,2004.Withpermission.)

52748.indb 141 2/6/08 2:26:26 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 157: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

preparedwiththesamecultivarsinlong-timebehavior(creeprecovery),aswellasintheshort-timebehavior(dynamictesting).Themainresultsofcreeprecov-eryandoscillationfromcultivars1998and1999areshowninTable6.15.Therewasasignificant(p<0.001)differencebetweenthetwoyearsforall therheo-logicalcharacteristicswithexceptionoflossmodulus(G″)andpercentrecoveryduetothehigherproteincontent(10.2%averageprotein,25.1%averagegluten)of wheat from 1999 compared with the one from 1998 (8.9% average protein,10.2%averagegluten).TheadditionofSMSorproteasehadasignificanteffectontherheologicalcharacteristics,withtheexceptionofpercentrecoveryin1998.Maximumstrain(i.e.,extensibilityofthedoughs)highlyincreasedbecauseSMSandprotease reduced thedisulfitebonds.Consequently, elasticitydecreasedasindicatedwiththedecreaseinpercentrecoveryof1999cultivars.Similarly,stor-agemodulus(G′)andlossmodulus(G″)decreasedwhereasphaseangle(tanδ)increased,indicatinglesselasticandliquid-likebehavior.TherewasasignificantinteractionbetweenthecultivarsandadditionofSMSandprotease.ThelargesteffectoftheadditionofmodifierswasobservedforthehardendospermRitmo.CultivarswithahighratioofgluteninsaresupposedtobeaffectedbySMSorproteaseadditionmore thancultivarswitha lowerratio.ThisagreedwellwiththelowcontentofgliadinsmeasuredforRitmo.MaximumreductioninthelengthofthebiscuitswasobservedforRitmo,whereasGalateawasslightlyreducedinlength.

Gaines(1990)studiedtheeffectofmodifyingagentsontheconsistencyofsugar-snap cookies made from different cultivars. Potassium iodate (the sulf-

G´ RitmoG˝ RitmoG´ GalateaG˝ Galatea

RitmoGalatea

0.1 1.0 10.0 100.0

100,000

10,000

1,000

100

40353025201510

0.1 1.0 10.0 100.0

Frequency [Hz]

Frequency [Hz]

Mod

ulus

[Pa]

δ [°]

fIgure. Frequencydependenceofdynamicviscoelasticpropertiesofbiscuitdoughsfromtwodifferentcultivars.(FromPedersen,L.,Kaack,K.,Bergsøe,M.N.,andAdler-Nis-sen,J.Journal of Cereal Science,39,37,2004.Withpermission.)

52748.indb 142 2/6/08 2:26:27 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 158: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

hydryloxidizingagentthatincreasesglutenelasticity),L-cystein(thedisulfatecleavingagentthatdecreasesglutenelasticity),N-ethylmaleimide(whichblockssulfhydryl groups—initially increasing gluten elasticity), and dithioerythritol(thedisulfidecleavingagentthatbondswiththeresultingdisulfidebonds,remov-ing them from further thiol interchange) were studied. L-cystein did not sig-nificantlychangetheconsistencyofthedoughsmadefromanycultivars.Therewasnospecificpatternofresponseofdoughconsistencyorcookiediametertothemodifiers.Dithioerythritolhadthemosteffectonthedoughconsistency.Itreducedtheconsistencyandspreadofcookiesmadefrommostofthecultivars.

Theeffectsofprotein-modifyingagentson the rheologicalcharacteristicsofbiscuitdoughswerestudiedbyMonaharandRao(1997a).Incorporatingoxi-dizing agents potassium bromate (PB) and ascorbic acid (AA) or the sulfhy-dryl blocking agent N-ethylmaleimide (NEMI), produced significant changeinanyoftherheologicalcharacteristicsstudied(Table6.16).Thissuggeststhattheconditionsinthebiscuitdoughwerenotfavorabletooxidizingagents,andtherewaslittleinvolvementofinterchangereactionsofsulfhydrylanddisulfitegroupsinthistypeofbiscuitdough.However,L-cysteinhydrochloride(LCS)and dithioerythritol (DTE), two disulfite cleaving agents, reduced the extru-sion time, apparent biaxial extensional viscosity, consistency, and hardnessand increased thecompliance,adhesiveness, andcohesiveness.The reductionofelasticrecoveryinthepresenceofthedisulfidecleavingagentsindicatedaweakeningoftheglutennetwork.

taBle.rheologicalPropertiesofsemisweetBiscuitdoughwithadditionofsodiumMetabisulfite(sMs)andProtease,MeansofCultivarsand

noaddition additionofsMs(0mg/kg)

additionofProtease(00mg/kg)

Maximumstrain(%)

1998 1.23a 2.46b 2.00b

1999 1.19a 4.36c 3.16b

Recovery(%) 1998 36.80a 33.88a 35.66a

1999 41.07a 33.21b 35.82b

G′ (kPa) 1998 17.20a 10.68c 13.36b

1999 16.79a 8.48b 10.04b

G″ (kPa) 1998 7.28a 5.02c 6.03b

1999 7.79a 4.54b 5.07b

tanδ 1998 0.42a 0.46b 0.45b

1999 0.46a 0.52b 0.50b

logG″/logfrequency

1998 0.19a 0.22c 0.21b

1999 0.22a 0.28c 0.26b

1Meanswithinarowfollowedbydifferentlettersaresignificantlydifferent(p≤0.05).Source:Pedersen,L.,Kaack,K.,Bergsøe,M.N.,andAdler-Nissen,J.Journal of Food Science,70,152,

2005.Withpermission.

52748.indb 143 2/6/08 2:26:28 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 159: Food Engineering Aspects of Baking Sweet Goods

Fo

od

Engin

eering A

spects o

f Bakin

g Sweet G

oo

ds

taBle.effectofProteinModifyingagentsontherheologicalCharacteristicsofBiscuitdough

Modifyingagent

extrusiontime(s)

Compliance(%)

elasticrecovery×0

(mm)

ηB×0−

(Pa.s)Consistency

(n.s)hardness

(n)Cohesiveness adhesiveness

(n.s)stickiness

(o)

Control 45a 40.6b 4.60a 1.91a 786a 662a 0.194b 54.3b 50.3b

PB 44a 40.2b 4.55a 1.92a 792a 656a 0.198b 52.2bc 52.3b

AA 45a 40.1b 4.65a 1.89a 764b 652a 0.192b 51.6c 51.6b

LCS 35b 43.2a 3.60b 1.62b 718c 598b 0.232a 58.6a 54.6c

NMI 45a 40.4b 4.50a 1.92a 772ab 660a 0.196b 54.6b 50.4b

DTE 38b 43.3a 3.60b 1.54c 708c 602b 0.240a 60.4a 56.4a

1 Valuesforaparticularcolumnfollowedbydifferentlettersdiffersignificantly(p<0.05).2 Control (300 g/kg sugar), mixing time 180 min; PB, potassium bromate; AA, ascorbic acid; LCS, L-cystein hydrochloride; NEMI, N-ethylmaleimide; DTE,

dithioerythritol.3 ηB:Apparentbiaxialextensionalviscosity,at50%compression.

Source: AdaptedfromManohar,R.S.andP.H.Rao.Journal of Cereal Science, 25,197,1997a.Withpermission.

52748.indb 1442/6/08 2:26:29 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 160: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

. InterrelatIonshIPBetWeenrheologICal ProPertIesofdoughandQualItyofCooKIes

Rheologicalpropertiesofbiscuitdoughasinfluencedbyingredients,processingconditionssuchasmixing,andadditiveswererelatedtothequalityofbiscuitsbyManoharandRao(2002).Extrusiontime(r=−0.54,p <0.01),elasticrecovery(r=−0.84,p<0.01),apparentbiaxialextensionalviscosity(r=−0.62,p <0.01),consistency(r=−0.73,p <0.01),andhardness(r=−0.68,p <0.01)ofthedoughweresignificantlycorrelated to thespreadof thebiscuits.Elastic recovery (r=−0.64,p <0.01)andcohesiveness(r=0.67,p <0.01)ofdoughmainlyinfluencedthe thickness of biscuits. Extrusion time (r = 0.53, p < 0.01), elastic recovery(r=0.78, p<0.01), apparent biaxial extensional viscosity (r=0.59, p <0.01),consistency(r=0.62,p <0.01),andhardness(r=0.60,p<0.01)werepositivelycorrelatedtothedensityofbiscuits.Amongthevariousrheologicalcharacteris-ticsstudied,elasticrecoverywasreportedtobethebestindexinpredictingthequalityofbiscuits.Similarly,Pedersonetal.(2005)concludedthatshrinkage(r=0.70)andspread(r=0.43)ofbiscuitswerecorrelatedtopercentrecoveryofthedough,andproteinandglutencontent.

. ConClusIon

Doughingredientshadamajoreffectonrheologicalpropertiesandqualityofcook-iesandbiscuits.Increasesinwater,sugar,andfatcontentofcookiedoughdecreasedconsistencyandelasticityandthereforeincreasedspreadofcookiedough.Reduc-ing sugarshada similar effect as increasing the sugar content.Sucrose couldbereplacedbymaltitol,lactitol,orsorbitolinlow-fatcookieswithsupplementationofacesulfate-Kfortheimprovementoftaste.Sugar-freedoughwasmoreelasticthanthesucrosesyrupdough.Emulsifiedfatandmargarineprovidedbetterrheologicalpropertiesthannonemulsifiedhydrogenatedfatandsunfloweroil.Incorporationofhydrogenatedfat to theformulationproducedhardcookiedough.Theadditionofemulsifiers reduced the elasticityof cookiedough.Low-fat and liquid-oil doughsweremoreliquidlike,andfirm-fatdoughwasmoreelasticthanthestandarddough.Substitutingshorteningwith50% to75%canolaoil/caprylicacidstructured lipid(SL)orwithacarbohydrate-basedfatreplacer,NutrimOB(NU)loweredtheelastic-ityofthedough.Anincreaseinproteinandglutencontentincreasedelasticityanddecreasedspreadofcookiesbecauseofglutennetworkformation.Disulfitecleavingagentsandproteaseincreasedextensibilityanddecreasedelasticityofcookiedoughsbyweakeningtheglutennetwork.

referenCes

Agyare,K.K.,Y.L.Xiong,K.Addo,andC.C.Akoh.2004.Dynamicrheologicalandthermalpropertiesofsoftwheatflourdoughcontainingstructuredlipid.Journal of Food Sci-ence69:297–302.

Agyare, K.K., K. Addo, Y.L. Xiong, and C.C. Akoh. 2005. Effect of lipid on alveographcharacteristics,bakingandtexturalqualitiesofsoftwheatflour.Journal of Cereal Sci-ence42:309–316.

52748.indb 145 2/6/08 2:26:29 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 161: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Baltsavias,A.,A.Jurgens,andT.vanVliet.1997.Rheologicalpropertiesofshortdoughsatsmalldeformation.Journal of Cereal Science26:289–300.

Baltsavias,A.,A.Jurgens,andT.vanVliet.1999a.Rheologicalpropertiesofshortdoughsatlargedeformation.Journal of Cereal Science29:33–42.

Baltsavias,A.,A.Jurgens,andT.vanVliet.1999b.Largedeformationpropertiesofshortdoughs:Effectof sucrose in relation tomixing time.Journal of Cereal Science29:43–48.

Faridi,H.1990.Applicationofrheologyinthecookieandcrackerindustry.InDough Rheol-ogy and Baked Product Texture,Eds.H.FaridiandJ.M.Faubion,363–384.NewYork:AVI.

Gaines,C.S.1990.Influenceofchemicalandphysicalmodificationofsoftwheatproteinonsugar-snapcookiedoughconsistency,cookiesize,andhardness.Cereal Chemistry67:73–77.

Jacob,J.andK.Leelavathi.2007.Effectoffattypeoncookiedoughandcookierheology.Journal of Food Engineering 79:299–305.

Lee,S.andG.E.Inglett.2006.Rheologicalandphysicalevaluationofjet-cookedoatbranin low calorie cookies. International Journal of Food Science and Technology 41:553–559.

Maache-Rezzoug,Z.,J.M.Bovier,K.Allaf,andC.Patras.1998a.Studyofmixingwithrheo-logicalpropertiesofbiscuitdoughanddimensionalcharacteristicsofbiscuits.Journal of Food Engineering35:43–56.

Maache-Rezzoug,Z.,J.M.Bovier,K.Allaf,andC.Patras.1998b.Effectofprincipleingredi-entsonrheologicalbehaviourofbiscuitdoughandqualityofbiscuits.Journal of Food Engineering 35:23–42.

Manohar,R.S.andP.H.Rao.1992.Useofapenetrometerformeasuringrheologicalcharac-teristicsofbiscuitdough.Cereal Chemistry 69:619–623.

Manohar,R.S.andP.H.Rao.1997a.Effectofmixingperiodandadditivesontherheolog-ical characteristics of dough and quality of biscuits. Journal of Cereal Science 25:197–206.

Manohar,R.S.andP.H.Rao.1997b.Effectofsugarsonrheologicalcharacteristicsofbis-cuitdoughandqualityofbiscuits.Journal of the Science of Food and Agriculture75:383–390.

Manohar,R.S.andP.H.Rao.1999a.Effectofmixingmethodontherheologicalcharacteris-ticsofbiscuitdoughandthequalityofbiscuits.European Food Research and Technol-ogy210:43–48.

Manohar,R.S.andP.H.Rao.1999b.Effectsofwateron the rheologicalcharacteristicsofbiscuitdoughand thequalityofbiscuits.European Food Research and Technology 209:281–285.

Manohar,R.S.andP.H.Rao.1999c.Effectsofemulsifiers,fatlevelandtypeontherheologi-calcharacteristicsofbiscuitdoughandthequalityofbiscuits.Journal of the Science of Food and Agriculture 79:1223–1231.

Manohar,R.S.andP.H.Rao.2002.Interrelationshipbetweenrheologicalcharacteristicsofdoughqualityofbiscuits;useofelasticrecoveryofdoughtopredictbiscuitquality.Food Research International35:807–813.

Olewnik,M.C.andK.Kulp.1984.Theeffectofmixing timeand ingredientvariationonfarinogramsofcookiedoughs.Cereal Chemistry61:532–537.

Pedersen,L.,K.Kaack,M.N.Bergsøe,andJ.Adler-Nissen.2004.Rheologicalpropertiesof biscuit dough from different cultivars, and relationship to baking characteristics.Journal of Cereal Science39:37–46.

Pedersen,L.,K.Kaack,M.N.Bergsøe,andJ.Adler-Nissen.2005.Effectofchemicalandenzymaticmodificationondoughrheologyandbiscuitcharacteristics.Journal of Food Science70:152–158.

52748.indb 146 2/6/08 2:26:29 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 162: Food Engineering Aspects of Baking Sweet Goods

Cookie Dough Rheology

Sahin,S.,andS.G.Sumnu.2006.Physical Properties of Foods.NewYork:Springer.Steffe,J.F.1996.Rheological Methods in Food Process Engineering.EastLansing,MI:Free-

manPress.Zoulias,E.I.,S.Piknis,andV.Oreopoulou.2000.Effectof sugar replacementbypolyols

andacesulfame-Konpropertiesoflowfatcookies.Journal of the Science of Food and Agriculture80:2049–2056.

52748.indb 147 2/6/08 2:26:30 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 163: Food Engineering Aspects of Baking Sweet Goods

52748.indb 148 2/6/08 2:26:30 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 164: Food Engineering Aspects of Baking Sweet Goods

7 Technology of Cake Production

Suzan Tireki

Contents

7.1 Introduction................................................................................................. 1497.2 Mixing......................................................................................................... 150

7.2.1 MixingMethods.............................................................................. 1507.2.1.1 CakeMixing....................................................................... 1507.2.1.2 FoamCakeMixing............................................................ 152

7.2.2 CakeMixingMachines.................................................................... 1537.2.2.1 HorizontalMixers.............................................................. 1537.2.2.2 VerticalMixers................................................................... 1537.2.2.3 MortonPressureWhisk...................................................... 1537.2.2.4 TonelliMixingSystem....................................................... 1547.2.2.5 OakesContinuousMixer.................................................... 1547.2.2.6 MondomixContinuousAerator......................................... 1557.2.2.7 OtherTypesofMixers....................................................... 155

7.3 Depositors................................................................................................... 1557.3.1 CopelandDepositor......................................................................... 1557.3.2 MonoElectronicDepositor.............................................................. 156

7.4 CakeBaking................................................................................................ 1567.4.1 Small-ScaleCakeProduction.......................................................... 1567.4.2 Large-ScaleCakeProduction.......................................................... 157

7.5 Cooling........................................................................................................ 1577.6 PackagingandWrappingEquipment.......................................................... 157References.............................................................................................................. 158

. IntroduCtIon

Itisdifficulttodefinecakesinaprecisemannerduetotheirwidevarietyandthebroadrangeoftheirformulations.Cakeproductscontainrelativelyhighamountsofenrichingingredientslikesugar,shortening,eggs,milk,andflavorsinadditiontosoftwheatflour,andtheyhavesweettaste,atenderandashorttexture,andpleas-ingflavorsandaromas.Cakesmaybegroupedintotwobroadcategories:shorten-ing-basedcakesandfoam-typecakes.Inshortening-basedcakes,crumbstructureisderivedfromthefat–liquidemulsioncreatedduringtheprocessingofbatter.Infoam-typecakes,structureandvolumeareprimarilydependentonthefoamingandaeratingpropertiesofeggs.Sweetdoughproductscanalsobeclassifiedasathird

52748.indb 149 2/6/08 2:26:30 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 165: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

group of cakes, which are yeast leavened and involvevariousjams,fruit,nutfilling,andtoppings.

Cake quality is affected by the ingredients used,anappropriateandproperlybalancedformulation,andmixingandbakingprocedures.Inadditiontothese,cor-rectpreparationofhoopsandothercontainersinorderto provide adequate protection during baking, care-fulpreparationofallof the ingredientsbeforemixing(especially with regard to temperature and to fruit ifbeingused),andcarefulbatterhandlingduringscalinganddepositingaretheotherfactorscontributingtocakequality(Desrosier1977;Pyler1988).Ageneralflowdia-gramofcakeproduction is shown inFigure7.1.Cakeproduction includes the steps of mixing, depositing,baking,cooling,andpackaging.

Thischapterfocusesoncakeproductiontechnologyandtheequipmentusedincakeproduction.

. MIxIng

7.2.1 mixinGmeThods

Mixingmethoddependsonwhethershorteningorfoam-typecakeismixed.

... CakeMixing

Bringingaboutacompleteanduniformdispersionandhomogeneousmutualemul-sification of the various ingredients, generally accompanied with the entrapmentandsizereductionofaircellsandaminimumglutendevelopmentinflour,arethemainpurposesof cakemixing.Themixingprocess, takingplace inmixerswithvariousmixeraccessories(Figure7.2andFigure7.3),differsintheorderofingre-dient incorporation,duration,andrateofmixingactionduringdifferentstagesofmultistagemethods,temperatureoftheingredients,andotherfactorsaccordingtothenatureofthecakebeingproduced.

Thecreaming(sugarbatter)methodcombinesshorteningwith thegranulatedsugarandusuallywithsomeofthedryingredientsatslowormediummixingspeeduntil the components are thoroughly blended and the resulting mixture becomesaerated.Thisstepisfollowedbytheincorporationofeggsasthecreamingactioniscontinued.Withaddingmilkandflour,cakemixingiscompleted.Largevolumesofairincorporationintheminusculecellsinthefatphaseofthebatter,coatingoftheflourandsugarbyfat,delayinghydrationandsolubilization,andnearabsenceofglu-tendevelopmentinflourarethemainadvantagesofthecreamingmixingmethod.Thecreamingmethodtakes15to20minwithan8to10mininitialcreamingstage,a5to6minsecondstageofeggincorporation,and5to6minfinalstageofmilkandflouraddition.

Intheblending(flourbatter)mixingmethod,flourandshorteningarecreamedtoafluffymassinonebowl,while,atthesametime,theeggsandsugararewhipped

INGREDIENTS

MIXING

DEPOSITING

BAKING

COOLING

PACKAGING

fIgure. Cake pro-ductionflowdiagram.

52748.indb 150 2/6/08 2:26:31 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 166: Food Engineering Aspects of Baking Sweet Goods

Technology of Cake Production

atmediumspeedtoafoamthatissemifirminasecondbowl.Theseparatemixingin thetwobowlstakesabout10min.Thesugar–eggfoamisnextcombinedwiththecreamedmixtureofflourandshortening,andthenmilkisaddedinsmallincre-ments.Theblendingmixingmethodhastheadvantageofachievingaverythoroughshorteningdispersionthroughoutthebatterandproducinganextremelyfinegrainanduniformtextureinthecake,andthispermitstheuseofhighersugarandliquidlevelsthanispossiblewiththecreamingmethod.However,inadditiontotheusageoftwomixingbowls,thereisasomewhatlessamountofairincorporationwithafol-lowinglossinproductvolumeandamorepronouncedglutendevelopmentcausingperceptibletoughnessinthecakeinthistypeofmixing.

Inthesingle-stagecakemixingmethod,allofthemajoringredientsareputintothemixingbowlatonetimeandmixedintoahomogeneousmass.Thesingle-stagemixingmethodisusuallycomposedof1to3minofblendingtheingredientsintoahomogeneousmixturewithaflatbeateratlowspeed,followedby3to5minmixingatmediumspeedand2minfinalmixingatlowspeed—thetotalmixingtimeis8to10min.Incorporatingthebakingpowderisgenerallydoneduringthefinalmixingstage.

Inadditiontotheabovemixingmethods,severalothermixingproceduresareused.Accordingtoabattermixingmethod,allofthesugarandaboutonehalfits

fIgure. Cakebatterbeater.(Seecolorinsertafterp.158.)

fIgure. Cake batter whip.(Seecolorinsertafterp.158.)

52748.indb 151 2/6/08 2:26:32 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 167: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

weightofwaterareputinthebowlandmixedatmediumspeedforabout30sec.Then,emulsifier,shortening,flour,nonfatdrymilksolids,bakingpowder,andsaltare added, and mixing is continued for 5 min at medium speed. The remainingwater,eggs,andflavoringareaddedfinallyandmixedforanadditional1minatthelowspeed.Eitherleaveningamountshouldbedecreasedby25%orthewatershouldbeincreasedby15%becausethismethodpromotesgoodaeration.Cakesproducedwith thismixingmethodarestated todevelopabettercrustcolor,amore tendercrustwithlessindicationofundissolvedsugar,andgreatervolume.Thecakequalityimprovementmightbeduetotheinitialsolutionofthesugar.

The sugarandshorteningarecreamed together for2 to3min intoa smoothmassintheemulsionmixingmethod.Thismixingmethodisespeciallysuitedforlarge-volumecakemixers.Then,themilkisaddedinseveralportionswithcontinu-ousbeatingforabout5minatmediumspeed,andfollowingthis,theflourisaddedover2minandtheeggsareaddedandmixedforanadditional4to5min.Thetotalmixingtimeoftheemulsionmethodtakes12to15min.

Fluidcakeshorteningsimprovecakemixingefficiency.Thismightbeduetothegreatereaseofdispersionoffluidfatinboththedryandliquidbatteringredients,andpartlyduetoitsmoreeffectivelubricationofthemixingbowlwalls,reducingtheneedfortheirfrequentscrapingdown.Inaddition,inclusionofneweremulsifiertypesintheshorteningprovidesfasterairincorporationinthebatterandpermitsthereadyemulsificationofhigherlevelsofliquids.Allthementionedfactorscontributetoadecreaseinthemixingtimewithrespecttotherequirementsinthecaseofplas-ticshorteningusage.

... foamCakeMixing

Thestructureandvolumeoffoamcakesaredependentontheabilityofeggsintheformulationtooccludeairandtoformstablefoams.Aseggwhiteisbeaten,airisincorporated,andtheaircellsbecomesmallerinanincreasingmannerasbeatingiscontinued.Theeggfoamstabilityisdependentonthebeatingtime,withmorestablefoamsbeingformedasthetimeisextended.Thebeatingtimeisaffectedbythebeat-ingconditions,suchaseggtemperature,beatertype(whetherofthewirewhiporthebladebeatertype),beatingspeed,andsugaradditiontime.

Themixingofspongecakebattersmaybeconductedinseveralways.Some-times,peopleprefertoseparatethewhitesandyolksofeggsandwhipthemsepa-ratelywithaportionofthesugartothedesireddensitypriortotherecombinationof them.Thepurposeof thisapproach is toobtainmaximumbattervolume.Thebeatingofeggs(tempered toa temperatureofabout26.7°C)withawirewhiporbladebeateratmediumspeedisthemostcommonprocedure.Sugarmaybeaddedattheoutsetofmixingorinaslowstreamduringbeatinginordertocounteractthetendencyofwhitestooverwhip.Aftertheeggfoamattainstheproperdensity,theflour and the liquid are folded in as lightly aspossible toprevent foamstructurebreakdown.Fatmustbeaddedatthefinalmixingstageinordertominimizethelossinvolumeinshortspongecakes.

52748.indb 152 2/6/08 2:26:32 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 168: Food Engineering Aspects of Baking Sweet Goods

Technology of Cake Production

7.2.2 CakemixinGmaChines

Therearemanytypesofequipmentforthepurposeofcakemixing.Thesearehori-zontalmixers,verticalmixers,Mortonpressurewhisk,Tonellimixingsystem,Oakescontinuousmixer,Mondomixcontinuousaeratingequipment,OakesandStrahmannmixersforpastes,high-speedmixers,TweedymixerandMono,Cresta,Stephan,andGilbert(Bennionand Bamford1997).

... horizontalMixers

Horizontalmixersareofverystrongconstruction,andthetroughsofthistypeofmixeraresoarrangedthattheingredientscanbereadilyputinanddischarged.Thebeatersaredesignedformixturescontainingbutterorshortening,mixingintothemassofanyingredientsorfruitwithoutdamage.Anautomaticsafetylidisfittedtothemachineaspartofthestandarddesigninordertoavoidthemachinebeingopenedwhileinmotion.Twospeedsareavailableinhorizontalmixers,highspeedformixingthelightbatterandslowspeedformixingtheflour,fruits,andsoforth.

... verticalMixers

Vertical mixers have been developed for all mixing types in the bakery (dough,batters,andspongesandfoams).Threeorfourspeedsareavailable,changinggearis easy, and automatic timing devices are also fitted. The bowls of vertical mix-ers are safe during the time the machine is used, and they can be detached andremovedfromthemachineeasilyeitherbyplacingonanappropriatetrolleyorbymanhandling.Theequipmentisfittedwithwhisksforspongework,withbeatersforcakebattersanddoughhooksforbreadorbundoughorforpastry.Thebeatersandwhisksrevolveinaplanetarymotioninordertoscrapethesidesandthebottomofthebowl.Anautomaticscrapingapparatusisprovidedinsomemodelsinordertokeepthesidesofthebowlcleanduringthemixingprocess.Variable-speedmotorsarefittedinsomemodelstoeliminatethegearbox,whereasothermodelshavethree-speed,constant-mesh,preselectivegearboxeswithcompleteautomaticlubrication.

... MortonPressureWhisk

Thismixertypewasusedalmostuniversallyforlarge-scaleproductionofspongegoodsuntiltheintroductionofcontinuousmixing.Ithasbeenreplacednowinmod-ernproductionplants.However,itisstillusedasapremixerlinkedtothecontinuousmixer.Thismixertypeisstillusedinsemiautomaticplantsforspongework.IthasaMortonwhisk in thecentercontainerand twohoppers,oneateachside,wheretheeggsandsugararefedintothemixingcompartment.Twohoppersarepresentinordertopreventthewettingofsugarandhencepreventastoppageinthehopper.Thelarger-scaleequipmentismotordriven,andthereisanaircompressor.Itisnotrequiredtoremovetheliduntiltheendofthedaywiththismixertype.Thecompres-sorhasanautomaticregulatorbeingsetandlockedinordertoensurethatthepres-surewillnotincreaseabovethatneededtoworktheequipment.Asafetyvalveontheairreceiverandaspecialtypeofsafetycockonthemachinearealsofitted.Forobservingtheworkingpressure,pressuregaugesarefittedonallmachines.There

52748.indb 153 2/6/08 2:26:33 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 169: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

isapiston-typeejectoratthebottomofthecontainersothattheairpressureinthecontainerejectsthebatterintoabowlormixingmachineasneededwhenthevalveisopened.ByusingaMortonpressurewhisk,aspongebattercanbeproducedin3mininsteadoffrom15to30min,andthespongeobtainedhasaveryfine,eventextureofgreatuniformity(Bennionand Bamford1997).

... tonelliMixingsystem

TheTonellimixingsystem,whichisnotacontinuoussystem,isstatedtobethefirstbatch system to integrate completelywithbulk systemsandprogrammablecontrol. It isauniquemixingsystemusinga twin-toolvariable-speedplanetarymixing action said to be able to cut mixing times up to 75%. A constant bowlscrapercanbeinvolvedinthismixingsystem,anditcanmixcreams,cakebatters,anddoughwithsuitablechangeofmixingtools.Thesealedmixingbowlpermitsmixingunderpressure,andajacketedbowlisavailableforcoolingorchillingdur-ingmixing.Manymixingtoolsareavailablefromvariouswhisktypesforcreamsandfoams, lightandheavybatters, inadditionto thetoolsforpie,shortpastry,andcookies.

... oakesContinuousMixer

Oakescontinuousmixersareusedfortheproductionofalltypesofconfectionery.Themixingheadistheoperationalpartofthemachine,andtheingredientsarefedintheformofliquidbattercontinuouslywithanairstreamintothebackstatorofthemixingheadwheretheythenfollowinradialdirectionoutwardtotheperiphery,andthenflowinradialdirectioninwardalongthefrontstatorpriortobeingdischargedthroughtheoutlet.Therotorspeedandthedistributionofteetharearrangedinawaythatgivestheoptimumintensityforaparticularproduct.Apressure-regulatingvalveislocatedattheoutletenablingthepressureinthemixingheadtoberegu-lated toensure that theairbubblesare incorporatedcompletelywithin the liquidbatterbefore themixture is released through thedeliverypipe.Themixingheadisequippedwithcoolingjackets;however,thetemperatureincreaserarelyexceeds−16.7 to −16.1°C due to the fact that the material is only in the mixing head forseconds.Themixingdegreeattainedproducesacompletelyhomogeneousproductwheretheairisdisperseduniformly;hence,thefinishedproducthasuniformcellstructureandtextureandgoodkeepingqualities.Theoperationmethodgenerallyusedinmixingcakebatteriscomposedofdumpingalltheingredients(wetanddry)intothebowlofabatchmixer,mixingfor1to3mintodispersethematerialswithintheliquidbatteruniformly,andtransferringittoaholdingtankthatisadjacenttothemixer.Bygravity,theliquidbatterflowsfromtheholdingtanktotheproductpumpsuctiononthemixer,andthisdeliversthematerialthroughapipelinetothemixingheadunderpressureandthentothedepositor.Itispossibletocontrolthespeedoftherotor,speedofthepump,backpressure,theamountofair,andthethroughputofthemixing(Bennionand Bamford1997).

52748.indb 154 2/6/08 2:26:33 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 170: Food Engineering Aspects of Baking Sweet Goods

Technology of Cake Production

... MondomixContinuousaerator

AdosedamountofairisinjectedontheinputsideofthemixingheadofMondomix.Therotorandstatorpinsthencuttheproductandtheairunderconstantpressureuntilahomogeneousmixtureisobtained.Amassairflowmetercombinedwithanautomaticairdosingsystemmakes thefoamdensityremainconstant.Mondomixsupplycompleteproductionunitsincludingmanifolds,rotatingandstaticextruders,depositors,andallotherequipment.

... othertypesofMixers

OakesandStrahmanncontinuousbreadmixingequipmentisusedforthecontinu-ousproductionofshortpasteforpiesandtarts(Bennionand Bamford1997).

High-speedmixerswereoriginallyintroducedforbreaddoughmixingpurposes,butwerethenadaptedforuseinmixingcakebattersandpastes(Bayliss1967).

TheTweedymixerhasbeenadaptedforallcake-makingtypes.Alloftheingre-dientsareputinthemixingbowlatonce,andmixingiscompletedinvarioustimesdependingonthetypeoftheproduct(e.g.,mixingiscompletedin1minforslabcakes,whereasin3.5minforangelcake).Inaddition,whentheTweedymixerisused,novacuumisneededincakeprocessing.

TheMonomultipurposemachine,Crestamachine,andStephan(forsmallermix-ing)machinearesimilarequipmenttotheTweedymachine.TheGilbertmachine,whichisanultra-high-speedmixer,differsinasmuchasthebowlsareremovableandtransferable.Alltypesofgoodscanbemixedwithouttheneedtochangebeaters.

. dePosItors

Cakebatter shouldbedeposited into cakepans andconveyed to theovenwith aminimumtimeloss.Thisisduetothefactthattheleaveningagents,havingenteredintosolutionduringmixing,begintointeractandevolvecarbondioxidegas.Inmorefluidbatters,carbondioxidegastendstoriseupwardwiththesmallbubblescoalesc-ingintheprocessintolargercellshavinggreaterbuoyancy.Thereisaninevitablecarbondioxidegasescapefromthebatterwhilerestingintheopenhopperofthedepositor,aswellasacoarseningofthecellstructurewiththepassageoftime.Thisaerationlossandassociateddetrimentaleffectsareavoidedwithdepositors.

There is a wide range of equipment for the purpose of depositing accuratelypredeterminedquantitiesofmixes(Bennionand Bamford1997).

7.3.1 CoPelanddePosiTor

TheCopelanddepositorhandlesanymixexitingfreelyfromthehopperundertheeffectofsuctionfromthedepositorplunger.Itispossibletodepositawiderangeofmixesfromlightspongetoheavyfruitcake.Thisdepositortypeinvolvesahopperanddepositingheadarrangedtogivealiftmotiontobreakthedeposit.Theheadcanbestationaryifthereisawirecut-offalternatively.Sheetsortinsaretransportedtoapositionunderthedepositingheadbyanintermittentchainconveyor,andthere

52748.indb 155 2/6/08 2:26:33 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 171: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

isfasthandwheelchangeoverontheconveyorwhenchangingfromonepansizetoanother(Bayliss1967).

7.3.2 monoeleCTroniCdePosiTor

Monoelectronicdepositorsareveryflexibleandpopular,andtheyareideallyappro-priateformanysingleandmixedapplications.Therecipe,mixingmethod,sizeoftemplate,andspeedofdepositareseveralfactorsaffectingtheminimumdeposit.Alloftheelectronicsofthisdepositortypearemicroprocessorcontrolled,andaninstantprogramchangecanbedonewithasimpletwo-digitcodeforeachproduct.Avarietyoftemplatesareavailableinvariousconfigurationsfromtwototennozzles.Therearealsoclusterandnoveltyheads,andaheatedhopper isused inorder tomaintainoptimumtemperaturesoffondantandicings.

. CaKeBaKIng

Bakingisprobablythemostimportantfactorgoverningthequalityofthefinalcakeproduct. Incorrectbakingcanoffset theeffectofall theother factors likecorrectformulations,goodrawmaterials,andcorrectprocessingmethods.Allofthecakesshouldbebakedatasuitabletemperature,consistentwiththenatureoftheingredi-entsandtheshapeandsizeofthecakes.Aleanmixinghavingfewenrichingagentsshouldbebakedatamuchhighertemperaturethanamixveryrichinfats,sugars,fruits, and syrups.Anoven that is toohot causeshigh crust color, small volume,peakedtops,closeorirregularcrumb,andprobablyallthefaultsbecauseofunder-baking.Ontheotherhand,anoventhatistoocoldcausespoorcrustcolor,largevol-ume,andoftenweakcrumb.Theoptimumcake-bakingconditionsaredeterminedbyseveralfactorssuchaslevelofsweetenerintheformulation,milkamountinthebat-ter,batterfluidity,pansize,andsoforth.Batterswithhighsugarcontentneedlowerbakingtemperaturesthanleanerformulations.Largecakesrequirelowerbakingtem-peraturesand,hence,longerbakingtimes.Thebakingtimeisinverselyrelatedtothebaking temperature.Baking timeshouldnotbeextendedbeyond the limitneededto ensure a thorough bake, because otherwise, the evaporative losses will exceedacceptednorms,andtheshelflifeofthecakewillbeimpaired(Pyler1988).

7.4.1 small-sCaleCakeProduCTion

Small-scalecakeproductionworksonthebasisofthebakingofcakesrequiringthehighest temperature first, working through to those requiring lower temperaturesandlongertimeattheendoftheday’srun.Thisapproachcomesfromthedayswhenlargecoke-orcoal-firedbrickovenswerecommonlyused.Theseovenswerenotsoflexible;however,theywereveryreliableandmanybakeryproductswerebakedbyresidualheatonafallingtemperature.Thisisstillidealformanycaketypes(Ben-nionand Bamford1997).

52748.indb 156 2/6/08 2:26:33 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 172: Food Engineering Aspects of Baking Sweet Goods

Technology of Cake Production

7.4.2 larGe-sCaleCakeProduCTion

Arranging output in such a way as to allow long runs of a single product is thetendencyoflarge-scaleproductionoftoday,whichmakesforhigherefficiencyandbetter control of the oven. Many big manufacturers still require a multipurposeplant;hence,ovenscontendingwithamixedrangeofproductshavevariablebakingrequirements(Bennionand Bamford1997).

Large-orsmall-scalecakeproductionneedsmaximumovenusage,andbatchesandproductionrunsshouldbeofsuchasizetoachievethisifitistobeeconomical.Ahalf-emptyovenoranovennotinuseforlongtimeperiodsisveryuneconomical,andfurthermore,thebakingofcakesisbetterwhentheovenisfull.

. CoolIng

Coolingiscrucialincakeproductionintermsofthefinaltextureandappearanceoftheproducts.

Automaticcoolersmaybeemployedinsomecakeproduction.Automaticcool-ersaretravelingcoolersandcanbebuilttohaveeitheroneortwoswingssuspendedfromchains,andtheyaredrivenbyasmallmotorincorporatingavariable-speeddevicefortheregulationofcoolingtimesfordifferentproducttypes.Outputdependsonthecoolersize.Naturaloropenaircoolingisgenerallyused.Ontheotherhand,conditionedaircanbeusedifthecoolerhasatotallyenclosedmainstructure.Cool-ersarevaluableforcakeswhenbakedontrays,becausecoolersenabletheproductstocooloffpriortofinishingandpackaging,andhencetheyeliminatecongestioninthebakery.Moreover,coolersreducethewearofthebakingfloor.Inaddition,cool-ersdonotneedtohavethefeedandthedeliverypointsatthesamelevel.Actually,thecakescanbeplacedinthecooleronanyfloorwheretheovensmaybelocatedanddeliveredatthegroundfloororsuitablelevelofthedispatchdepartment.

. PaCKagIngandWraPPIngeQuIPMent

Mechanicalwrappingmethodshavebeenimprovedwiththeadvancestakingplaceinthesaleofprepackedcakes.ForgroveBW6andBW-6PuniversaloverwrappingmachinesandtheForgrove84-Harethemostpopularwrappingmachinesusedincakeproduction.TheBW6andBW-6Pare simple, adjustable equipment and aresuitableforawiderangeofcakesandcartonsofcakes.Theprinciplepropertyistheself-measuringpaperfeed,givingsubstantialsavingsinwrappingmaterials.Inthe84-Hmodel,thewrappingmaterialisformedintoatubearoundthearticleinsidea folding box. Then, rotary crimpers form the cross seals, and the packages areseparatedbyintegralknives.Thiswrappingequipmentisversatileandusesawiderangeofwrappingmaterialswithspecialattachmentsforsealing,printing,andtypecoding,anditcanwrapfrom40to100packagesperminutedependingonthecaketype(Bennionand Bamford1997).

52748.indb 157 2/6/08 2:26:34 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 173: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

referenCes

Bayliss,E.A.1967.Automaticcakeproduction.ASBEConferenceProceedings,Nov.17–25.Bennion,E.B.andG.S.T.Bamford.1997.The Technology of Cake Making.London:Blackie

AcademicandProfessional.Desrosier,N.W.1977. Elements of Food Technology.Westport,CT:AVI.Pyler,E.J.1988.Baking Science and Technology Volume II.Meriam,KansasCity:Sosland

PublishingCompany.

52748.indb 158 2/6/08 2:26:34 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 174: Food Engineering Aspects of Baking Sweet Goods

8 Technology of Cookie Production

Suzan Tireki

Contents

8.1 Introduction................................................................................................. 1598.2 ProductionProcesses.................................................................................. 159

8.2.1 Dough-MakingProcessandMixers................................................ 1598.2.1.1 Dough-MakingProcess...................................................... 1608.2.1.2 Mixers................................................................................. 162

8.2.2 ProcessingandShaping................................................................... 1638.2.3 Baking.............................................................................................. 165

8.2.3.1 BakingPrinciples............................................................... 1658.2.3.2 ChangesinDoughduringBaking...................................... 1668.2.3.3 Ovens.................................................................................. 168

8.2.4 Cooling............................................................................................. 1708.2.5 PackagingProcessandEquipment.................................................. 170

References.............................................................................................................. 172

. IntroduCtIon

Cookies(Figure8.1)maybedefinedassmallcake-likeproductsfromadoughorbatter made from raw materials such as flour, fat, sugar, milk, eggs, salt, starch,cocoa,leaveningagents,emulsifier,andessences,whichisviscousenoughtoallowthepiecesofdoughtobebakedonaflatsurface.Theycomeinaninfinitevarietyofsizes,shapes,texture,composition,tenderness,tastes,andcolors(Pyler1988).AgeneralflowdiagramofcookieproductionisshowninFigure8.2.

Explained in this chapter will be different cookie-dough-making methods,mixertypes,doughprocessing,bakingandovens,coolingofcookies,andtheprod-uctpackagingprocess.

. ProduCtIonProCesses

8.2.1 douGh-makinGProCessandmixers

Cookies are generally categorized according to the equipment used in their pro-ductionascutting-machinecookies,rotary-moldedcookies,wire-cutcookies,bar-machinecookies,anddepositedcookies(Desrosier1977).

Theequipment typeused limits therheologicalqualitiesofdoughandhencethecomposition.

52748.indb 159 2/6/08 2:26:35 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 175: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

... dough-MakingProcess

Thedough-makingprocessdependson the typeof thedough.The fat and sugarcontentsofcutting-machinedougharelow,buttheirwatercontentishigh.Astheformationof theglutennetwork isdesired in cutting-machinedough, themixingdurationislong.Themixingperiodcanbereducedbyusingsodiummetabisulfiteoracommercialprotease.Duringmixing,theproteininflourcontactswithwaterandinthefollowingstepsittakestimefortheproteintoabsorbwaterandswell.Ifmixingiscontinued,theproteincontainingwaterformsathree-dimensionalglutennetwork.Forcutting-machinedough,alltheingredientsareputintothemixeratthesametime,andthedurationofmixingislongasstatedbeforebecauseformationofaglutennetworkisdesired.Thesugarshouldbedissolvedbythewaterinthedough.Otherwise,thesugarcrystalscaramelizeduringbaking,causingbrownspots.Thetemperatureofthedoughisimportantintermsofthefatused.Athightemperatures,fatmeltsanddoughbecomesfatty.Doughshouldbeplastic,and theshapegivenshouldbemaintained.

Inrotary-moldeddoughs,theamountofsugarandfatishigh,andtheamountofwaterislow(sugar:20to45%,fat:10to40%,water:5to15for100%flour[flourweightbasis]).Thiskindofdoughcanbecrumbledeasily,thematurityofglutenisundesired,andhencemixingdurationisless.Therearetwostepsinrotary-moldeddoughpreparation:

1.Creaming(premix)step 2.Additionofflour

In thecreamingstep,all ingredientsexceptflouraremixedandconverted tocream.Thecreamingstepshouldbeprolongedasmuchaspossible,whichplaysacrucialroleinthedensityofdough.Thesecondstepofdoughpreparation,theaddi-tionofflour,takesashorttimeasformationofaglutennetworkshouldbeprevented.Ifthedurationofmixingislonger,glutennetworkformationstartsandthedough

fIgure. Cookies. (Seecolor insertafterp.158.)

fIgure. Cookieproductionflowdiagram.

BAKING

COOLING

PACKAGING

PROCESSING&

SHAPING

DOUGH MAKING

FAT SUGAROTHER INGREDIENTSFLOUR

52748.indb 160 2/6/08 2:26:35 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 176: Food Engineering Aspects of Baking Sweet Goods

Technology of Cookie Production

willgainelasticity.Asaconsequence,areductioninvolumewillbeseenindoughduringleavingofthemolds.Inthecreamingstep,sugarisdissolvedandfatissoft-ened,sotheysurroundtheproteinmoleculesinflourandthispreventstheinterac-tionwithwater,andtherefore,theformationofaglutennetworkismoredifficultandslow.Fatisthemostimportantinputbecauseitbindstheingredientsinrotary-typedoughs.Unlessthedoughismixedenough,itcannotbeshapedandexitfromthemoldwillbedifficult.

Thecompositionofwire-cutcookiescanbevariedoverawiderrangeintermsofformulationandfinalshapethananyothertype.Inthesedoughs,itisrequiredtohavethematerialcohesiveenoughtoholdtogetherasitisextrudedthroughanorifice,butitmustnotbestickyanditmustbesufficientlyshortsothatitseparatescleanlyas it iscutbywire(Pyler1988).Wire-cutcookiedough is fattyandsoft.Itswatercontentishighandcrystalsugarisgenerallyusedforthistypeofcookiedough.Thedevelopmentofgluten isavoidedstrictly,and thedough ismixedforabout2.5to6min.Waferdoughscanbeincludedinthewire-cutvarieties.Waferdoughshaveverylowfatandsugarcontent.Waferdoughisafluiddoughhavingemulsionpropertieswithhighwatercontent.Itcontainsabout35to40%drymateri-alsand90%ofthedrymaterialsconsistofflour.Themainfunctionofthemixingprocess is to obtain a homogeneous mixture. Gluten development and formationofathread-likestructurearenotpermittedinwaferdough.Themixingperiodisabout5min.Ifthread-likestructuresareseen,thedoughisnotpumped,asitcauseschoking,andthedoughdoesnotspreadonthewafermoldwell.Thetemperatureisasimportantastheamountofwateradded.Ifthetemperatureofwaterishigh,themoistureproblemcomesout.

Abar-machinecookieisarelativelyrich,highlyflavoredsoftcookie-typeprod-uctthatisprocessedinasimilarmannertothatofwire-cutcookiesexceptthatbar-typecookiesareofrathersoftdough.

Thebattersofdepositedcookiesareverysoftandlackingcohesiveness.Cream-ingupfat(orotherfats)withthesugar,eggs,milk,andwaterandaddingtheflourlaterwithquiteashortermixingtime(toachievehomogeneity)isusuallybest.Thetemperatureofthedoughiscrucialinordertomaintainrequiredorhigherconsis-tencyandcorrectdispersionoffat.Coolingtheflourmaybeneeded,andanywaterormilkusedshouldbeverycold.Atemperaturerangeof10to16°Cshouldbeaimedatfor thedough.Inaddition to theminimumamountofwater,minimummixingwithflourisalsorequiredbecauseofthefactthatthetoughdoughmustbeavoided(Manley2000).

Flourstrength,producttype,machinabilityofdough,doughtemperature,mixerspeed,andbatchsizearethemostimportantfactorsaffectingthemixingtimeforallofthecookietypes.Theingredientsthatareintendedtobepresentinthefinishedproductasvisiblepieceslikenuts,raisins,andchocolatebitsshouldbeaddedattheendofthemixingcycleandblendedatslowspeedfortheminimumtimeconsistentwithenoughdistributionthroughoutthedough.Althoughdoughsthataretoocoldcancausemachiningdifficulties,hightemperaturedevelopedduringmixingistheusualproblem.Inanycase,uniformtemperaturesarecrucialformakinguniformcookies as dough temperature affects spread, texture, and surface appearance of

52748.indb 161 2/6/08 2:26:36 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 177: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

thecookie.Thetemperatureshouldbebelowtheupperlimitoftheplasticrangeofshorteningforthebestresults.

... Mixers

Mixingorblendingcanbeperformedbymanydifferenttypesofequipment,butallofthemrelyononeormoreofthefollowing;

1.Pushingpartsofthemixturethroughotherpartsbyblades,paddles,helicalmetalribbons,etc.

2.Elevatinganddroppingallorapartofabatchsothatrandomreboundingofindividualparticlesresultsinredistributionoftheparticles

3.Gasorliquidinjectingcurrentsintoanonuniformmaterialbodyinordertocreateturbulentmovementofparticles.

Cookiedoughispreparedwiththehelpofbigmixers.Mixerscanbeclassifiedashorizontal-fixedbowlandtiltingbowl(highspeed,lowspeed),vertical,reciprocat-ingagitator,andcontinuous(agitator-in-tube,rotorandstatorheads).

Horizontal mixers are useful for a wide variety of doughs from sugar waferbatterstoextremelytoughordrydough.Whenglutendevelopmentisrequired,thismixertypeisessential,becauseverticalmixersaretooinefficientandslowforthispurposeandspindlemixerslackthecorrectkindofaction.

Fordischargingthedough,twomethodsareemployed.Thebowlcanbetiltedandhencethetopisbroughttoaforward-facingpositioninsomemodels.Inothermodels,thereisatightlyfittingdooratthefrontofthebowlthatcanberaisedandloweredindependentoftheimmobilesectionofthebowl.

Mixerbowlsaregenerally jacketedanda refrigerantcanbecirculated in thejackets.Somejacketsareequippedinordertousedirectexpansionofcoolingrefrig-erant like Freon-12 or ammonia, others use cooling liquid like propylene glycol,brine,andwater.

Therearevariousformsofagitators.Onesetoftwo,three,andfourcylindri-calbars,paralleltothefrontofthemixer,maybemountedonspidersconnectedtotheaxlesatthepointwheretheyenterthejacketinthehigh-speedmixersthataredesignedfordevelopinggluten.Thesearmsmaybeattachedbybearingsinordertomakethemrotate,ortheymaybeaffixedinarigidmanner.Thedoughmassisstretchedrepeatedlyandkneadedinasingledirectionsothatglutenfiberstendtobeorientedandthedoughdevelopsduetothelimitedclearanceofthejacketwall.Slow-speedhorizontalmixershavevariousformsofagitatorsandmaybeequippedwithoneortwosetsofaxles.Themixerarmconfigurationandthespeedaffecttheaction.Forstifferdoughs,double-armedmixersareused;however,theymayrequireheaviermotorsanddrives.

Theuseofmovablebowlsortroughsistheunifyingfeatureofverticalmixers.Theotherpropertiesmaybequitediverse.Theremaybeoneormorebeatershaftsthatmaybestationaryormoveinaplanetarydesign.Inaddition,agitatordesigncanbevaried.

52748.indb 162 2/6/08 2:26:36 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 178: Food Engineering Aspects of Baking Sweet Goods

Technology of Cookie Production

Theagitatormovementisdescribedasplanetarybecauseitrevolvesarounditsownverticalaxisatrelativelyhighspeedand,atthesametime,theaxisalsomovesincirclesasitisrotatedaroundthebowl.Thesecombinedmovementsguaranteethatthemixerbowlatthebottomcenterisraised.

Spindlemixersaremostoftenusedforcrackerdough,althoughtheycanalsobeusedforcookiedough.Theyhavefewadvantagesforcookiedough.Themainadvan-tageforsaltinedoughisduetoitsadaptationtomixinginthespecialtroughthatismobileforfermentingsponges.Duetothispurpose,doughandspongesdonothavetobetransferredinandoutofthemixerandtroughbetweenthevariousstages.

Inreciprocatingagitatormixers,apairofagitatorarmsmovesthroughintersect-ingelliptical-shapedpathsinashallowandslowlyrevolvingbowl.Temperaturescanbeheldnearroomtemperaturewithouttheuseofbowljacketsduetotherelativelyslowrateofenergyinput.Ifanintensiveblendingactionisnotneeded,thesetypesofmixersareusefulinmixingtemperature-sensitivedough.Forequivalenttimes,adjunctbreakdownislessinthesetypesofmixersthaninanyothertypes.

Theingredientsmustbemeteredoutofabulksupplyandfedatasetrateintothemixingzoneinacontinuousmannerfora(timed)continuousmixingsystem.Airoranothergasmaybeoneofthecomponents.Batchpremixesareusedbymanysetups.Singleormultipleunitsmaybeused.Forcakebatters, themixerscomposedofahigh-speeddisc-shapedrotorintermeshingwithdisc-shapedstatorsareusedwidely,andthisequipmenthasbeenadaptedforuseoncookies.Continuousmixingwouldbepossibleforstiffmixtures,yetadifferentkindwouldberequired.

TheOakescontinuousautomaticmixercanbeused formixingwaferdough,batters,andmarshmallow.Themixingchamber iscomposedofa rear stator, therotor,andthefrontstatorandthetwostatorsareboltedtogetherandsupportedontheframe.Theyarefurnishedwithbladesprojectingintothechamber,andtherotorfitsbetweenthestatorsandismountedonarevolvingshaft.Bladesontherotormeshwiththebladesonthestators,andthespeedcanbevariedoverawiderange.

Incontinuousmixers, theproducts tobemixedareforced into theheadbyapositivedisplacementpumpthroughanorificeatthecenteroftherearstator.Theproductsthenflowbetweenthebladesoftherearstatorandtherotortotheoutercircumferenceofthestatorcavity.Themixtureflowsbetweenthebladesofthefrontstatorand the rotor to thedischargevent locatedat thecenterof the front stator.Controls,motorandgeartrain,powersupply,andthenecessarypumpsandpipingaretheremainingpartsofthemixer.Fortemperaturecontrol,themixerheadcanbejacketed.Therevolvingelementimpartsintensesheartothecomponentsofthemixture, creating a turbulence thatquicklymixes them.Gas canbedispersed inliquidsreadily.

8.2.2 ProCessinGandshaPinG

Rotarydoughshouldbegiventothemachineregularlyinordertopreventaccumula-tionattheendscausingdryingofthedough.Rotarydoughisprocessedbytheuseofmoldsindentedtotheinside.Metalcylinder,moldcylinder,andrubbercylindershouldbeparalleltoeachotherinallaxes.Theprocedureappliedbythemoldcylin-dertotherubbercylindershouldbesufficientforthecookiestostickontheinfinite

52748.indb 163 2/6/08 2:26:36 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 179: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

cloth.Otherwise,wearingoccursonthemoldandrubbercylinderandhenceshapedisorderscanbeseenonthecookies.

Themost importantstep inprocessingcutting-machinedoughis the thinningofdough.Thereshouldbemorethanonethinnercylinder.Ifdoughisnotpassedthrough twoor three thinningcylinders,hardening in thedoughconsistencyandproductionofdefectivecookiesareobserved.

Afterleavingthesqueezingcylinder,thedoughispassedthroughtwoorthreethinningcylindersinordertoobtainathinlayerofthedough.Whenthisprocessisfinished,thedoughisconvertedintotwotosixfoldsandpassedthroughtwoorthreecylindersagain.Thisprocessiscalledlamination.

Theaimsoflaminatingaretoprovideawaytorepairapoordoughsheettendingtobepreparedwithasimplepairofrolls;toturnthefoldeddoughthroughwithanangleof90°inordertomakethestressesmoreuniformintwodirections;toworkongluten,makingitmoresuitableforbakingwithrolling,folding,andfollowingmorerolling;andtomakeaflakystructureafterbakingwiththeadditionofanothermaterialsuchasfatbetweenlayersofdough.

Averticallaminatorwithacontinuouslapperandaone-sheeter,verticallamina-torwithacontinuouslapperandtwosheeters,horizontallaminators,andcut-sheetlaminatorsarethetypesofautomaticlaminators(Manley2000).

Moldsthatareindentedoutwardsareusedforcutting-machinedoughs.Doughsgetthedesiredshapebetweenthemoldandtherubbercylinder.Crumbeddoughisreturnedbacktothesqueezingcylinderbymechanicalways.

Infiniteclothisthefirstclothafterthemold.Cookiessticktoiteasily,anditisimpossibletotakesamplesfromhere.Thestickingisprovidedbyapplyingvaportothecookies.

Dough for processing on deposit, wire-cut, and bar machines varies in thedegreesofsoftness,whichare

1.Verysoft:Abatterneedstobedepositeddirectlyontothesteelovenbandinvariably.Awire-meshovenbandisnotsuitableforbakingdepositgoods(depositmachine).

2.Softandusuallysticky:Needstobeextrudedandcutbyatautwirepriortobeingdroppedontoacanvasbeltcarryingthedoughpiecestotheovenband.Directcutontotheovenbandisusedinsomecases(wire-cutmachine).

3.Fairlysoftbutstifferthantheseconddegreeofsoftness:Extrudedinend-lessstripscutintosuitablelengthswithareciprocatingguillotine,onacan-vasbeltconveyingtotheovenband(barmachineorroutpressmachine).

Inadepositmachine,whichextrudesbatterintermittentlyfromahopperthroughshapednozzles,itisnecessarytohaveacut-offmechanismthatisincorporatedinthefeedhoppertoensureacontrolledflowanddeposit,becausetheverysoftdoughhasafairlyviscousmovementwithitsowngravitationalflowduetoitsrelativelyhighliq-uidcontent.Thedepositnozzlesareconnectedtothefeedhopperoutletswithflexibletubes,henceallowingapatterneddeposittobemadeinsometypesofdepositors.

Wire-cut machines are more complex when compared with deposit and barmachines,astheyinvolveadevicecuttingoffextrudeddoughpiecesemergingfrom

52748.indb 164 2/6/08 2:26:37 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 180: Food Engineering Aspects of Baking Sweet Goods

Technology of Cookie Production

thedieorifice,andacut-offdeviceiscomposedofabladeorawiredrawnthroughthedoughfastbyaharpmovingbackandforthbelowtheorifice.Doughisfedtothehoppermanuallyorbygravityfromaholdingtrough.Verticalseparatorplatescanbeinsertedinthehopperinordertomakethefeedingoftwoormorecolorsorflavorspossibleatthesametime.Forauniformpressureandconstantextrusionrate,itiscrucialtokeepthefeedratesteadyandtomaintainhoppercontentsataboutthesameheightatalltimesasinitialsteps.Hoppersarejacketedandwarmairorwateriscirculated for the improvementofextrusion rateuniformity.Hoppers’endsarecurvedinordertodecreasethedoughtendencyofstagnatinginthisarea.Maintain-inguniformweightandsizeinthefinishedcookiesdependsonthepropertiesoftherollerspressingdoughthroughthediecups.Thedelaybetweenmixingandforminginfluencesthecookiedoughresponsetoforming.Itisimportanttoprocessbatchesquickly,andtoformauniformscheduleandfollowitinordertoavoidnoticeabledifferencesinsize,weight,andappearanceofthefinishedproduct.

Asthereisnoneedtoseparatethedoughintocookie-sizepartsattheextruder,barmachineshaveasimpleformingmethod.Continuousstringsordoughstripsontotheovenbandaredirectlyextrudedbybarmachines.Thesebandscanbeseparatedintoindividualbarspriortoorafterbakingwithusualcuttingdevices.Whenthedieplateisinclinedintheextrusiondirection,theribbonissupportedforalongertime.Thisdecreasesbreakingorthinningofthedoughstrandbecauseofthegravitationalpull.Dieorificesofbarmachinesaregenerallywithstraight lower-edgeslots forgivingaflatbottomtothecookieandwithgroovedtop-edgeslotsforgivingaribbeduppersurfacetothecookie.

8.2.3 BakinG

... BakingPrinciples

Cookingcanbedescribedas theartofpreparing foodsbyheatinguntil theyarechangedinflavor,appearance,tenderness,andchemicalcomposition.Bakingisaformofcookingperformedinanoven(Desrosier1977).

Everybakingprocessdependsonheattransferfromonebodytoanotherinthedirectionfromhottocold.Therearethreemodesofheattransfer:conduction(insolidsor liquidsatrest),convection(in liquidsorgases inastateofmotion),andradiation(whichdoesnotinvolveamaterialcarrier).Inadditiontotheovendesign,theconformationofthedoughpieces,size,shape,andcontainerconstructionmate-rials,pan,orband,anddoughpiecesdistributiononthehearthaffect therelativeeffectivenessoftheseheattransfermodes.

Conductionentailsadirectclosecontactbetweentheheatsourceandthemate-rialbeingheated.Ifthedoughisbakedinabandoven,heatconductiontothedoughoccursonly through theband.Theband receives its energy store fromheat con-ductedthroughthesupportswhereitridesandfromconvectionandradiation.Dueto the localizednatureofconductive transfer, steep temperaturegradientscanbesetupwithinthedoughpiece,thehottestregionsbeingtheonescontactingwiththebandorpan.

Convectioninvolvesheattransferbyeitherfluidsorgasesinastateofmotion.Ahotbodygivesupsomeofitsheatandhenceincreasesthetemperatureofthegas-

52748.indb 165 2/6/08 2:26:37 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 181: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

eousmediaaroundit.Ifthisheatedgaseousmediaflowsaroundacoldobject,heatwillbeabsorbedbythecoldobject.Thetopandsidesurfacesofanovenbecomehotandthusheatuptheovenatmosphere,whichinturngivesupsomeofitsheattoadoughpiece.Moleculesofairgases,watervapor,orcombustiongasescirculatethroughout theoven,constantlymixingwithothergasesand transferringheatbyconductionwhentheycontactwithsolidsurfacesintheovenchamber.Convectionoccursduetothemovementofwatervaporandothergaseswithinthedoughpiece.Inaddition,translocationofliquidwater,meltedshortening,andotherliquidscausesheattobetransferredfromoneregionofthedoughtoanother.Theconvectionmodeofheattransfercanbegeneralizedasasmoothingoreveningeffectonheatdistribu-tionwithinthedoughpiece.

Heattransferbyinfraredradiationisasignificantfactorinmostovens.Theseradiationsareconvertedintoheatthroughabsorptionbyandinteractionwithabsorb-ingmaterials;theyarenotinthemselvesheat.Theradiationmodeofheattransferhastwopropertiesmakingitsactiondifferentfromotherheattransfermodes:

It issubject toshadowingorblockingby interveningsubstances thatareopaquetoradiation.Itisveryresponsivetochangesinabsorptivecapacityofthedough.

Radiationenergycomesfromtheburnerflamesandallhotmetalpartsintheoven,anditisnotrequiredthattheovenpartberedhotorotherwisevisiblyheatedfortheradiationofinfraredrays.Thisradiantenergytravelsinastraightline,andmuchofitneverreachesthedoughpiecebecausesomesubstancesthatarenottrans-parenttotheradiationintercepttherays.Shadowingorblockingoutofradiationbysomeinterveningmaterialcanoccurfrompartsoftheoven,frompanwalls,orfrompartsofthedoughpieces.

Duringbaking,itcanbesaidthatconductionandradiationtendtocauselocal-izedtemperaturedifferentialsinawaythatconductionactstoraisethetemperatureofthebottomsandradiationactstoraisethetemperatureofexposedsurfaces,whileconvectiontendstoevenouttemperaturegradients.

... ChangesindoughduringBaking

Doughpiecesundergophysicalandchemicalchangeswithintheoven.Crustforma-tion,meltingofshorteninginthedough,conversionofwatertosteam,gasexpan-sion,andescapeofcarbondioxide,othergases,andsteamarethephysicalchangesoccurringbyheattreatment.

Theoutersurfaceofthedoughsoonbecomescoatedwithafilmorcrustonenter-ingtheoven.Crustthicknessdevelopsasmoistureisevaporatedfromtheoutsideskin.Crustformationstartsat26.7°Candproceedsquicklyataround37.8°C.Itisneces-sarythatthecrustachievesufficientthicknessinordertoallowittobecomeelastic.Themoisturecontentoftheproductandhumidityoftheovenatmosphereaffectthedegreeofelasticity,particularlyinthefirsttwozonesofafour-zoneoven.Thecrustfilmbecomestoothickiftheheatofthetopovenistoohighbecausethewatervaporandthegasesaresubsequentlyformedwithinthedough.Thistopcrusthavinglostits

52748.indb 166 2/6/08 2:26:37 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 182: Food Engineering Aspects of Baking Sweet Goods

Technology of Cookie Production

elasticitywillburstopen.Duetothis,insomecookietypes,collapseoftheinternalstructure isevident.Crustfilmelasticity isdirectlyrelated to theovenatmospherehumidity.Ifthefilmcrustisformedtoorapidly,theflowabilityofthedoughislim-ited;thereisasuppressionoftheleaveningactionandhencetextureformation.

Shorteningsdonothavesharpmeltingpointsastheyaremixturesofcompounds.Theaggregatesofshorteningparticlesmeltassoonastheirimmediateareainthedough reaches the melting, fusion, or slip-point temperature of shortening struc-ture.Althoughthelowermeltingpointfractionsseepintotheenvelopingstructure,shorteningpocketsremainmoreorlesswithintheiroriginalpositioninthedoughstructureandthuscontributetocookietexture.

Waterusedfordoughpreparationisconvertedtosteamduringheating.Steamformation makes the dough pieces expand. Expansion due to steam formation ismuchgreaterthantheexpansionduetocarbondioxideorammonia,despitecarbondioxidebeingevolvedmuchearlierintheoventhanthesteam.

Carbondioxideformationduetothechemicalreactionswithinthedoughpieceundertheeffectofincreasingtemperaturesincreasesthevolumeandstretchabilityofthedough.Themasswillbeopenedupbytheexpandinggasestohelptocreatethecrumbtexturedependingonthestrengthofthestructureofthegluten/starch/sugar/fatmatrix.

The overall dough volume is reduced as carbon dioxide and other gases andsteamareremoved.Ifthelossistoogreat,thiswillcausethestructuretocollapse,resultinginhollowedtopsandcrackedsurfaces.Notalloftheinternalgasesmustbeallowedtoescapeuntilthestructurebecomesmoreorlessset,otherwisethetexturethroughthefinalbakingstagesandthecoolingwillnotbemaintained.

Allofthephysicalchanges(especiallytheinternalones)mustbeencouragedtotakeplaceinanorder,environmentalconditions,temperature,andatimeoptimumfortheparticulardoughmakeupandthedesiredattributesofthecookietobeproduced.

Gasformation,proteinchanges,starchgelatinization,caramelizationofsugar,anddextrinizationarethechemicalchangestakingplaceintheoven.

Chemicalleaveningsystemsinvolveagassource,almostalwayssodiumbicar-bonate,andoneormoreacidreactingsubstances.Thefunctionofaleaveningacidistopromoteacontrolledandnearlycompleteevolutionofgasfromadoughwherecarbondioxideexitsinitsdissolvedform.Thereactionofacidandcarbonate(orcar-bonatealone)canbecontrolledbythesolubilityoftheparticularacidorcarbonateinthedoughmoisture,temperature,anddecompositionrangeofthecarbonate.

Gluten and other proteins derived from milk and eggs begin to coagulate attemperaturesfrom62.8°C.Thisproteincoagulationimpartsstrengthtothecookiestructure.Atarounda temperatureof73.9°C, theproteinsundergoan irreversibledenaturation—theybecomelesssolubleandtheproteinfibersbecomelessextensible.Hence,thevesiclewallsofthedoughstructureachieveamoreorlessfixedposition,wheretheexpansionofdoughpracticallystops.Thecoagulatedproteinisthedrierregioninthebakedcookie,thestarchholdsmostofthepresentmoisture,theshort-eninggivestenderness,andallcombinedgiveshortness.Themoistureinthecookiemigratesfromthestarchtotheproteingradually,evenwithoutlossofmoisturefromthebiscuittotheatmosphereduringtheshelflifeofthecookie.Thisisnotsoevidentincookieslikebread,wherethemoistureisgreaterwithrespecttocookies.

52748.indb 167 2/6/08 2:26:37 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 183: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Starch gelatinizes to form viscous solutions or rigid gels when heated in thepresenceofsufficientwater.Ifthegelatinizedstarchisallowedtocool,itbecomesmoreviscous.Whenstarchismixedwithcoldwater,itabsorbs30to35%ofwaterwithslightswellingofstarchgranules.Waterremovalleavesthestarchinitsorigi-nalstate.However,whenthestarch–watermixtureisheatedatatemperatureabove54.4°C, water absorption is greater, and the starch granules swell to many timestheiroriginalsize.Thestarchcannotberecoveredinitsoriginalstatebecausethisreactionisirreversible.Hence,starchgelatinizationprobablyplaysacrucialroleinproducingcookiestructureduringbaking.

Sugarcaramelizationtakesplacearound148.9°Caccompaniedbymelanoidins,andthisisthereasonforthedegreeofbrowncrustdevelopment.Caramelizationistheconsequenceofsugarmoleculessuchasmaltose,fructose,anddextrosetopro-ducethecoloredsubstancesclassifiedascaramels.Associatedwiththisreaction,theMaillardreactionduetotheinteractionofreducingsugarswithproteinsandothernitrogenoussubstancesgivesrisetoattractivecolors,flavors,andaromas.Atabout176.7°C,thebrowncolorseemsandtasteslikecaramel,andaround246.1to260°C,themelanoidinsbecomeblack,bitter,andinsoluble.

Starchisstartedtobeconvertedtodextrinattemperaturesslightlyhigherthan148.9°C.Ifaslightdegreeofdextrincanbeformedonthedoughsurfaceduringbak-ingunduecaramelization,thenasurfacebrightnessisdeveloped,whichisdesired.

... ovens

Direct-fired,indirect-fired,andhybridovensarethemaintypesofcookieoven-heat-ingsystems.

Indirect-gas-firedovens,many ribbonor stripburnersare locatedaboveandbelow thebakingband.Eachburner is suppliedwithcarburetedgasandair,andthepressureofthismixturedeterminesdeliveredpower.Inordertoprovideevenheatingacrosstheband,therearevariousarrangementsforadjustingtheflamesizeacrossthewidthoftheoven.Direct-gas-firedovensmayadditionallyhaveaturbu-lencesystemimprovingtheheattransferrate.Thetopofthebakingchamberisusu-allylow,andtheburnersareasneartothebandasispracticable,meaningthatthereisahighradiantheatcomponentintheheattransferprofilereachingtheproduct.

Electric-firedovensaresimilartodirect-gas-firedovens,buteachburnerissup-pliedwithelectricity.

Eachzoneoftheforcedconvectiondirect-firedovenshasonelargeburner,andthecombustionproductsareblowntoplenumchambersaboveandbelowtheband.Itispossibletocontrolblowingvelocityandtheratioofhotaircirculatedaboveandbelowtheband.Thebakingchamberroofofaforcedconvectiondirect-firedovenishigherthanthatofadirect-firedoveninordertomaintainevenairflows.Thismeansthatforcedconvectionovenscontributea lowerproportionofradiatedheat to theheattransferprofileyetallowmoreuniformtemperatureandheattransferconditionsacrossthebakingchamberwidth.

Inconvectoradiantovens,hotgasesfromtheburnerinazonepassthroughtubesaboveandbelowtheband,and then theyarereleasedfromfurther tubes toblowoverthefirsttubesinthebanddirection.Thefirsttubesradiateheattothecookies,

52748.indb 168 2/6/08 2:26:38 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 184: Food Engineering Aspects of Baking Sweet Goods

Technology of Cookie Production

andconvectioncurrentsofairaregivenbythereleasedair.Inordertomaximizetheradiantheateffect,theradianttubesarelocatedasnearasispracticabletothebakingband.

Indirectlyfiredforcedconvectionovensaresimilartothedirect-firedforcedcon-vectionovens,butaheatexchangernearthezoneburnerheatstheairpassingthroughplenumchambersinthebakingchamber.Hotgasespassthroughtubesaboveandbelow thebakingbandandcirculateback to theburner in indirectlyfiredCyclo-therm.Nocombustionproductspassintothebakingchamber,andthereisaseparateaircirculationsystemmovingairinthebakingchamberandoverthehottubes.

Hybridovensarethecombinationoftwoofthedirect-firedandindirectlyfiredovens.Averycommonhybridoveniscomposedofafirstzoneofdirectgasfiredfollowed by two or more zones of forced convection type. Maximum power andmuchradiantheatareavailableearlyinthebake,andthenmuchconvectedheatisprovidedforthedryingpartoftheoven.

Indirectlyfiredovensgenerallyhaveafewlargeburnerswiththeovendividedintolargezonesalongthelength.Direct-firedovenshavealargenumberofsmallburnersgroupedinsimilarlargezonesforcontrolpurposes.Indirect-firedovens,itispossibletoturnoffindividualburnerseitheraboveorbelowtheband.Dampersarepresenttocontrolanddivertthehotgases’passagetovariouspartsoftheovenchamberoruptothefluestotheatmosphere.Inadditiontothedirectandindirectoventypes,therearedesignspromotingconvectionorradiantheattransfer.Succes-sivezonesmighthaveadifferenteffectonheattransfertype,andahybridoventypemayhavedifferentfuelsindifferentzones.

The length of an oven and the baking time required to bake a cookie to thedesiredstructure,color,andmoisturecontentdefinetheproductionrateofanoven.Formostof theproducts, the timeneeded todry theproduct satisfactorilydeter-minesthebakingspeed.Itispossibletocalculatetheovenefficiencybymeasuringtheamountof fuelofknowncalorificvalueburned ina timecomparedwith theweightlossrepresentingthequantityofthewaterevaporatedandtemperatureriseofthecookieingredients.

Thereisaterminaldrumateachendoftheoven.Thedrumisdrivenattheovenexit,andthereisatensiondeviceholdingthebandtautatthefeedend.Thedrumshavesufficientdiameterinawaythatthebandsandtheirjointsarenotstrainedinflexing,andtheiraxlescanbeinclinedtofacilitatetracking.Itissometimesrequiredtocoatthedrumwithfibrousandfire-resistantmaterialtoeliminateslip.Thebandsaresupportedonmetalorgraphiterollersspacedcloselyenoughinordertopreventappreciablesaggingofthebandbetweenthemthroughtheoven.

Thedistancethattheovenbandextendsbeyondtheovenchamberateachendisrelatedtothewayaproductisplacedonitandalsotheamountofcoolingneededbeforethebakedproductcanberemoved.Wire-cutanddepositedcookiesneedlead-in space in order to allow room to locate the forming equipment over the band.Sugar-richcookiesneedlongrun-outlengths,possiblywithfan-assistedairorwaterspraycoolingundertheband,toallowthemtosethardpriortostrippingfromtheband.

Astrippingknife,whichmaybeathinbladeofsteelorahardsyntheticsub-stanceoracombofwirefingers,isusedtoremovethebakedcookiesfromtheband.

52748.indb 169 2/6/08 2:26:38 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 185: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Theknifeshouldbedesignedtoliftthecookieclearandtransferitwithminimumdisruption to the relative positioning of the cookies. This provides good feedingtothewrappingequipmentorforfurtherprocessing.Differenttypesofknivesareusedforliftingdifferenttypesofcookies.Itiscrucialthattheknifedoesnotbearsofirmlyonthebandthatitdamagesthesurfaceoftheband.

8.2.4 CoolinG

Thecookiesarecooledonaclothbandafter leaving theoven,and theyareveryhot,verysoft,andgenerallyverymoistastheyemergefromtheoven.Hence,eventhoughcooling isamust forpackaging, itmaybe the leastcrucialaspect, for somanyotherthingsaretakingplaceasthecookiecools.

Cookies having a crust temperature of 115.6°C and a crumb temperature ofabout99°Ccomingfromtheovenarestillinasomewhatplasticstate.Somewire-cutcookietypesaresosoftandmoltenthattheycannotbepickedoffthesteelbandneartheovenmouth.Inadditiontohightemperatureandmoisturecontent,thereareotherfactorstobeconsideredincookiecooling.However,twofactorsareeffectiveinhowtheotheringredientsreacttothecoolingcycle.Itseemsreasonabletosuggestthattheflourstarchisstillinsomegelatinouspasteform,anddextrinsarestillinpartialsolutionduetotherelativelyhighmoisturecontent.Sugarsareinatleastpar-tialsolutionaswell,andtheshorteningwillbepresentasoilratherthanasfat.Theproteinisprobablyinafirmerstatewithrespecttootheringredients.Thus,everyingredientisinanunsetstate,meaningthateachishot,moist,andsoft.

Ascoolingcontinues,withconsequentmoisturelossdueinparttotheusingupofsomeoftheinternalheatofthecookie,thechangeisfromageltoapasteandtoadrycomplexstructure.Thismayseemtodependonprotein,whichmayattractwaterfromthoseingredientssoreadytogiveitup,forexample,dextrinssettingtoabrittlecondition,sugarscrystallizingout,andatleastinwettedfilmsofstarchdryingout.Thus, thecookiebecomesrigid(i.e., set).Theshorteningdoesnotcrystallizeoutuntilthecookiereachesatemperaturewithinthesettingrangeofitsmakeupglycer-ides,anditmightevensolidifyinfractions.

Moistureloss, temperaturedecrease,andthechangesin thestateof themainingredientsaffectcookiedimensions,givingrisetoshrinkageandmaybecausingstresses to be set up within the cookie in reaching the set, nonmolten state. Thementionedstressesmaycausecrackingofthebiscuitstoagreateroralesserdegreeunderadverseconditions.Suddencoolingcanbeareasonforcracking,asitmightfirmupthecrustandretardthemoisturemigrationratefromthecentercrumbtotheedges.Thishappensduetotheexcessivemoisturegradientbetweentheseareas.

8.2.5 PaCkaGinGProCessandequiPmenT

Packagingandstoragearethelaststagesofcookieproduction.Thisstageisimportantintermsofitsprotectionpurpose.Thetimeperiodfromwhenthecookiesarepack-agedtoconsumptionisinfluencedbypackagingandstoragemethods,andtheflavor,taste,andappearanceofthecookiesshouldbeprotectedduringthistimeperiod.

Thepackagingmaterial shouldprotect thecookie fromharmfulenvironmen-taleffects.Theproductmustbeprotectedfromunduemoisturechangeduringits

52748.indb 170 2/6/08 2:26:38 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 186: Food Engineering Aspects of Baking Sweet Goods

Technology of Cookie Production

normal storage life as a primary requirement. When the packaging film protectsagainstmoisturetransferinanadequatemanner,itlikelyexcludesdirt,dust,moldspores,andotherforeignparticles,andinaddition,itgivessomeprotectionagainsttheabsorptionofoff-odors.

Asmostcookiesareverysusceptibletocrushing,mechanicalstrengthshouldbepresentinthecontainerifthecookieistosurvivestorageandtransportation.Thepackageshouldcontributetothedimensionalstabilityofthecookie.

Thepackagingmaterialofthecookiesshouldbeappropriateforbeingformedintothefinishedpackageeasilyandfastbymechanicalways.Afundamentalneedforpackagingfilmsisthatthestructureheat-sealreadily.Moreover,thepackagingmaterialshouldnottear,crack,orstretchduringtherapidtransfersandfoldingsinthewrappingequipment.

Thepackageshouldalsohelpsellthecookie.Transparentfilmsareusedwhenthevisibilityoftheproductisimportant.Aglossysurfaceenhancesconsumeraccep-tance,andprintabilityisneededinmostcases.

Inadditiontotheabovefactors,thepackagingfilmshouldberelativelylowinprice,andthesupplier’splantorwarehouseshouldbelocatedsoastomaketrans-portationcostsacceptable.

Packagingmaterialshavedifferentdegreesofresistancetowatervaportransferanddifferintheirbarrierpropertiestooxygenandothergases,hydrocarbons,andlight.Cellulosicmaterials,plasticresins,metalfilms,andlaminatesareusedgener-allyforpackagingmaterialsforcookies.Thecostofthepackagingmaterialchangesaccordingtothecontentofbasestockorresin,filmthickness,andcoatingapplica-tion.Theplasticfilmthicknessismoreorlessdirectlyrelatedtotherateatwhichwatervaporandoxygencandiffusethroughthefilm.

Toimprovethesealingcharacteristics,toestablishabettersubstrateforprintinginks,andtoimprovebarrierproperties,coatingscanbeapplied.

Withthemodificationofbasematerial,thickness,andcoatings,thebarrierprop-ertiesofpackagingmaterialscanbechangedtothedesireddirections.Laminationoftwoormorefilmsmayalsobeemployedinordertomodifybarrier,sealing,andvisualproperties.

Therearetwogeneraltypesofpackagingschemesemployedintheproductionofcookies:dumppackagingandregisteredpackaging.Indumppackaging,thesmallpiecesareallowedtofallintothepackinnoparticularorder.Inregisteredpackag-ing,thepiecesarekeptinsomepredeterminedrelationshiptoeachotherthroughoutthepackagingprocessandinthecontainer.

Fordumppackagingofsmall-tomedium-sizedcookies,verticalform-fillsealequipmentisusedwidely.Verticalform-fillsealpackagingequipmenttakesaflex-iblefilmstripandwrapsitaroundametaltubeopenatbothends.Twoverticaledgesoftheplasticstripsareoverlappedandheatsealed,andthismakesthewebintoaverticalcylinder.Acrossthementionedcylinderandjustbelowtheformingtube,aheatsealismadeassoonasaweighedamountofcookiesisdroppeddowntheform-ingtubeintotheclosed-offarea.Theclampdrawsthewebdownwardandpullsmoreofthefilmalongtheformingtube.Thesealingjawreturnstoitsoriginalpositionforanothersealingcyclewhenithasdrawndownapredeterminedlength.Next,it

52748.indb 171 2/6/08 2:26:39 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 187: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

makesthetopsealofthebottombagandcutsitoffasitismakingthebottomsealofthenextbag.

Theform-fillsealercanbereplacedwithmanualfillingofpremadebagswhenthecookieproductionisinsmallscale.

Forregisteredpackagingofcookies(wherethecookiesarekeptinrelationshiptoeachotherduringpackagingandinthecontainer),thekindsofmachineryavail-able aremorevaried.Theprocess isoldbuthasbeen refined to thepointwherebreakageisminimalwithhighspeed.

Cartoningmachinesusedinthecookieproductioncanbegroupedaccordingtomodeofoperation(semiautomaticorfullyautomatic),thedirectionofloading(verticalorhorizontal),andmotiontype(continuousorintermittent).Semiautomaticequipment,whichrequiresthattheoperatorputthecookieinthecartonmanually,issaidtobemoresuitableifmanydifferentsizesareloadedandfrequentchangeoversareneeded.Thecookiesareloadedintocartonsautomaticallyinthefullyautomaticmode.

referenCes

Desrosier,N.W.1977. Elements of Food Technology.Westport,CT:AVI.Manley,D.J.R.2000.Technology of Biscuits, Crackers and Cookies, 3rded.BocaRaton,

FL:CRCPress.Pyler,E.J.1988.Baking Science and Technology,Vol.2.KansasCity,MO:Sosland.

52748.indb 172 2/6/08 2:26:39 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 188: Food Engineering Aspects of Baking Sweet Goods

9 Heat and Mass Transfer during Baking of Sweet Goods

Weibiao Zhou, Nantawan Therdthai

Contents

9.1 Introduction................................................................................................. 1739.2 HeatTransferMechanismsduringBaking................................................. 174

9.2.1 ConductiveHeatTransfer................................................................ 1759.2.2 ConvectiveHeatTransfer................................................................. 1769.2.3 RadiativeHeatTransfer................................................................... 176

9.3 MassTransferMechanismsduringBaking................................................ 1789.3.1 MassDiffusion................................................................................. 1789.3.2 EvaporationontheSurfaceandMassConvection.......................... 1799.3.3 InternalEvaporationandCondensation........................................... 179

9.4 CombinedTransportPhenomenaduringBaking....................................... 1809.5 ImpactofHeatandMassTransferduringBakingonProduct

Characteristics............................................................................................. 1849.5.1 ImpactonVolumeExpansion.......................................................... 1849.5.2 ImpactonCrumbandCrustDevelopmentandBakingLoss.......... 1859.5.3 ImpactonCrustColor,Gloss,andFlavorDevelopment................. 186

9.6 ModelingandOptimizationofHeatandMassTransferBakingofSweetGoods................................................................................................ 1869.6.1 ModelingofHeatandMassTransferatProductLevel................... 1879.6.2 ModelingofHeatandMassTransferinOvenChamber................. 187

9.7 Conclusions................................................................................................. 188References.............................................................................................................. 188

. IntroduCtIon

Forsweetbakerygoods,bakingisakeyprocesstodevelopdesiredproductchar-acteristicsincludingstructure,texture,flavor,andcolor.Eachproducthasitsownrecipethatissupposedtoyieldthedistinctcharacteristicsoftheproduct.However,thosecharacteristicsareoftenthedirectconsequenceofheatandmasstransfersdur-ingbakinginanoven.

Typicalsweetgoodsincludingcakes,biscuits,crackers,pies,andsomebreadshavedifferentbakingprofiles.Ifthebakingtemperatureistoohighforaproduct,

52748.indb 173 2/6/08 2:26:39 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 189: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

crustmaybeformedtooearly,resultinginamuchsmallervolume.Inaddition,thecrustmightbecometoodarkwhiletheinterioroftheproductisstillunderbaked.Incontrast,ifaproductisbakedunderalowtemperature,thebakingtimemayneedtobeextended todevelopadesiredbrowncrust color.However, a longerbakingtimecoulddevelopathickercrust.SomeEuropeanbreadvarietieshavethickcrustcharacteristics.Ingeneral,breadcanbebakedatatemperatureintherangeof200to240°C.Forcakes,a relatively lowerbaking temperature in therangeof175 to215°Cisgenerallyrequired.Ifthebakingtemperatureistoolow,bothmoisturelossandvolumecanbeincreased,whichresultsinweakcrumbanddrymouthfeel.Ontheotherhand,ifthebakingtemperatureistoohigh,thequalityofthecakemaybepoor.Notonlydoesthisresultinunderbakedcrumbandsmallvolume,butitalsocausespeakedtoporirregularcrumb(Conforti,2006).Inthecaseoffruitcakes,whenthebatterviscosityistoolow,fruitpieceshaveagreatertendencytosinktothebottomofthecakeduringbaking.Therefore,aslightlyhighertemperatureshouldbeusedtoshortenthetimeperiodoflowviscosity(CauvainandYoung,2001).Crack-ersrequireahigherbakingtemperatureintherangeof220to260°C.SlowbakingratescanproduceacoarsetextureinthecaseofGrahamcracker.Ontheotherhand,anoventemperaturethatistoohighmaycauseblistersincreamcrackers.Withaveryhightemperatureonthetop,abakedcreamcrackercanbedomed.Inaddition,withaveryhightemperatureatthebottom,dishingofabakedcreamcrackerispos-sible.Therefore,abalancebetweenthetopandbottomheatingplaysanimportantrole inproducingtherightcrackercharacteristics(YoneyaandNip,2006). In thecaseofpieswithfillings,alongbakingtimemightcauseaboil-outofthepiefill-ings.Toavoidboil-out,itisbettertobakethematahightemperatureforashorttime.Otherwise,thetotalsolublesolidinthepiefillingshastobeincreasedtoincreaseitsboilingpointaswellasdecreasetheequilibriumrelativehumidityofthefillings(CauvainandYoung,2001).

Itisclearthatallsweetgoodsrequireawell-designedandoftenuniquebakingcondition that could produce the correct product characteristics. However, fromanengineeringviewpoint,duringbaking,hightemperatureprofilesarecreatedindoughandbatter throughconvective,radiative,andconductiveheat transfers.Atthesametime,masstransfersincludingwaterdiffusion,evaporation,andconden-sationoccur.Thepropertiesofsweetgoodproductsincludingdensity,specificheat,and thermalconductivityhavebeenreviewedbyBaiketal. (2001).Thischapterfocuseson theheatandmass transfermechanismsduring thebakingprocessofsweetgoods.Their impactonphysicochemicalchangesof theproductswillalsobediscussed.

. heattransferMeChanIsMsdurIngBaKIng

Bakingisathermalprocessthatcarriesoutunderhightemperature.Generally,heatissuppliedtotheproductmainlyfromovenwallsthroughradiativeheat transfer.Inaddition,convectiveheatistransferredtotheproductfromhotairintheoven.Withintheproduct,conductiveheattransferisoftenthemainmechanism.

52748.indb 174 2/6/08 2:26:40 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 190: Food Engineering Aspects of Baking Sweet Goods

Heat and Mass Transfer during Baking of Sweet Goods

9.2.1 ConduCTive heaTTransFer

Itiswellknownthatconductiveheatistransferredwithindoughand batter by direct contactbetween molecules without amacromovementof themateri-als.Temperaturegradient is thedriving force for heat transfer.As illustrated in Figure9.1, thedistance between two sides ofareaA(m2)inthedoughandbat-terisdenotedbydx(m),andthecorrespondingtemperaturechangeacrossthedistanceisdenotedbydT(°C).HeatflowratecanbedescribedusingFourier’slawasfollows:

q kA dT

dx=− ⋅ (9.1)

whereqisheatflowrate(W),dT/dxistemperaturegradient(K·m–1),andkisthermalconductivity(W∙m−1∙K−1).

Thermal conductivity is a physical property of dough and batter. It can varyconsiderably,dependingonproductcomposition.Thethermalconductivityofdoughandbattercanbeestimatedfromthequantityofconstituentsincludingwater,fat,protein,carbohydrate,andash.SinghandHeldman(2001)presentedanempiricalmodeldevelopedbySweat(1986)forpredictingthethermalconductivityofsolidandliquidfoodmaterialsasfollows:

k X X X X Xc p f a w= + + + +0 25 0 155 0 16 0 135 0 58. . . . . (9.2)

whereXwithsubscriptsofc,p,f,a,andwaremassfractionsofcarbohydrate,pro-tein,fat,ash,andwater,respectively.

Duringbaking,themoisturecontentofdoughandbatterchangesgraduallyandcontinuously;asaresult,itsthermalconductivitymaybedescribedasafunctionofmoisturecontent(Zanonietal.,1994):

k k

Wk W

Wd w= ⋅+

+ ⋅+

11 1

(9.3)

wherekd is thermalconductivityofdrymatter,whosevaluecanbetakenas0.40W∙m−1∙K−1;kw is thermalconductivityofwater,whosevaluecanbe takenas0.60W∙m−1∙K−1;andWismoisturecontentondrybasis(kgwater/kgdrymatter).

Rigorouslyspeaking,thethermalconductivityofvariousconstituentsofdoughand batter and therefore the thermal conductivity of dough and batter are also a

q

dx

A

fIgure. Conductiveheattransferwithinsweetgoodproducts.

52748.indb 175 2/6/08 2:26:42 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 191: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

functionoftemperature.However,inpractice,constantvaluesarenormallyusedinsystemevaluations.

Table9.1listsvaluesofthethermalconductivityofsomesweetgoodsandbak-eryproductsthathavebeenreportedintheliterature.

9.2.2 ConveCTiveheaTTransFer

Convectiveheattransferinvolvesthemovementoffluidsincludingairintheovenandwaterinthedoughandbatter.Similartoheatconduction,differenceintempera-tureplaysakeyrole.Inabakingovenwithaconvectivefan,heatistransferredbyaforcedconvectionmechanismwhichisveryefficient.Theheattransferrateatthesurfaceofdoughandbatteraswellasatthesurfaceofvariousovenparts(duct,wall,andceiling)dependsonairflowvelocity.

Without a convective fan, heat is transferred fromair to a solid surfaceby anaturalconvectionmechanism,wherethetemperaturedifferencecreatesadensitygradientand thereby themovementofair.Assuch, thenaturalconvectionrate isdependentonthecoefficientofthermalexpansionofthefluid.

ConvectiveheattransfertakesplacewhenovenairattemperatureTismovingpastasurfaceattemperatureTs.Atthesurface,airvelocityispracticallyzero.Theareaadjacenttothesurfaceisathinlayerwheretheairvelocitycanbeverylowandisclassifiedasstreamline.Awayfromthesurface,velocityincreases,therebyheattransferrateincreases.FromNewton’slawofheating,heatflowperunitareaispro-portionaltothetemperaturedifferencebetweenthesurfaceandovenair,asfollows:

q hA T Ts= −( )

(9.4)

wherehistheheattransfercoefficient(W·m−2·K−1).Accordingtoastudyontheapparentheattransferinanoven(Satoetal.,1987),

heattransfercoefficientswerefoundtovarybetween9and20W·m−2·K−1whentheairvelocitywasintherangeof0.4to1.5m·s−1.WatsonandHarper(1988)statedthatheattransfercoefficientsofairundernaturalconvectionandforcedconvectionwereapproximately2.8to28W·m−2·K−1and11to110W·m−2·K−1,respectively.Forviscousfluids(e.g.,doughandbatter)underforcedconvection,heattransfercoefficientsareapproximately56to560W·m−2·K−1.

Heattransfercoefficientsmaybeestimatedusingdimensionalanalysis(SinghandHeldman,2001).Foranindustrialcontinuousbakingoven,Therdthaietal.(2003)estimatedtheheattransfercoefficientinsideheatingductstobeat100W·m−2·K−1,andtheoverallheattransfercoefficientforheatlossthroughtheovenwallsandceil-ingtobeapproximately0.3W·m−2·K−1.

9.2.3 radiaTiveheaTTransFer

Radiantheatistransferredtodoughandbatterasacombinationofabsorption,reflec-tion,andtransmission.Thefollowingequationholds:

α ρ τ+ + =re 1 (9.5)

whereαisabsorptivity,ρreisreflectivity,andτistransmissivity.

52748.indb 176 2/6/08 2:26:43 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 192: Food Engineering Aspects of Baking Sweet Goods

Heat an

d M

ass Transfer d

urin

g Bakin

g of Sw

eet Go

od

s

taBle.

thermalConductivityofsweetgoodsandBakeryProductsProduct temperature(°C) MoistureContent(%wetbasis) thermalConductivity(W·m–·K–) ref.

Breaddough -22.0 43.5 0.880 Lind(1988)

23.025.0

43.540.0

0.4600.290

Lind(1988);Sumnuetal.(2007)

Bread 25.090.0

40.033.0

0.0700.110

ThorvaldssonandJanestad(1999);Sumnuetal.(2007)

Frenchbread Roomtemperature 42.0 0.0989 Sweat(1985)

Whitebread 25 — 0.158±0.012 Touetal.(1995)

60–70 — 0.304±0.040 Touetal.(1995)

80–90 — 0.353±0.075 Touetal.(1995)

Biscuitdough 29.8 4.1 0.405±0.22 KulachiandKennedy(1978)

Biscuit — — 0.07–0.16 Standing(1974)

Yellowcakebatter — 41.5 0.223 Sweat(1973)

Yellowcake — 35.5 0.121 Sweat(1973)

Cupcakebatter 20±1.2 34.6±1.93 0.206±0.007 Baiketal.(1999)

Cupcake(19.5minbakingtime) 20±1.2 27.6±2.06 0.0683±0.004 Baiketal.(1999)

Muffin — 17 0.70 TouandTadano(1991)

Tortilladough 55–75 50–60 0.0366–0.1079 Griffith(1985)

Tortilla — — 0.25±0.020 Alvaro-Giletal.(1995)

Tandooriroti — — 0.128 Saxenaetal.(1995)

Chapati 58.5 43.0 0.330 Gupta(2001)

Source:ExceptthosedatafromThorvaldsson,K.andJanestad,H.,Journal of Food Engineering,40,167–172,1999;Gupta,T.R.,Journal of Food Engineering,47,313–319,2001;andSumnu,G.,Datta,A.K.,Sahin,S.,Keskin,S.O.,andRakesh,V.,Journal of Food Engineering,78,1382–1387,2007,allotherdataareadaptedfromBaik,O.D.,Marcotte,M.,Sablani,S.S.,andCastaigne,F.,Critical Reviews in Food Science and Nutrition,41,321–352,2001.

52748.indb 1772/6/08 2:26:44 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 193: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Forblackbodies, the absorptivity ismaximized (i.e.,α = 1). However, doughorbatterisnotablackbody.Emissivityofthesurfaceofdoughorbatter,whichisdefinedastheratiooftheemissivepowerofthesurfacetotheemissivepoweroftheblackbody,isassumedtobearound0.90(DeVriesetal.,1995;ThorvaldssonandJanestad,1999)or0.95(Zanonietal.,1994).Theradiantheattodoughandbattercanbeestimatedasfollows:

q A T T= −( )ε σ 1

424 (9.6)

where ε is emissivity and σ is the Stefan–Boltzmann constant (5.6697 × 10−8W·m−2·K−4).

. MasstransferMeChanIsMsdurIngBaKIng

Duringbaking,water indoughandbatter is transferred throughporeswithin thedoughandbattertothesurfaceandfurthertotheairoutsidethedoughandbatter.Thiscausesastructuretransformationfromdoughandbattertocrumbandcrust,aswellasamoistureloss.Themoisturelossduringbakingisthehighestcomparedto those inotherprocessingstepsofsweetgoods.Themass transfermechanismsinvolvedinthestructuretransformationandmoisturelossincludemassdiffusion,evaporation, condensation, andmass convection.Thesemechanisms also interactwiththeheattransfermodes.

9.3.1 massdiFFusion

ByFick’slaw,massdiffusionisdrivenbytheconcentrationdifferenceasfollows:

mA

D dCdx

=− ⋅

(9.7)

wheremisdiffusionrate(kg.s−1),Aisarea(m2),Cisconcentration(kg.m−3),andDisdiffusivity(m2.s−1).Diffusivityisaphysicalpropertydependingontemperature,pressure,andsystemcomposition.

ThorvaldssonandJanestad(1999)proposedthefollowingmodeltoestimatethediffusivityofwatervapor(Dv)indoughasafunctionoftemperature(T):

D Tv = × ⋅−9 0 10 12 2. (9.8)

Typically,thediffusivitiesofliquidwaterandwatervaporareapproximately1.35×10−10m2.s−1and8×10−7m2.s−1at25°C,respectively.

Tocountfor theeffectofmoisturecontent,Zanonietal. (1994)proposedthefollowingmodeltoestimatevariationsinthediffusivityofliquidwater.Whenthemoisturecontentisbelow0.43,

D W D

w = ⋅ 0

0 43. (9.9)

52748.indb 178 2/6/08 2:26:46 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 194: Food Engineering Aspects of Baking Sweet Goods

Heat and Mass Transfer during Baking of Sweet Goods

whereWisthemassfractionofunboundwater(kgwater/kgdrymatter),Dwisdif-fusivity,andD0isthediffusivitywhenthemassfractionofunboundwaterismorethan0.43anditsvalueisapproximately1.0×10−9m2.s−1.

9.3.2 evaPoraTiononThesurFaCeandmassConveCTion

Duringtheearlystageofbaking,waterisvaporizedfromthesurfaceofdoughandbatter toairusinglatentheatofevaporation.Whenthemassfractionofunboundwater ismore than0.43, latentheatofevaporation(∆H0) isapproximately2.3339MJ.kg−1.However,duringbaking,unboundwaterisgraduallydecreased.Whenthemassfractionofunboundwater(W)isreducedtolessthan0.43,thelatentheat(∆H)canbeestimatedfromthefollowingequation:

∆ ∆H L

WH= +

100 0 (9.10)

whereLis2.4948MJ.kg−1(Zanonietal.,1994).Duringbaking,thereexistsaconcentrationgradientofwatervaporbetweenthe

productsurfaceandair.Therefore,watervaporistransferredthroughmassconvec-tion.Itcanbedescribedby

mA

k C Cm s b= ⋅ −( ) (9.11)

wherekmisthemasstransfercoefficient(m.s−1),Csiswatervaporconcentrationontheproductsurface(kg.m−3),andCbiswatervaporconcentrationinbulkair(kg.m−3).

Similartoheattransfercoefficients,masstransfercoefficientsmayalsobeesti-matedthroughdimensionalanalysis(SinghandHeldman,2001).

9.3.3 inTernalevaPoraTionandCondensaTion

Duringbaking,temperatureinouterlayersofdoughandbatterincreasesfirst.Asaresult,thepartialwatervaporpressureinporesinthoselayersincreases.Duetovaporpressuredifference,watervapormoves toward the center throughpores ininnerlayers.Intheinnerlayerswheretemperatureislow,thewatervaporbecomescondensed.Therefore,theliquidwatercontentintheinnerlayersisincreased,andaliquidwatergradientisbuiltup.Theliquidwaterstartsmovingtowardthesurface,butitismuchslowerthanthewatervapormovementtowardthecenter(Thorvalds-sonandJanestad,1999).Thus, themoisturecontentof thecrumbat thecenter ishigherthanthemoisturecontentofdough.DeVriesetal.(1989)foundanincreaseofwatercontentby3.5gwater/100gbreadintheloafcenterimmediatelyafterbaking,buteventuallythewatercontentintheloafcenterwasdecreasedtothesamelevelasthatindough.Inthecaseofbiscuitswheresurfacelayersdryoutquicklyandthere-foretheevaporationfrontmovesveryfasttowardthecenter,innerlayersareheatedupquickly.Condensationinthecentralareamightnotbesignificant.However,boil-ing(evaporation)anddryingcouldbecomedominating.Furthermore,condensation

52748.indb 179 2/6/08 2:26:47 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 195: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

mightbefoundonthesurfaceatthebeginningofbakingwhensteamisintroducedintotheovenanddoughsurfacetemperatureisstilllow(Savoyeetal.,1992).

. CoMBInedtransPortPhenoMenadurIngBaKIng

Duringbaking, transportphenomenacanbegroupedbasedon two levels:withinthebakingovenandwithintheproduct.Forexample,inanindirect-heatingbakingoven,heatissuppliedbyhotairthroughducts.Aftertheductsurfaceisheatedup,itgeneratesradiantheattodough.Inaddition,naturalconvectiveheattransfertakesplacefromairintheovenchambertothedoughsurface,whileforcedconvectiveheattransfercanoccurusingconvectivefans.Inadditiontothehotductsurfaces,allmetalsurfacesincludingovenwallsandceilingcangenerateradiantheat.Notonlyheatsupplyshouldbeaccountedfor,butheatlossalsoremainsasatopconcern.Althoughbakingovenshavebeenbuiltwithgoodinsulation,anappreciableamountofheatlossthroughthewallsisstillobservedformostoftheovens,mainlybynatu-ralconvectiveheattransfer.

Foran industrial traveling-traybakingoven,Therdthaietal. (2004a)summa-rizedthevariousstatesofheattransferasfollows:

Convectiveheattransferfromhotductsurfacestoairintheovenchambercanbecalculatedby

qa=haA(Tduct–Tairinsideoven) (9.12)

withitsinitialconditionasTair inside oven = Ta0att = 0,where Ta0istheinitialovenairtemperature.Heattransfercoefficienthacanbecalculatedthroughdimensionalanalysisaccordingtotheflowstatusinsidetheovenchamber.Atthesametime,radiantheatcamefromallhotmetalpartsintheoven,traveledstraightthroughthespace,andcausedlocalizedtemperaturedif-ferentials.Thisradiantheatwascalculatedby

qb=σεA[(TA+273)4–(TB+273)4] (9.13)

whereTA isthetemperatureoftheheatsource(°C)andTB isthetempera-tureoftheheatsink(°C).ThecorrespondinginitialconditionwasTB = TB0=40°C att = 0.Heatlossthroughtheovenwallswhichwereinsulatedwithfiberglasscouldbeverysmall.Itwascalculatedby

qc=hcA(Toveninnerwall–Tairoutsideoven) (9.14)

withitsinitialconditionasToven inner wall = Tc0att = 0,whereTc0istheinitialinner wall temperature of the oven. The overall heat transfer coefficienthc from thecombinedconductionandconvectionwasapproximately0.3W·m−2·°C−1.

52748.indb 180 2/6/08 2:26:47 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 196: Food Engineering Aspects of Baking Sweet Goods

Heat and Mass Transfer during Baking of Sweet Goods

Theabovesetofequationswassolvedbyusingcomputationalfluiddynamics(CFD)techniquesforthewholeovenduringtheentirebakingperiod.

Forbiscuitsbakedinanaturalgasindirect-firedpilotoven,Fahlouletal.(1995)describedtheheatbalanceontheproductasfollows:

ev C T

xq q q q

Apcd cv r evaporationρ

∂∂=

+ + −( ) (9.15)

whereeisproductthickness(m);visconveyorspeed(m·s−1);δisdensity(kg·m−3);Cpisspecificheat(J·kg−1·K−1);qcd,qcv,andqrareheattransferratesbyconduction,convection,andradiation,respectively;andqevaporationistheenergyraterequiredforevaporation.

Cpwasestimatedbythefollowingmodel(Baiketal.,2001):

C WC W Cp p water p drysolid= + −( )( ) ( )1 (9.16)

where W is the mass fraction of water (kg water/kg dry matter). During baking,temperaturechangescontinuouslyandtherebyaffectsthevalueofspecificheat.Thefollowingequationscanbeusedforestimation(Fahlouletal.,1994):

C Tp drysolid( ) = +5 25 (9.17)

C Tp water( ) . . .= ⋅ − × ⋅ + ×− −1000 5 207 73 17 10 1 35 104 5 ⋅⋅( )T 2 (9.18)

Massbalancecouldbeexpressedasfollows(Fahlouletal.,1994):

m dX

dxmb

bevaporation⋅ =− (9.19)

wherembistherateofbiscuitthroughput(kg.s−1),Xbismoisturecontentofthebis-cuit(%),andmevaporationistherateofwaterevaporated(kg.s−1).

Zanonietal.(1994)attemptedtodescribevarioustemperatureprofileswithinacylindricalbreadloafatdifferentstatesofbaking.Thedoughorbreadwasplacedinacylindricalmoldandstoodononeend.Attheuppersurfacethatwasexposeddirectlytoair,temperaturegradientwasaresultofconvectionbetweenairandthedoughsurfaceandconductiveheattransfertowardtheinsideofthedough.More-over, therewasa convectivewatervapor transferbetween thedough surfaceandair.Thus,afterdiscretizingthesolutionspaceintogrids,temperaturechangeattheuppersurfacecouldbedescribedbythefollowingequation:

52748.indb 181 2/6/08 2:26:50 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 197: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

dTdt

h T T I Jx

kd Tdx

kd Tdr

kdTds

a s

=

−( )+ + +

( ( , )∆

2

2

2

2 rr rC

kC x

P T

p

m

ps

1

ρ

ρ

∆,WW P T W H T Wa[ ]− [ ]( ), [ , ]∆

(9.20)

whereI,Jaregridcoordinators;Tistemperature(K);tistime(s);xisheight(m);risradius(m);hisheattransfercoefficient(W·m−2·K−1);kisthermalconductivity(W∙m−1∙K−1);∆x is infinitesimalheight interval (m);km ismass transfercoefficient(kg.s−1.m−2.Pa−1);ρ is density (kg·m−3); Cp is specific heat (J·kg−1·K−1); P is vaporpressure(Pa);Psisthevaporpressureatthesurface;Paisthevaporpressureinthesurroundingair;Taistheairtemperature;andT sisthesurfacetemperature.

Oncethesurfacetemperaturereached100°C,iftherewasenoughliquidwateronthesurface,evaporationwouldtakeplaceataconstanttemperatureof100°C.Mean-while,thesurfacetemperaturewouldalsoremainatthisconstanttemperature.

Duetoevaporation,themoisturecontentatthesurfacecontinuouslydecreased.Crustwassubsequentlyformed,andthesurfacetemperaturewouldincreasetowardthe oven temperature. At this stage, the temperature profile at the upper surfacecouldbeexpressedasfollows:

dTdt

h T T I Jx

kd Tdx

kd Tdr

kdTds

a s

=

−( )+ + +

( ( , )∆

2

2

2

2 rr rC p

1

ρ

(9.21)

whereI,Jaregridcoordinators;Tistemperature(K); tistime(s);xisheight(m);risradius(m);hisheattransfercoefficient(W·m−2·K−1);kisthermalconductivity(W∙m−1∙K−1);∆xisinfinitesimalheightinterval(m);ρisdensity(kg·m−3);Cpisspe-cificheat(J·kg−1·K−1);Taistheairtemperature;andT sisthesurfacetemperature.

Meanwhile,theinteriorofthedoughwasheatedbyconductiveheattransferinaccordancewithFourier’slaw:

dTdt

kC

d Tdx

d Tdr

dTdr rp

= + +

ρ

2

2

2

2

1 (9.22)

whereTistemperature(K), tistime(s),xisheight(m),risradius(m),kisthermalconductivity(W∙m−1∙K−1),ρisdensity(kg·m−3),andCpisspecificheat(J·kg−1·K−1).

Similarly to thedough surface,when temperature at an innerdoughpositionreached100°C,evaporationwouldtakeplaceatconstanttemperature.Therefore,thetemperatureatthatinnerpositionwouldnotchangeanymoreuntilthemoistureatthepositiontotallydriedout.

52748.indb 182 2/6/08 2:26:52 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 198: Food Engineering Aspects of Baking Sweet Goods

Heat and Mass Transfer during Baking of Sweet Goods

Regarding moisture change during baking, Zanoni et al. (1994) described itaccordingtotemperatureprofilesasfollows.

Atthebeginning,masstransferattheuppersurfaceofthedoughincludedacon-vectivemasstransferbetweenairandthedoughsurfaceandamassdiffusionfromtheinnerlayerstowardthesurface.Themoistureprofilecouldbedescribedby

dWdt

Dd Wdx

Dd Wdr

DdWdr r

s = + + −2

2

2

2

1 kx

P T W P T Wms aρ∆

, ,

( ) (9.23)

where Wisabsolutemoisture(kgwater/kgdrymatter),Wsistheabsolutemoistureatthesurface,tistime(s),xisheight(m),risradius(m),Disdiffusivity(m2·s−1),∆xisinfinitesimalheightinterval(m),kmismasstransfercoefficient(kg.s−1·m−2·Pa−1),ρisdensity(kg·m−3),Pisvaporpressure(Pa),Psisthevaporpressureatthesurface,andPaisthevaporpressureinthesurroundingair.

Whensurface temperature reached100°C,evaporation tookplaceatconstanttemperature.Themoisturecontentcouldthenbedescribedby

dWdt

Dd Wdx

Dd Wdr

DdWdr r

h T T I J

s

a s

= + + −

−(2

2

2

2

1( ( , )))

+ + +

∆x

kd Tdx

kd Tdr

kTdr r

H T W

2

2

2

2

1

ρ ,

(9.24)

where Wisabsolutemoisture(kgwater/kgdrymatter),Wsistheabsolutemoistureatthesurface,Tistemperature(K),tistime(s),xisheight(m),risradius(m),Disdiffusivity(m2·s−1), hisheattransfercoefficient(W·m−2·K−1),kisthermalconductivity(W∙m−1∙K−1),∆xisinfinitesimalheightinterval(m),δisdensity(kg·m−3),∆Hislatentheatofevapora-tion(J.kg−1),Taistheairtemperature,andT sisthesurfacetemperature.

Whentheevaporationfrontmovedtowardtheinside(i.e.,adriedsurface),thesurfacetemperatureincreasedtowardtheoventemperature.Atthisstage,themois-turecontentatthesurfacecouldbedescribedby

dWdt

Dd Wdx

Dd Wdr

DdWdr r

s = + +2

2

2

2

1 (9.25)

where Wisabsolutemoisture(kgwater/kgdrymatter), Wsistheabsolutemoistureatthesurface,tistime(s),xisheight(m),risradius(m),andDisdiffusivity(m2.s−1).

Fortheinteriorofthedough,moisturecontentwasnormallydeterminedaccord-ingtoFick’slaw:

dWdt

Dd Wdx

Dd Wdr

DdWdr r

= + +2

2

2

2

1 (9.26)

52748.indb 183 2/6/08 2:26:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 199: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

However,whentemperatureataninnerdoughpositionreached100°Csothatevaporation at constant temperature happened, moisture content at that positioncouldbedescribedby

dWdt

Dd Wdx

Dd Wdr

DdWdr r

k= + +

2

2

2

2

1ρ∆∆H T W

d Tdx

d Tdr

dTdr r,

+ +

2

2

2

2

1 (9.27)

where Wisabsolutemoisture(kgwater/kgdrymatter),tistime(s),xisheight(m),risradius(m),Disdiffusivity(m2.s−1),kisthermalconductivity(W∙m−1∙K−1),ρisdensity(kg·m−3),∆Hislatentheatofevaporation(J.kg−1),andTistemperature(K).

It is worth noting that the internal evaporation and condensation mechanismdescribedinSection9.3.3wasnotconsideredintheaboveequations.

. IMPaCtofheatandMasstransferdurIng BaKIngonProduCtCharaCterIstICs

Amongthewholeproductionprocedureofsweetgoods,bakingisthekeystepthatdevelopstheproductcharacteristics,includingcolor,texture,andflavor.Forbread,bakingisaprocesstotransformdoughintocrumbandcruststructures.Forcakes,bakingisaprocesstotransformbatterwhichcontainsafoamstructureintoaspongestructure(CauvainandYoung,2001).Thedevelopmentinvolvesseveralmechanismsincludingnonenzymaticbrowningreactions,starchgelatinization,andproteindena-turation. Previous studies have focused on nonenzymatic browning reactions todevelopcolorandflavor,aswellasstarchgelatinizationandproteindenaturationtodevelopstructureandtexture.

9.5.1 imPaCTonvolumeexPansion

Duringbreadbaking,volumeexpansion ismainlydue to twomechanisms:yeastand water vapor. At temperatures below 55°C, yeast converts sugar into carbondioxide and thereby volume expands. Due to heat transfer, dough temperature isincreased.Attemperaturesabove55°C,yeastisinactivated.However,doughvolumestillincreasesbecauseofincreasedwatervaporpressure.Fordoughthatisheatedquicklyatthebeginningofbaking,itsvolumeexpansioncanbestoppedatanearlystage.Indeed,ifcrustisformedtooearly,itwillblockmasstransferfrominsidelay-erstoouterlayers.Theresultantvolumecanbesmallerthanthatdesired.Inaddition,crustformationseemstoplayanimportantroleintheformationofcrumbstructureintermsofporosity.Witharestrictedtotalvolumeconfinedbythecrust,doughmaycontinuouslyexpandlocallytothedetrimentofmechanicallyweakareas;asaresult,theporosityinthoseareaswasdecreased(Zhangetal.,2007).Therefore,therateofheattransfertodoughatanearlybakingstageshouldbeofgreatconcerninregardtovolumeexpansion.However,itisworthmentioningthatvolumeexpansionduringbakingisgenerallysmallerthanthatduringproofing.

Incakebaking,batterisconvertedtoaproductwithdesiredeatingcharacteris-tics.Forcakescontainingraisingagents,whenbatterenterstheovenandisheated,

52748.indb 184 2/6/08 2:26:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 200: Food Engineering Aspects of Baking Sweet Goods

Heat and Mass Transfer during Baking of Sweet Goods

aircellsinthebatterbegintoexpandascarbondioxideisreleasedtoinflatethecells.Thisphenomenonhappensatfirstintheouterlayersandextendstotheinnerbatter.Therisingofvolumecontinuesuntilthestructureissetbystarchgelatinization.Cellexpansionandstarchgelatinizationtransformthebatterintocakecrumbstructurecontaininginterconnectedcells.Fortheskin,itsformationrateisdependentonbak-ingtemperature.Theskinofcakecanbequicklyformedinthepresenceofahighbakingtemperature.However,theearlyformedcrustisnotstrongenoughtopreventvolumeexpansioninthecaseofcakes,particularlywhenalargeamountofbakingpowderisused(CauvainandYoung,2000).

9.5.2 imPaCTonCrumBandCrusTdeveloPmenTandBakinGloss

Duetoheatandmasstransferatthedoughsurface,surfacemoisturecontentcouldbesignificantlyreduced.Asaresult,arelativelyhardlayerisformedwhichbecomescrustorskin.Generally30minbakingofasmallloafmaycreatea3mmthicknessofcrust.Ifincreasingthebakingtimeto50minforabigloaf,crustthicknessmayincreaseto5mm.Thecrustformationrateseemstobelinearwithrespecttotime(Wiggins, 1999). When a lower temperature is applied, a longer baking time isrequired,whichcausesformationofathickercrust.

Aftercrustisformed,heatisstilltransferredtothedoughwhichcanincreasetheevaporationrate.However,moisturefrominnerlayersishardlyremoved.Thisisduetothefactthatthecrustactsasabarriertoblockmasstransferfrominnerlayerstoouterlayers.Therefore,condensationatthecenteroftheloafisobserved,andmois-turecontentintheinnerlayersismuchhigherthanthatinthecrust.Accordingtoastudyonwaterdiffusioninbreadduringbaking(ThorvaldssonandSkjoldebrand,1998),themoisturecontentofcrustwasfoundtobe0±2.1gwater/100gdough,whereasthemoisturecontentofcentercrumbwas49.6±5.4gwater/100gdough.Moisturelossduringbreadbakingwasmainlyfromthecrustpartincludingtopcrust,sidecrust,andbottomcrust,as shown inFigure9.2.Fora typical bread loaf of 800g,weightlossduringbakingwasfoundtobeintherangeof50to55g.Forsometypesofbreadwhichhavethickercrust, higher weight losscan be expected (Wiggins,1999).

In addition to bakingtime,increasingbakingtem-perature tends to increasethe rate of moisture loss incakes (Cauvain and Young,2001). Similarly, Fahloul etal.(1994)demonstratedthatthemoisturecontent inbis-

3 mm

18.7 g of water loss

10.4 g of water loss

3 mm

5 mm

29 g of water loss

fIgure. Moisturelossduringbaking.(DatafromThorvaldsson, K. and Skjoldebrand, C., Lebensmittel Wissenschaft und Technologie,31,658–663,1998.

52748.indb 185 2/6/08 2:26:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 201: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

cuitsdecreasedfrom0.24g/gdrymatterto0.10,0.05,andnearly0g/gdrymatterafterbakingat150°C,200°C,and250°C,respectively,for6to8min.

9.5.3 imPaCTonCrusTColor,Gloss,andFlavordeveloPmenT

Crust color was developed through nonenzymatic reactions including Maillardreactionsandcaramelization.Bothmechanismsareinvolvedinthermalprocesses.Maillardreactionswerebetweenaminoacidsandreducingsugarsunderasuitabletemperaturethatnormallyneedstobeabove50°C(Villamiel,2006).Itcanbestimu-latedwhenmoistureisdecreased.Thatmeanscrustcolorcanbeobservedassoonasevaporationatthedoughsurfaceiscompletedandthesurfacetemperatureincreasestowardtheovenairtemperature.Whenbakingtimeislonger,themoisturecontentatthesurfaceisgettinglower,andthesurfacetemperatureisgettinghigher.Thus,crustcolorintensitycanbeincreased.However,theincreaseindegreeofbrowningisnotlinearwithrespecttoincreaseintemperatureduetoradiantheatfrommetalwallsintheoven.Whendoughgetsbrowner,itsemissivitybecomeshigher.Sub-sequently,thesurfacetemperatureisincreasedmorequickly.NotonlydoeshighersurfacetemperaturestimulateMaillardreactions,butitalsocausescaramelization.Therefore, at the late baking stage, color development rate is enhanced. There isalsoasimilarproblemastovolumeexpansionwhenarapidheatingrateisappliedatthebeginningofbaking.Arapidheatingtodoughcanincreasethemasstransferrateandtherebymoistureloss.Asaresult,Maillardreactionsstartearly,whichmayyieldthecolorofbakedgoodsbeingtoodark.

Forcakes,usingalowerbakingtemperaturemightcausealongersettingtime,and accordingly, the texturebecomesdry.Dryingout can concentrate sucrose intheunsetportionofacake,resultingincaramelization.Asaresult,coloredcrustbecomesthicker.Inaddition,theinnercrumblayerthatisnotincontactwiththeovensteambecomesdryanddiscolored(CauvainandYoung,2000).

Todevelopaglosscrust,steamisrequiredduringthefirstfewsecondsofthebakingprocess.Glossdevelopmentneedsvaporcondensationonthecrustsurfacetoformastarchpaste.Withaminimumoventemperatureof74°Cforsufficienttime(optionalconditionisat77°Cfor10minor99°Cfor15sec),thestarchpastecangelatinize,formdextrin,andstartcaramelization(Wiggins,1999).Therefore,bothcolorandglosscanbefoundonthesurface.

Flavor in the formofn-heterocycles isdeveloped throughMaillard reactions.Majorcompoundsfoundinwheatcrustare2-acetyl-1-pyrolineand2-acetyltetrahy-dropyridine.Flavorcompoundsareabsorbedintotheporestructureofcrumbandareblockedfromdispersingtoairbycrust(ZhouandTherdthai,2007).

. ModelIngandoPtIMIzatIonofheatand MasstransferBaKIngofsWeetgoods

Baking is a complex process that transformsdough or batter into rigidproducts.Many studies have been conducted to develop mathematical models in order tosimulateandbetterunderstandthevariousphenomenaduringbaking.Thestudiedphenomenaduringbakingcouldbebroadlydividedintotwocategories:insidethe

52748.indb 186 2/6/08 2:26:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 202: Food Engineering Aspects of Baking Sweet Goods

Heat and Mass Transfer during Baking of Sweet Goods

product(micro)andinsidetheoven(macro).Thissectionreviewsthepreviousstud-iesinvolvingbakingmodels.

9.6.1 modelinGoFheaTandmassTransFeraTProduCTlevel

Heatandmasstransferwithinbakeryproductshavebeenmodeledmainlytoexplaincrustandcrumbdevelopment.Theprogressofcrustlayertowardtheinnerregioncouldbesuccessfullysimulated.Whenheatisappliedtodough,wateratthewarmersideofagrain(pore)thatabsorbslatentheatofvaporizationcouldbeevaporated.Somevapormigratestoacoolerareawithintheloafandbecomescondensate,whilesomevaporescapestotheovenchamber(DeVriesetal.,1989).Zanonietal.(1993)set100°Castheevaporationfront temperature.Asaresult,unboundwaterat thesurfacewouldbeevaporatedthroughwaterboilingphenomenon.Thismechanismcouldbeaccelerated,whenwatervaporpressureintheovenairisfarfromsaturation(EliassonandLarsson,1993).Thencrust,whichisadriedlayer,willbeformedandseparatedfromcrumbthatismoist.

Mathematical models could also be established to simulate temperature andmoisturechangesduringbaking,suchasthosedescribedinSection9.4.Formasstransfer, mathematical models have been established to simulate water migrationwithin the dough (Thorvaldsson and Janestad, 1999; Thorvaldsson and Skjolde-brand,1998;TongandLund,1993;Zanonietal.,1994;Zhou,2005).Itwasfoundthatmoisturelosswasmainlyfromthetopsurfacewhichisexposeddirectlytoovenair.Moisture loss through thesidewassimilar to that through thebottom(Thor-valdssonandSkjoldebrand,1998).

9.6.2 modelinGoFheaTandmassTransFerinovenChamBer

Withinabakingovenchamber,fluidsincludinggasandwatervaporcirculateandtransfer heat to dough and batter. However, different oven designs have differentdominating heat transfer modes and patterns. Typical baking ovens significantlyrelyonradiationheattransferfromallmetalpiecesinthechamber(Velthuisetal.,1993).InovensforIndianflatbread,conductionseemstobethemostimportantheattransfermode(Gupta,2001).Mathematicalmodelsatthechamberlevelhavebeenestablishedforbatchovens(TongandLund,1993)andcontinuousovens(Fahlouletal.,1995;Gupta,2001;Savoyeetal.,1992).Duetothecomplexityofbakingovens,CFD has been used to simulate flow phenomena during baking (De Vries et al.,1995;Therdthaietal.,2003,2004a;Wongetal.,2007a).InadditiontoCFDmodels,neuralnetworkmodels,whichareblackboxmodels,couldalsobeused(KimandCho,1997).

Toobtainahigh-qualitybakeryproduct,optimizationofheatandmasstransferisnecessary.Theimpactsofprocessparametersonqualityattributeshavebeenstud-iedandmodeled,includingcrustcolordevelopment(TanandZhou,2003;Zanonietal.,1995a;ZhouandTan,2005),starchgelatinization(Therdthaietal.,2004b;Zanonietal.,1995b),crustthickness(Zanonietal.,1994),volumeexpansion(Fanet al., 1999), and moisture loss (Thorvaldsson and Janestad, 1999; ThorvaldssonandSkjoldebrand,1998).Usingmathematicaltools,optimizingtemperatureprofilesanddesigning thecorrespondingoptimumoperatingconditioncouldbeachieved

52748.indb 187 2/6/08 2:26:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 203: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

(Therdthai et al., 2002, 2004a). To maintain the oven operating condition at theoptimumlevel,agoodprocesscontrolsystemshouldbeinplacetoensurethecon-sistencyofproductquality(Trystram,1997;Wongetal.,2007b).

. ConClusIons

Duringbaking,heatandmasstransferplaythemostimportantroleindevelopingphysicalandchemicalchangesinthebakeryproducts.Doughistransformedtoaproductconsistingofcrumbandcrustorskin,duetoheatandmasstransferwithindoughaswellaswithintheovenchamber.

Designofdifferentbakingovensprovidesvariouscombinationsofheattransfermodes, includingconvection, radiation,andconduction,and therebyvarious tem-peratureprofilesintheproductduringbaking.Theinteractionbetweenrateofmasstransferandrateofheattransferdependsonmanyfactorsincludingmodeofheattransfer,typeofproduct,andtypeofoven.Duetovariationintemperatureprofilesandmasstransferrates,theobtainedbakedproductsexhibitdifferentcharacteristicsincludingcrustcolor,crustthickness,volume,structure,texture,andflavor,resultinginvarietiesofsweetgoods.

Themodelingofheatandmasstransferwithindoughandovenchamberhasbeenstudied by many researchers where various phenomena during baking have beensimulated.Withtheknowledgeoftheimpactofheatandmasstransferonthecharac-teristicsofproducts,mathematicalmodelshavebeenusedforoptimizingovenoper-atingconditionsinordertoobtaingoodproductqualityandhighprocessefficiency.

referenCes

Baik,O.D.,M.Marcotte,S.S.Sablani,andF.Castaigne.2001.Thermalandphysicalproper-tiesofbakeryproducts.Critical Reviews in Food Science and Nutrition41:321–352.

Cauvain,S.P.andL.S.Young.2000.Bakery Food Manufacture and Quality: Water Control and Effects.BlackwellScienceLtd.,Oxford.

Cauvain,S.P.andL.S.Young.2001.Baking Problems Solved.WoodheadPublishingLim-ited,England.

Conforti,F.D.2006.Cakemanufacture. InBakery Products Science and Technology,Ed.Y.H.Hui,393–410.Blackwell,Oxford.

DeVries,U.,H.Velthuis,andK.Koster.1995.Bakingovensandproductquality—Acom-putermodel.Food Science and Technology Today9:232–234.

DeVries,U.,P.Sluimer,andA.H.Bloksma.1989.Aquantitativemodelforheattransportindoughandcrumbduringbaking. In Cereal Science and Technology ProceedingsfromanInternationalSymposium,June13–16,1988.Ysad,Sweden.Ed.N.-G.Asp,174–188.Stockholm,Sweden..

Eliasson, A-C. and K. Larsson. 1993. Cereals in Breadmaking: A Molecular Colloidal Approach.MarcelDekker,USA.

Fahloul,D.,G.Trystram,A.Duquenoy,andI.Barbotteau.1994.Modellingheatandmasstransfer in band oven biscuit baking. Lebensmittel Wissenschaft und Technologie27:119–124.

Fahloul,D.,G.Trystram,I.McFarlane,andA.Duquenoy.1995.Measurementandpredic-tivemodelingofheatfluxesincontinuousbakingovens.Journal of Food Engineering26:469–479.

52748.indb 188 2/6/08 2:26:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 204: Food Engineering Aspects of Baking Sweet Goods

Heat and Mass Transfer during Baking of Sweet Goods

Fan,T.,J.R.Mitchell,andJ.M.V.Blanshard.1999.Amodelfortheovenriseofdoughduringbaking.Journal of Food Engineering41:69–77.

Gupta,T.R.2001.IndividualheattransfermodesduringcontactbakingofIndianunleavenedflatbread(chapati)inacontinuousoven.Journal of Food Engineering47:313–319.

Kim,S.andS.I.Cho.1997.Neuralnetworkmodelingandfuzzycontrolsimulationforbread-bakingprocess.Transactions of the ASAE40:671–676.

Sato,H.,T.Matsumura,andS.Shibukawa.1987.Apparentheattransferinaforcedconvec-tionovenandpropertiesofbakedfood.Journal of Food Science52:185–193.

Savoye,I.,G.Trystram,A.Duquenoy,P.Brunet,andF.Marchin.1992.Heatandmasstrans-ferdynamicmodelingofanindirectbiscuitbakingtunnel-oven.PartI:Modellingprin-ciples. Journal of Food Engineering16:173–196.

Singh,R.P.andD.R.Heldman.2001.Introduction to Food Engineering,3rded.,FoodSci-enceandTechnology.AcademicPress,NewYork.

Sumnu,G.,A.K.Datta,S.Sahin,S.O.Keskin,andV.Rakesh.2007.Transportandrelatedpropertiesofbreadsbakedusingvariousheatingmodes.Journal of Food Engineering78:1382–1387.

Sweat,V.E.1986.Thermalpropertiesof foods. InEngineering Properties of Foods,Eds.M.A.RaoandS.S.H.Rizvi,49–87.MarcelDekker,NewYork.

Tan,A.andW.Zhou.2003.Colordevelopmentofbreadduringbaking.InProceedings of the 8th ASEAN Food Conference,Hanoi.

Therdthai, N., W. Zhou, and T. Adamczak. 2002. Optimization of temperature profile inbreadbaking.Journal of Food Engineering55:41–48.

Therdthai,N.,W.Zhou,andT.Adamczak.2003.Two-dimensionalCFDmodelingandsimu-lation of an industrial continuous bread baking oven. Journal of Food Engineering60:211–217.

Therdthai,N.,W.Zhou,andT.Adamczak.2004a.Three-dimensionalCFDmodelingandsimulationofthetemperatureprofilesandairflowpatternsduringacontinuousindus-trialbakingprocess.Journal of Food Engineering65:599–608.

Therdthai,N.,W.Zhou,andT.Adamczak.2004b.Simulationofstarchgelatinizationduringbakinginatravelling-trayovenbyintegratingathree-dimensionalCFDmodelwithakineticmodel.Journal of Food Engineering65:543–550.

Thorvaldsson,K.andC.Skjoldebrand.1998.Waterdiffusioninbreadduringbaking.Leb-ensmittel Wissenschaft und Technologie31:658–663.

Thorvaldsson,K.andH.Janestad.1999.Amodelforsimultaneousheat,waterandvapourdiffusion.Journal of Food Engineering.40:167–172.

Tong,C.H.andD.B.Lund.1993.Microwaveheatingofbakeddoughproductswithsimulta-neousheatandmoisturetransfer.Journal of Food Engineering19:319–339.

Trystram,G.1997.Computerizedprocess control for thebakery/cereal industry. InCom-puterized Control Systems in the Food Industry,Ed.G.S.Mittal,491.MarcelDekker,NewYork.491–512.

Velthuis,H.,A.Dalhuijsen,andU.DeVries.1993.Bakingovensandproduct.InFood Tech-nology International Europe,Ed.A.Turner,61–66.SterlingPublications,London.

Villamiel,M.2006.Nonenzymaticbrowningforcookies,crackers,andbiscuits,InBakery Products Science and Technology,Ed.Y.H.Hui,433–442.Blackwell,Oxford.

Watson,E.L.andJ.C.Harper.1988.Elements of Food Engineering,2nded.AVI,NewYork.Wiggins, C. 1999. Proving, baking and cooling. In Technology of Breadmaking, Ed. S.P.

CauvainandL.S.Young,120–148.Aspen,Gaithersburg,MD.Wong,S.-Y.,W.Zhou,andJ.Hua.2007a.CFDmodelingofanindustrialcontinuousbread-

bakingprocessinvolvingU-movement.Journal of Food Engineering 78:888–896.Wong,S.-Y.,W.Zhou,andJ.Hua,2007b.Designingprocesscontrollerforacontinuousbread

bakingprocessbasedonCFDmodeling.Journal of Food Engineering. 81:523–534.

52748.indb 189 2/6/08 2:26:58 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 205: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Yoneya,T.andW-K.Nip.2006.Crackermanufacture.InBakery Products Science and Tech-nology,Ed.Y.H.Hui,411–432.Blackwell,Oxford.

Zanoni,B.,C.Peri,andS.Pierucci.1993.Astudyofthebread-bakingprocess.I.Aphenom-enologicalmodel.Journal of Food Engineering19:389–398.

Zanoni,B.,C.Peri,andD.Bruno.1995a.Modelingofbrowningkineticsofbreadcrustdur-ingbaking. Lebensmittel-Wissenschaft und-Technologie28:604–609.

Zanoni,B.,C.Peri,andD.Bruno.1995b.Modelingofstarchgelatinizationkineticsofbreadcrumbduringbaking. Lebensmittel-Wissenschaft und-Technologie28:314–318.

Zanoni,B.,S.Pierucci,andC.Peri.1994.Studyofbreadbakingprocess.II.Mathematicalmodeling.Journal of Food Engineering23:321–336.

Zhang,L.,T.Lucas,C.Doursat,D.Flick,andM.Wagner.2007.EffectsofcrustconstraintsonbreadexpansionandCO2release.Journal of Food Engineering80:1302–1311.

Zhou,W.2005.ApplicationofFDMandFEMtosolvingthesimultaneousheatandmois-turetransferinsidebreadduringbaking.International Journal of Computational Fluid Dynamics19:73–77.

Zhou,W.andM.Y.Tan.2005.Predictionofcolordevelopmentduringbreadbaking,InPro-ceedings of the 2nd International Conference on Innovations in Food Processing Tech-nology and Engineering,Bangkok.

Zhou,W.andN.Therdthai.2007.Three-dimensionalCFDmodelingofacontinuousindus-trialbakingprocess.InComputational Fluid Dynamics in Food Processing,Ed.D.-W.Sun,287–312.Taylor&Francis,London.

52748.indb 190 2/6/08 2:26:58 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 206: Food Engineering Aspects of Baking Sweet Goods

10 Physical and Thermal Properties of Sweet Goods

Shyam S. Sablani

Contents

10.1 Introduction................................................................................................. 19210.2 MeasurementTechniques............................................................................ 193

10.2.1SpecificHeat.................................................................................... 19310.2.1.1MixingMethod.................................................................. 19310.2.1.2DifferentialScanningCalorimeter(DSC)......................... 194

10.2.2ThermalConductivity...................................................................... 19410.2.2.1Steady-StateTechniques..................................................... 19410.2.2.2TransientTechniques.......................................................... 195

10.2.3ThermalDiffusivity......................................................................... 19610.2.3.1IndirectorCalculationMethod.......................................... 19610.2.3.2TemperatureHistory.......................................................... 19610.2.3.3ProbeMethod..................................................................... 197

10.2.4Density............................................................................................. 19710.2.4.1SpecificGravityBottle/Pycnometer................................... 19710.2.4.2SolidDisplacementMethod............................................... 19710.2.4.3GeometryCuttingTechnique............................................. 198

10.2.5MoistureDiffusivity........................................................................ 19810.3 DataCompilationandPredictionModels................................................... 198

10.3.1SpecificHeat.................................................................................... 19810.3.2ThermalConductivity......................................................................20510.3.3ThermalDiffusivity.........................................................................20610.3.4Density/SpecificVolume..................................................................20610.3.5MoistureDiffusivity........................................................................207

10.4 TheoreticalModels.....................................................................................20810.5 Conclusions.................................................................................................20810.6 Acknowledgment.........................................................................................209References..............................................................................................................209AppendixA............................................................................................................ 213

52748.indb 191 2/6/08 2:26:59 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 207: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

0. IntroduCtIon

Intheprocessofbaking,heatistransferredprimarilybyconvectionfromtheheatingmediumandbyradiationfromovenwallstotheproductsurface.Thisisfollowedbyconductiontothegeometriccenter.Atthesametime,moisturediffusesoutwardtotheproductsurface.Thetemperatureandmoisturedistributionwithintheporousstructurecanbepredictedusingappropriatediffusionequationsofheatandmoisturetransport.Inordertopredictthetemperatureandmoisturedistributionintheproductduringbaking,knowledgeoftheproductpropertiesisneeded,includingphysical,thermal,andmoisturetransportasafunctionofprocessingconditions(Rask,1989;Sablanietal.,1998).Thesepropertiesareapparentdensity(orspecificvolume),spe-cificheat,thermalconductivity,thermaldiffusivity,andmoisturediffusivity.

Mathematicalmodelingandcomputersimulationbasedonnumericalanalysishavebecomethemaintoolsforunderstandingandpredictingprocessingphenom-ena.Withtheadventofhigh-speedcomputersandinexpensivememory,physical,thermal,andmoisture transportpropertiesofproductscanbe treatedas time-ortemperature-dependent variables instead of average values for the whole process(McFarlane,2006;Sablanietal.,1998). Inaddition,during thebakingprocess,aseries of physical, chemical, and biochemical changes occur in a product. Thesechanges include volume expansion, evaporation of water, formation of a porousstructure,denaturationofprotein,gelatinizationofstarch,formationofcrust,andbrowning reaction.Afundamentalunderstandingofsuchphysical,chemical,andbiochemical changes will be particularly useful in the development of completemathematicalmodelsofthebakingprocess.

Thecompositionoffoodpropertiesaffectsphysical,thermal,andmoisturetrans-portpropertiesofdoughandbatter.Inrecentyears,therehasbeenworldwideinterestinfoodscontainingsubstanceswithbiologicalactivityrelatedtodiseasepreventionandhealthpromotion.Foodindustrieshavebeenlaunchingproductswithfunctionalcomponents.GaldeanoandGrossmann(2006)demonstratedthatoathullsmodifiedbytreatmentwithalkalinehydrogenperoxideassociatedwithextrusioncanbeusedinthepreparationofcookies,withoutdamagetosensoryquality.Someresearchersattemptedtouseextrudedorangepulpandsoapwortextracttoimprovenutritionalvaluesandreplaceeggwhite(Larreaetal.,2005;Celiketal.,2007).Rondaetal.(2005)usedpolyolsandnondigestibleoligosaccharidesinplaceofsucrosetoreducethecaloriecontentofspongecake.Severalstudieshavebeencarriedoutshowingthepotentialuseofhydrocolloids inbakeryproducts toprovidedietaryfiberandto impart specific functional properties such as retarding starch degradation andenhancing textureandmoistureretention(Gomezetal.,2007).These ingredientsalsoinfluencethephysical,thermal,andmoisturetransportpropertiesofdoughandbatter.Thepredictionofsuchpropertiesasafunctionofthechemicalcompositionand process conditions can be very useful in mathematical analyses of heat andmoisturetransport.

Bakeryproducts includevarietiesofbreadssuchaswhitebread, tortilla, tan-dooriroti,chapati,andsweetproductssuchascakes,muffins,biscuits,doughnuts,andcookies.Informationaboutthethermophysicalpropertiesofdoughandbakeryproductsduringbaking isscarcewhencompared to thatavailable for fruits,veg-

52748.indb 192 2/6/08 2:26:59 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 208: Food Engineering Aspects of Baking Sweet Goods

Physical and Thermal Properties of Sweet Goods

etables,andmeatproducts.Moreover,informationatvarioustemperature,moisture,anddensitylevelsisnotalwaysreadilyavailable.Rask(1989)revieweddataonther-malpropertiesofbakeryproductsandpredictionmodels,andLind(1991)presentedmeasurementtechniquesandmodelsofthermalpropertiesofdoughduringfreezingandthawing.Baiketal.(2001)presentedacomprehensivereviewofthemeasure-menttechniques,predictionmodels,anddataonthermophysicalpropertiesofbreadandnonbreadproducts.

This chapter focuses on measurement techniques and prediction models onphysical,thermal,andmoisturetransportpropertiesofsweetbakeryproductssuchascakes,biscuits,muffins,andcookies.Dataonphysicalandthermalpropertiesofsweetbakedproductsatdifferenttemperaturesandbakingconditionsarealsogiven.

0. MeasureMentteChnIQues

Themeasurementsofthermophysicalpropertiesrequirebasicknowledgeofheatandmoisturetransport.Mohsenin(1980),Ohlsson(1983),MurakamiandOkos(1989),Rahman(1995),andrecentlyNasvada(2005)presentedagooddescriptionofmeth-ods used for the measurement of thermal properties of food samples. Baik et al.(2001) reviewed measurement techniques applicable to bakery products. The fol-lowingsectiondiscussesonlythoseusedforsweetbakeryproductssuchascakes,biscuits,muffins,andcookies.

10.2.1 sPeCiFiCheaT

Mostcommonlyusedmethodsforthedeterminationofspecificheat(Cp)ofsweetbakeryproductsare themixingmethodordifferential scanningcalorimeter.Theselectionofthepropermeasurementtechniquedependsuponthenatureandsizeofsamplesandthetemperaturerange(Baiketal.,2001).

0... MixingMethod

Inthismethod,asampleandwater,ofknownmasses,aremixedinacalorimeteratpredeterminedtemperatures.Oncethesampleandwaterreachequilibriumtempera-ture(Te),theCp iscalculatedfromthefollowingheatbalanceequation:

m C T T m C T Tcal p cal i cal e samp p samp i samp, , , ,−( ) + − ee w p w e i w lossm C T T Q( )= −( ) +, ,

(10.1)

wheremisthemass;Cpisspecificheat;andsubscriptscal,samp,andwarecalo-rimeter, sample, andwater, respectively.Ti andTe are the initial and equilibriumtemperatures,andQlossistheenergylossfromortothesurroundings,whichmaybepositiveornegative.Thermalinsulationisgenerallyprovidedtoreduceheatlossfrom or to the surroundings. If the sample is dissolved in water, the enthalpy ofsolutionshouldbetakenintoaccountintheheatbalanceequation.Inthiscase,anindirectmethodcanbeusedtoavoiddirectcontactwithwater.Themainadvantagesofthismethodarethatapplicationissimpleandthatlargesamplescanbeused.The

52748.indb 193 2/6/08 2:27:00 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 209: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

methodisparticularlysuitableforheterogeneousfoods.Themeasuringtimescan,however,belong.ThismethodgivesameanvalueofCp overatemperaturerange.Therefore,thetechniqueisnotsuitableforthemeasurementoftemperature-depen-dent specificheat.Theexperimentaluncertainty in themeasuredspecificheatofcookiedoughusingthismethodwasintheorderof5%,whichincludestheuncer-taintiesinthetemperaturemeasurements,themassofdough,themassofwater,andtheheatloss(KulackiandKennedy,1978).

0... differentialscanningCalorimeter(dsC)

The specific heat of homogeneous materials at specific temperatures over a widetemperaturerangecanbedeterminedusingDSC.Nonhomogeneoussamplesrequireseveral replicationsdue to thesmall samplesize (mg)used.Theamountofenergyneededtochangethetemperatureofthesampleiscomparedwiththeenergyneededtochangethetemperatureofareferencematerialatthesamerate(Baiketal.,2001;Rah-man,1995).DSCcanbeusedeitherforscanningoverawidetemperaturerangeorforstepwise(isothermal)measurementswherethetemperatureisalteredinsmallsteps.Recently, a modulated DSC (MDSC) technique was used to measure values ofCpmoreaccurately.InMDSC,amaterialisexposedtoalinearheatingprocessthathasasuperimposedsinusoidaloscillation(temperaturemodulation),resultinginacyclicheatingprofile.Temperaturemodulation(sinusoidaloscillation)oftheMDSCsepa-ratestotalheatflowintoitsreversing(specificheatrelated)andnonreversing(kinetic)components.Thus,specificheatvaluesobtainedbyMDSCaremore precisethanthoseobtainedwithconventionalDSC.Heatingrate,modulationperiod,andamplitudearethemainvariablesinthemeasurementofCp withMDSC(Baiketal.,1999,2001).

10.2.2 ThermalConduCTiviTy

Themeasurementmethodsofthermalconductivity(k)canbeclassifiedassteady-stateandtransientmethods.Steady-statemethodsarenotsuitablefortheassessmentofthermalconductivityofbakeryproductsduetotheirlongertesttimes,whichcanresultinmoisturemigration,andpropertychangesduetolongexposuretohightem-peratures.Transienttechniquesaremore acceptedandappropriatebecausetestingisveryfastandyieldsaccurateresults.

0... steady-statetechniques

10.2.2.1.1 Guarded Hot Plate MethodInthismethod,thesampleisplacedbetweenaheatsourceandaheatsink.Atime-independentheatflowisgenerated(ASTM,1955).Thissystemismathematicallysimpletoprocessandeasytocontrolexperimentally.Thek valuecanbecalculatedusingFourier’sheatconductionequation.Theestimatedvalueofkistakenasameanvaluemeasuredoverthetemperatureintervalusedintheexperiment.KulackiandKennedy (1978) reported an experimental uncertainty of <7.4% in the measuredthermalconductivityofbiscuitdough.Theyattributedthisdeviationtoinstrumenta-tionerrors,geometricaluncertainties,anddeviationsfromtheassumedone-dimen-sionalnatureofheatflow.

52748.indb 194 2/6/08 2:27:00 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 210: Food Engineering Aspects of Baking Sweet Goods

Physical and Thermal Properties of Sweet Goods

10.2.2.1.2 DSC Attachment MethodBuhariandSingh(1993)usedanattachmenttoaDSCforthedeterminationofther-malconductivity.Themainadvantagesofthismethodwererelativelyshortdurationofmeasurement(10to15min),smallsamplesize,andnomoisturelossinthesam-ples.Thethermocoupleprobewasusedforthemeasurementofthesampletempera-ture.TheDSCheatingpantemperaturewaskeptat40°C.After5min,theinitialtemperatureofthesamplewasrecorded.Thepantemperaturewasthenimmediatelyincreased by 10°C. After 10 to 15 min, a new steady state existed, and the finalsampletemperaturewasrecorded.Thenk wasobtainedusingthefollowingequa-tion,whichisbasedonFourier’sheatconductionequation:

k L Q

A T T=

−∆

∆ ∆( )2 1 (10.2)

whereListhesamplelength,∆Qisthedifferenceofenergyrequiredtomaintainpantemperature,Aisthesampleareaperpendiculartoheatflow,∆T2isthe finaltemper-aturedifferencebetweenDSCheatingpanandsample,∆T1isthe initialtemperaturedifferencebetweenDSCheatingpanandsample(Baiketal.,2001).

10.2.2.1.3 Capped Column Test DeviceZhouetal.(1994)builtacappedcolumntestdevicetomeasurethermalconductiv-ity.Aconstantsteadyheatfluxwasappliedonthesampleduringtheexperiment.Thesamplewasplacedinthemetalcylindercappedfrombothsides,andtherewasnomoistureloss.Steadyheatfluxwasprovidedbycirculatinghotandcoldwateratconstanttemperaturesatthetwoendsofthecylindricaltestsample(diameter3cm,height5cm,and2.5cm).Thecylindercontainingsamplewasenclosedinpolysty-renefoamtominimizeheatlosstothesurroundings.Thecappedcolumntestdevicewaskepthorizontalduringtheexperimenttoeliminatethegravity-inducedmigrationofmoisturewithinthesample.Thesteadyfluxresultedintemperatureandmoisturegradientsinthesample.Oncethesteadystatewasreached,temperaturesatseverallocationsalongtheheightofthetestsampleandwaterstreamweremeasured.Thenthesamplewascutintoseveralsectionsofequalheightstodeterminethemoisturecontentdistributionbymeasuringthemoisturecontentofeachsection.Thek valuecanbedeterminedbyapplyingsimultaneousheatandmoisturetransferequationstotheexperimentaltemperatureandmoisturegradientdata.Thedeterminationisfast(withinseveralminutes).Thereisnoconcernaboutexperimentaldeviationduetoamoisturegradient,becausethedeviceanddataanalysisaredesignedtoevaluatethermalandmasstransferpropertiessimultaneously(Baiketal.,2001).

0... transienttechniques

Inthetransientmethods,thesampleissubjectedtoatime-dependentheatflow.Tem-peratureismeasuredatoneormorepointswithinthesampleoratitssurface.Themethodrecommendedformostfoodapplications,includingbakeryproducts,isthelineheatsourceprobe.Thetechniqueissimpleandfast(i.e.,3to600s)andrequiresrelatively small samples.However, it does require adata acquisition system.The

52748.indb 195 2/6/08 2:27:01 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 211: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

probe(0.66mmoutsidediameter)consistsofaconstantanheaterwireandchromel-constantanthermocouplewire.

Thebasictheorybehindtheuseofthelineheatsourceprobewaspreviouslydis-cussedbyseveralauthors(Nasvada,2005;Rahman,1995).Alineheatsourceprobeisembeddedinthesample(regardedasaninfinitebody),whichisinitiallyatauni-formtemperature,resultinginaradialtemperaturedistribution.Afterequilibriumisreached,theprobeheaterisenergized.Heatingandtemperaturesaremonitoredsimultaneously.Therateoftemperatureriseoftheheaterisdirectlyrelatedtothesample’sconductivity.TheslopeofthelinearportionofeachdatasetwasusedtodetermineeffectivethermalconductivitybyEquation10.3:

k Q t tT T

=−

4

2 1

2 1πln( / )

(10.3)

where kisthethermalconductivityofthesample;t1istheinitialtimewhentheprobeheaterwasenergized;t2isthefinaltimesinceprobeheaterwasenergized;T1isthetemperatureoftheprobethermocoupleattimet1;T2isthetemperatureoftheprobethermocoupleattimet2;andQistheheatfluxgeneratedbytheprobeheater.

Inordertoobtaincorrectresultsinalineheatsourceprobemethod,probesizeandsamplesizeshouldbecarefullyselected.Insertingaprobeintoanunstablestruc-ture,asdoneindoughandpartlybakedproducts,canalsointroduceerrors.Ruptureofthestructureclosetotheprobecangiverisetofalsevalues.Thus,theuseofalinearmovementprobeholder is strongly recommendedfork measurementusingthistechnique.Othertransientmethodssuchastemperaturehistoryandtransienthotstripmethodshavebeenusedtomeasurethermalconductivityoftortillaandbreaddough(Baiketal.,2001).

10.2.3 ThermaldiFFusiviTy

0... IndirectorCalculationMethod

Thermaldiffusivity(α)canbeestimatedfromexperimentallymeasuredvaluesofthermalconductivity,specificheat,anddensity(ρ).Thisisapreferredwayofdeter-mining thermal diffusivity. In this scheme, the estimation deviation will dependmainlyonthemeasurementofthermalconductivity,specificheat,anddensity(Baiketal.,2001).

αρ

=kC p

(10.4)

0... temperaturehistory

Thisisthemostwidelyusedexperimentalsystemformeasurementofthermaldif-fusivity of bakery products. The experimental apparatus and analytical solutionoftransientheattransferweredescribedbyDickerson(1965)andRahman(1995).

52748.indb 196 2/6/08 2:27:02 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 212: Food Engineering Aspects of Baking Sweet Goods

Physical and Thermal Properties of Sweet Goods

Inthistechnique,transienttemperaturesarecollectedatthesurfaceandcenterofstandardcylindricalgeometry.Thermaldiffusivityiscalculatedusingthefollowingsolutionofthetransientheattransferequation:

α =

−ΩRT Ts c

2

4( ) (10.5)

whereΩistheconstantrateoftemperatureriseatallpointsinthecylinder(dT/dt,°C/s),RisthesampleradiusandTs−Tcisthemaximumtemperaturedifferenceortheestablishmentofsteady-stateconditionswhenthe temperaturegradientatanylocationinthesampleisnolongertimedependent.

0... ProbeMethod

Nixetal.(1967)mentionedthatthelineheatsourceprobemethodcanalsobeusedtomeasurethermalconductivityanddiffusivitysimultaneously.Itcanbedonebyaddinganextratemperaturesensorsomedistanceawayfromtheheater.Itslocationshouldbeinthefollowingrange:

0 32 6 2. .ατ ατ< <rd (10.6)

whererd isthedistanceofthethermaldiffusivitysensorortemperaturesensorfromtheprobeheater,andτisthetimetestduration.

Thismethodissuitableforliquids,suchascakebatter,orwetingredients,andnonporous soft solids such as biscuit or bread dough. However, it is not suitableforporousstructuresamplesinwhichsignificantvolumeexpansionoccurs,suchasbread,cake,andmuffin.

10.2.4 densiTy

0... specificgravityBottle/Pycnometer

Thedensity(ρ)ofasampleinaliquidorsemisolidstatecanbemeasuredeasilybyspecificgravitybottleorpycnometer.The sample isplaced in a containerwhosevolumeisalreadyknown,andthenthemassofthesampleisdetermined(Rahman,1995).Densitycanbecalculatedfrommassandvolumedata.

0... soliddisplacementMethod

Thevolumeof irregular(dryandbaked)samplecanbeestimatedusingthesoliddisplacementmethod.Inthismethod,asampleofknownmass(Ms) iscoveredwithseedsinacontainer,andthewholeisweighed(Mc+sd+s).Thebulkdensity(ρs) ofafineseedisdeterminedpriortothetest.Themassofthecontainer(Mc)isknown;thus,thevolumeofthesample(Vs) canbeevaluatedbythefollowingequation:

V V

M M Ms container

c sd s c s

s= −

− −

+ +

ρ (10.7)

52748.indb 197 2/6/08 2:27:04 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 213: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Thistechniqueisverycommonfordensitymeasurementofmostfinalbakeryproducts. Rapeseed (Rubio and Sweat, 1990) and amaranth seed (Moreira et al.,1995)havebeenassessed.

0... geometryCuttingtechnique

Finalbakedgoodscanbecutintotheshapeofregulargeometries.Thevolumeiscalculatedfromthedimensionsofthesample.Typically,bakedsamplesarefrozenimmediatelyaftertheprocess.Frozensamplesarethenusedtocutintoevensidesofregulargeometry,suchascubeorrectangularshapes(Baiketal.,1999).Themassofthepiecescanbeeasilyobtained,andthenthedensitycanbecalculatedfromthemassdividedbythevolume.

10.2.5 moisTurediFFusiviTy

Duringbaking,asthebattertemperatureincreases,volumeexpansionoccursduetothechemicalleaveningagent,theincorporationofair,andwatervaporization.Thevolumeincreasesuptoaroundtwothirdstothreequartersofthebakingtime.Then,itdecreasestosomeextent(BaikandMarcotte,2003).Thevolumechangehastobetakenintoaccountinthedeterminationofthemoisturediffusivity.

BaikandMarcotte(2003)usedananalyticalsolutionofaninfiniteslabbasedontheconstantvolumeandmoisturediffusivity.Thesolution,however,incorporatedtheeffectofvolumechangeassuggestedbyCrank(1975)andGekasandLamberg(1991).Theyestimatedmoisturediffusivitythroughthefirstfallingrateperiodfromplottingthedimensionlessmoistureratioagainsttimeonasemilogscale.TheyusedanArrheniustypeofequationtomodeltheeffectoftemperatureandmoisturecon-tentonthemoisturediffusivity.

0. dataCoMPIlatIonandPredICtIonModels

Thephysical,thermal,andmoisturediffusionpropertydataandpredictionmodelsofsweetbakedproductsarepresentedinTable10.1andTable10.2.Thepropertydatawereclassifiedbyproduct,moisture,andtemperature.

10.3.1 sPeCiFiCheaT

Specificheatofcommercialbiscuitdoughwasmeasuredusingthemixturemethodatthreedifferenttemperatures(29.8,35,and37.9°CforAACCdough;30,36.5,and39°Cforhardsweet[HS]dough)byKulackiandKennedy(1978).Thespecificheatofbothtypesofdoughincreasedwithincreaseintemperature.TheindirectmixingmethodwasusedbyHwangandHayakawa(1979)tomeasurethespecificheatofbiscuitandcracker.Thetechniqueallowedthemtomeasurethespecificheatattem-peraturesabove100°C.Sampleswerecollectedfromtwolocationsinamultizonebandoven.Foramoisturecontentvaryingfrom3.15to3.87%,specificheatforbis-cuitrangedfrom1875to1942.7J/kgK.

Christensonetal.(1989)andBaiketal.(1999)usedDSCtomeasurethespecificheatofcommercialmuffin,biscuit,andcupcake(Table10.1andTable10.2).Chris-

52748.indb 198 2/6/08 2:27:04 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 214: Food Engineering Aspects of Baking Sweet Goods

Physical an

d Th

ermal Pro

perties o

f Sweet G

oo

ds

taBle0.PhysicalandthermalPropertiesofsweetBakeryProducts

Product temperature(°C)MoistureContent

(%w.b.)density(kg/m)

specificheat(kj/kgK)

thermalConductivity

(W/mK)

thermaldiffusivity(m/s)×0

technique ref.

Biscuit 3.15 1875Cp:indirect

mixingmethod

HwangandHayakawa

(1979)3.53 19433.87 1934

BiscuitdoughAACCdough

29.8–37.9a24.5–45.1b

4.1 1252±18 2835–3128 0.405±0.22 8–12

Cp:mixingmethod

k:singleplatemethod

α:calculationmethod

KulackiandKennedy(1978)

HS(hardsweetdough)

30–39a24.9–35.6b 8.5 1287±9 2420–3182 0.39±0.037 8–12

Biscuit2mmfrombottom5mmfrombottom

0.070.16k:hotplatesteady

stateStanding(1974)

YellowcakebatterEdgeCenter

41.534–4035.5–39

694285–815300–815

29502800

0.2230.239–0.1190.228–0.121

10.98.6–15.08.6–14.3

k:lineheatsourceprobe

Sweat(1973)

52748.indb 1992/6/08 2:27:05 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 215: Food Engineering Aspects of Baking Sweet Goods

00 Fo

od

Engin

eering A

spects o

f Bakin

g Sweet G

oo

ds

taBle0.PhysicalandthermalPropertiesofsweetBakeryProducts

Product temperature(°C)MoistureContent

(%w.b.)density(kg/m)

specificheat(kj/kgK)

thermalConductivity

(W/mK)

thermaldiffusivity(m/s)×0

technique ref.

Cupcakebatter4min6min13min15min19.5min

20±1.220±1.254±7.020±1.268±5.720±1.2102±120±1.2103±220±1.2104±2

34.6±1.9333.9±1.6933.9±1.6933.5±1.1633.5±1.1630.0±1.4630.0±1.4630.3±1.7330.3±1.7327.6±2.0627.6±2.06

803±12.0915±18.6662±0.91120±20558±9.0236±23.4236±23.4282±17.8281±17.8287±14.6287±14.6

2517±112

2599±49.3

2629±27.8

2658±106

2658±46

2613±53.9

0.206±0.0070.216±0.0110.187±0.0050.283±0.0170.196±0.0140.0703±0.0030.106±0.0120.0683±0.0050.116±0.0120.0683±0.0040.120±0.007

10.2+0.96

10.8+0.49

13.3+1.31

17.0+4.43

15.4+2.86

16.0+2.06

Cp:MDSCk:lineheatsourceprobeα:calculationmethod

Baiketal.(1999)

Muffin 17 441 2779 0.70 57.6

Cp:calculatedfromprediction

modelk:calculatedasαρ

Cpα:temperaturehistory

TouandTadano(1991)

Whitelayercake3.25min4.1min9.0min10.5min7.0min8.6min3min6min3min6min

MWat50%powerIRat50%powerIRat70%powerMW(50%)+IR(50%)MW(50%)+IR(70%)

122011111020785950785860700830740

ρ:soliddisplacementmethod

Sumnuetal.(2005)

52748.indb 2002/6/08 2:27:05 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 216: Food Engineering Aspects of Baking Sweet Goods

Physical an

d Th

ermal Pro

perties o

f Sweet G

oo

ds

0

taBle0.PhysicalandthermalPropertiesofsweetBakeryProducts

Product temperature(°C)MoistureContent

(%w.b.)density(kg/m)

specificheat(kj/kgK)

thermalConductivity

(W/mK)

thermaldiffusivity(m/s)×0

technique ref.

Spongecake Porosity=0.39 880 1950 0.15Mass

permeability=4.9×10−13m2

Lostieetal.(2004)

YellowlayercakeBatterControlAlginateCarrageenanLocustbeanGuarHPMCPectinXanthanCakeControlAlginateCarrageenanLocustbeanGuarHPMCPectinXanthan

10201055112710631127111510551800435448405385426411412381

ρ:measuringcylinder

Gomezetal.(2007)

52748.indb 2012/6/08 2:27:05 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 217: Food Engineering Aspects of Baking Sweet Goods

0 Fo

od

Engin

eering A

spects o

f Bakin

g Sweet G

oo

ds

taBle0.PhysicalandthermalPropertiesofsweetBakeryProducts

Product temperature(°C)MoistureContent

(%w.b.)density(kg/m)

specificheat(kj/kgK)

thermalConductivity

(W/mK)

thermaldiffusivity(m/s)×0

technique ref.

SpongecakeBatterControlSE25SE50SE75W25W50W75CakeControlSE25SE50SE75W25W50W75

710740750770810880850232248253254299297293

Celiketal.(2007)

CookiesControl5%orangepulp15%orangepulp25%orangepulp

48545778645741763

813Larreaetal.

(2005)

SpongecakeControlMaltitolMannitolSorbitolXylitolIsomaltoseOligofructosePolydextrose

242292356255262286256290

ρ:soliddisplacementmethod

Rondaetal.(2005)

AngelfoodcakeLEW/WPI100/0100/0100/0100/0100/0100/075/2575/2575/2550/5050/5050/5050/50

Airpressure(bar)00.50.050.10.51.00.050.050.10.050.51.01.5

Oventemperature190190180180160160190180180190190190190

186286209231277348206208220329481497605

ρ:soliddisplacementmethod

Morretal.(2003)

52748.indb 2022/6/08 2:27:06 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 218: Food Engineering Aspects of Baking Sweet Goods

Physical an

d Th

ermal Pro

perties o

f Sweet G

oo

ds

0taBle0.PhysicalandthermalPropertiesofsweetBakeryProducts

Product temperature(°C)MoistureContent

(%w.b.)density(kg/m)

specificheat(kj/kgK)

thermalConductivity

(W/mK)

thermaldiffusivity(m/s)×0

technique ref.

CakeWheatcontrol15%Barley15%Millet15%Rye15%Sorghum

400426417456426

ρ:soliddisplacementmethod

RagaeeandAbdel-Aal(2006)

CookiesUntreatedoathullsTreatedoathullsc

505450

Galdeanoetal.(2006)

CakeBatterCrumb

41.535.5700300

29502800

0.220.12

1114

Rask(1989)

BiscuitRotationspeedd2503505001000Durationd1min5min20min40min80min

6.15.76.06.56.56.15.85.76.5

247257246271227241258270279

ρ:soliddisplacementmethod

Edoura-Gaenaetal.(2007)

a Measurementtemperaturefor Cp.b Measurementtemperaturefork.c SE25,SE50,andSE75areeggwhiteproteinreplacedwithsoapwortextractby25,50,and75%,respectively.W25,W50,andW75areeggwhiteproteinreplacedbywater

by25,50,and75%,respectively.LEWisliquideggwhite;WPIiswheyproteinisolates.d 15gWPI/100gsolution.e 11gWPI/100gsolution.f Chemically(alkalinehydrogenperoxide)andphysically(extrusion)treated.g Duringtheaerationstep.

52748.indb 2032/6/08 2:27:06 P

M

Copyright 2008 by Taylor and Francis Group, LLC

Page 219: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

tensonetal.(1989)determinedthespecificheatatatemperaturerangeof20to85°Cforthesampleshavingmoisturecontentbetween0and60%.Togetvariousmoisturecontentlevels,wetsampleswereeitherairdriedormicrowaveovendriedforappropri-atetimes.Baiketal.(1999)bakedsamplesinapilot-scaleelectricovenatatempera-ture/timecycle(177°C/19.5min)thatproducedphysicalpropertiessimilartoacakebakedinanindustrialoven.Duringbaking,thesampleswereremovedatspecificbak-ingtimes(0,4,6,13,15,and19.5min).SamplespecificheatsweredeterminedusingMDSC.Then,10to15mgofsampleswerescannedataheatingrateof3°C/minoverthetemperaturerangeof20to110°C.An80-smodulationperiod(singlecycle)and1°Camplitudewereused.Theyobservedthatthespecificheatofcakebatterincreasedfrom2516.8J/kgKto2658J/kgKafter13minbaking time,and thendecreased to2613J/kgKbytheendofbaking.Specificheatincreasedwithrisingtemperatureanddecreased with reducing moisture. After 13 min of baking, the temperature of theproductremainednearlyconstant,butthemoisturecontentcontinuedtodecrease.Asaresult,asmalldecreaseinthespecificheatofthecakewasobserved.Thetraditionalmass fractionmodelwas applied to their experimental data, but it didnotfit theirexperimentaldatawell.UsingaPROCGLM,amodelforspecificheatwasdevelopedasafunctionofmoisturecontentandtemperature.Thespecificheatofacupcakewas

taBle0.PredictionModelsforPhysicalandthermalPropertiesofsweetBakeryProducts

Product equation referenceMuffin Cp=[0.40+0.0039T]×103,298–358K;R2=0.96 Christensonetal.(1989)

BiscuitCp=[0.80+0.0030T]×103,331–358K;R2=0.95Cp=[1.17+0.0030T]×103,303–331K

Muffin

lnk=−48.0−10.9m+0.272T+0.053mT−4.1×10−4T2;R2=0.917

lnk=−7.79−7.80m+0.015T+0.043mT;R2=0.904

Biscuit

lnk=−15.8−7.90m+0.072T+0.038mT−9.7×10−5T2;R2=0.819

lnk=−5.95−8.61m+0.0098T+0.041mT;R2=0.820

Yellowlayercake

Cp=[1.0−0.5(1-m)]CpwSweat(1973)

Cakek=0.0844+0.0000892ρ;standarddeviation:0.0073

RubioandSweat(1990)

Cupcake

Cp=7107m+18.7T−45.3mT;R2=0.999

Baiketal.(1999)k=0.00263T−0.831m−0.00091ρ+0.00422mρ;R2=0.991

α=2.55×10−8m−1.75×10−10

ρ−3.95×10−10T+2.42×10−7;R2=0.971D=29.6εexp(−8020/T) BaikandMarcotte

(2003)

Note:Wheremismoisturecontent,Tisthetemperature,εistheporosity,andCpwisthespecificheatofwater.

52748.indb 204 2/6/08 2:27:06 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 220: Food Engineering Aspects of Baking Sweet Goods

Physical and Thermal Properties of Sweet Goods 0

affected significantly (p < 0.001) by moisture content and temperature. Interactioneffectsofthetwovariableswerealsosignificant(p<0.001).Sweat(1973)estimatedthespecificheatofyellowlayercakebyassumingthatCp forthenonwaterfractionwashalfofthatofwater.Duringbaking,thespecificheatdecreasedslightlyfrom2950J/kgKofthebatterto2800J/kgKofthefullybakedcake.

10.3.2 ThermalConduCTiviTy

Standing(1974)estimatedthethermalconductivityinbiscuitsusingaguardedhotplatesteady-stateprocess.Thetemperatureswererecordedattwolocations,2and5mm,fromthebase.Duringthesemeasurements,thebiscuitswereheatedonlybyconductionfromahotplate.Theplatetemperaturewasvariedfrom159to208°C,and the thermal conductivitywascalculated fromaheatbalanceover theheatedplateandbiscuit.Thus,thecalculatedconductivityincludedtheresistancetoheattransferbetweentheplateandthesurfaceoftheproduct.

A significantdifferenceinthermalconductivitybetweentwopositionswasseen(5mmfromthebase:0.16W/mK,2mm:0.07W/mK).Standing(1974)alsofoundthethermalconductivitytobelowerathigherplatetemperature.Thermalconduc-tivityofcommercialbiscuitdoughwasdeterminedbyasingle-platemethodbasedon a steady-state method and was measured at several temperatures between 24and64°C(KulackiandKennedy,1978).The thermalconductivityof twodoughsfirst increasedwith temperature (AACC:<31.9°C,HS:<30.4°C), thendropped torelativelyconstantvaluesathighertemperatures.Theincreaseofthethermalcon-ductivityofwaterwithtemperatureaccountsfortheinitialincreaseinthethermalconductivity of the dough. However, the decrease in the thermal conductivity athighertemperaturescouldnotbeexplained.

Sweat(1973)usedalineheatsourceprobetomeasurethethermalconductivityofyellowlayercakebakedatdifferenttemperaturesandatdifferentlocations.Thesampleswerecooledtoabout28°Cbeforemeasurement.Duringbaking,thethermalconductivitydecreasedfrom0.223W/mKinthebatterto0.121W/mKattheendofbaking.Halfwaythroughbaking,thethermalconductivityatthecakeedgeshowedlowervaluesthanatthecenter.RubioandSweat(1990)measuredthethermalcon-ductivityofthreetypesofcakeatroomtemperatureusingalinesourceprobe.Thewatercontent(34.64to41.13%)didnotinfluencethethermalconductivity,buttheyfoundapositivecorrelationbetweenthermalconductivity(about0.058to0.14W/mK)anddensity(about85 to540kg/m3).Themodeldevelopedbasedonexperimentaldatayieldedbetterpredictionsthantheoreticalmodelssuchastheparallelmodel.

Baiketal. (1999)measured the thermalconductivityofacupcakeat specificbakingtimes.Moisturecontent,density, temperature,andtheinteractionbetweenmoisturecontentanddensityhadsignificanteffects(p <0.002)onthermalconduc-tivityofcupcakesduringbaking.Thepredictionaccuracyoftheirmodelwashigherthanthatofmodelsreportedformuffin(Christensonetal.,1989)andcake(RubioandSweat,1990).

Usingalineheatsourceprobe,Christensonetal.(1989)measuredthethermalconductivityofmuffinandbiscuitatatemperaturerangeof20to85°Candamois-turecontentrangeof0 to60%.Thermalconductivitydataforbiscuithadgreater

52748.indb 205 2/6/08 2:27:07 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 221: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

variationthanformuffin.Thevariationwascausedbynonhomogeneityofbiscuit.TouandTadano(1991)estimatedthermalconductivityofmuffinfromthermaldif-fusivity,density,andspecificheat.Thecalculated thermalconductivityofmuffinwas0.706W/mK.

Themodelsdevelopedforthepredictionofthermalconductivityaremostlyprod-uctspecific(Table10.2).Aneural-network-basedmodelwasdevelopedbySablanietal.(2002)forcalculatingthermalconductivityofavarietyofbakeryproductsunderawiderangeofconditionsofmoisturecontent,temperature,andapparentdensity.The developed model (Appendix A) can easily be incorporated in the numericalanalysisofheatandmoisturetransferduringbaking.

10.3.3 ThermaldiFFusiviTy

KulackiandKennedy(1978)usedanindirectmethodtocalculatethethermaldif-fusivityofcommercialbiscuitdough.Thethermaldiffusivityvariedfrom8.0to12.0×10−8m2/sintherangeofmoisturecontent4.1to8.5%,density1252.3to1286.6kg/m3.Thetotaluncertaintyinthethermaldiffusivityoftwobiscuitdoughswasatmaximum13.4% (AACC)and15%(HS).Sweat(1973)estimatedthethermaldif-fusivityofyellowlayercakefrombulkdensity,thermalconductivity,andspecificheat. It increased from1.09×10−7 to1.43×10−7m2/s for the centerof the cakeduringbaking.Changesweremoresignificantat theedgeof thecake thanat thecenter.Baiketal.(1999)alsoestimatedthethermaldiffusivityofacupcakeusinganindirectmethod.Theinitialthermaldiffusivityofbatteratroomtemperaturewas1.02×10−7m2/s.Thethermaldiffusivityincreasedto1.696×10−7m2/sbytheendofbakingwithamaximumof1.698×10−7m2/safter13min.ThesechangesweresimilartothosereportedbySweat(1973).

Baiketal.(1999)alsodevelopedapredictionmodelofthermaldiffusivitydur-ingsimulatedbakingasafunctionofdensity,temperature,andmoisture.Thetem-peraturehistorymethodwasusedtoobtainthethermaldiffusivityofmuffin(TouandTadano,1991).Sampleswereputintoacylindricalcontainer(diameter80mm,height30mm)andbakedat220°C,andthetemperatureofthecenterofdoughwasmeasured.Thethermaldiffusivityvalueobtainedwas5.76×10−7m2/s.

10.3.4 densiTy/sPeCiFiCvolume

Thechangesindensityfollowthevolumetricchangeintheproductduringbaking.Sweat(1973)reportedthatduringbaking,thevolumeincreasedupto70%duetoformationofgasthatoccurredfromtheactionofchemicalleavening.Thisresultedinadensitydecreaseofabout75%attheendoftheprocess.

Christensonetal. (1989)measured thedensityof interiorportionsofsamplesbythegeometrycuttingtechnique.Baiketal.(1999)usedpycnometerandgeom-etrycuttingtoestimatethedensityofcakebatter/semisolidbatterandbakedcake,respectively.Theyusedfrozensampleandasharpknifetoprepareregularshapes.Thesampleswereweighed,andafterthawing,eachdimensionwasmeasuredtocal-culatevolume.Theyreportedthatthebatterdensitydecreasedsharplyfrom803to236kg/m3 during 13minofbaking.Itthenincreasedto281kg/m3after15minduetocollapse.Afterthat,itremainednearlyconstanttotheendofbaking.

52748.indb 206 2/6/08 2:27:07 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 222: Food Engineering Aspects of Baking Sweet Goods

Physical and Thermal Properties of Sweet Goods 0

Severalresearchershaveusedthesolid(seed)displacementmethodtomeasurethevolume/densityofbakedproducts(Gomezetal.,2007;Morretal.,2003;RagaeeandAbdel-Aal,2006;Rondaetal.,2005;Sumnuetal.,2005).Specificvolume/den-sitywasusedasaqualityindextostudytheinfluenceofdifferentingredientsandoperatingconditionsonbakedproducts.Morretal.(2003)studiedtheinfluenceofappliedairpressureintheoventoimprovebakingpropertiesofwheyproteinisolate(WPI)inangelfoodcake.Cakesbakedwith75%liquideggwhiteand25%WPIwithvariableairpressureexhibitedimprovedphysical,textural,andsensoryproper-tiescomparedtothosebakedatatmosphericpressureorconstantairpressure.

Edoura-Gaenaetal.(2007)demonstratedthatthespeedandaerationdurationhadasignificanteffectonthedensityofbiscuits.Thedensityincreasedfrom247to271kg/m3and227to279kg/m3asthespeedofrotationincreasedfrom250to1000rpmanddurationfrom1to80min,respectively.Rondaetal.(2005)assessedthe effect of polyols and oligosaccharides on various quality attributes includingdensityandspecificvolumeofsugar-freespongecakes.Theyfoundthatxylitolandmaltitolproducedspongecakesmoresimilartothecontrolwhichwasmanufacturedwithsucrose.ThefunctionalityofdifferenthydrocolloidsonthequalityofyellowlayercakewasstudiedbyGomezetal.(2007).Theyreportedthatincorporationofhydrocolloidledtoyellowlayercakeswithhighervolumethanthecontrol,exceptwhenalginatewasused.Cakeswiththehighestvolumewereobtainedwithxanthangumfollowedbylocustbeangum.

An experimental study by Celik et al. (2007) showed that egg white proteincanbepartiallyreplacedwithsoapwortextractinthespongecakeformulationwithonlyasmallchangeinthedensityofthefinalbakedproduct.Larreaetal.(2005)partiallyreplacedwheatflourwithextrudedorangepulpandproducedcookieswithacceptedflavorandtexturalquality.Thespecificvolumevariedfrom1.23to1.55astheamountoforangepulpdecreasedfrom25to5%.GaldeanoandGrossmann(2006)demonstratedthatphysicallyandchemicallymodifiedoathullscanbeusedtopartiallyreplacethewheatflourincookiesinordertoimprovethefibercontentwithoutmodificationofphysicalandsensoryproperties.Sumnuetal.(2005)usedmicrowaveandinfrared(IR)aloneandincombinationforthebakingofcakes.Thecake specificvolumewas lowwhenmicrowaveand infraredalonewereused forbaking.TheyshowedthatimprovedqualitycakescouldbeobtainedwhenIRheat-ingwascombinedwithmicrowaveheating.Byusing IR–microwavecombinationbaking,both the time-saving advantagesofmicrowaveand the surfacebrowningadvantageofIRcanbeobtained.Thespecificvolumealsoimprovedsignificantlybyusingmicrowaveandinfraredincombination.

10.3.5 moisTurediFFusiviTy

BaikandMarcotte(2003)estimatedthemoisturediffusivityofcupcakefordiffer-entinitialmoisturecontentsandoventemperatures.Themoisturediffusivityrangedfrom 9.0 × 10−11 to 4.4 × 10−8 m2/s for the industrial cake batter during baking.Temperatureandporositystronglyaffectedtheeffectivemoisturediffusivity(p <0.0001).Asporosityandtemperatureofthebatterincreased,themoisturediffusiv-ityincreased.

52748.indb 207 2/6/08 2:27:07 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 223: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

0. theoretICalModels

Severaltheoreticalmodelshavebeenproposedtopredictphysicalandthermalprop-ertiesoffoodsatdesiredconditions.Thesemodelsaremostlybasedonthechemicalcompositionasfollows:

C X Cp iw

pi=∑ (10.8)

k X ki

vi=∑

(Parallelmodel) (10.9)

1k

Xkiv

i=∑

(Perpendicularmodel) (10.10)

ρ

ρ

=

∑1Xi

w

i (10.11)

whereXivandXi

warevolumeandmassfractionofaunitcomponenti.Thesemod-elshavebeenappliedsuccessfullyfordifferentfoodmaterials,andthemodelsofspecificheatanddensityarealsovalidinporousfoods,includingbakeryproducts.Parallelandperpendicularmodelshavebeenfoundtoprovidetheupperandlowerlimitsofthermalconductivity,respectively,ofmostfoodmaterials.However,appli-cationsofsuchmodelstobakeryproductshavebeenlimited.

0. ConClusIons

BoththeDSCandmixingmethodshavebeenfavoredforthemeasurementofthespecificheatofbakeryproducts.Because specificheat is independentofdensity,themassfractionmodelisusuallyemployedforprediction.Forthedirectmeasure-mentof thermalconductivityofbakeryproducts, transient techniquesweremorepredominant. Among these techniques, the line heat source probe was the mostpopular; second was the temperature history method. As the porosity affects thethermalconductivitysignificantly,themassfractionmodelwasnotsuitablefortheestimationofthermalconductivityofbakeryproducts.Thefavoredstructuremodelforair-containingbakeryproductswastheparallelmodel.Thiswasbasedonthevolume fractionof eachcomponentof the sample food.Duringprocessing, thereare great structural changes. Chemical and physical reactions (e.g., phase transi-tion,distillationheattransfer)occuraswellascomplicatedtemperaturehistoryandmoisturecontent.Volumeisincreasing.Veryoften,thesechangesareinteracting.

52748.indb 208 2/6/08 2:27:10 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 224: Food Engineering Aspects of Baking Sweet Goods

Physical and Thermal Properties of Sweet Goods 0

Thus,aregressionmodelbasedonexperimentaldataisappliedmorethanastruc-turalmodel.

TheindirectmethodofcalculationfromCp,ρ,andkandthetemperaturehis-torymethodarethemostcommonforthemeasurementofthermaldiffusivity.Thethermaldiffusivityincreasedduringbakingwhilethermalconductivitydecreasedand specificheat changed slightly.Thiswasattributed to themigrationofvapor,structural changes, and thewater-holdingcapacity.Solid (seed)displacementandgeometrycuttingmethodshavebeenusedforthemeasurementofvolumeandden-sityofbakedproducts,andthepycnometermethodhasbeenusedfor thedensitymeasurementofbatter.Moisture-diffusivity-relatedmeasurementshavebeenverylimited.Effortsareneededtodevelopmoregenericcorrelationtopredictphysicalandthermalpropertiesofbakeryproductsunderawidevariationofconditions.

0. aCKnoWledgMent

TheauthorwouldliketoacknowledgetheassistanceofMattheusF.A.Goosen,NewYorkInstituteofTechnology,Amman,Jordan,forprovidingvaluablecommentsonthemanuscript.

referenCes

ASTM.1955.Standardmethodoftestforthermalconductivityofmaterialsbymeansoftheguardedhotplate.ASTM Standards Part3,1084.

Baik,O.D.andM.Marcotte.2003.Modelingthemoisturediffusivityinabakingcake.Jour-nal of Food Engineering56:27–36.

Baik,O.D.,M.Marcotte,S.S.Sablani,andF.Castaigne.2001.Thermalandphysicalprop-erties of bakery products. Critical Reviews in Food Science and Nutrition 41(5):321–352.

Baik,O.D.,S.S.Sablani,M.Marcotte,andF.Castaigne.1999.Modelingthethermalproper-tiesofacupcakeduringbaking.Journal of Food Science 64:295–299.

Buhari,A.B.andR.P.Singh.1993.Measurementoffoodthermalconductivityusingdiffer-entialscanningcalorimetry.Journal of Food Science 58:1145–1147.

Celik,I.,Y.Yilmaz,F.Isik,andO.Ustun.2007.Effectofsoapwortextractonphysicalandsensorypropertiesofspongecakesandrheologicalpropertiesofspongecakebatters.Food Chemistry101:907–911.

Choi,Y.andM.R.Okos.1986.Effectsoftemperatureandcompositiononthermalproper-tiesoffoods,inFood Engineering and Process Applications: Transport Phenomena, LeMaguer,M.andP.Jelen(eds.),Vol.1,Elsevier:London,93–101.

Christenson,M.E.,C.H.Tong,andD.B.Lund.1989.Physicalpropertiesofbakedproductsasfunctionsofmoistureandtemperature.Journal of Food Processing and Preservation 13:201–217.

Crank,J.1975.Mathematics of Diffusion.OxfordUniversityPress,London.Dickerson,R.W.1965.Anapparatusformeasurementofthermaldiffusivityoffoods.Food

Technology19(5):198–200.Edoura-Gaena,R.-B.,I.Allais,G.Trystram,andJ.B.Gros.2007.Influenceofaerationcondi-

tionsonphysicalandsensorypropertiesofaeratedcakebatterandbiscuits.Journal of Food Engineering79:1020–1032.

52748.indb 209 2/6/08 2:27:10 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 225: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Galdeano,M.C.andM.V.E.Grossmann.2006.Oathullstreatedwithalkalinehydrogenper-oxideassociatedwithextrusionasfiber source incookies,Ciência e Tecnologia de Alimentos, Campinas26(1):123–126.

Gekas,V.andI.Lamberg.1991.Determinationofdiffusioncoefficientsinvolume-changingsystems––Applicationinthecaseofpotatodrying.Journal of Food Engineering 14: 317–326.

Gomez,M.,F.Ronda,P.Caballero,C.A.Blanco,andC.M.Rosell.2007.Functionalityofdifferenthydrocolloidsonthequalityandshelf-lifeofyellowlayercakes.Food Hydro-colloids 21:167–173.

Hwang,M.P.andK.I.Hayakawa.1979.Aspecificheatcalorimeterforfoods.Journal of Food Science 44:435–438,448.

Kulacki,F.A.andS.C.Kennedy.1978.Measurementof the thermo-physicalpropertiesofcommoncookiedough.Journal of Food Science 43:380–384.

Larrea, M.A., Y.K. Chang, and F. Martinez-Bustos. 2005. Some functional properties ofextrudedorangepulpanditseffectonthequalityofcookies,LWT–Food Science and Technology38:213–220.

Lind,I.1991.Themeasurementandpredictionofthermalpropertiesoffoodduringfreezingandthawing—Areviewwithparticularreferencetomeatanddough.Journal of Food Engineering 13:285–319.

Lostie,M.,R.Peczalski,andJ.Andrieu.2004.Lumpedmodelforspongecakebakingduringthe“crustandcrumb”period.Journal of Food Engineering65:281–286.

McFarlane,I.2006.Controloffinalmoisturecontentoffoodproductsbakedincontinuoustunnelovens.Measurement Science and Technology17:241–248.

Mohsenin, N.N. 1980. Thermal Properties of Foods and Agricultural Materials. Can. J. Tech. 31:57–69.

Moreira,R.G.,J.Palau,V.E.Sweat,andX.Sun.1995.Thermalandphysicalpropertiesoftortillachipsasafunctionoffryingtime.Journal of Food Processing and Preserva-tion 19:175–189.

Morr,C.V.,W.Hoffmann,andW.Buchheim.2003.Useofappliedpressuretoimprovethebakingpropertiesofwheyproteinisolatesinangelfoodcakes.Lebensmittel Wissen-schaft und Technologie36:83–90.

Murakami,E.G.andM.R.Okos.1989.Measurementandpredictionofthermalpropertiesoffoods.In:Food Properties and Computer-Aided Engineering of Food Processing Sys-tems, R.P.SinghandA.G.Medina(Eds.),KluwerAcademic,Norwell,MA,pp.3–48.

Nasvada, P. 2005. Thermal properties of unfrozen foods. In: Engineering Properties of Foods,3rded.,M.A.Rao,S.S.H.Rizvi,andA.K.Datta(Eds.),CRCPress,BocaRaton,FL,pp.149–173.

Nix,G.H.,G.W.Lowery,R.I.Vachon,andG.E.Tanger.1967.Directdeterminationofther-maldiffusivityandconductivitywitharefinedline-sourcetechnique.In:Progress in Astronautics,G.R.Heller(Ed.),AcademicPress,NewYork,20,pp.865–878.

Ohlsson,T.1983.Themeasurementofthermalproperties.In:Physical Properties of Foods, Vol.1,R.Jowittetal.(Eds.),AppliedSciencePublishers,London,pp.313–353.

Ragaee,S.andE.S.M.Abdel-Aal.2006.Pastingpropertiesofstarchandproteininselectedcerealsandqualityoftheirfoodproducts.Food Chemistry95:9–18.

Rahman,M.S.1995.Food Properties Handbook.CRCPress,BocaRaton,FL.Rask,C.1989.Thermalpropertiesofdoughandbakeryproducts:Areviewofpublisheddata.

Journal of Food Engineering 9:167–193.Ronda,F.,M.Gomez,C.A.Blanco,andP.A.Caballero.2005.Effectsofpolyolsandnondi-

gestibleoligosaccaridesonthequalityofsugar-freespongecakes.Food Chemistry90:549–555.

52748.indb 210 2/6/08 2:27:10 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 226: Food Engineering Aspects of Baking Sweet Goods

Physical and Thermal Properties of Sweet Goods

Rubio,A.R.I.andV.E.Sweat.1990.andMeasurementandmodelingthermalconductivityofbakedproducts.PresentedatAnnualMeetingofASAE,Chicago, IL,December18–21.

Sablani,S.S.,O.D.Baik, andM.Marcotte.2002.Neuralnetworks forpredicting thermalconductivityofbakeryproducts.Journal of Food Engineering52:299–304.

Sablani,S.S.,M.Marcotte,O.D.Baik,andF.Castaigne.1998.Modelingofsimultaneousheatandwatertransportinthebakingprocess:Areview.Lebensmittel Wissenschaft und Technologie 31:201–209.

Standing,C.N.1974.Individualheattransfermodesinbandovenbiscuitbaking.Journal of Food Science 39:267–271.

Sumnu,G.,S.Sahin,andM.Sevimli.2005.Microwave, infraredandinfrared-microwavecombinationbakingofcakes.Journal of Food Engineering71:150–155.

Sweat,V.E.1973.Experimentalmeasurementofthethermalconductivityofayellowcake.Proceedings of 13th International Conference on Thermal Conductivity, 213–216,LakeOzark,MO,November5–7.

Tou,K.andT.Tadano.1991.Studyoneffectivethermaldiffusivityofmuffinduringbaking.Bulletin of the College of Agriculture and Veterinary Medicine, Nihon University48:199–204.

Vos,B.H.1955.Measurementsofthermalconductivitybyanonsteadystatemethod.Applied Scientific Research A5:425–438.

Zhou,L.,V.M.Puri,andR.C.Anantheswaran.1994.Measurementofcoefficientsforsimul-taneousheatandmasstransferinfoodproducts.Drying Technology 12:607–627.

52748.indb 211 2/6/08 2:27:11 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 227: Food Engineering Aspects of Baking Sweet Goods

Appendix ANeural-network-basedequationsforestimationofthermalconductivity,k(W/mK)ofdoughandbakeryproductsasafunctionoftemperature(T,°C),moisturecontent(M,%,wetbasis),andapparentdensity(ρ,kg/m3)(adaptedfromSablanietal.,2002):

X2=T*(0.00856)+(−0.627)

X3=M*(0.0423)+(−1.059)

X4=ρ*(0.00193)+(−1.31)

X5=tanh[(−3.66)+(5.64)*X2+(0.298)*X3+(−1.08)*X4]

X6=tanh[(−0.812)+(−1.33)*X2+(−1.385)*X3+(1.43)*X4]

X7=tanh[(−0.157)+(0.0634)*X2+(0.122)*X3+(0.22)*X4+(−0.686)*X5+(−0.403)*X6]

k=X7*(0.802)+(0.549)

52748.indb 213 2/6/08 2:27:11 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 228: Food Engineering Aspects of Baking Sweet Goods

52748.indb 214 2/6/08 2:27:11 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 229: Food Engineering Aspects of Baking Sweet Goods

11 Alternative Baking Technologies

Dilek Kocer, Mukund V. Karwe, Servet Gülüm Sumnu

Contents

11.1 Introduction................................................................................................. 21511.2 JetImpingementOvenTechnology............................................................. 216

11.2.1EngineeringandDesignAspectsofJetImpingementOvens.......... 21711.2.2BakinginJetImpingementOvens...................................................220

11.3 MicrowaveBakingTechnologies................................................................22311.3.1 PrinciplesofMicrowaveBaking......................................................22311.3.2QualityDefectsinMicrowave-BakedProducts..............................22711.3.3StarchGelatinizationinMicrowaveBaking....................................22811.3.4Microwave-BakedCakes................................................................. 22911.3.5Microwave-BakedCookies.............................................................. 231

11.4 HybridTechnologies................................................................................... 23111.4.1 HybridJetImpingementandMicrowaveOvens.............................. 23211.4.2Microwave–InfraredCombinationOvens....................................... 235

11.5 Conclusions................................................................................................. 238References.............................................................................................................. 239

. IntroduCtIon

Bakingtechnologyiscontinuouslychangingtoincreaseenergyefficiencyandsav-ings,andtoimproveproductquality.Today’sovenshaveadvancedfromearliersim-plewoodbakingstovestosophisticatedmicrochip-controlleddevices.Earlierbakingovenswerenaturalconvectionovenswhichwerefollowedbyforcedconvectionandgas-firedovens.Then,microwaveovensandjetimpingementovenswereintroduced.Microwaveovensand jet impingementovensprovidenoticeable improvements inbakingtechnologyandhavebeenstudiedbyresearchersasalternativebakingtech-nologies.Thesestudiesfocusonthefollowing:

1.Understandingtheeffectofusingalternativetechnologiesonthephysico-chemicalchangesoccurringduringbaking,andthephysicalcharacteristicofthefinishedbakedproduct

2. Improvingproductformulationsandovendesignstoovercomeanyprob-lemsassociatedwiththeuseofalternativebakingtechnologies

52748.indb 215 2/6/08 2:27:11 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 230: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

3.Definingoptimumprocessingconditionstoobtainproductswithhigh-qual-ityparameters

Thefirstpartofthisbookchaptercoversthesealternativebakingtechnologiesandtheirapplications.Thestudiesonbakingshowthatanysinglemodeofbaking(microwave,naturalconvection,andimpingement)hasitslimitationsaswellasitsadvantages.Theselimitationshavebeenencouragingresearcherstostudycombina-tionbaking.Thecombinationofalternativebakingtechnologieshastheadvantageofproducingahigh-qualityproductwithshorterandmoreefficientprocesses.Thelastpartofthischapterfocusesonthesecombinationoventechnologiesasmicro-waveandimpingementcombinationheating,andmicrowaveandinfraredcombina-tionheating.

. jetIMPIngeMentoventeChnology

Natural convection baking is a slow and inefficient process that results in varia-tions inproductqualitydue tononuniformheat transferover theproduct surface(Henke, 1985; Walker, 1987). Increasing the air movement within the oven withtheuseoffansandblowersimprovestheheattransferratebutstillisnotenoughtoachieveproductuniformity(Henke,1985;Walker,1987).Inordertoprovidemoreuniformdistributionofairovertheproductsurfacecomparedtonaturalconvection,jetimpingementtechnologywasintroduced.Jetimpingementovens,firstdesignedbyDonaldSmith (1975), are a special class of forced convectionovens inwhichhigh-velocity(10to50m/s)jetsofhotair(100to250°C)impingeverticallyonafoodproduct(Figure11.1).

Theimpingementofhigh-velocityairverticallyontotheproductsurfaceresultsinahigherrateofheattransfersothattheproductswithinternalandexternalchar-acterssimilartoconventionallybakedonescanbeproducedatlowertemperaturesandinshortertimes(LiandWalker,1996;Walker,1987).Thisrapidheattransfertechnologyhasbeensuccessfullyintroducedinsmallfast-foodovensaswellascom-mercialtunnelovens(Walker,1987).Jetimpingementovenshavebeenusedinthefoodindustryforthebakingoftortilla,potatochips,pizzacrust,pretzels,crackers,cookies,breads,andcakesandtotoastready-to-eatcereals(LiandWalker,1996;Walker,1987;WalkerandSparman,1989).

fIgure. Amultiplejetimpingementoven.

Conveyor beltor turntable

Jets

52748.indb 216 2/6/08 2:27:13 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 231: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

TheheattransferfromanimpingementjetcanbeexpressedbyNewton’sequa-tion(1):

Q hA T= ∆ (11.1)

where Q is the heat transfer rate, h is the heat transfer coefficient, A is the heattransferarea,and∆Tisthetemperaturedifference(K)betweentheproductsurfaceandthejetmedium.Theheattransfercoefficient,h(W/m2K),thatisaffectedbytheairvelocitycanbedeterminedexperimentallyandpredictednumerically(Walker,1987).Theheattransfercoefficientsassociatedwithairimpingementovensare5to20timeshigherthanthoseassociatedwithnaturalconvection(KocerandKarwe,2005; Marcroft and Karwe, 1999; Marcroft et al., 1999; Nitin and Karwe, 2001,2004;Nitinetal.,2006;Walker,1987).Typicalheattransfercoefficientvaluesare6to12W/m2Kfornaturalconvection,13to30W/m2Kforforcedconvectiontoflatsurfaces,and40to200W/m2Kforairimpingement.

11.2.1 enGineerinGanddesiGnasPeCTsoFJeTimPinGemenTovens

Injetimpingementovens,theheatedairisdirectedtothefoodthroughthenozzlesthatcanbesimpleholes,shortnozzles,orlongnozzletubes.Theimportantfactorsthatshouldbeconsideredinjetimpingementovendesignarethedistancebetweenthe impingementnozzleand theproduct surface,nozzlediameterandwidth,andspacingbetweennozzles(OvadiaandWalker,1998).Jetsusedinjetimpingementovensforheatingandbakingoffoodproductsaresubmergedturbulentjetswherethejetfluidisthesameasthesurroundingmedium.

Theflowfieldofanimpingingjethasbeendividedintothreeregions:thefreejetregion,thestagnationregion,andthelateralspreadregion(Figure11.2)(GardonandAkfirat,1965;Sarkaretal.,2004).Thefreejetregionisfurtherdividedintothreesubregions:thepotentialcoreregion,thedevelopingflowregion,andthedevelopedflowregion(Figure11.2).

D Nozzle

Free jet region

Potential core region

Developing flowregionDeveloped flow region

Stagnation pointLateral spreadregion

H

fIgure. Regionsofimpingingjetflow.(ModifiedfromSarkar,A.,Nitin,N.,Karwe,M.V.,andSingh,R.P.,Journal of Food Science69(4):113–122,2004.WithpermissionfromBlackwellPublishing.)

52748.indb 217 2/6/08 2:27:19 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 232: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Inthestagnationregion,theaxialvelocitydecreasesrapidly,andinthelateralspreadregion, theradialvelocityrapidlyincreasesnear thestagnationregionandlaterdecreases(Figure11.3)(MarcroftandKarwe,1999;Marcroftetal.,1999;NitinandKarwe,2004).Ingeneral,forasinglejetimpingingonaflatsurface,theheattransfercoefficientishighatthestagnationregionanditdecreasesalongtheradialdirectionduetoagrowingboundarylayer(DeBonisandRuocco,2005;GardonandAkfirat,1965;Martin,1977;NitinandKarwe,2004;Nitinetal.,2006;Olssonetal.,2004).Thevalueoftheheattransfercoefficientisknowntobeafunctionofnozzle-to-platespacingaswellasReynoldsnumber.Jetsaregenerallylocated2to5timesthenozzlediameterabovetheproduct(Walker,1987).Arecentstudyofnumericalsimulationoffluidflowandheattransferforanimpingementflowonamodelcookieshowed that the maximum heat transfer coefficient is observed at the stagnationpoint(Figure11.4a),andthelocalmaximumshiftsawayfromthestagnationpointforhighz/d(zisnozzle-to-platedistance,anddishydraulicdiameterofthejetatinlet)ratiosathigherjetvelocities(30and40m/s)asseeninFigure11.4b(NitinandKarwe,2004).Anotherinterestingstudythatincorporatedthewatervaportransportmodelshowedthenonuniformityofheatandmasstransferalongtheexposedsur-facewithevaporationanddepletionofliquidwateratthestagnationregionandrapidremovalofsurfacevaporawayfromthestagnationpoint,inducingmorediffusionwithinthefood(DeBonisandRuocco,2005).

Multiple jetshavecharacteristics similar to thoseofa single jet;however, thepossibleinteractionsbetweensurroundingjetsmaydisturbthestagnationregionandleadtoareductionintherateofheattransfer.Theinteractionsbetweenthejetscanleadtostrongreverseflowsor“upwardjetfountains”thatcanresultinsecondaryheattransfermaximaontheimpingingsurfaceduetohighlevelsofturbulence(GoldsteinandTimmers,1982;HuberandViskanta,1994;Olssonetal.,2005;Saripalli,1983).

Jet inletumax = 40 ms–1

Tjet = 298 K

Jetdirection

Potentialcore

Stagnationpoint

Axis Model aluminum cookie

3.94e+01

3.55e+01

3.15e+01

2.76e+01

2.36e+01

1.97e+01

1.58e+01

1.18e+01

7.88e+00

3.94e+00

0.00e+00ms–1

fIgure. Contourplotoftotalvelocityinaturbulentimpingingjetonamodelcookieatz/d=3.(FromNitin,N.andKarwe,M.V.,Journal of Food Science69(2),59–65,2004.WithpermissionfromBlackwellPublishing.)(Seecolorinsertafterp.158.)

52748.indb 218 2/6/08 2:27:20 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 233: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

HeattransferduringmultiplejetimpingementisaffectedbytheReynoldsnumber,nozzle-to-platespacing, jet–jetmixing,nozzle-to-nozzlespacing,andnozzlearraygeometry.Arecentstudyshowedthatspacingbetweenthejetsshouldbehighenoughbutnottoohightoattainhighheattransferrate(Olssonetal.,2005).Ifthedistancebetweenthejetsistoosmall,theentrainmentofairbetweenthejetsissuppressedandalmostnorecirculationzoneisobserved,whereasifthedistancebetweenthejetsistoolarge,alargerecirculationzoneiscreatedbetweenthejets,leadingtomorekineticenergylossandlowerrateofheattransfer(Olssonetal.,2005).

350

300

250

200

150

100

50

0

40 ms–1

30 ms–1

20 ms–1

10 ms–1

Radial position on cookie top surface (m)0 0.01 0.02 0.03

Surfa

ce h

eat t

rans

fer c

oeffi

cien

t h (W

m–2

K–1)

350

300

250

200

150

100

50

0

40 ms–1

30 ms–1

20 ms–1

10 ms–1

Radial position on cookie top surface (m)0 0.01 0.02 0.03

Surfa

ce h

eat t

rans

fer c

oeffi

cien

t h (W

m–2

K–1)

(a)

(b)

fIgure. Variationoflocalsurfaceheattransfercoefficientonthetopsurfaceofthemodelcookieasafunctionofpositionandjetvelocityatjettemperatureof450Kfor(a)z/d=2,(b)z/d=5.(FromNitin,N.andKarwe,M.V.,Journal of Food Science69(2),59–65,2004.WithpermissionfromBlackwellPublishing.)(Seecolorinsertafterp.158.)

52748.indb 219 2/6/08 2:27:23 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 234: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Different techniqueshavebeenused to study thefluidflowandheat transferassociated with jet impingement flows. The use of the smoke wire method is aqualitative approach to study the flow pattern of impinging jets in food applica-tions(e.g.,bakingorroastingofhotdogs)(Cornaroetal.,1999;PopielandTrass,1991;Viskanta,1993).Thequantitativeexperimentalmeasurements,likehotwireanemometry(GardonandAkfirat,1965;SugiyamaandUsami,1979)andpitottube(KocerandKarwe,2005;StoyandBen-Haim,1973)whichmeasurepointvelocityof impingingjets,are invasive techniquesandare likely to inducechanges in theflowfield.Ontheotherhand,laserdoppleranemometry(LDA)(Durstetal.,1981;MarcroftandKarwe,1999;Marcroftetal.,1999)andparticleimagingvelocimetry(PIV)(Adrian,1991)arenoninvasivetechniquesthathavebeendevelopedtoquanti-tativelymeasuretheflowfield,althoughthesetechniquesareexpensive.

The lumped capacitance technique has been used to determine average heattransfer coefficient during jet impingement processing (Kocer and Karwe, 2005;Nitin andKarwe,2001).Liquid crystals (Baughn, 1995;Goldstein andTimmers,1982;LeeandLee,2000;Mesbahetal.,1996),two-dimensionalinfraredradiom-eter(Panetal.,1992;PanandWebb,1995),andnaphthalenefilm-indirectapproach(Angiolettietal.,2003;SparrowandLovell,1980)havebeenusedtomeasurethespatialvariationofsurfaceheattransferforamodelobject.

11.2.2 BakinGinJeTimPinGemenTovens

Bakingisaprocesswhereheatandmasstransferoccursimultaneouslywithinthefoodsystem.Heattransfercausestemperaturerise;masstransfercausesmigrationand loss of moisture in the food. This temperature rise, moisture migration, andevaporationcausestarchgelatinization,proteindenaturation,crustformation,colordevelopment, andflavor formation.Theextentof all thesephysical andchemicalchangesdeterminesthefinalproductquality,whichisdefinedbytexture,color,fla-vor,andshelflife.

Duringbaking,whilemoisturemigrates to theproduct surface, it encountersaheavy,cool,moist,andstagnantlayeraroundtheproductsurface,whichactsasan insulatorandgreatlyslowsheat transfer(WalkerandSparman,1989).Naturalconvectionisnotenoughtomovethiscoldlayeraroundtheproductsurface(Henke,1985;WalkerandSparman,1989).Blowingairhorizontallyaroundtheproductsur-facebyforcedconvectiononlydecreasesthiscoldlayer(Henke,1985).Ontheotherhand,impinginghigh-velocityhotairjetsontotheproductsurfaceremovesthiscoldboundary layerand replaces itwithhotteranddrierair.This results in increasedheatandmasstransferrateattheproductsurfacewhichhelpstoachievethedesireduniformbaking(Henke,1985;Walker,1987;WalkerandSparman,1989;WalkerandLi,1993;YinandWalker,1995).

Althoughthemoisturelossrateishigherinjetimpingementovens,thenetmois-ture loss in the products baked in jet impingement ovens is less than that of theonesbakedinconventionalovensduetoshorterbakingtimes(Olssonetal.,2005;WalkerandLi,1993;WalkerandSparman,1989).Therefore,thefoodsbakedinjetimpingementovenshaveabetteryieldandhighermoisturecontent,andtheirshelf

52748.indb 220 2/6/08 2:27:23 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 235: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

lifeandtextureareimproved(WalkerandLi,1993;WalkerandSparman,1989;YinandWalker,1995).

Theotherreasonforhighmoistureretentioninproductsbakedinjetimpinge-mentovensisthequickcrustformation.Ahigherrateofsurfacemoistureremovalunderhotair jet impingement results inquickcrust formation.Because thecrusthaslowermoisturediffusivity,theproductretainsmoremoistureinside,whichcanenhancetheperceivedqualityof theprocessedfood(Walker,1987), includinganincreaseinshelflifeaswellasretentionofsomekeyhealth-promotingnutraceuticalcompoundssuchasOmega-3fattyacids(Borquezetal.,1999).Inaddition,greatermoistureretentionresultsinimprovedflavorretention(Henke,1985).

Thecrustandcolorformationarekeyparametersthatidentifytheacceptabilityof thebakedproductsbyconsumers.The formationofcrust and increase in sur-facetemperaturebeyondtheevaporationtemperatureresult incolordevelopment.Browningreactions,mainlycaramelization,havebeenknowntoberesponsibleforthedevelopmentofthecrustcolor,andtheyneedhighertemperatures(>100°C)tooccur.Theairtemperatureisthemostsignificantparameteraffectingthecolordevel-opment(Olssonetal.,2005).Whenbakingatthesametemperature,therateofcolordevelopment in jet impingementovens is faster than thatwithconventionalovensduetofastersurfacetemperaturerise(Olssonetal.,2005;Wahlbyetal.,2000).Thecrust thickness isalsoaffectedbyair temperatureandvelocityandprocess time.Shorterheatingtimeresultsinathinnercrust,whereasthecrustthicknessincreaseswithincreaseinairtemperatures(Olssonetal.,2005).Inaddition,thecentertem-peratureincreasesfasterduringimpingementbaking,leadingtofastersettlingofthecrumb(Wahlbyetal.,2000).

Table11.1showsthecomparisonofbakingtimesandairtemperaturesforprod-ucts baked in conventional versus jet impingement ovens (Walker and Sparman,1989).Itisimportanttonotethatprocessingtimesandtemperaturesmayvarywith

taBle.ComparisonofBakingtimesandairtemperaturesforProductsBakedinConventionalversusjetImpingementovens

Product Conventionaloven jetImpingementoventime(min) airtemperature

(°C)time(min) airtemperature

(°C)Muffins 26 174 12 154

Layercake 26 159 16 149Poundcake 75 134 55 124Croissant 18 171.5 12 154

Puffpastry 22 166.5 13 159Appledanish 20 171.5 10 149

Cherryturnovers 28 171.5 14 154Raisinoatmeal

cookies15 166.5 12 159

Raisinnutoatmealcookies

16 169 12 154

Source:Walker,C.E.andSparman,A.B., AIB Research Department, Technical Bulletin,XI,11,Novem-ber,1989.Withpermission.

52748.indb 221 2/6/08 2:27:23 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 236: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

theoventype,productformulation,sampleweight,andpancharacteristics(WalkerandSparman,1989).ThejetimpingementovenusedinthisstudywasaJetSweep®airimpingementovensetwiththeupperjetfingerslocated8cmabovetheproductsurface.Airvelocitywas15m/sat4cmawayfromtheorificeand6to13m/sattheproductsurface.Thestudyshowedthatbothexternalandinternalappearancesofthefinishedfoodsweresimilar(WalkerandSparman,1989);however,thebakingtimewassubstantiallylessinthecaseofjetimpingementovens.

Anotherstudyinvestigatedthebakingofcakesinfivedifferenttypesofovens:an electrically heated convection oven, an electrically heated conveyor-type jetimpingementoven,agas-heatedconveyor-typejetimpingementoven,ajetimpinge-ment oven, and a jet impingement–microwave hybrid oven. Table11.2 shows theprocesstimesandtemperatures,heattransfercoefficients,andtotalenergyrequiredbakinga20-cmlayercakeintheseovens(LiandWalker,1996).Thestudyshowedthat the cakesbaked in jet impingementovenshad slight crumbcompaction andfirmertexturethanthosebakedintheconventionaloven.Itwasalsoobservedthatincreasingbaking time,airvelocity, and temperature resulted in increase inboth

taBle.

ComparisonofProcessParametersforvarioustypesofCommercialovensConventional

oven(electrically

heated)

Conveyor-typejetImpingementoven

jetImpingement

oven

hybridoven(jet

impingementand

microwave)

(electricallyheated)

(direct-firedgas)

Model DespatchMini-Bake(DespatchOvenCo.,

Minneapolis,MN)

Middleby-Marshall

modelPS200T(Middleby-

MarshallInc.,Elgin,IL)

BlodgettMastertherm®

modelMT70PH(BlodgettOvenCo.,

Burlington,VT)

WindshearJetSweep®

(Enersyst,Dallas,TX)

EnersystFoodFinisherIII®(Enersyst,

Dallas,TX)

Optimumbakingtime

30min 18min 18min 14min 6min

Optimumbaking

temperature

177°C 149°C 166°C 149°C 227°C

Apparentconvective

heattransfercoefficient

uppertargetplate

23.3W/m2K 83.8W/m2K 66.4W/m2K 84.8W/m2K 49.1W/m2K

lowertargetplate

17.4W/m2K 110.9W/m2K 91.4W/m2K 105.0W/m2K 98.2W/m2K

Totalenergyrequired

174kJ 158kJ 175kJ 109kJ 144kJ

Source: Li, A. and Walker, C.E., Journal of Food Science 61(1): 188–191, 197, 1996. Withpermission.

52748.indb 222 2/6/08 2:27:24 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 237: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

crustcolorandcakefirmness.Thecakesbakedinconveyor-typeovenshadlowervolumesthantheonesbakedinconventionalovens,andtheyshowedstripeswheretheyhadpassedtoocloselybeneaththenozzles.

To summarize, the benefits of air impingement over conventional baking aredecreasedprocessingtime,lowerprocesstemperatures,energyefficiency,uniformheating,andreducedmoistureloss(Henke,1985;Olssonetal.,2005;WalkerandLi,1993).Theproductsbakedinjetimpingementovenshaveimprovedtexture,uni-formlybakedsurface,andinternalstructure(Henke,1985).

Insomebakingapplications,jetimpingementisnotrequiredduringthewholebakingprocess.Instead,differentbakingzoneswithdifferentprocessingtimes,airvelocities, and temperatures are applied to achieve products with desired bakingqualities.Theuseofhighvelocitiesofairatlowtemperaturesduringtheearlystagesofbakinggivesagoodovenspringwithminimumcrustdevelopment.Thispermitsrapidheatmovementtothecenteroftheproduct,whichthenisheldinanintermedi-atezonewherethecrumbstructuredevelops.Finally,theapplicationofhighoventemperatureresultsincrispandbrowncrust(Walker,1987).Ifhightemperatureisappliedtotheproductattheearlystagesofbaking,adry,thickcrustcandevelop.Theformationofathickcrustretardsproperbakingatthecenterbecausethecrustactsasaninsulator(Walker,1987).Differentcombinationsofairtemperature,veloc-ity, andprocessing timescanbeused toachieveacrustwithadesired thickness(WalkerandSparman,1989).Rapidinitialbakingiscriticalinsomeproductswithdense,moistcenters,suchasfruitpies,toachieveabrown,flavorfulcrust,withthedarkening characteristic of dextrinization, caramelization, and theMaillard reac-tions,butoverbakingshouldbeavoidedwhilethecenterheatscompletely(Walker,1987;WalkerandSparman,1989).

. MICroWaveBaKIngteChnologIes

Microwavebakinghastheadvantagesoverconventionalbakingintermsofreduc-tionofbakingtimeandenergy.Variousstudieshavebeenconductedonmicrowavebakingofsoftwheatproducts,andthesestudiesshowedthatconventionalbakingtime was significantly reduced in the presence of microwave heating. Table11.3showsthecomparisonofbakingtimesindifferentovensfordifferentproducts.

The usage of microwave baking in the food industry is limited. In the early1990s, APV Baker (UK) introduced a microwave–conventional baking oven forpostbaking. This oven was developed as an alternative for radio frequency (RF)heating(Bengtsson,2001).Becausemicrowaveequipmentismorecompact,flexible,andconsideredasadvancedtechnology,thereisrecentlyatendencytowardhybridovensinsteadofRFinbakingandpostbakingprocesses.Microwaveovensworkingat896MHzhavebeenreportedinBritainforbreadbakingandproductionofbreadcrumbs(Bengtsson,2001).

11.3.1 PrinCiPlesoFmiCrowaveBakinG

Therearetwomicrowaveheatingmechanismsoffoods:dipolarrotationandionicconduction.Indipolarrotation,polarmoleculesplacedinanalternatingelectricfield

52748.indb 223 2/6/08 2:27:24 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 238: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

experiencea rotational force,whichorients them in thedirectionof thefield.Asmoleculestrytorotateinthedirectionofthefield,theycolliderandomlywiththeirneighbors.Asthefieldchangesitsdirection,moleculestrytolineupwiththedirec-tionofthefield,andfurthercollisionstakeplace.Thisresultsinheating.

Ionicconductionisobservedinmaterialscontainingionssuchassalts.Saltiscomposedofpositivesodiumandnegativechlorideionsindissociatedform.Positivechargedparticleswillbeacceleratedtowardthedirectionoftheelectricfield,andnegativechargedparticleswillbeacceleratedinthereversedirection.Anaccelerat-ingparticlecollideswithitsneighborandsetsitsneighborintomoreagitation.Thus,thetemperatureoftheparticleincreases.Thisheatisthentransferredtootherpartsofthefoodbyconduction.

Inmicrowavebaking,heatisgeneratedinsidethefoodbytheenergyequation(Equation11.2):

∂∂= ∇ +

Tt

T QCP

αρ

2

(11.2)

whereTistemperature(K),tistime(s),αisthermaldiffusivity(m2/s),ρisdensity(kg/m3),Cpisspecificheatcapacityofthematerial(J/kg.K),andQistheheatgener-atedperunitvolumeofmaterial(W/m3)whichrepresentstheconversionofelectro-magneticenergy.

TherelationshipbetweenQandelectricfieldintensity(E)atthatlocationcanbederivedfromMaxwell’sequationsofelectromagneticwavesasshownbyMetaxasandMeredith(1983):

Q fE= 2 02Πε ε" (11.3)

taBle.

ComparisonofProcessParametersforMicrowaveandConventionalovensoventypeandBakingCondition

Product Microwaveoven Conventionaloven ref.

Madeiracake 100%power,40s(Fullpower:900W)

200°C,600s Megaheyetal.,2005

Modellayercake 100%power,6min(FullpowerbyIMPI

test:600W)

180°C,25min Sumnuetal.,2000

High-ratiowhitelayercake

100%power,5.5min(Fullpower:650W)

190°C,25min MartinandTsen,1981

Whitelayercake 50%power,4min(FullpowerbyIMPI

test:706W)

175°C,24min Sumnuetal.,2005

Cannedbiscuitdough 50s,100%(Fullpower:900W)

218°C,10min PanandCastell-Perez,1997

52748.indb 224 2/6/08 2:27:25 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 239: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

whereε0isthedielectricconstantoffreespace,ε′′isthedielectriclossfactorofthefood, f is the frequencyof theoven,andE is the root-mean-squaredvalueof theelectricfieldintensity.

Afterheatisgeneratedinsidethefood,therestofthefoodisheatedbyconduc-tion. In conventionalbaking, food isheatedbyconduction, convection, and radi-ation. The air inside the microwave oven is not heated as in conventional ovens.Therefore,foodsbakedbymicrowavesarenotheatedbutarecooledbyconvectionatthesurface.

Dielectricpropertiesarethephysicalpropertiesofafoodthataffectmicrowaveheating.Dielectricpropertiesincludethedielectricconstantandthedielectriclossfactoroffoods.Thedielectricconstantandthelossfactorrepresent theabilityofa foodmaterial to store electrical energy andconvert electrical energy intoheat,respectively.Thedielectricpropertiesoffooddependontemperature,moisturecon-tent,saltcontent,andcompositionoftheproduct.Therearelimitedstudiesintheliteratureonthedielectricpropertiesofbakedproducts.

KimandCornillon(2001)studiedtheeffectsofmixingtimeondielectricprop-ertiesofwheatdough.Asmixingtimeincreased,thedielectricconstantandthelossfactorofwheatdoughdecreasedduetoalowamountofmobilewaterinthesampleaftermixing.Theincreaseintemperaturewasshowntoincreasethelossfactorofdoughwhichcouldbeduetotheincreasedamountofdissolvedions.

ThedielectricpropertiesofstarchslurrieshaverecentlybeenstudiedbyMot-wanietal.(2007).Thedielectricconstantofstarchslurrydecreased,butitslossfactor increased with increasing starch concentration. The dielectric constantdecreasedwithincreasingtemperatureforallfrequencies.Thevariationofthelossfactorwithtemperaturewasafunctionoffrequency.Itincreasedwithtemperaturebetween15MHzand450MHzandthendecreasedwithincreaseintemperaturebetweenfrequenciesof450MHzand3GHz.Thedielectricconstantof20%starchslurrywasfoundtobesignificantlycorrelatedwithgelatinization(Motwanietal.,2007).

Thefirststudyonthevariationofdielectricpropertiesofbakedproductsdur-ingmicrowave–infrared(MIR)andmicrowave–jetimpingement(MJET)wasper-formedonbreadbySumnuetal.(2007).Thedielectricpropertiesofbreadswereshown todecrease sharplyduring the initial stagesof baking and then remainedconstant(Figure11.5).Thesharpdecreaseindielectricpropertieswithbakingtimewasexplainedbytheincreaseintheporosityduringbaking.Thedielectricproper-tiesofcrustwereshowntobesignificantlyhigherthanthecrumbportion,becausecrustwaslessporousthanthecrumbportion.

Dielectricconstantandlossfactorofcakesampleswereshowntobedependentonformulation,bakingtime,andtemperature(Sakiyanetal.,2007).Theincreaseinbakingtimeandtemperaturedecreaseddielectricconstantandlossfactorofallformulations.Fatcontentwasshowntoincreasedielectricconstantandlossfactorofcakes.Variationofdielectricpropertiesofcakesduringbakingwasexplainedbyporosityandmoisturecontent.

52748.indb 225 2/6/08 2:27:26 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 240: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

MIR

MJET

0 2 4 6 8

25

20

15

10

5

0

MIR

MJET

0 2 4 6 8

12

10

8

6

2

4

0

Time (min)

Loss

Fac

tor

Die

lect

ric co

nsta

nt

Time (min)

(a)

(b)

fIgure. Transientdielectricconstant(a)andlossfactor(b)ofbreadsmeasuredatthecentral regionof crumbduringbaking indifferent heatingmodes. (MJET:microwave–jetimpingement,MIR:microwave–infrared.)(FromSumnu,G.,Datta,A.K.,Sahin,S.,Keskin,S.O.,andRakesh,V.,Journal of Food Engineering78(4),1382–1387,2007.WithpermissionfromElsevier.)

52748.indb 226 2/6/08 2:27:30 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 241: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

11.3.2 qualiTydeFeCTsinmiCrowave-BakedProduCTs

Microwave-bakedsoftwheatproductshavevariousqualityproblemssuchaslowvol-ume,firmortoughtexture,andhighmoistureloss(Sumnu,2001).Thelowvolumeandfirmortoughtexturecanbeexplainedbytheinsufficientstarchgelatinization.Duetotheshorttimeofmicrowaveheating,thereisnotenoughtimeforstarchtocompleteitsgelatinization.Itisassumedthatthespecificinteractionofmicrowavewithglutenisresponsibleforthetoughnessofbakedproducts.Theexactmechanismofinteractionofmicrowaveswithglutenisnotknown.Campanaetal.(1993)showedthatdryingofwheatbymicrowavesdidnotaffecttotalproteincontentbutchangedthefunctionalityofgluten.Rogersetal.(1990)showedthatthemicrowavetoughen-ingeffectwasnottheresultofcross-linkingbydisulfidebondformation.

Another reason for thehard textureofbakedproducts inmicrowaveovens isthehighmoisturelossintheseproducts.Itwasshownbyvariousresearchersthatmicrowave-bakedproductsweredrier thanconventionallybakedones (Keskin etal.,2004;Lambertetal.,1992;Seyhunetal.,2003;Sumnuetal.,1999,2005).Thiscanbeexplainedby thedifference in themechanismsofmicrowaveheatingandconventionalheating.AsexplainedinSection11.3.1,thereisinternalheatgenera-tioninmicrowaveheating.Thiscreatessignificantpressureandconcentrationgra-dients,whichincreasetheflowofmoisturethroughthefoodtotheboundary(Datta,1990).Inaddition,thecrustformedinconventionalproductscannotbeobtainedinmicrowave-bakedproducts.Thus,thereisnocrustonthesurfaceoftheseproductstorestrictmoistureloss.

Crustandsurfacecolorcannotbeformedinmicrowave-bakedproducts.Micro-wavesaregeneratedinsidethefoodsandtheairinsidethemicrowaveovenisnotheated.Therefore, thesurface temperatureof theproductscannot reach tempera-turesnecessaryforMaillardandcaramelizationreactions.Inaddition,themoistureremovedfrommicrowave-bakedproductscondenseswhenitcomesincontactwiththeairatambienttemperatureatthesurface.Becausethemoisturecontentatthesurfaceoftheproductishigh,adrycrustcannotbeformed.

BecauseMaillardandcaramelizationreactionsarenotobservedinmicrowave-bakedproducts,flavorsgeneratedasa resultof these reactionsarealsoabsent intheseproducts,andthearomaprofileofamicrowave-bakedcakeissimilartothatofbatter.WhortonandReineccius (1990) showed that aromas (nutty,brown,andcaramel type) observed in a conventional cake were absent in microwave-bakedcakes.Inaddition,unwantedflavorssuchasflouroregg-likeflavorsdevelopduringthemicrowavebakingofcakes.Itispossibletomasktheseundesiredflavorsandtoobtainasimilarflavorprofilewithconventionallybakedcakesbyaddingflavoringagentstothecakerecipe(SumnuandSahin,2005).

Rapid staling is another problem in microwave-baked cakes. The stal-ing mechanism of microwave-baked cakes is still unclear. High moisture loss inmicrowave-bakedproductswasthoughttobeoneofthereasonsforthestalingofmicrowave-bakedproducts.Itwasshownthatshelflifeofbreadwasincreasedbyincreasingitsmoisturecontentby2%(Stauffer,2000).Ahighamountofamylosethatisleachedduringmicrowavebakingmaybeanotherreasonfortherapidstal-ingofmicrowavereheatedbreads(HigoandNoguchi,1987)andmicrowave-baked

52748.indb 227 2/6/08 2:27:30 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 242: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

cakes(Seyhunetal.,2005). Whenamylosecontentsofmicrowaveandconvention-allybakedcakeswerecomparedjustafterbakingandduringstorage,itwasseenthatmoreamylosewasleachedoutduringmicrowavebakingthanconventionalbak-ing(Figure11.6).

11.3.3 sTarChGelaTinizaTioninmiCrowaveBakinG

Starchisoneofthemaincomponentsofsoftwheatproducts,soitisnecessarytodiscusswhathappenstoastarchgranulewhenitisheatedbymicrowaves.Studyingstarchgelatinizationinamicrowaveovenwillbehelpfultoimprovethequalityofmicrowave-bakedproducts.

GelatinizationofwheatstarchhasbeenstudiedbyGoebeletal.(1984).Inthisstudy,microwave-heatedstarchsampleswerefoundtobenonuniformascomparedtoconventionallyheatedones.Zylemaetal.(1985)showedthatthedistributionofswollengranulesandthedegreeofswellingdependedonheatingmethod(micro-waveorconductionheating).Starchgranulesheatedbyconductionwereswollentothesameextentasthoseheatedbymicrowavesinlimitedwatersystems(1:1and1:2)butwerelessswollenforsystemscontaininghigheramountsofwater.

Sakonidouetal.(2003)showedthatstarchgelatinizationaftermicrowaveheatingwasincompleteascomparedtoconventionalheatingwhenmaizestarchsuspensionsatdifferentconcentrationswereheatedbymicrowaves.Althoughtherequiredtem-peraturewasreachedduringmicrowaveheating,gelatinizationwasnotcompleteduetothelimitedstarch–waterinteractionduringtheshorttimeofmicrowaveheating.

ConventionalMicrowave

0 1 2 3 4 5

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Am

ylos

e (%)

Storage time (day)

fIgure. Variationofamylosecontentofcakesbakedindifferentovens.(FromSey-hun,N.,Sumnu,G.,andSahin,S.,Food and Bioproducts Processing83,1–5,2005.WithpermissionfromInstitutionofChemicalEngineers.)

52748.indb 228 2/6/08 2:27:32 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 243: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

Lewandowiczetal.(2000)showedthatmicrowaveheatingreducedcrystallinity,solubility,andswellingcharacteristicsofwheatandcornstarches.However,micro-waveheatingdidnotaffectthosecharacteristicsofwaxycornstarch.Starchgelati-nizationofmicrowave-treatedsamplesoccurredathighertemperatures.Table11.4shows the gelatinization temperatures and gelatinization enthalpy of native andmicrowave-heated cereal starches. As can be seen in Table11.4, wheat and cornstarcheswerepartiallygelatinizedinthemicrowaveoven.However,gelatinizationofwaxycorninmicrowaveheatingwasfoundtobeinsignificantbecausegelatini-zation enthalpy values of native and microwave-treated samples were almost thesame.

Palav and Seetharaman (2006) investigated whether the starch gelatinizationstepsinthemicrowaveovenweredifferentfromthoseinconventionalheating.Theyfoundthatswellingofstarchgranulesheatedbymicrowavesdidnotoccurpriortothelossofbirefringence.However,instarchgranulesheatedbyconduction,swellingandlossofbirefringenceoccurredsimultaneously.Thelossofcrystallinearrange-ment inmicrowave-heated samplesoccurred at a lower temperature compared tothatobservedforconduction-heatedsamples.Duetotherotationalmotionofpolarmolecules,thecrystallinelamellaofamylopectinwasaffected,crystalarrangementwasdestroyed,andnoswellingoccurred.Granuleswellingwasobservedat tem-peraturesgreaterthan65°Cinmicrowaveheating.Granuleswellingfollowedlossofbirefringence.Thisisincontrasttoconductionheatinginwhichtheswellingofstarchgranulesandmeltingofcrystallitesaresemicooperativeprocesses. Incon-ductionheating,evenat90°C,thestarchgranulemaintainsitsintegrity;however,inmicrowaveheating,granularresidueswereobserved.Thiscouldbeexplainedbytheruptureofgranulesduringmicrowaveheatingwhichisduetothemechanismofdipolarrotation.

11.3.4 miCrowave-BakedCakes

Intheliterature,therearevariousstudiesaboutmicrowave-bakedcakes.Thesestud-iesareaboutimprovingthequalityoftheseproductseitherbyusingdifferentformu-lationsordifferentbakingconditions.

taBle.

differentialscanningCalorimetryvaluesofnativeandMicrowave-heatedCerealstarchesstarchtype native Microwaved

t0(°C) tp(°C) ∆h(j/g) t0(°C) tp(°C) ∆h(j/g)

Wheat 53.6 59.5 11.5 67.4 72.0 3.2

Corn 61.0 69.5 13.8 72.1 76.1 7.3

Waxycorn 60.4 68.6 14.7 66.4 75.1 13.6

Source:ReprintedfromLewandowicz,G.,Janowski,T.,andFornal,J.,Carbohydrate Polymers42(2):2000.WithpermissionfromElsevier.

52748.indb 229 2/6/08 2:27:32 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 244: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Hydrationlevelhadasignificanteffectonheatingrateofbatterforbothrice-andwheat-starch-formulatedcakes(Sumnuetal.,1999).Asthehydrationlevelincreased,more water molecules became available for the absorption of microwave energy,whichincreasedbattertemperature.Whencakeswereformulatedwithwheat,rice,orcornstarch, itwasobserved thatwheat-starch-containingcakeshad thehighervolumeascomparedtoothers(Sumnuetal.,2000).Thiswasexplainedbythefail-ureofrice-andcorn-starch-containingcakestosettheirstructureduringtheshortmicrowave baking period. The microwave power level was found to be the mosteffective independentvariable in affectingall qualityparameters suchasvolumeandtextureofcakes.

Theeffectsof twodifferentfloursonqualityofmicrowave-bakedcakeswerecompared(Bilgenetal.,2004).FlourAwasstraightgradeflour,andflourBwaswholewheatflour.GlutencontentandmoisturecontentofflourAwerehigherthanflourB.ThebakinglossfromcakesmadewithflourAwasgreaterthanthatofcakesmadefromflourB.ThespecificvolumesofcakesmadefromflourBwerehigherthanflourAandsimilartoconventionallybakedones.Ozmutluetal.(2001)alsoshowedthatmicrowave-bakedbreadswithlowerglutenflourhadhighervolumethantheonesformulatedwithhigherglutenflour. Combiningconventionalheatingwithmicrowaveheatingproducedcakeswithqualitiessimilartothosethatwereconven-tionallybaked(Bilgenetal.,2004).

Cakequalitywasfoundtobeafunctionofconcentrationofmonocalciumphos-phatemonohydrate, which is present in the baking powder. As the concentrationof monocalcium phosphate monohydrate increased, the specific volume of cakesdecreased,andcrumbfirmnessincreased(MartinandTsen,1981).Whencellstruc-turesofmicrowaveandconventionallybakedcellswere investigatedbyscanningelectron microscope, it was found that cell structures of microwave-baked cakeswerecoarserthanthoseofconventionallybakedcakes.Cellsinmicrowave-bakedcakes were irregular and had thicker cell walls than did those in conventionallybakedcakes.

Theeffectsofsucroseadditionincrystallineformorinliquidform(solubilizedinwater)onthequalityofmicrowaveandconventionallybakedcakeswerecom-pared(Bakeretal.,1990a).Itwasfoundthatcakestructureofconventionallybakedcakesshowedmorevariationasafunctionofformulationcomparedtomicrowave-bakedcakes.

Pantypewasfoundtobeasignificantfactorinaffectingtheheatingprofileofmicrowave-bakedcakes(Bakeretal.,1990b).Whencakeswerebakedinglasspans,theedgetemperatureofcakebatterwashigherthanthecentertemperatureduringbaking(Bakeretal.,1990b;Sumnuetal.,1999).Ontheotherhand,theedgetem-peratureofcakebatterbakedinametalpanwaslowerthanthecentertemperatureduringmicrowavebaking(Bakeretal.,1990b).

Therearevariouspatentsaboutmicrowaveablecakeswhichfocusonobtaininghigh-qualitycakesinthemicrowaveoven.AformulationisgivenintheU.S.patentof4,396,635toobtainsoftandmoistcakes(RoudebushandPalumbo,1983).Thecakeformulationcontainsleavening,asugar-to-flourratioof1.4:1to2:1,0to16%shortening,and2to10%emulsifier.Inanotherstudy,spongecakeswerepreparedbyusingmesophasegels,whichroseandformedanacceptablecakewithhighvolume

52748.indb 230 2/6/08 2:27:32 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 245: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

(McPhersonetal.,2002).Mesophasegelisformedwithemulsifiersandanaqueousphase.ItcontainseitheramixtureofhighandmediumemulsifierswithHLBvaluesof11to25and6to10,respectively,oramixtureofhigh,medium,andlowemulsi-fierswithHLBvaluesof11to25,6to10,and2to10,respectively.Mesophasegelisadded5to15%tocakebatter.Thenameoftheemulsifiersthatcanbeusedincakebatterandformulationofthecakebatteraregivenindetailinthepatent.

Seyhunetal.(2005)addeddifferenttypesofstarches(corn,potato,waxycorn,amylomaize,andpregelatinized) tocakeformulations to reducestalingofmicro-wave-baked cakes. The control cake formulation contained no additional starch.Starchesexceptamylomaizesignificantlyreducedfirmnessofcakesascomparedtocontrolcakes.Pregelatinizedstarch,themosteffectivestarchontheretardationofstaling,canberecommendedforcakestobebakedinthemicrowaveoven.Theuseofemulsifiersandgumswasshowntoretardthestalingofmicrowave-bakedcakes(Seyhunetal.,2003).

Characteristics of cake batter during baking were studied by Megahey et al.(2005).Inmicrowavebaking,batterexpandedrapidlyduringtheinitial30to50sec,butduringconventionalbakingitwaswithin420sec.Thiswasfollowedbyaperiodof slight shrinkage of cakes. Cakes baked at 250 W power in a microwave ovenshowedimprovedspringiness,firmness,andmoisturecontentascomparedtocakebakedinaconventionaloven.

11.3.5 miCrowave-BakedCookies

In the baking industry, checking is a failure in cookies, which is due to unevenexpansion or contraction of moisture due to nonuniform distribution of moisturewithintheproduct.Microwavebakingwasfoundtosignificantlyreducecheckingto5%comparedto61%inaconventionallybakedcookie(Ahmadetal.,2001).Within24hafterbaking,biscuitshadanaverageof18%checking,andmicrowavedbiscuitshadanaverageof1%checking.Thisshowedthatmoreuniforminternalmoistureprofilescanbeobtained inmicrowavebaking.Thepostbakingofbiscuitscanbedonebymicrowavestoreducecheckingandtoimproveproductquality(Ahmadetal.,2001).

The rate of weight loss of microwave-baked biscuits was significantly higherthanconventionalbaking(PanandCastell-Perez,1997).Whenfinalbakingincon-ventionalgasandmicrowaveovenswascompared,highermoisturelossandmini-malcolorchangeoccurredinmicrowaveheating(Sosa-Moralesetal.,2004).

. hyBrIdteChnologIes

Because therearequalityproblems inmicrowave-bakedproducts, itwas recentlyrealizedthatmicrowavesshouldbecombinedwithotherheatingmethodsinordertoobtainhigh-qualityproducts.Thesehybridtechnologiesaremicrowave–jetimpinge-mentovensandmicrowave–infraredcombinationovens.

52748.indb 231 2/6/08 2:27:33 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 246: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

11.4.1 hyBridJeTimPinGemenTandmiCrowaveovens

Althoughmicrowaveovensprovidemoreuniformheatingoftheinteriorregionsofaproductinashortertime,thelackofcrustformationandsurfacecolordevelop-mentaretheirdrawbacks(WalkerandLi,1993).Intensivemicrowaveheatingcauseshighinternalpressurethatpushesmorewatertotheproductsurfacewhichshouldberemovedbytheadditionofhotairorinfraredheating(Nietal.,1999).Astudyinvestigatingthetemperatureandmoistureprofilesforinfraredandhotairassistedheatingshowedthatforfoodswithlargerinfraredpenetrationdepth,infraredheat-ingcanactuallyincreasethesurfacemoisturethathastoberemovedbyconvectionheatingtoobtaincrust(DattaandNi,2002).Anotherstudyinvestigatingtheeffectofairflowonheatandmasstransferinamicrowaveovenshowedthatconvectionimprovestheheattransferandreducesmoistureaccumulationinsidetheoven(Ver-bovenetal.,2003).

Considering the advantages of air impingement and microwave ovens, rapidmicrowave baking of the interior of the product matches quite well with rapidimpingementbakingwhich leads toquickcrust formationandcolordevelopment(Datta et al., 2005;Walker andLi, 1993;Yin andWalker, 1995).Duringbakinginamicrowaveoven,whenthewatervaporleavestheproduct,itcomesincontactwithcool air at the surface,whichcausescondensationof thevaporat theprod-uctsurfaceandleadstoasoggysurfacetexture.Inaddition,thiscoolambientairinsidethemicrowaveovencausessurfacecooling,andthelowsurfacetemperaturepreventsMaillardreactionsandcaramelizationfromtakingplace.Impinginghigh-velocityhotairtotheproductsurfacereplacesthiscoolstagnantairwithhotanddryair, increases theheat transfer rate,and removes thesurfacemoisture,whichleadstoquickcrustformationandcolordevelopment.Combiningmicrowavewithhigh-velocityimpingementheatingwouldfurtherdecreasetheprocessingtimeandformasurfacecrustrapidly,whichwouldlockthemoistureinsideandthuspreventexcessivedryingoftheproduct.

Browningreactions,mainlycaramelization,havebeenknowntoberesponsibleforthedevelopmentofthecrustcolor,andtheyneedhighertemperatures(>100°C)tooccur.Withonlymicrowaveheating,eventhoughwecouldreducethemoisturecontenttotheequilibriummoisturecontent,thetemperatureatthesurfacecouldnotexceed

JetsMicrowavesource

Conveyor beltor turntable

fIgure. A hybrid jet impingement–microwave oven showing the two modes ofenergytransfer.

52748.indb 232 2/6/08 2:27:36 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 247: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

theevaporationtemperatureduetolackofconvectiveheattransferatthesurface,andhence,thebrowningcouldnottakeplace(ShuklaandAnantheswaran,2001).

Aschematicdiagramofahybridjetimpingement–microwaveovenisshowninFigure11.7.Forcookingandbakingpurposes,hybridovenscombiningmicrowaveand impingement (Sharp R90-GC, Thermador JetDirect, Jenn-Air Accellis 5XP,FujimakSuperJet)havebeendeveloped.ThermadorJetDirectwasdesignedforuseinthehome,andFujimakSuperJetwasdesignedforfoodserviceusebyEnersystDevelopmentCenter(Babyak,2000).

Thecombinationofmicrowaveheatingand impingementheatingwasstudied(LiandWalker,1996;OvadiaandWalker,1998;Sumnuetal.,2007;WalkerandLi,1993;YinandWalker,1995).Astudyshowedthatmorecompactcrumbstructure,firmertexture,surfacecracking,andlowvolumewereobservedincakesbakedinhybridjetimpingementandmicrowaveovenscomparedtoconventionalconvectionandjetimpingementovens(LiandWalker,1996).Theshorterbakingtimewasthekeyproblem inhybrid jet impingementandmicrowavebakingdue to incompletefunctioningofleaveningacidsbeforethestructurebegantoset.Incorporatingmoreairintothebatterbyintensecreaminganduseofliquidshortening,replacingtheconventionalbakingpowderwitharapid-actingone,andadjustingwaterandemul-sifiercontentsappeared to reduce thisproblem(LiandWalker,1996).AsshowninTable11.2,higheroperatingtemperatureswereusedduringbakinginhybridjet

taBle.

ProcessParametersforProductsBakedinthreedifferentovensProduct oventype oventemperature

(°C)Bakingtime(min)

Appledanish Conventional 190 12

Impingement 193 5

Hybrid 193 2.5

Puffpastry Conventional 204 20

Impingement 204 12

Hybrid 204 6.5

Chocolatechipcookies Conventional 190 12

Impingement 204 4

Hybrid 204 2

Blueberrymuffin Conventional 204 12

Impingement 204 7

Hybrid 204 3.5

Cornmuffin Conventional 204 14

Impingement 204 7

Hybrid 204 3.8

Source:ModifiedfromWalker,C.E.andLi,A.,AIB Research Department Technical Bulletin,XV,9,September,1993.Withpermission.

52748.indb 233 2/6/08 2:27:36 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 248: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

impingement and microwave ovens to provide the desired surface color at muchshorterbakingtimes(LiandWalker,1996).

Another study compared the baking of different products in a conventional,impingement, and hybrid jet impingement and microwave oven (Table11.5). Thestudyshowedthatalthoughthebakingtimewastheshortestinahybridoven,over-allappearanceandqualityoftheproductweresimilarforthethreeovens(WalkerandLi,1993).Inthesamestudy,someformulationadjustmentsweremadeinlayercakesbysubstitutingaveryrapidleaveningacidwiththeconventionaldouble-actingbakingpowdertoachievethedesiredvolumeinthefinishedproduct(WalkerandLi,1993).

It canbevisualized that themoisturedistributionsandcrust thicknessof thefinalproductwoulddependonthepathfollowedbythebakingprocess(Figure11.8).Bystudyingthevariouscombinationsofpowerlevels,airtemperature,andvelocity,anoptimumcombinationcanbefoundtoproduceaparticularproductwithadesiredmoisturecontent,crustthickness,andcolor.

Anumericalstudywasconductedtounderstandtheeffectofsequencingpowerlevels,airtemperature,andvelocityonmoisturedistribution(Kocer,2005).Twodif-ferentcombinationsofmicrowavepowerlevel,airvelocity,andairtemperaturewerestudiedaslistedinTable11.6.Forallprocesses,thetotalprocesstimewaschosenas1200sec,inwhich180secofmicrowaveheatingwasappliedwith50%microwavepower.Incase1,theprocesswasstartedwithonlyimpingementheating,followedbyhybridimpingementandmicrowaveheating,followedbyonlyimpingementheatingattheend.Inthesecondcase,ontheotherhand,theprocesswasstartedwithhybridjetimpingementandmicrowaveheating,followedbyonlyjetimpingementheating.Figure11.9showsthemoistureprofilesafter1200secofbaking.Asseenfromthe

Cookedcrust

moisture

Pathdependent

Cookeddry, soggy surface

no crustraw

Exte

nt o

f jet

impi

ngem

ent

Extent of microwave

fIgure. Theeffectofjetimpingementandmicrowavesequencingduringhybridbak-ing. (FromKocerD.,PhDdissertation,Rutgers,TheStateUniversityofNewJersey,NewBrunswick,2005.)

52748.indb 234 2/6/08 2:27:39 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 249: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

figures,theeffectoffocusingmicrowaveenergywasobservedforcase1,butincase2itwasnotobserved.Fromtheseresults,itcanbeseenthatincreasingtheproducttemperatureatthebeginningoftheprocessbyfastmicrowaveheating,followedbyonlyimpingementheatingresultedinthickercrust.Inaddition,thefocusingeffectdrivenbymicrowaveheatingwasprevented.Thestudyshowedthatbysequencingenergymodes,wecanobtainaproductwithadesiredmoistureprofile.Microwaves,withtheirabilitytopenetratedeepwithintheproduct,shouldbeusedinthefirstzones,rapidlyraisingtheinternaltemperaturetoapointjustbelowthegelatinizationofstarch(Walker,1989).

11.4.2 miCrowave–inFraredComBinaTionovens

Amicrowave–halogenlampcombinationovenwasproducedin1999.ItwassoldbythenameofAdvantium®byGeneralElectricCompany(Louisville,KY).Thisovenincludesthreehalogenlampsinadditiontoaclassicalmicrowaveovendesign.Two1500-Whalogenlampsarelocatedatthetop,andone1500-Whalogenlampisatthebottom.Afterthisovenwasintroducedintothemarket,theeffectsofthisovenonthequalityofbakedproductssuchascakes,cookies,andbreadswerestudied(Kes-kinetal.,2004,2005;Sevimlietal.,2005;Sumnuetal.,2005;Turabietal.,2008).

Halogen lamp heating provides near-infrared radiation, and it has lowerpen-etrationdepththantheotherinfraredradiationcategories.Near-infraredradiation

taBle.

Casesusedtoexploretheeffectofsequencingstages Processvariables Case Case

1.Stage Processtime(seconds) 900 180

Airvelocity(m/s) 10 2.5

Heattransfercoefficient(W/m2K)

40 20

Airtemperature(K) 450 450

Microwavepower 0 50

2.Stage Processtime(seconds) 180 1020

Airvelocity(m/s) 2.5 10

Heattransfercoefficient(W/m2K)

20 40

Airtemperature(K) 450 450

Microwavepower 50 0

3.Stage Processtime(seconds) 120 NA

Airvelocity(m/s) 10 NA

Heattransfercoefficient(W/m2K)

40 NA

Airtemperature(K) 450 NA

Microwavepower 0 NA

52748.indb 235 2/6/08 2:27:40 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 250: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

nodes at radial surface

node

s at a

xial

surfa

ceW (kg water/kg dry solids)

C 3

2.5

2

1.5

1

0.5

2 4 6 8 10 12 14 16 18 20 Br = Rr = 0(a)

(b)

20

18

16

14

12

10

8

6

4

2

A

x = 0

Dx = L/2

nodes at radial surface

node

s at a

xial

surfa

ce

W (kg water/kg dry solids)C

3

2.5

2

1.5

1

0.5

2 4 6 8 10 12 14 16 18 20 Br = Rr = 0

20

18

16

14

12

10

8

6

4

2

A

x = 0

Dx = L/2 3.5

fIgure. Moisturecontoursinpotatofor(a)case1,(b)case2.(FromKocer,D.,PhDdissertation.Rutgers,TheStateUniversityofNewJersey,NewBrunswick,2005.)(Seecolorinsertafterp.158.)

52748.indb 236 2/6/08 2:27:44 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 251: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

mainly affects the surface of the product. As discussed before, heat is generatedinsidetheproductwhenmicrowavesareused.Itisknownthatamicrowave–halogenlampovenprovidesthebrowningandcrispingadvantagesofnear-infraredheatingwiththetime-savingadvantagesofmicrowaveheating.

InthestudybySevimlietal.(2005),bakingconditionsinthehalogenlamp–microwavecombinationovenwereoptimizedforcakes.Itwasfoundthat5minofbakingat70%upperhalogenlamppower,60%lowerhalogenlamp,and30%micro-wavepowerresultedincakeshavingqualitycomparablewithconventionallybakedcakes.Thefirmnessandweightlossofcakesincreasedasupperhalogenlamppowerincreased.Thelowerhalogenlamppowerwasfoundtobeinsignificantinaffectingvolume,weightloss,andcolorofcakes.Byusingthehalogenlamp–microwavecom-binationoven,theconventionalbakingtimeofcakeswasreducedby79%.

Inthemicrowave–nearinfraredcombinationoven,itwasshownthattheincreaseinupperhalogenlamppowerandbakingtimeincreasedthecolorchange(∆Evalue)ofcakes(Figure11.10)(Sumnuetal.,2005).Thehigherhalogenlamppowermightincreasethesurfacetemperatureofcakes,whichmightaffectthesurfacecolorfor-mation. Itwaspossible toobtaina similarcolorvaluewithconventionallybakedcakesinmicrowave–nearinfraredcombinationbakingat70%halogenlamppowersand50%microwavepowerafter5min.

Keskin et al. (2005) investigated the possibility of using a microwave–near-infraredcombinationovenforthebakingofcookies.Itwaspossibletoobtaincook-ies having similar characteristics as conventional ones when 70% halogen lamp,

80

70

60

50

40

30

Baking time (min)2 3 4 5 6 7

∆E

fIgure.0 Variationofcolorchange(∆Evalue)incakesduringinfrared(IR)–micro-wavecombinationbakingat50%microwavepowerandatdifferent IRpowers ():50%,():70%.(FromSumnu,G.,Sahin,S.,andSevimli,M.,Journal of Food Engineering71,150–155,2005.WithpermissionfromElsevier.)

52748.indb 237 2/6/08 2:27:46 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 252: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

20%microwavepower,and5.5minbakingtimewereused.Theincreaseinhalo-genlampincreasedthehardnessofcookies.Higherspreadratiocanbeobtainedinmicrowave–near-infraredcombinationbakedproducts.Arapidviscoanalyzer(RVA)wasusedtocomparestarchgelatinizationinconventional,microwave,andmicro-wave–near-infraredbakedcookies.AccordingtopeakviscosityresultsobtainedbyRVA, the increase inbaking time reduced thepeakviscosity,meaning thatmorestarch was gelatinized (Figure11.11). Microwave-baked samples had higher peakviscositythanconventionallybakedonesduetoasmallerdegreeofgelatinization.Asnear-infraredpowerandbakingtimeincreased,peakviscosityapproachedthatofconventionallybakedcookies(Figure11.11).

Recently,thepossibilityofusingamicrowave–near-infraredcombinationovenwasstudiedforthebakingofricecakes(Turabietal.,2008).Ricecakescontainingnoglutenarecriticalforpatientswithceliacdisease,becausethesepatientscannotconsume any gluten-containing products. It was possible to produce high-qualitycakesintheovenwhenricecakeswerecombinedwithdifferentgumsandtheemul-sifierPurawave®(Puratos,Belgium).XanthangumandtheemulsifierPurawavewererecommendedtobeusedinricecakestoachievehighvolumeandsofttexture.

. ConClusIons

Jetimpingementovensareauniquetypeofconvectionoveninwhichhigh-velocityjetsofhotairimpingeonafoodproduct.Ithastheadvantagesofahigherrateofsur-faceheattransferandrapidmoistureremoval,whichresultinquickcrustformation

2250

2000

1750

1500

1250

1000

750

500

Conventio

nal

Microwave

60H/30M/5.0 min

60H/30M/5.5 min

60H/30M/6.0 min

80H/30M/5.0 min

80H/30M/5.5 min

80H/30M/6.0 min

Baking condition

Peak

visc

osity

(cp)

fIgure. Peakviscosityvaluesofcookiesbakedindifferentovens.(H:halogenlamppower, M: microwave power.) (Data from Table11.2, Keskin, S.O., Ozturk, S., Sahin, S.,Koksel,H.,andSumnu,G.,European Food Research & Technology,220,546–551,2005.WithpermissionfromSpringerScienceandBusinessMedia.)

52748.indb 238 2/6/08 2:27:47 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 253: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

and color development. Microwave ovens use electromagnetic energy to heat theproductbymolecularabsorptionofenergy,mainlybywaterandsaltmoleculesinthefoodproduct.Microwaveovensprovidefasterprocessingbyacceleratedheattransferandmoisturemigration.Eventhoughbakingoperationinamicrowaveovenrequiresconsiderablylesstimeascomparedtoaconventionalconvectionoven,thelackofcrustanddesirablecolorformationareitsmainlimitation.Becausemicrowaveheat-ingoffersmanyopportunities,researchershavebeeninvestigatingwaystohavetheeaseoffastprocessingwhilemaintainingquality.Changingtheformulation,usingsusceptors,andaddingflavorsaresomeofthewaystoreducequalityproblemsinmicrowavebaking.Othereffortsincludechangingthedesignoftheovens.Finally,theintroductionofhybridtechnologiessuchasmicrowaveandjetimpingement,andmicrowave and near-infrared are promising improvements to overcome the qual-ityproblemsassociatedwithmicrowaveovens.Thesecombinationovensoffertheadvantages of energy efficiency due to a faster rate of heat transfer; energy sav-ingsdue tooperationat lower temperatureand lessprocessing times;andqualityimprovementwithcrustformation,surfacebrowning,andflavordevelopment,andat thesame timeretentionofmoisture inside thebakedproduct.Morestudiesonheatingmechanism,physicochemicalchangesduringbaking,physicalandelectricalpropertiesoftheproducts,productqualityimprovement,andprocessoptimizationareneededtoeffectivelyusethesealternativebakingtechnologies.

referenCes

Adrian, R.J. 1991. Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics23:261–304.

Ahmad, S.S, M.T. Morgan, and M.R. Okos. 2001. Effects of microwave on the drying,checkingandmechanicalstrengthofbakedbiscuits.Journal of Food Engineering50:63–75.

Angioletti,M.,R.M.DiTommaso,E.Nino,andG.Ruocco.2003.Simultaneousvisualiza-tionofflowfieldandevaluationoflocalheattransferbytransitionalimpingingjets.International Journal of Heat and Mass Transfer 46:1703–1713.

Babyak, R. 2000. Racing Recipes. Appliance design. www.appliancedesign.com/CDA/Archives/e3cd0c5404938010VgnVCM100000f932a8c0(accessedDecember12,2006).

Baker,B.A.,E.A.Davis,andJ.Gordon.1990a.Theinfluenceofsugarandemulsifiertypeduring microwave and conventional heating of a lean formula cake batter. Cereal Chemistry67:451–457.

Baker,B.A.,E.A.Davis,andJ.Gordon.1990b.Glassandmetalpansforuseinmicrowaveandconventionallyheatedcakes.Cereal Chemistry 67:448–451.

Baughn,J.W.1995.Liquidcrystalmethodsforstudyingturbulentheattransfer.International Journal of Heat and Fluid Flow16:365–375.

Bengtsson,N.2001.DevelopmentofindustrialmicrowaveheatingoffoodsinEurope.Jour-nal of Microwave Power and Electromagnetic Energy36:227–240.

Bilgen,S.,Y.Coskuner,andE.Karababa.2004.Effectsofbakingparametersonthewhitelayercakequalitybycombineduseofconventionalandmicrowaveovens.Journal of Food Processing and Preservation 28:89–102.

Borquez,R.,W.Wolf,W.D.Koller,andW.E.L.Spie.1999.Impingingjetdryingofpressedfishcake.Journal of Food Engineering40:113–120.

Campana,L.E.,Sempe,M.E.,andR.R.Filgueira.1993.Physical,chemicalandbakingprop-ertiesofwheatdriedwithmicrowaveenergy.Cereal Chemistry70:760–762.

52748.indb 239 2/6/08 2:27:47 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 254: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Cornaro,C.,A.S.Fleischer,andR.J.Goldstein.1999.Flowvisualizationofaroundjetimping-ingoncylindricalsurfaces.Experimental Thermal and Fluid Science20:66–78.

Datta,A.K.1990.Heatandmass transfer in themicrowaveprocessingof food.Chemical Engineering Progress86:47–53.

Datta,A.K.andH.Ni.2002.Infraredandhot-air-assistedmicrowaveheatingoffoodsforcontrolofsurfacemoisture.Journal of Food Engineering51:355–364.

DattaA.K.,S.S.R.Geedipalli, andM.F.Almedia.2005.Microwavecombinationheating.Food Technology59:36–40.

DeBonis,M.V.andG.Ruocco.2005.Modelinglocalheatandmasstransferinfoodslabsduetoairimpingement.Journal of Food Engineering78:230–237.

Durst,F.,B.Lehmann,andC.Tropea.1981.LaserDopplersystemforrapidscanningofflowfields.Review of Scientific Instruments52:1676–1681.

Gardon,R.andJ.C.Akfirat.1965.Theroleofturbulenceindeterminingtheheattransfercharacteristicsofimpingingjets.International Journal of Heat and Mass Transfer 8:1261–1272.

Goebel,N.K.,J.Grider,E.A.Davis,andJ.Gordon.1984.Theeffectsofmicrowaveenergyandconventionalheatingonwheatstarchgranuletransformations.Food Microstruc-ture3:73–82.

Goldstein,R.J.andJ.F.Timmers.1982.Visualizationofheattransferfromarraysofimping-ingjets.International Journal of Heat and Mass Transfer25:1857–1868.

Henke, M.C. 1985. Air impingement baking—Technology for the future. The Consultant XVIII(2,Spring):28–33.

Higo,A.andS.Noguchi.1987.Comparative studieson food treatedwithmicrowaveandconductiveheating.I.Processofbreadhardeningbymicrowaveheating.Journal of the Japanese Society for Food Science and Technology34:781–787.

Huber,A.M.andR.Viskanta.1994.Impingementheattransferwithasinglerosettenozzle.Experimental Thermal and Fluid Science9:320–329.

Keskin,S.O.,G.Sumnu,andS.Sahin.2004.Breadbakinginhalogenlamp-microwavecom-binationbaking.Food Research International 37:489–495.

Keskin,S.O.,S.Ozturk,S.Sahin,H.Koksel,andG.Sumnu.2005.Halogen lamp-micro-wavecombinationbakingofcookies.European Food Research and Technology220:546–551.

Kim, Y.R. and P. Cornillon. 2001. Effects of temperature and mixing time on molecularmobilityinwheatdough.Lebensmittel Wissenschaft und Technologie34:417–423.

Kocer,D.2005.Numericalsimulationandexperimentalinvestigationofthebakingprocessinahybridjetimpingementandmicrowave(JIM)oven.PhDdissertation.Rutgers,TheStateUniversityofNewJersey.

Kocer, D. and M.V. Karwe. 2005. Thermal transport in a multiple jet impingement oven.Journal of Food Process Engineering 8:378–396.

Lambert,L.L.P.,J.Gordon,andE.A.Davis.1992.Waterlossandstructuredevelopmentinmodelcakesystemsheatedbymicrowaveandconvectionmethods.Cereal Chemistry69:303–309.

Lee,J.andS.J.Lee.2000.Effectofnozzleconfigurationonstagnationregionheattransferofaxisymmetric jet impingement.International Journal of Heat and Mass Transfer43:3497–3509.

Lewandowicz, G., T. Janowski, and J. Fornal. 2000. Effect of microwave radiation onphysico-chemicalpropertiesandstructureofcerealstarches.Carbohydrate Polymers42:193–199.

Li,A.andC.E.Walker.1996.Cakebakinginconventional,impingementandhybridovens.Journal of Food Science61:188–191,197.

Marcroft,H.E.andM.V.Karwe.1999.Flowfieldinahotairjetimpingementoven—PartI:Asingleimpingingjet. Journal of Food Processing and Preservation23:217–233.

52748.indb 240 2/6/08 2:27:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 255: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

Marcroft, H.E., M. Chandrasekaran, and M.W. Karwe. 1999. Flow field in a hot air jetimpingementoven—Part II:multiple impingement jets.Journal of Food Processing and Preservation23:235–248.

Martin,D.J.andC.C.Tsen.1981.Bakinghighratiowhitelayercakeswithmicrowaveenergy.Journal of Food Science46:1507–1513.

Martin, H. 1977. Heat and mass transfer between impinging gas jets and solid surfaces.Advanced Heat Transfer13:1–60.

McPherson,A.E.,W.Chen,A.Akashe,andM.Miller.2002.Microwaveablespongecake.U.S.Patent6,410,073.

Megahey,E.K.,W.A.M.McMinn,andT.R.A.Magee.2005.Experimentalstudyofmicro-wavebakingofmadeiracakebatter.Food and Bioproducts Processing83:1–11.

Mesbah,M.,J.W.Baughn,andC.W.Yap.June25–28,1996.Theeffectofcurvatureonthelocalheattransfertoanimpingingjetonahemisphericallyconcavesurface.In:Pro-ceedings of the Ninth International Symposium on Transport Phenomena in Thermal-Fluids,Singapore.

Metaxas,A.C.andR.J.Meredith.1983.Industrial Microwave Heating.PeterPeregrinus,London.

Motwani,T.,K.Seetharaman,andR.C.Anantheswaran.2007.Dielectricpropertiesofstarchslurriesasinfluencedbystarchconcentrationandgelatinization.Carbohydrate Poly-mers67:73–79.

Ni,H.,A.K.Datta,andK.E.Torrance.1999.Moisturetransportinintensivemicrowaveheat-ingofbiomaterials:Amultiphaseporousmediamodel.International Journal of Heat and Mass Transfer 42:1501–1512.

Nitin,N.andM.V.Karwe.2001.Measurementofheattransfercoefficientforcookie-shapedobject in ahot air jet impingementoven.Journal of Food Process Engineering 24:51–69.

Nitin,N. andM.V.Karwe.2004.Numerical simulation andexperimental investigationofconjugateheattransferbetweenaturbulenthotairjetimpingingonacookie. Journal of Food Science69:59–65.

Nitin, N., R.P. Gadiraju, and M.V. Karwe. 2006. Numerical simulation and experimentalinvestigationofconjugateheat transferbetween turbulenthotair jet impingingonahot-dog-shapedobjects.Journal of Food Process Engineering29:386–399.

Olsson, E.E.M., L.M. Ahrne, and A.C. Tragardh. 2004. Heat transfer from a slot air jetimpingingonacircularcylinder.Journal of Food Engineering 63:393–401.

Olsson,E.E.M.,L.M.Ahrne,andA.C.Tragardh.2005.Flowandheat transfer frommul-tiple slot air jets impinging on circular cylinders. Journal of Food Engineering 67:273–280

Ovadia,D.Z.andC.E.Walker.1998.Directingjetsoffluidsuchasairagainstthesurfaceoffoodprovidesadvantagesinheating,drying,cooling,andfreezing.Food Technology52:46–50.

Ozmutlu,O.,G.Sumnu,andS.Sahin.2001.Effectsofdifferentformulationsonthequalityofmicrowavebakedbread.European Food Research und Technologie213:38–42.

Palav,T.andK.Seetharaman.2006.Mechanismofstarchgelatinizationandpolymerleach-ingduringmicrowaveheating.Carbohydrate Polymers65:364–370.

Pan,B.andM.E.Castell-Perez.1997.Texturalandviscoelasticchangesofcannedbiscuitdoughduringmicrowaveandconventionalbaking.Journal of Food Process Engineer-ing20:383–399.

Pan,Y.andB.W.Webb.1995.Heattransfercharacteristicsofarraysoffree-surfaceliquidjets.Transactions of the ASME, Journal of Heat Transfer117:878–883.

Pan,Y.,J.Stevens,andB.W.Webb.1992.Effectofnozzleconfigurationontransportinthestagnation zone of axisymmetric, impinging free-surface liquid jets—Part 2: Localheattransfer.Transactions of the ASME, Journal of Heat Transfer114:880–886.

52748.indb 241 2/6/08 2:27:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 256: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Popiel,C.O.andO.Trass.1991.Visualizationofafreeandimpingingroundjet.Experimen-tal Thermal and Fluid Science 4:253–264.

Rogers,D.E.,L.C.Doescher,andR.C.Hoseney.1990.Texturecharacteristicsofmicrowavereheatedbread.Cereal Chemistry67:188–191.

Roudebush,R.M.,andP.D.Palumbo.1983.Microwavecakemix.U.S.Patent4,396,635.Sakiyan,O.,G.Sumnu,S.Sahin,andV.Meda.2007.Investigationofdielectricproperties

ofdifferentcakeformulationsduringmicrowaveandinfrared-microwavecombinationbaking.Journal of Food Science72(4):E205–E213.

Sakonidou,E.P.,T.D.Karapantsios,andS.N.Raphaelides.2003.Masstransferlimitationsduringstarchgelatinization.Carbohydrate Polymers53:53–61.

Saripalli,K.R.1983.Visualizationofmultijetimpingementflow.American Institute of Aero-nautics and Astronautics Journal21:483–484.

Sarkar,A.,N.Nitin,M.V.Karwe,andR.P.Singh.2004.Fluidflowandheattransferinairjetimpingementinfoodprocessing.Journal of Food Science69:113–122.

Sevimli,M.,G.Sumnu,andS.Sahin.2005.Optimizationofhalogenlamp-microwavecom-bination baking of cakes: A response surface study. European Food Research and Technology221:61–68.

Seyhun,N.,G.Sumnu,andS.Sahin.2003.Effectsofdifferentemulsifiers,gumsandfatcon-tentsonretardationofstalingofmicrowavebakedcakes.Nahrung-Food 47:248–251.

Seyhun,N.,G.Sumnu,andS.Sahin.2005.Effectsofdifferentstarchtypesonretardationofstalingofmicrowave-bakedcakes.Food and Bioproducts Processing83:1–5.

Shukla,T.P. andR.C.Anantheswaran.2001. Ingredient interactions andproductdevelop-mentformicrowaveheating.In:Handbook of Microwave Technology for Food Appli-cations,Ed.A.K.Datta andR.C.Anantheswaran,Chapter 11, 355–395.NewYork:MarcelDekker.

Smith,D.P.1975.CookingApparatus.U.S.Patent3,884,213.Sosa-Morales,M.E.,G.Guerrero-Cruz,H.Gonzale-Loo,andJ.F.Velez-Ruiz.2004.Model-

ingofheatandmasstransferduringbakingofbiscuits.Journal of Food Processing and Preservation 28:417–432.

Sparrow,E.M.andB.J.Lovell.1980.Heattransfercharacteristicsofanobliquelyimpingingcircularjet.Journal of Heat Transfer102:202–209.

Stauffer,C.E.2000.Emulsifiersasantistalingagents.Cereal Foods World45(3):106–110.Stoy,R.L.andY.Ben-Haim.1973.Turbulentjetsinaconfinedcrossflow.Journal of Fluids

Engineering-Transactions of the ASME 95(4):551–556.Sugiyama,Y.andY.Usami.1979.Experimentsonflowinandaroundjetsdirectednormalto

acrossflow.Bulletin of Japan Society of Mechanical Engineers22:1736–1745.Sumnu,G.2001.Areviewonmicrowavebakingof foods. International Journal of Food

Science and Technology36:117–127.Sumnu,G.andS.Sahin.2005.Bakingusingmicrowaveprocessing.In:Microwave Process-

ing of Foods,Ed.M.ReigerandH.Schubert,119–142.Cambridge:Woodhead.Sumnu,G.,M.K.Ndife, andL.Bayindirli.1999.Temperatureandweight lossprofilesof

modelcakesbakedinthemicrowaveoven.Journal of Microwave Power and Electro-magnetic Energy 34:221–226.

Sumnu,G.,M.K.Ndife,andL.Bayindirli.2000.Optimizationofmicrowavebakingofmodellayercakes.European Food Research and Technology211:169–174.

Sumnu,G.,S.Sahin,andM.Sevimli.2005.Microwave,infrared,infrared-microwavecom-binationbakingofcakes.Journal of Food Engineering71:150–155.

Sumnu,G.,A.K.Datta,S.Sahin,S.O.Keskin,andV.Rakesh.2007.Transportandrelatedpropertiesofbreadsbakedusingvariousheatingmodes.Journal of Food Engineering78:1382–1387.

52748.indb 242 2/6/08 2:27:48 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 257: Food Engineering Aspects of Baking Sweet Goods

Alternative Baking Technologies

Turabi,E.,G.Sumnu,andS.Sahin.2008.Rheologicalpropertiesandqualityofricecakesformulated with different gums and an emulsifier blend. Food Hydrocolloids 22:305–312.

Verboven,P.,A.K.Datta,N.T.Anh,N.Scheerlinck,andB.M.Nicolai.2003.Computationofairfloweffectsonheatandmasstransferinamicrowaveoven.Journal of Food Engi-neering59:181–190.

Viskanta,R.1993.Heattransfertoimpingingisothermalgasandflamejets.Experimental Thermal and Fluid Science 6:111–134.

Wahlby,U.,C.Skjoldebrand,andE.Junker.2000.Impactofimpingementoncookingtimeandfoodquality.Journal of Food Engineering43:179–187.

Walker,C.E.1989.Impingementoventechnology—PartI:Principles.AIB Research Depart-ment Technical BulletinXI,11,November.

Walker,C.E.andA.Li.1993.Impingementoventechnology—PartIII:Combiningimpinge-mentwithmicrowave(hybridoven).AIB Research Department Technical BulletinXV,9:1–6.

Walker,C.E.andA.BSparman.1989.Impingementoventechnology—PartII:ApplicationsandFuture.AIB, Research Department, Technical BulletinXI,11,November.

Whorton,C.andG.Reineccius.1990.Currentdevelopmentsinmicrowaveflavours. Cereal Foods World35:553–559.

Yin,Y.andC.E.Walker.1995.Aqualitycomparisonofbreadsbakedbyconventionalversusnonconventionalovens:Areview.Journal of the Science of Food and Agriculture67:283–291.

Zylema, B.J., J.A. Grider, J. Gordon, and E.A. Davis. 1985. Model wheat starch systemsheatedbymicrowaveirradiationandconductionwithequalizedheatingtimes.Cereal Chemistry62:447–453.

52748.indb 243 2/6/08 2:27:49 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 258: Food Engineering Aspects of Baking Sweet Goods

52748.indb 244 2/6/08 2:27:49 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 259: Food Engineering Aspects of Baking Sweet Goods

12 Low-Sugar and Low-Fat Sweet Goods

Manuel Gómez

Contents

12.1 Introduction.................................................................................................24612.2 NutritionalProblemsoftheConsumptionofFatsandSugars.................... 247

12.2.1Sugars............................................................................................... 24712.2.1.1SugarandDentalCaries..................................................... 24712.2.1.2SugarandBloodGlucose...................................................24812.2.1.3SugarandDiabetes.............................................................24812.2.1.4SugarandObesity..............................................................24912.2.1.5SugarandCardiovascularDisease.....................................24912.2.1.6SugarandHyperactivity.....................................................249

12.2.2Fats...................................................................................................24912.2.2.1FatsandObesity.................................................................24912.2.2.2FatsandAtherosclerosis.....................................................25012.2.2.3TransFattyAcids...............................................................250

12.3 FunctionsofSugarsandFatsinSweetGoods............................................ 25112.3.1Sugar................................................................................................ 251

12.3.1.1Yeast-RaisedProducts........................................................ 25112.3.1.2Cakes.................................................................................. 25212.3.1.3Cookies............................................................................... 25312.3.1.4FillingsandIcings..............................................................254

12.3.2Fats...................................................................................................25412.3.2.1Yeast-RaisedProducts........................................................25412.3.2.2Cakes.................................................................................. 25512.3.2.3Cookies...............................................................................25612.3.2.4Fillings................................................................................256

12.4 GeneralStrategiesfortheSubstitutionofSugarsandFats......................... 25712.4.1SugarReplacers............................................................................... 257

12.4.1.1Fructose.............................................................................. 25712.4.1.2IntenseSweeteners............................................................. 25812.4.1.3BulkingAgents................................................................... 259

12.4.2FatReplacers.................................................................................... 26212.4.2.1Carbohydrate-BasedFatMimetics..................................... 26212.4.2.2Protein-BasedFatMimetics...............................................26412.4.2.3Fat-BasedReplacers...........................................................264

12.5 SubstitutionofSugarandFatsinCakesandCookies................................26512.5.1SugarSubstitution............................................................................265

52748.indb 245 2/6/08 2:27:49 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 260: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

12.5.1.1Cakes..................................................................................26512.5.1.2Cookies...............................................................................266

12.5.2FatSubstitution................................................................................ 26712.5.2.1Cakes.................................................................................. 26712.5.2.2Cookies...............................................................................268

12.6 Conclusions.................................................................................................269References..............................................................................................................269

. IntroduCtIon

There are two seemingly contradictory trends spanning Western societies. Onedietarytrendistheincreasingconsumptionofsugars,fats,andcaloriesrecordedinrecentdecades;acontrastingtrendisthegrowingawarenessshownbyconsumersofanythingrelatedtopersonalphysicalappearance,fitness,andhealthissues.Ofthetoptenmortalityratesintherankingofleadingcausesofdeath,fivearedietrelated(heartdisease,cancer,stroke,diabetes,andatherosclerosis).Asaresult,andthanksalsotothedietaryrecommendationsmadebyhealth-careprofessionalsandmuchinformationpresentedbythemedia—albeitnotalwaysreliable—amarkedincreaseintheconsumptionoflow-calorie,low-fat,andsugar-freeproductshastakenplace(Figure12.1).Cakes,cookies,andanumberofyeast-raisedbakeryproductsaccountforasubstantialproportionofthefatandsugarintake.Hence,thedevelopmentofspecialdietaryfoods(low-calorie,low-fat,andsugar-freefoods)withgoodorgano-lepticpropertiesshouldenablemanufacturerstodiversifytheirproductionandmakeinroadsintoanemergentsectorofthemarket.Developmentofsuchspecialproductscanhelpimplementandmaintainspecificdiets,particularlyifavailabletoconsum-erswheneatingoutawayfromhome(Sigman-Grant,1997).

Althoughforthiskindofproductareductionincaloriescanbeobtainedbysub-stitutingfibers,orrawmaterialsrichinfiber,forflour(KaackandPedersen,2005),most low-calorie baked goods are produced by lowering fat and sugar contents.Productsrichinsugarsandfatsareusuallyplacedontheupperlevelsofthefoodpyramid,andhencetheinformedadviceisthattheyshouldbeeatensparingly.How-ever,thechallengeofdevelopingspecialdietaryproductsfirstrequiresthesiftingoftruthfrommythbothontheadverseeffectsoftheconsumptionoffatsandsugars,andonthevirtuesofafat-andsugar-freediet.Infact,consumersoflow-fatproductsshowreducedintakesoftotalfat,saturatedfats,andcholesterol,buttheirdietsmayincludeinsufficientamountsofsomeothernutrients(Petersonetal.,1999).

Productsrichinfatsandsugarsareusuallyassociatedwithpleasantsensations,andtheyarehighlyregardedorganoleptically;itisthereforenomeantasktomatchtheirsensorypropertiesandtheirwidespreadacceptability.Tobesuccessfulinthesubstitutionoffatsandsugars,thefoodindustrymustresorttofatandsugarreplac-erscapableofmimickingtheirroles,butthesereplacersseldomperformallthefunc-tionsattributabletofatsandsugars,andconsequently,thenewproductsareboundtoleadtolessfavorablesensoryevaluationresults.Thedevelopmentofspecialdietaryproducts thus demands a thorough understanding of the roles played by fats andsugarsineachformulationaswellasadetailedknowledgeoftheoptionsavailableaspotentialreplacers.Byandlarge,consumersfindtheseproductsnotaspleasantas

52748.indb 246 2/6/08 2:27:50 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 261: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

theregularproducts,althoughtheyreadilyadmittheyare“betterforyou”(Tuorilaetal.,1997).Whencomparedwiththeregularproducts,thepurchaseintentofthesespecialdietaryproductsishigherthanthe“overalldegreeofliking”(Guinard,etal.,1996).Thechallengethatthebakeryindustryfacesisthedevelopmentofmodifiedproductscapableofreceivinghighhedonicratings.Furthermore,inmanycases,themodifiedproductisrequiredtobeassimilaraspossibletotheregularproductitistryingtoreplace.

. nutrItIonalProBleMsofthe ConsuMPtIonoffatsandsugars

12.2.1 suGars

... sugaranddentalCaries

Ithasbeenshownthattheconsumptionofsugar-richfoodspromotesthedevelop-mentofdentalcaries(MakinenandIsokangas,1988;Sreebny,1982).Dentalcariesisacomplexprocessoccurring,inpart,throughtheactionofmicroorganismscapableoffermentingcertaincarbohydratesinthemouth.Theendproductsofthisfermen-tationprocessarelacticacidandsomepolysaccharidesthatadheretothesurfaceoftheteethandformplaques.Thisprocessoftenleadstocavitationoftheteeth.Sugarsarecarbohydratessusceptibletofermentationbymicroorganismsinthemouth,andalthoughthisisnottheonlyfactorresponsiblefortoothdecay,thereisnodoubtitiscloselyinvolvedinitsdevelopment.Itisalsoknownthattherearesomeotherfactorsaffectingtheincidenceofdentalcaries,suchastoothstructure,mouthmicrofloraofeachindividual,properoralhygienehabits,andtheinclusionoffluorineindrinkingwater.Infact,overthelastfewyears,amarkedreductionintheincidenceofdentalcarieshasbeenrecordedinadvancedsocietiesowingtobetteroralhygienepracticesandthefluoridationofdrinkingwater.

fIgure. Consumer consumption of low-calorie, sugar-free foods and bever-ages in the United States. (From Calorie Control Council, Trends and Statistics, 2006,www.caloriecontrol.org/lcchart.html.

1984 1989 1993 1996 2000 2004Year

0

50

100

150

200

Mill

ions

of A

mer

ican

adul

ts

52748.indb 247 2/6/08 2:27:51 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 262: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

... sugarandBloodglucose

Thetermglycemicindexhascometoberegardedasimportantinthedetermina-tionofplasmaglucoselevels.Thistermreferstotherelationshipbetweenglucoseabsorptionandaparticularfooditem.Ahighglycemicindexmeansarapidabsorp-tionof carbohydrates,whereasa lowglycemic indexmeansa slowabsorptionofcarbohydrates.However,glucoseabsorptionalsodependsuponthephysicalstateofthefoodstuff,theforminwhichitiseaten,andtheindividualinquestion.Thegly-cemicindexoffoodstuffsisdeterminedthroughpersonaltestsandcomplexproce-dures,neverthelessitisquiteusefulforthediabeticwhoseparamountconcernmustbetoavoidbloodglucoseincreases.Althoughsomeresearchershavequestioneditsusefulnessintheplanningofdiets,therearesignstheglycemicindexisbecomingavaluableconceptinthedevelopmentofspecialdiets.

Overall,sugarsarerapidlyabsorbedinthegut,producingasharpriseinbloodglucoselevels,andthusrapidlyincreasinginsulinsecretiontoallowcellstheuseofthisglucoseandstimulatethesynthesisoftriglycerides.Afterthisstage,adeclineinthebloodglucoseleveloccurs,andhungerarises.Hence,intakeofsimplecarbohy-dratesproducestransitorysatiety.Conversely,complexcarbohydratesareabsorbedmuchmoreslowly,resultinginalowerincreaseofbloodglucoseandthusinasmallersecretionofinsulin.Triglyceridesynthesisisminimal,bloodglucoselevelsaremain-tainedoverlongerperiodsoftime,andhungerarisesmuchmoregradually.

... sugaranddiabetes

Diabetes mellitus is a disease characterized by hyperglycemia because of distur-bancesinthenormalinsulinproductionmechanismortheinabilityofthesecretedinsulin toadequatelyperformits function.Asa result,high levelsofbloodsugarensue,andshockorevendeathmightoccur.Therearetwomaincategoriesofthedisease.Thefirstiscalledinsulin-dependentdiabetes,ortypeIdiabetes;itisusuallyknownasjuvenilediabetesbecauseitsonsettakesplaceatanearlyage.Patientswiththisconditionrequireaninjectionofinsulindaily.ThesecondistypeIIdiabetesornoninsulin-dependentdiabetes,alsoknownasmaturity-onsetdiabetes;itmanifestsitselfamongadultsandseemstobeinfluencedbyageneticcomponent.Inthislattercase,patientsshowsignificantamountsofinsulinintheirplasma;theirdietmustbecarefullycontrolled,andtheymustexerciseregularly.IthasbeenreportedthattheincidenceoftypeIIdiabetesishigheramongobeseindividuals.

Thesepatientsmustreducetheintakeoffoodstuffswithahighglycemicindexandcombinethemwithsomelow-indexfoodstuffs.Fructoseistheonlysugarwithametabolismindependentfromthepresenceofinsulin,henceitsverylowglycemicindexanditswidespreaduseasglucoseandsucrosesubstituteinthemanufactureofproducts aimedatdiabetics.Overall, there isnoclear evidence that a correla-tionexistsbetweensugarconsumptionanddiabetes.On thecontrary, ithasbeenreportedthatdietsrichincarbohydratesreducetheriskofdevelopingdiabetes(Fes-kensandKromhout,1990;Marshalletal.,1994).Nevertheless,someotherauthorshavepointedoutthatdietswithahighglycemicindexthatarelowinfiberincreasetheriskofdevelopingtypeIIdiabetes(Salmeronetal.,1997a,1997b).

52748.indb 248 2/6/08 2:27:51 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 263: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

... sugarandobesity

Althoughthebeliefthatadietrichinsugarspromotesobesityiswidelyheld,thereisinfactnoevidencetosupportit.Sugars, likeothercarbohydrates,andproteinsyield4kcal/g,fatsyield9kcal/g,andalcoholyields7kcal/g.Thehumanbodyiscapableofgainingweightwhenmorecaloriesarebeingconsumedthanarerequired.Consequently,sugardoesnotpromoteobesity toagreaterextent thanproteinsorothercarbohydratesdo,andiswellbelowfatsandalcoholincalorieyield(HillandPrentice, 1995). It has been reported, however, that low-sugar diets can result inweightreduction(Colditzetal.,1990),inallprobabilitybecauseoftheirlowercalo-riecontent;someresearchershavesuggestedthatobeseindividualsshowamarkedpreferenceforsugar-richfoods(Drewnowskietal.,1991).Itmayverywellbethatallthisevidencehashelpedkeepalivethenotionthatsugarconsumptionresultsinweightgain.

... sugarandCardiovasculardisease

Studiesonthelinkbetweensugarconsumptionandthedevelopmentofcardiovascu-lardiseasesshowconflictingresults(HowardandWylie-Rosett,2002).YudkinandEvans(1972)andYudkin(1978)assertedthatanexcessiveconsumptionofsugarsiscorrelatedwithcardiovasculardisease,butlaterresearchershavebeggedtodifferfromthatview(Bolton-SmithandWoodward,1994;García-Palmierietal.,1980).Amorerecentstudyhasagainrestatedthevalidityofthelinkbetweenconsumptionoffoodswithahighglycemicindexandcardiovasculardiseaseinwomen(Liuetal.,2000).Atpresent,thereisnoconclusiveevidenceonthispoint,anditistobehopedthatfurtherresearchwillprovidenewclarifyingdata.

Inaddition,severalstudiesabouttheinfluenceofsugaroncholesterolandtri-glycerideshavebeencarriedout.Thus, ithasbeenshownthatadietwithahighsucrosecontentincreasestriglyceridelevels,althoughthiseffectdependsuponthesugarlevelandtherestoftheintakenutrients(FraynandKingman,1995).Similarly,itseemsequallyestablishedthatwhensugarconsumptionisontherise,thereisadropinthelevelofhigh-densitylipoprotein(HDL)cholesterol(Archeretal.,1998).

... sugarandhyperactivity

Itisaquitecommonlyheldbeliefthatsugarconsumptionleadstohyperactivityinchil-dren.However,Wolraichetal.(1985)establishedthatadecreaseinthesugarlevelsinthedietofhyperactivechildrenfailedtoshowanyeffectonthedegreeofhyperactivity.

12.2.2 FaTs

... fatsandobesity

Anexcessofdietary fatentailsahighcaloricdensityofmanyof thecomponentfoodstuffswhich, in turn,causes theexcess fat tobedepositedasadipose tissue,eventuallyleadingtoobesity.Whentheleveloffatistoohighbutthecaloricintakeisadequate,thedrawbackoftenisthelackofessentialnutrientsduetoarestrictedintakeofproducts,suchascerealsandlegumes,richincarbohydratesandproteins.

52748.indb 249 2/6/08 2:27:51 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 264: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

For further informationon the relationshipbetween fatconsumptionandobesity,thereareusefulreviewsbyBrayandPopkin(1998)andBrayetal.(2004).

... fatsandatherosclerosis

Anotherparameterassociatedwithfatintakeworthmentioningisthebloodcholes-terollevel(cholesterolemia).Infact,ahighbloodcholesterollevel(hypercholester-olemia)isconsideredtobethefirstfactorofriskforcardiovasculardisease.Ithasbeenestablishedthatserumcholesterolriseswithhighfatintakeeitherbecausetherateofsaturatedfatsisexcessiveorbecausethedailyfatintakeexceeds300mg/day.Fortheirtransportinthebloodstream,lipidsmustbeboundtoproteins,thusforminglipoproteins.Lipoproteinsareclassifiedaccordingtotheirdensityandarecommonlydividedintotwogroups:low-densitylipoproteins(LDL)andhigh-densitylipopro-teins(HDL).LDLcarryendogenouscholesteroltowardthecellswhichcaptureanduseitthroughtheirmembranereceptors.Whenthisreceptionislimitedorthecho-lestrollevelistoohigh,thelevelofLDLinthebloodrises;thisisoneofthemostsig-nificantriskfactorsforatherosclerosis.Ontheotherhand,HDLtransportcholesterolusedupbythecellstowardthelivertobedisposedofasbileacids.AnincreaseinHDLlevelsinthebloodmeansanimprovedprotectionagainstatherosclerosis.

Polyunsaturated fatty acids (seed and fish oils) lower blood cholesterol levelsbut do not help raise the HDL levels. Alternatively, monounsaturated fatty acids(olive oil) do not modify blood cholesterol levels but raise HDL levels and havethenapositiveeffect.Asarule,areducedintakeofsaturatedfattyacidsnotover10%ofdailycalorieintakeisrecommended.Therecommendedratiointhefattyacidintakeis1/1/1(saturated/monounsaturated/polyunsaturated),keepinginmindthatthereshouldbeanadequateintakeofessentialfattyacids(nomorethan1%ofkilocaloriesconsumed).Outstandingreviewsabouttheeffectofdifferentfattyacidsoncholesterollevelsandatherosclerosisareavailable(KhoslaandSundram,1996;Kritchevsky,2000).

Fatintakehasalsobeenconnectedwithagreaterriskofdevelopingcoronaryconditionsandcolonandlungcancer,butstudiesdisagree,anditcanbesafelystatedthatnocurrentconsensusexistsonthesepoints.Rothstein(2006)recentlypublishedahistoricaloverviewdealingwiththesestudies.

... transfattyacids

Afinalfactortobeconsideredwhendiscussingfatintakeisthepresenceoftransfattyacidsinthediet.Itisknownthatintakeofthiskindoffattyacidsincreasesfatcholes-terollevelsandthoseofLDLcholesterol,whereastheHDLcholesterollevelislow-eredwiththecorrespondingriskofcloggedarteries(Ascherio,2006;AscherioandWillett,1997;Katanetal.,1995;Lichtenstein,2000).Moreover,intakeoftransfattyacidshasbeenassociatedwithagreaterriskofdevelopingtypeIIdiabetes,althoughtheevidenceprovidedissomewhatcontradictory(OdegaardandPereira,2006).

Inconclusion, in theircontinuingeffort todevelopproductswithbetternutri-tional characteristics, manufacturers of bakery products should not just focus onproducinglow-calorieproducts,but,inaddition,theyshouldmeetthechallengeofnutritionallyimprovingthefatstheyuse.

52748.indb 250 2/6/08 2:27:52 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 265: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

. funCtIonsofsugarsandfatsInsWeetgoods

12.3.1 suGar

Notallbakeryproductsrequireaddedsugar,butthecommonpracticewithmostoftheseproducts is to includesugar in theirformulations.Amountsrangefromlessthan5%insomebreadstoover25%incertaincakes.High-ratiocakescontainmoresugarthanflour,andtheeffectofthesugarcontentontheirprocessingandqualityisobvious.Traditionally,sucrosehasbeenthesweetenerofchoice,thoughbakershaveavailabletothemawiderangeofsugarsderivedfromthehydrolysisofcerealstarch,suchasglucoseandfructosesyrups.

Insomefoods,sugarisjustasweeteningagent.Thesubstitutionstrategymustthenrelyontheuseofintensesweetenerssuchassaccharinandaspartame.How-ever,inbakeryproducts,thefunctionsofsugararemuchmorecomplexandvarydependingondifferenttypesofproducts.Apartfromitssweeteningaction,sugarperformsavarietyoffunctions,includingfermentationsubstrate,formationofcrustcolor, flavor enhancer, texture modifier, development of structure, and shelf-lifeimprovement.Sugarreplacementissurelyadauntingtaskbecausesometimesnotonlymustingredientsbereplaced,buteventheprocessesinvolvedmustbechangedorreplaced.Thefunctionsofsugarsinbakeryproductshavebeendealtwithexten-sivelyintheliterature(Alexander,1998;Ponte,1990;Sluimer,2005),andadetailedunderstandingofthesefunctionsisanecessaryprerequisitetoadoptingsuccessfulsubstitutionstrategies.

... yeast-raisedProducts

Inleaveneddoughs,yeaststransformsugarsintoalcoholandcarbondioxide.Ifsug-ars are not included in the dough formula, yeasts will mainly transform maltoseresulting from the enzyme hydrolysis of starch. When small amounts of sucrose(1to2%)areadded,yeastswillfirsttransformthissugarbeforeaffectingmaltose,andaslightincreaseintherateoffermentation,particularlyintheearlystages,willtakeplace.When theamountofaddedsugarexceeds5%,a fall inwateractivityanda rise inosmoticpressureoccur indoughs.Thisbrings about a reduction inyeastactivityandfermentationrates.Undersuchconditions,itwillbenecessarytoextendfermentationtimesorraiseyeastdoses.Anotheroptionmightbetheuseofosmotolerantyeasts.

Duringbaking,doughsugarsareinvolvedintwobrowningreactionsthatdeter-minethefinalcolorofthefinishedproduct:Maillardandcaramelizationreactions.The Maillard reaction occurs through interactions between reducing sugars andaminoacidsorpeptides in thedoughwhichresults inmelanoidinformation.Theresultingfinalcolorandaromawilldependuponthetypeofsugarsandaminoacidspresentinthedough.Ontheotherhand,thecaramelizationreactionconsistsofathermaldegradationof sugars that changecolor fromapaleyellow in the initialstagestoadarkbrowninthefinalstagesoftheprocess.Asarule,productswithhighlevelsofaddedsugararebakedatlowertemperaturestopreventtheadverseeffectsanexcessivecaramelizationcouldbringabout.Maillardandcaramelization

52748.indb 251 2/6/08 2:27:52 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 266: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

reactionsrequirehightemperatures,over100°C,andthustheycanonlytakeplaceonthecrustofbakedproductsorontoastedbread.

BothMaillardandcaramelizationreactions,togetherwiththefermentationpro-cess,aredeterminantfactorsinthefinalflavorofbakeryproducts.Thus,caramel-izedsugarsimpartanappealingcaramel-likeflavorintheinitialstagesorastrongbitter flavor and burnt aroma in more advanced stages. The type of sugar in thedoughalsoaffectsthecompoundsgeneratedbytheMaillardreactionandthusthearomaoftheproduct.

Indoughswhereglutendevelopmentisessentialduringkneading,sugarscom-petewithproteinsforfreewater,andglutendevelopmentisdelayed.Kneadingtimesshouldthenbeextended.Thepresenceofsugarshasarelaxationeffectondoughs,becausetheirresistanceandconsistencyarereduced.Hence,doughsincludingsugarintheirformulationrequirestrongerflours.Itisalsocommontoreducetheamountofwateraddedtothesetypesofdoughstoimprovetheirconsistency.Forotherprod-ucts, suchascakesandsomecookies,glutendevelopment is supposed tobepre-vented,andthepresenceofsugarscanonlybebeneficial.

An additional effect of sugar is its influence on the starch swelling pattern indoughs.Whensignificantamountsofsugarareinvolved,asinthecaseofsweetgoods,thegelatinizationtemperatureofstarchisraised;thegreatertheamountofsugarinthedough,thehigherthegelatinizationtemperature.Asaresult,thedoughsetsdur-ing baking, a fraction later allowing longer dough expansion times and providingproductsofgreatervolume.Thiseffectisparticularlyimportantwhenbakingcakes.

The water holding capacity of sugars favors a soft and tender crumb. It alsoinhibitsstalingand thegrowthofmicroorganisms,and improves theshelf lifeofbakeryproducts.

... Cakes

Thepresenceofsugarincakesnotonlyinfluencestheirflavor,color,texture,andshelflifebutalsoexertsasignificantinfluenceonthefinalvolumeoftheproduct.Cakemanufacturestartswithbatterpreparationormixofingredients.Atthisstage,theaimistotrapairinthemixintheformoftinybubbles.Duringsubsequentbak-ing,gasfrombakingpowderandthewatervaporreleasedfillthebubblestocreatethefinalporousstructure.Oncelargenumbersofminutebubblesareentrappedinthebatter,thefinalgrainofthecakecrumbcanbefineanduniform.However,iftheentrappedaireventuallyformslargerbubbles,thefinalgrainwillhavelargeandirregularpores.Inadditiontoacorrectaeration,thebattermustreachanappropri-ateviscosity,becauseabatterwithlowviscositywouldresultintheescapeoftheentrappedgases.Astemperaturerisesintheoven,theviscosityofthebatterfallsuntilthegelatinizationofthestarchintheflouristriggeredandasignificantamountof water is absorbed. At this point, viscosity increases until the gelatinization iscompletedandthestructureofthecakeisset,therebyarrestingtheexpansionofthebatter.Gasproductionshouldmainlyoccurthroughoutthegelatinizationprocess,because it is then, prior to cake setting, the capabilityof retaininggas is higher.In thefinalanalysis, itcanbesaid thatsugarplaysa triplerole in theproductionofcakesasitpromotestheentrapmentofairinthebatter,increasesviscosity,and

52748.indb 252 2/6/08 2:27:52 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 267: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

delaysthetemperatureofstarchgelatinization(BeanandYamazaki,1978;NgoandTaranto,1986),allofwhichwillcontributetothefinalvolumeoftheproductinadecisivemanner.

Broadlyspeaking,cakesfallintotwomajorgroups.Thefirstgroupincludesallthosecakeswithsubstantialamountsof shortening in their formulations, suchasyellowlayercakes,whitelayercakes,orpoundcakes.Theycanbetermedshorten-ingcakesbecauseshorteningplaysafundamentalrole in theincorporationofairintothebatter.Thesecondgroupismadeupofcakes,suchasspongecakesorangelfoodcakes,with formulations lacking shortening.Cakesbelonging to the secondgroupareusuallyknownasfoam-typecakes,andtheincorporationofairintothesebattersiscloselyrelatedtothefoamingpropertiesofeggwhite.

Severalmethodscanbefollowedinthepreparationofcakebattersorthemix-ingofingredients.Withshorteningcakes,themostcommonapproachisknownasthecreamingmethod,inwhichtheprocessisstartedbybeatingtheshorteningandsugar.In this initialstep,sugarhelpscreamair intothefatbyformingnumerousminutebubbles.Therestoftheingredientsareaddedinsuccessivesteps.Onceintheoven,shorteningmelts,andthebubblesundergoanaqueousphaseexpandingbecauseofthecarbondioxidefrombakingpowder.Thesecakesarecharacterizedbyaveryfineanduniformgrain.Asecondapproachinthepreparationofshorten-ingcakebattersistheone-stagemethodinwhichallingredientsareaddedatonce.Theuseofemulsifyingagentspermitsdirectincorporationandstabilizationofairbubbles in the batter. With both methods, sugar is the determining factor in theincorporationofair,sothatifsugarisremovedfromtheformulation,cakevolumeswillbedrasticallyreduced.

Withfoam-typecakes,eggandsugararewhippeduntilastablefoamisobtained.Someformulations includeonlyeggwhites,butoccasionally,whitesandyolksarewhippedseparately.Infoam-typecakes,sugarhasanessentialfunctionasawhippingaid.Afterthefoamisformed,flourisgentlyfoldedinwithoutbreakingthestructure.

... Cookies

Themarketoffersconsumersavastarrayofcookiesdifferingbothintheirformula-tionsandprocessingmethods.Thesearesomeofthemajortypes:depositcookies,wire-cutcookies,orrotary-moldedcookies.Foreachtype, therewillbedifferentrequirementsasfarastheconsistencyandtextureofcookiedoughsareconcerned.Theeffectofsugaronthesecharacteristicsmustbestudied.Likecakes,mostcook-iesarechemicallyleavenedandhavehighsugarandshorteningcontentsbutaratherlowwatercontent.Formostcookies,theinitialstepconsistsofacreamingprocessinwhichsugarplaysacentralroleintheincorporationofair.Aswasthecaseincakes,sugarshaveasignificanteffectonthefinalstructureofcookiesbydelayingthegelatinizationtemperatureofstarch.Furthermore,theyserveassweeteningandbrowningagentsthroughMaillardandcaramelizationreactions.

Doughconsistencytendstoberegardedasaveryimportantproperty,particu-larlywhenprocessingcookiesatan industrial scale.Depositcookiedoughsmustretainenoughfluiditytomakedepositingfeasible;wire-cutcookiedoughsmustbeproperlyextruded.Inaddition,doughsofrotary-moldedcookiesmustbefirmwhen

52748.indb 253 2/6/08 2:27:53 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 268: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

entering the mold and cohesive enough to keep their shape once they have beenreleasedfromthemold.Achievingallthesedifferentlevelsofconsistencydependsonthetypesandamountsofsugarsandshorteningsinvolved.

During oven baking, doughs undergo a rise in temperature which, in turn,resultsinthemeltingoftheshorteningandthegranularsweeteners.Asaresultofthesechanges,waterisliberated,leadingeventuallytoamorefluiddoughandanimprovedcookie spreading.Spreading is also affectedby thegas released in theprocess,anditisconsideredanimportantqualityparameterincookies.Theamountand typeofsweetenerused,aswellasother ingredients,suchasshorteningsandeggs,determinethefinalcookiespread.Afterdoughcooling,sucroserecrystallizesandhardens,helpingtocreatethecharacteristicfracturabilityorsnapofcookies.Ifachewierandsoftertextureissought,differentsweetenersandingredientscapableofminimizingsucroserecrystallizationmustbeintroduced.

... fillingsandIcings

Thefinalstageintheprocessingofmanysweetbakeryproductsistheadditionofsome kind of filling or icing. Most fillings are prepared by whipping shorteningand sugar into a creamy consistency. Fillings are composed of other ingredientsthat provide color,flavor, or consistency.Apart from its sweeteningpower, sugarprovidesbulkandstructure,creatingaerationnucleiwhenshorteningsarewhipped.Sugargranulometryisalsoimportant;coarsegranulatedsugarwillyieldagrainyandsandytexture.Finecrystalsarepreferableforasmoothandcreamytexture.Asforicings,thetypeofsugarusedwilldeterminethedegreeofrecrystallizationaftercoolingandsowhetherthefinalproductshowsamatteorglossyappearance.

12.3.2 FaTs

Theconcentrationoffatsoroilsinbakeryproductsrangeswidely.Insomebreads,fatisabsentfromtheirformulation;inothers,fatispresentatpercentagesbelow5to6%(flourbasis);finally,brioche-likedoughsmayhavefatpercentageswellover50%.Similarly,insomecakes(foamtype),nofatsareadded,butinothers,percent-agesmayrangebetween40and60%(flourbasis),andfatsplayanessentialrole.Inaddition,incookieproduction,fatpercentagesmayrangebetween10and55%.Asmentionedaboveinthecaseofsugars,thefunctionsoffatsinbakeryproductsareverycomplexandvarydependingonthetypeoffatutilized,theamountadded,andtheproductbeingproduced.Severalstudieshavedealtwiththispointindetail(Pyler,1988;Sluimer,2005;Stauffer,1996).

... yeast-raisedProducts

The inclusionofsmallamountsof fat inbreaddoughshasasignificanteffectontheirprocessingandonthequalityofthefinishedproduct.Suchdoughsaremoreextensible, and theirmachinability ismarkedly improved.Afterproofing,doughswithshorteningaremorestableandresistanttopossibleshockswhenthepiecesaretransferred fromtheproofer to theoven. Increasedoven-spring isalsonoticeableduringthebakingofsuchdoughs,becauseshorteningbringsaboutadelayinthe

52748.indb 254 2/6/08 2:27:53 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 269: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

reactions marking the end of dough expansion, gelatinization of starch granules,andglutendenaturation.Thefinalproductexhibits largervolumeandcrumbofafinergrain.Fatstrengthensthesidewallsofbreadandminimizesthepossibilityofkeyholing in thefinalproduct.Suchbreadshave softer texture, less crumbliness,andgreatermoistmouthfeel.Thecombinationofalltheseeffectsisknownaslardeffect;itoccursmainlywithsolidfats,providedtheyareevenlydispersedthrough-outthedough,suggestingthatthepresenceofsaturatedfattyacidsisimportant.Alltheseeffectsarealreadynoticeablewithshorteningpercentagesof1%,but ithasbeenestablishedthatmaximumvolumeisobtainedwith5to6%ofshortening.Inanycase,volumeincreasechangeswithdifferentproofingprocedures.Thus,longproofingperiodsgivevolumeincreasesofupto10%,whereasshortproofingperiodsmayyieldincreasesofupto25%.

Withformulationscontaininggreateramountsoffat,asthoseofsomebunsandrollsorofbriochedoughs,otherfactorsmustbetakenintoaccount.Forexample,whenprocessingthesekindsofdoughs,theamountofwatershouldbereducedandkneadingtimesextended.Doughswithhigherpercentagesofshorteningmayrequirethatkneadingbecarriedoutinseveralsteps.Doughconsistencywillbereducedanddoughstickinesswillincrease.Tominimizetheseeffects,inadditiontoreducingtheamountofwaterintheformulation,thefinalkneadingtemperaturemaybeloweredandstrongerfloursmaybeused.Floursofhigherstrengtharerequiredtoattainthecorrectgasholdingcapacity.Thereislessoven-springinthesedoughs,andocca-sionally,theymaycollapseduringorafterbaking.

Inaddition to theeffectsmentioned, all leaveneddoughscontaining shorten-ing show an antistaling effect. Staling increases the firmness of bread crumb asa result of a very slow process, lasting several days, during which the recrystal-lization of amylopectin occurs. When small amounts of shortening are included,loafacceptabilitymaybeextendedbyoneortwodays,whilewithgreateramountsofshortening,loafshelflifecanbeprolongedforweeks.Fattyacidchainsformacomplexwithstarchmoleculeshinderingamylopectinrecrystallizationanddelayingcrumbstaling.Thiseffectissimilartothatobservedwhencertainemulsifierssuchasmonoglyceridesofsaturatedfattyacidsareadded.

Finally,fatshavealubricatingeffect,makingthebakedproducteasytoswallowwithoutadheringtothesurfacesofthemouth.Theyalsohelptoproducebreadthatcanbecleanlyandevenlysliced.

... Cakes

Fats play an essential role in the processing of shortening cakes, including layercakesorsimilarproducts,suchasmuffinsorcakedoughnuts.Fatsareresponsibleforairincorporationintheformofmanysmallbubblesforafineanduniformgraininthefinalproduct.Whentheshorteningpercentageonaflourbasisisincorrectorthewrongkindofshorteningisused,airwillbeentrappedabnormally,largerbub-bleswillbeformed,andthefinalproductwillhavelessvolumeandacoarsegrain.

Theeffectofshorteningisatitspeakwhentheingredientsaremixedthroughthecreamingmethodinwhichshorteningandsugararemixedasairisincorpo-rated;withtheremainingmethods,shorteningalsoexertsconsiderableinfluence.

52748.indb 255 2/6/08 2:27:53 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 270: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Inthecreamingmethod,shorteningsmustbesolid,sothatairdoesnotescape,andplastic,sothatbubblescanbesurrounded.Thepresenceofemulsifiersalsocontributestoabetterdispersionoftheentrappedairbubbles.Intheone-stageproductionmethod,airisentrappedinthewaterphaseandstabilizedbyeggpro-teinsandflour;fatstendtohaveadefoamingeffect.Topreventthis,anemulsifierisincludedintheshortening.Cakesproducedwithoilaremoretenderandexhibitbettermoistnessthanthoseproducedwithfats,althoughtheirgraintendstobecoarser.Ithasbeenshownthatthepresenceofsaturatedfattyacidsimprovesairabsorptionduringcakebattermixing.Infact,hydrogenationandtheincorpora-tionoffatswithhighermeltingpointsimprovethecreamingqualityofoils.Theformation of a structure incorporating small air bubbles thinly dispersed alsoimprovesthestabilityofthebatterandpreventstheescapeofthebubblestowardthesurfaceandthecollapseofthedoughduringbakingbeforedoughsettinghasoccurred.

Fatsalsoimprovetheeatingqualitiesofcakesastheyhelptocreateamoreten-dertexture;theyallowincreasesinthecontentofotheringredientssuchassugars,milk,oreggs;and incertain instances, likebutteror lard, theycanactasflavor-ingagents.Finally,fatsextendtheshelflifeofcakesbyslowingtherateofstalingthroughtheirinfluenceintheretrogradationofamylopectin.

... Cookies

Asincakes,fatshaveanimportantfunctionintheincorporationofairincookiedoughs.Theyalsodeterminetheconsistencyandstickinessofdoughsthathavetomeettheparticularrequirementsofeachproductionprocess;forexample,theymustextrudesmoothlyandshouldnotsticktosurfaces.Differentamountsandkindsofshorteningwillmodifycookiespreadduringbaking,althoughthesugarcontentintheformulationwillalsobeadeterminingfactor.Indoughswithhighsugarcon-tents (90%of theflourweight),an increase inshorteningfrom35 to55%lowersspreadabout10%.However,indoughswithasugarcontentof50%offlourweight,asimilarincreaseinshorteningwillleadtoanincreaseinspreadofapproximately25% (Stauffer, 1996). Variation in other ingredients or in the kind of shorteningusedresultsindifferentspreadingrates.Ingeneral,reducingshorteninglevelsgivescookiesofgreaterfracturability(Baltsaviasetal.,1999)andhardness(Sudhaetal.,2007).

... fillings

Fillingsused in theproductionofcertainsweetgoods, suchassandwichcookiesorsugarwafers,aremainlycomposedofsugarandfat.Thekindandamountoffatusedwill influence air incorporation, consistency, stickiness, andmouthfeel.Theconsistencyoffillingsmustbesuchthattheycanbereadilyextrudedorspreadovercookies,wafers,orcakes;theymustbefirmatambienttemperatureandoccasionally(cookiesandwafers)stickyenoughtoholdontothecookie.Fatmustalsomeltinthemouthtoavoidawaxymouthfeelandprovideacoolingeffect.

52748.indb 256 2/6/08 2:27:54 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 271: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

. generalstrategIesforthe suBstItutIonofsugarsandfats

Whenmanufacturersembarkontheproductionofsugar-andfat-freeproducts,theyusually rely on the use of alternative products, although in certain situations theoptionofreformulatingtherecipesshouldnotbecompletelydisregarded.Ifsubsti-tutesaretobeused,theyshouldmeetthefollowingrequirements:

1.Besafeandcomplywithnationalandinternationalregulations 2.Haveflavorcharacteristicssimilartothoseofregularproducts 3.Bestableunderprocessingconditions(pH,temperature,etc.) 4.Besoluble 5.Possessnutritionalcharacteristicsadequatetotheneedsoftheproduct 6.Bereasonablycosteffective

12.4.1 suGarrePlaCers

Productdevelopershavefollowedthreedifferentapproachesintheirsearchfornewsugar-freeproducts.Thefirstapproachhasfocusedonthesubstitutionofsucrosebyadifferentsugarcapableofminimizingtheadverseeffectsassociatedwithsucroseconsumption.Infact,theseproductsshouldnotbelabeledas“sugar-free,”becausethe substituting substance is another sugar.Fructosehasbeenusedmostly in theproduction of foods for diabetics. The second approach opts for the introductionof intense sweeteners. As these products possess greater sweetening power thansucrose, theycanbeused insmallerdosesand thusasharpfall incaloric intakeoccurs.Theyrepresentaveryattractiveoptionforthedevelopmentoflow-caloriecarbonatedbeverages;inbakedgoodsthough,sugarismuchmorethanjustaflavorenhancerandadifferentsolutionmustbefound.Whenthemainfunctionofsugaristoprovidevolumeandtexture,asitisthecaseinmanybakedgoods,thendevelopershaveusuallyappliedthethirdapproach—theintroductionofbulkingagents,aloneorincombinationwithintensesweeteners.Inallcases,acarefulconsiderationofthesynergisticeffectsofdifferentsugarreplacersisnecessarytooptimizethesensorycharacteristicsofthefinishedproduct(Hangeretal.,1996;Montijanoetal.,1998).Comprehensivereviewsdealingwithmostofthesepointshavebeenpublishedovertheyears(Beereboom,1979;FryeandSetser,1993;Giese,1993;Newsome,1993;OlingerandVelasco,1996;Shinsato,1996).

... fructose

Inadditiontoglucose,fructoseisoneoftheconstituentmonosaccharidesofsucrose,and, as its name indicates, it occurs in many fruits. Like sucrose and glucose, itacts as substrate, fermentablebybaker’s yeast, promotes thedevelopment of tex-tural properties in baking products, and affects the final color through Maillardandcaramelizationreactions,thoughaslightlydifferentcolorthanthatprovidedbysucroseresults.Fructosehasasweeteningpowergreaterthansucrose(1.8greater),sosmalleramountsareadequate,andthereisasignificantcaloricreductioninthefinishedproduct.Thechiefadvantageoffructoseisitslowglycemicindex;diabet-

52748.indb 257 2/6/08 2:27:54 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 272: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

icstolerateitmuchbetterthansucroseasnoinsulinisneededforitsmetabolism.However, tolerance is not complete, and diabetics are advised to refrain from anindiscriminateconsumptionofproductscontainingfructose.

Althoughfructoseisanidealreplacerofsucroseincertainproducts,itshouldalwaysbekeptinmindthat,likesucroseorglucose,itisjustanothersugar.There-fore,anylabelingofproductswithfructosestating“nosugaradded”canbeconsid-eredmisleading.Incertaincountries,labelscanbecurrentlyfounddeclaring,“nosugar,withfructose”or“nosugar,nofructose.”Anotheraspecttobeconsideredisthatfructosehasasimilarcaloricvaluetosucrose;thus,theonlywayofobtainingacaloricreductioninthefinishedproductistoloweritscontentintheformulation.Moreover,fructosecanbeafactorinthedevelopmentofdentalcaries,anditseffectondiseasessuchascardiovasculardiseaseisstillunderstudy.

... Intensesweeteners

12.4.1.2.1 SaccharinSaccharinisasugarsubstitutewithasweeteningeffectbetween300and500timesgreaterthansucrose,butitisnotmetabolizedinthehumanorganismandisexcretedintheurinewithoutprovidingcalories.SaccharinisstableunderthepH,moisture,andtemperatureconditionsundergonebybakedgoods,anditalsoshowsadequatesolubility.Anadditionaldesirablepropertyisitssynergisticeffectwithothersweet-enersandbulkingagentswhichresultsinanenhancedsweeteningeffect.Themaindrawbackisthatsignificantnumbersofconsumersdetectaslightlybitteraftertaste.Forthispurpose,acombinationofsaccharinandcyclamateisideal,asthelattercanpartiallymasktheunpleasantaftertaste.

Saccharinwaswidelyusedforover100yearsinallkindsoffoodsandbever-ages. Consumption reached its peak during the 1970s when it was the only low-caloriesweeteneravailable.Itwasusedasacoffeesweetenerorinotherproductsdestined for diabetics or concerned overweight people. For many, it became partof their daily lives. Now, although it has been pushed aside by newly developedsweetenerswithbetterorganolepticcharacteristics,itsverylowcoststilljustifiesitsinclusioninbeverages,chewinggums,jams,andsauces.ItsAcceptableDailyIntake(ADI)is5mg/kg.

12.4.1.2.2 CyclamateThesweeteningeffectofcyclamateis30timesgreaterthansucrose,withapleasanttastethatissimilartosucrose.Cyclamateexhibitsgoodsolubilityandstabilityoverawiderangeoftemperatures.Unlikesaccharin,itdoesnotleaveabitteraftertaste,but the sweetness sensation,althoughpersisting longer,hasamoredelayedonsetthansucrose.Cyclamateissynergisticwithmostsweeteners,masksbitterness,andiscapableofenhancingsomeflavors.Eventhoughasmallsectionofthepopulationcanmetabolizecyclamate,mostpeopleareunable,andhenceitisconsideredasanoncaloricsweetener.

Cyclamatewasfirstmarketedduringthe1950s,butinthelate1960s,itssafetywasquestionedwhenevidencefromstudieswithratsbecameknown.Abaninmanycountriesensued.Today,havingbeendeclaredsafeforhumanconsumption,ithas

52748.indb 258 2/6/08 2:27:54 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 273: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

beenreintroducedinmanycountries.ItsADIis11mg/kg.It isnowusedinlow-caloriebeveragesorchewinggums.

12.4.1.2.3 AspartameAspartameis180to220timessweeterthansucrosewithasimilartaste.Likeothersweeteners,aspartamehassynergisticeffectandenhancesflavors,namelyacidfruitflavors. Its tendencytodegradeathightemperaturesconstitutes itsmaindrawbackwhenaddedtobakedgoods.Hence,itsuseisinadvisablewhenbakingprocessesareinvolved.Anexpensiveencapsulatedversioncapableofwithstandinghightempera-tureshasbeeninthemarketforanumberofyears.Aspartamecanbeusefulinthepro-ductionofcreamsandotherproductsthatneednotundergosevereheattreatments.

Aspartame has currently become the most widely used sweetener in the foodindustry, even though itwasnot approveduntil theearly1980s. It ismetabolizedin the intestinal tractproducingaspartic acid,phenylalanine, andmethanol.Afterextensivestudiesconfirmeditssafetyforallpopulationgroups,itwasapprovedbythe European Union with an ADI of 50 mg/kg, the equivalent of a daily sucroseintakeof600gforapersonweighing60kg.However,asmallnumberofindividualswiththediseasephenylketonuria,intoleranttophenylalanine,mustlimitaspartameintake.

12.4.1.2.4 Acesulfame-KDiscoveredin1967,acesulfame-Khasbynowbeenapprovedinmostcountries.Itisnotmetabolizedandisthereforecompletelyexcretedwithoutprovidingcalories.IntheEuropeanUnionitsADIis9mg/kg,andintheUnitedStatesitis15mg/kg.Acesulfame-Kpresentsacleantaste,noaftertaste,anditssweetnessdoesnotlast,though is rapidlyperceived.When in combinationwithother sweeteners, acesul-fame-Kexhibitssynergisticeffectsandacertaincapacityformaskingoff-flavors.Itis200timessweeterthansucrose.ThiscompoundisstableunderawiderangeofpHandtemperatureconditions,and, inparticular, itcanwithstandbakingconditionscommonintheprocessingofbakeryproducts(Klugetal.,1992).

Thereareotherintensesweetenersapprovedassugarsubstitutesundertheregu-lationsofdifferentcountriesorwithapplicationsforuseandregulatoryreviewsstillpending(e.g.,taumatine,neohesperidineDC,sucralose,andalitame).Allofthesesugarsubstitutesfaceregulatoryoreconomicdifficulties.

... Bulkingagents

12.4.1.3.1 PolyolsPolyolsareobtainedbythecatalytichydrogenationofdifferentsugars.Thesesub-stancesaresimilartosucroseforthetexturecharacteristicsandvolumestheyprovidebutwithoutpromotingdentalcaries,withbettertoleranceratesamongdiabetics,andwithlowercaloricvalues.Theirmainlimitationisthattheirsweetnessisbelowthatofsucrose.Table12.1showsthesweetnessofseveralsugarsubstitutes.Further,aspolyolsarenotinvolvedinprocessessuchasMaillardorcaramelizationreactions,theyalsoperformlessdecisivelythansucroseinthedevelopmentofcrustcolor;fin-ishedproductscontainingpolyolsusuallyexhibitlightercolors.Butpolyolssurpasssucroseasinhibitorsofbacteriaandmoldgrowthandhavehighhygroscopicity.

52748.indb 259 2/6/08 2:27:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 274: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Insomepeople,anexcessiveconsumptionofpolyolsleadstointestinaldisor-ders, suchasapersistent laxativeeffectordiarrhea, reminiscentof theproblemscausedbyhighfiberintakes.Symptomswillvarywithindividualsandtherestofthediet,andthoughtheyarerarelysevereorlasting,arestrictiveintakeisadvisable.Polyolsareabsorbedinthesmallintestineinaslowandincompletemannerandareconvertedintoenergywith littleornoinsulinbeingrequired.Eachpolyolhas itsownspecificcaloricvalueandtheaveragevalueisconsideredtobe2.4kcal/g.

Maltitol is one of the most widely used polyols among bakers, because itsfunctionalproperties (hygroscopicity, solubility,meltingpoint)make it similar tosucrose.Itscaloricvalueis3kcal/g,anditssweeteningeffectisabout80to90%ofthatofsucrosewithoutobjectionableaftertaste.Consideringitscoolingeffect,itisbelowsorbitolandxylitolbutabovesucrose.Itcanbeoptimallyadaptedtochocolatemanufacturingbecauseofameltingpointsimilartothatofsucrose(Rapailleetal.,1995).Secondintherankingofpolyolsmostwidelyusedinbakedgoodsissorbitol.Itscaloricvalueis2.6kcal/g,andcomparedwithsucroseithasasweeteningeffectof60%. It doesnothaveanydifficulty in solubilizing. It is ahighlyhygroscopicpolyolusedasahumectantinthecommercialproductionofbakedgoodstodelaystaling.Fromaneconomicstandpoint,bothmaltitolandsorbitolareverycost-effec-tivesugarreplacers.Inaddition,theuseofhydrogenatedstarchhydrolysatesiswide-spread;thisisageneraltermusedtorefertoblendsofpolyols.Thefinalproductisablendofsorbitol,maltitol,andotherlargerhydrogenatedsaccharideswithdifferingproperties(sweeteningeffect,hygroscopicity,solubility,etc.)dependingontheman-ufacturingprocess.Caloricvaluesarebelow3kcal/g,andtheirsweeteningeffectsrangebetween40and90%.

Lactitolandisomalt,havingverylowhygroscopicity,arewidelyusedwithlowmoistureproductssuchascookiesandcandies.Theirenergyvalueis2kcal/g,andtheirsweeteningeffectsare30to40%forlactitoland45to65%forisomalt,alwaysinrelationtothesweeteningeffectofsucrose.Isomalt,likexylitol,preventstooth

taBle.

relativesweetnessofsomesugarsubstitutessugars

Sucrose 1 Polyols

Fructose 1.2–1.8 Xylitol 1

high-Intensitysweeteners Maltitol 0.85–0.95

Acesulfame-K 130–200 Sorbitol 0.55–0.7

Aspartame 180–220 Isomalt 0.45–0.65

Saccharin 200–700 Lactitol 0.35

Cyclamate 30 Erythritol 0.65

oligosaccharides Mannitol 0.5

Polydextrose 0 Hydrogenatedstarchhydrolysates

0.7–0.9

Oligofructose 0.3–0.5

52748.indb 260 2/6/08 2:27:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 275: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

decay.Infact,xylitoliscommonlyusedintoothpasteandotheroralhygieneprod-ucts.Xylitolispossiblythemostsuitablereplacerfortheproductionofsucrose-freeproducts,butitsapplicationshavebeenlimitedduetoitshighcost.Insweetnessandsolubility,itissimilartosucrose,anditsenergyvalueisonly2.4kcal/g.Withhighhygroscopicity,itcanactasahumectant,anditscoolingeffectisfairlyhigh.

Maltitolistheleastadaptabletothenecessitiesofthebakingindustry,asithasahighlaxativeeffect,lowhygroscopicity,andalowsweeteningeffect(40to50%ofsucrose).Itscoolingeffectisnotonlyinferiortothatofsucrosebutiswellbelowtherestofthepolyols.Erythritolisnotverywidelyusedinthebakingindustry.Itsstrong laxative effect and low to medium solubility limit the number of possibleapplications.Ithasasweeteningeffectrangingfrom60to70%ofthatofsucrose,anditscoolingeffect,althoughhigherthanthatofsucroseormaltitol,islowerthanthatofxylitolandsorbitol.InJapan,ithasbeeninusesincethe1990sbutisstillunder reviewin the restof theworld. Itsmainadvantage is its lowenergyvalue,approximately0.2kcal/g.

12.4.1.3.2 OligosaccharidesPolydextroseandoligofructosebelongtotheoligosaccharidesgroup.Bothcompoundsaremadeupofglucoseorfructosebranchedchainswithaveryslightmetabolizationinthehumanbody,andthuswithanegligiblecaloriceffect.Likedietarysolublefiber,they canprovide similarnutritionalbenefits and,with excessive intake, a laxativeeffect.Theyarenotcariogenicandarebettertoleratedbydiabeticsthansucrose.

Polydextroseisabranchedglucosepolymercontainingamountsofsorbitolandcitric acidwitha caloricvalueof1kcal/gandamaximumdaily intakeof50 to90 g. When first marketed, polydextrose was acid, yielded some unusual flavorsandfatrancidity,buttheseproblemshavebeenovercomewithanewlydevelopedimprovedversionofpolydextrose.Asitssweeteningpowerislimited,polydextrosemustbeblendedwithsomeintensesweeteners;nevertheless,itimpartsaverycleanflavor,withoutundesirableaftertasteorincompatibilitieswithothersweeteners.Inthedevelopmentoftextureandvolumeinbakedgoods,itissimilartosucroseandpresentsgoodsolubility.Highlyhygroscopic,itkeepsfreshnessinfoodsandcanbeusedasahumectant.Inadditiontoasugarreplacer,polydextrosecanbeusedasafatreplacer.

Oligofructoseisacomplexofshortbranchedchainsoffructoseobtainedfrominulin,achicoryrootextract.Inulinhasthesamecompositionbutahighermolecularweight,anditsbestapplicationisasafatreplacer.Likepolydextrose, ithasa lowsweeteningeffectandnocoolingeffectbutacleantaste,andinitsabilitytoimparttextureandvolumetothefinalproduct,itissimilartosucrose.Nevertheless,itsmainadvantagesarerelatedtonutritionalbenefits.Itscaloricvalueis1.5kcal/ganditactsassolublefiber,helpingdigestedfoodpasseasilythroughtheintestinaltract,increas-ingfecalbulk, reducingconstipation,andfacilitatingbowelmovement.Accordingto some studies, oligofructose seems to reduce cholesterol and triglyceride levels.Finally,oligofructosepromotestheproductionofbifidobacteriaintheintestinaltract(prebioticeffect)andcalciumabsorption.

52748.indb 261 2/6/08 2:27:55 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 276: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

12.4.2 FaTrePlaCers

Toreducethefatcontentofafooditem,manufacturershavefavoredtheintroduc-tion of fat replacers, ingredients combining some of the functional properties offatswithlesscaloriceffect.Fatreplacersarealsoknownasfatmimetics,andtheycanbebasedoncarbohydrates,proteins,fats,oracombinationofthese.Asecondoptionformanufacturershasbeentousefatextenders,productsoptimizingfatfunc-tionalityandallowingareductionintheamountoffatincludedintheformulation.Comprehensivereviewsofthecharacteristicsandapplicationsoftheseproductscanbefoundintheliterature(ADA,2005;FryeandSetser,1993;Gluecketal.,1994;LuccaandTepper,1994).SomeofthemostcommonlyusedfatreplacersandtheirmanufacturersareshowninTable12.2.

... Carbohydrate-BasedfatMimetics

Theseproductsarecapableofabsorbinglargeamountsofwatertoformagel-likematrixwithsomeofthefunctionalpropertiesoffats.Theyaresimilartofatsinthepropertiestheyinfluence:viscosity,body,creaminess,andmouthfeel.Becausetheyaremixedwithwater, theircaloricvalueisreducedto1to2kcal/g,eventhoughcarbohydrates can provide 4 kcal/g. Fibers, cellulose, and gums have no caloriceffect.Theirusewithfriedgoodsisnotrecommended,andtheirhighmoisturecon-tentincreaseswateractivitywithgreaterriskofpromotingmicrobiologicalgrowthandthusreducingshelflife.Thisgroupoffatmimeticsincludesmodifiedstarches,fibers,cellulose,gums,maltodextrinsanddextrins,polydextrose,andinulin.Bothpolydextroseand inulinwerediscussedin theprevioussectionasbulkingagents,andtheycanreplacesugarsaswellasfats.

12.4.2.1.1 Starch DerivativesTheseproducts,includingmodifiedstarches,maltodextrins,anddextrins,aremixedwith threepartsofwater,aregel-like,andprovide textureandmouthfeelusuallyassociatedwithfats.Theircaloricvaluewillbeof1kcal/ginsteadof9kcal/glikefats. Modified starches are obtained through physical or chemical treatments ofnativestarchessothattheycanwithstandextremeconditions(temperature,acidity,shear)andaltertheirpastingbehavior.Finalcharacteristicswilldependonthepar-entstarchandthemodificationsithasbeenforcedtoundergo.Itwasreportedthatsmall-granulestarchhavingagranulediametersimilartothatoflipidmicelles(lessthan2µm)mighthavepotentialasafatreplacer(LuccaandTepper,1994).Malto-dextrinsanddextrinsarehydrolyzedstarcheswithadextroseequivalenceof lessthan20,whichmayresultindarkcolorswhenheatprocessed,butthisshouldnotpreventitsuseinbakedproducts.Modifiedstarches,maltodextrins,anddextrinscanmaskcertainflavorsandimpartnewonesdeservingspecificattention.

12.4.2.1.2 Gums and CelluloseNeitheroftheseproductsisabsorbedintheintestinaltract,andtheycanbeincludedinthefibergroup;theyprovidenutritionaladvantageswithnocaloriceffect.Gumsarehydrocolloidswithgreatcapacityforwaterabsorptionwhichcanimpartviscos-ity,stabilizewatersystems,andinhibitsynerisis.Examplesofgumsincludexanthan,locustbean,carrageenan,andpectin.Pectin isusedprimarilyasagellingagent.

52748.indb 262 2/6/08 2:27:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 277: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

taBle.

fatreplacerstype Brandname Manufacturer

Carbohydrate-based

Cellulose Avicel FMCCorp.

Novagel FMCCorp.

Modifiedstarches Stellar A.E.StaleyMfg.Co.

Sta-Slim A.E.StaleyMfg.Co.

Amalean AmericanMaize-ProductsCo

N-lite NationalStarch&ChemicalCo.

Maltodextrin Paselli(potato) Avebe

Oatrim(oat) Rhone-Poulenc

Maltrin(corn) GrainProcessingCorp.

N-Oil(Tapioca) NationalStarch&ChemicalCo.

RiceTrin(rice) ZumbroInc.

C*Light Cerestar

Fibers WonderSlim NaturalFoodTechnologies

Z-Trim FiberGelTechnologiesInc.

Betatrim Rhone-Poulenc

DairyTrim MeyhallChemicalAG

Polydextrose Litesse CultorFoodScience,Inc.

Inuline Raftiline Orafti

Pectin Slendid HerculesInc.

Grindsted Danisco

Gums Kelgum Kelco

Kelcogel Kelco

Nutricol FMCCorp.

Protein-based

Microparticulateprotein Simplesse TheNutraSweetCo.

Wheyproteinconcentrate Dairy-Lo CultorFoodScience,Inc.

Nonfatmilk,gums,modifiedstarch,andemulsifiers

N-Flate NationalStarch&ChemicalCo.

fat-based

Alteredtriglycerides Salatrim Nabisco

Caprenin Procter&GambleCo.

Benefat CultorFoodScience,Inc.

Sucrosepolyester Olean Procter&GambleCo.

52748.indb 263 2/6/08 2:27:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 278: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Cellulosegelsormicrocrystallinecelluloseresultfromtheprocessingofnonfibrouscellulosetoreduceparticlesizeinsuchawaythatbetween60and70%ofparticleshavelengthsoflessthan2microns.Thecellulosemicrofibersjoinotheringredients,suchascarboxymethylcelluloseorguargum,toholdtogetherasanetwork.

... Protein-BasedfatMimetics

Thereisapatentedproceduretoobtainmicroparticulatedproteins.Thisprocedureconsists of the simultaneous application of two processes—pasteurization (heattreatment)andhomogenization (highshear),producingsphericalproteinparticlesoflessthan2micronsindiameter.Whey,milk,andeggproteinsaretheusualrawmaterials,andpeoplewithallergiesshouldrefrainfromconsumingtheseproducts.Becauseofparticlesizeandshape,thetonguefailstodetecttheindividualparticlesandinsteadperceivesacreamy,smooth,andfluidproductcoatingmouthsurfacesinwaysusuallyassociatedwithfats.Thiscoatingactionhelpsflavorsreachthetastebudsmoregradually,but it alsomasks somebitter andastringentflavorscharac-teristicof low-fatproducts.Microparticulatedproteins,marketedinseveralformsunder the trademarkSimplesse®, tend to imbibewater in suchaway that1gofprotein-basedfatmimeticscanreplace3goffatwiththeresultingcaloricreduction.Likecarbohydrate-basedfatmimetics,theyareunsuitableforusewithfriedfoods,althoughsomeversionswithstandheatprocessingbetterthanothers.

Anadditionalfatsubstitute isderivedfromwheyprotein,modifiedthroughatreatmentcombiningheatingandanacidicmedium.Changesinproteinconcentra-tion,temperature,andpH,andthepresenceofotheringredientsresultinawiderangeofproductswithvaryingfunctionalproperties,includingopacity,waterabsorptioncapacity,particlesize,andemulsifyingcapacity.Finally,fatsmayalsobepartiallyreplacedbyproductscomposedofablendofanimalandvegetableproteinswithgums,starches,andwater.

... fat-Basedreplacers

Fat-basedfatreplacersarelipidsmodifiedorsynthesizedinsuchawaythattheyarenotfullymetabolizedinthehumanbody,andthustheircaloriceffectisbelowthe9kcal/glevelofconventionalfats.Intheirphysicalproperties,theyaresimilartofats.Theycanwithstandhightemperatures,includingfrying,andcanreplacefatstotallyorpartially.

Oneof thebestknown isCaprenin, formedbyesterificationofglycerolwiththreefattyacids(capric,caprylic,andbehenic).Itispartiallyabsorbedintheintes-tineandprovidesonly5kcal/g.Capreninissimilartococoabutterandiscommonlyusedasareplacerinsoftcandyandchocolateconfectionerycoatings.Salatrimisasimilarproduct,obtainedbyesterificationofmonostearinwithshort-chainacids(acetic, propionic, andbutyric).The resultingproduct provides just 4 kcal/gwithvaryingplasticpropertiesdependingontheratioofshort-chainfattyacidsused.Itthushasthecapacitytoreplaceall-purposeshorteningsaswellasfillerfats.

Inaddition,therearesubstanceswiththermalandorganolepticpropertiessimi-lartofats,toolargeforintestinalabsorption,unavailableforhydrolysisbygastricandpancreaticlipase,andprovidingnocalories.Thebestknownisolestra,asucrose

52748.indb 264 2/6/08 2:27:56 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 279: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

polyestermadeupofhexa,hepta,andoctaestersofsucrose,esterifiedwithlong-chainfattyacidsderivedfromedibleoils,includingsoy,corn,andcotton.Byvary-ingthedegreeofesterificationandthenumberoffattyacidsused,itispossibletoobtainawiderangeofproductswithfunctionalproperties,appearance,mouthfeel,stability, shelf life, and organoleptic characteristics usually associated with con-ventionalfats.Althoughatonetime,insomecountries,manufacturerswishingtoincludeolestraintheirproductswererequiredtoaddfat-solublevitamins(A,D,E,andK)andwarnonthelabelthattheabsorptionoffat-solublevitaminscouldbeinhibited,currently,aftermuchevidenceaccumulatedovertheyears,thishascometobeconsideredasanunnecessaryprecaution.

Emulsifierscanbehaveasfatextenders.Theircaloriceffectisthesameasthatoffats(9kcal/g)but,asonlybetween25and75%ofemulsifierisnecessarytomimictheeffectofconventionalfats, there isasignificantcaloriereduction.Emulsifiersareusedtoreplaceallorpartofthefatcontentincertainproducts.Inothers,theyalsohelpretainmoistureandincreasevolume.Themostwidelyusedemulsifiersinthemanufacturingoflow-fatproductsaremonoglyceridesandpolysorbates;inotherapplications,manufacturerscanalsouselecitin,sodiumstearoyllactylates(SSLs),ordiacetyltartaricestersofmono-anddiacylglycerols(DATEM).Blendsofemulsi-fiersaggregatethefunctionalpropertiesoftheseparatecomponents.

. suBstItutIonofsugarand fatsInCaKesandCooKIes

12.5.1 suGarsuBsTiTuTion

... Cakes

Strategies for theproductionof sugar-free cakes are usuallybasedon the substi-tution of sugar by one or a combination of bulking agents capable of yielding afinishedproductwithadequatevolume,texture,andgrain.Ithasbeenestablishedthatdifferentbulkingagentsaffectthebehaviorofdoughsduringbakinginvaryingdegrees,therebyaffectingtheeventualvolumeandstructure(Ikawa,1998).Rondaetal.(2005)comparedthecapacityofsevenbulkingagentsassugarsubstitutesinspongecakes.Topperformerswerexylitol andmaltitol, followedby sorbitol; thehighpriceofxylitol,however,hasresultedinitsbeingsupersededbymaltitolasthemostwidelyusedinsugar-freecakemanufacture.Thesamestudypointedoutthatcakesmanufacturedwithpolyolsyieldedlightercakesbecausetheyareunaffectedby Maillard reactions. Conversely, those cakes manufactured with oligofructoseandpolydextroseresultedindarkercolors,asrepeatedlyreportedbyotherstudies(Estelleretal.,2006;Hicsasmazetal.,2003)andsuggestingthatthecombinationofthesebulkingagentswithpolyolsassugarsubstitutesmayprovidepositiveresults(Penna et al., 2003). In fact, Frye and Setser (1992) optimized a sugar-free cakeformulationusingblendsof polydextrose anddifferent polyolswithgood results.Moreover,emulsifierscanbeusedtobuffertheadverseeffectsofthesubstitutionofsugarbybulkingagents(KamelandRasper,1988).Intheseinstances,acorrectchoiceoftypeanddosageofemulsifierisessential.

52748.indb 265 2/6/08 2:27:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 280: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Apartfromtheirappearance,volume,andtexture,sugar-freeproductsmustalsobeassessedbytheirflavorandaroma.Itisanestablishedfactthatdifferentbulk-ingagentsexhibitvaryingsweeteningeffectsaswellasdiversearomaticandtasteprofiles. In some formulations, particularly when using bulking agents with lowsweeteningpower,suchaspolydextrose,theadditionofanintensesweetener,likeacesulfame-K,aspartame,oranyother,mayberequired(Attiaetal.,1993;Free-man,1989).Somesugarsubstitutescauseanunpleasantaftertaste,likesometypesofpolydextrose(FryeandSetser,1992),andhavetobemaskedbyothersweeteningorflavoringagents.

Overall,itisdifficulttomakegeneralrecommendationsforthesubstitutionofsugar in cakes.Thedivergenceofviews reported in the literaturehighlights thatdifficulty.Thus, it is known thatpolydextrose raises the temperatureof thegela-tinizationofstarch(Paterasetal.,1994)andlowersbatterstability(Hicsasmazetal.,2003).This, in turn, affectsair retentionduringbaking, theexpansionof theproduct,andthefinalvolume.However,althoughHicsasmazetal.(2003)foundthatcakesmanufacturedwithpolydextroseas sucrose substitute showedfineanduni-formgrain,Koceretal.(2007)reportedoppositeresults.Ontheotherhand,Rosen-thal(1995)suggestedthattheriseinthestarchgelatinizationtemperatureproducedbypolydextrosecanbeusedtoimprovethemanufactureofcakeswithagedeggsasaresultofanincreaseintheeggproteindenaturationtemperature.Allthesedif-feringresultsindicatethatcakemanufacturingdependsontheinteractionofmanyfactors, for example, the type of cake sought, formulation, and raw materials. Ineachparticularformulation,therefore,differentblendsofsugarsubstitutesshouldbetested,andthentheresultsverified,includingboththephysicochemicalandsensorypropertiesofthefinishedproduct.

... Cookies

Strategies for theproductionofsugar-freecookiesclosely resemble thosealreadydiscussedforsugar-freecakes.Theremovalofsugarbringsaboutdrasticchangesindoughsandinthefinishedproducts,andthesecannotbeminimizedjustbytheintro-ductionofintensesweeteners(Limetal.,1989).Incookies,sugarandfatreplace-ment can affect texture to a greater extent than flavor (Perry et al., 2003). Thus,theadditionofabulkingagentoracombinationofseveralofthemisnecessarytocontrolthechangesinthetextureofdoughsandcookiesduetotheremovalofsugar.Zouliasetal.(2000a)comparedthefunctionalityofseveralbulkingagentsassugarreplacers in cookies. Cookies with maltitol scored the highest results in hedonicevaluations,evenhigherthanthecontrol,andtheywerealsoconsideredassimilartotheoriginalproductinshape,color,andtexture.However,sugarreplacementwithmaltitol significantly impacted dough adhesiveness and cohesiveness, an impor-tantpointinthecommercialproductionofcookies.Thesameauthorsobservedanimprovedacceptabilitywhenanintensesweetener(acesulfame-K)wasaddedtothesugarless cookies, even with sugar replacers, like fructose, of greater sweeteningeffectthansucrose.Maltitolhasbeenshowntohavebettercharacteristicsthanotherbulkingagentsassugarsubstituteinlow-fatcookies(Zouliasetal.,2002a).

52748.indb 266 2/6/08 2:27:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 281: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

Anotherbulkingagentcommonlyused,aloneorcombinedwithpolyols,inthemanufactureofsugar-freecookiesispolydextrose.Becauseofitsverylowsweet-ening effect, it must be supplemented with an intense sweetener. The choice ofsweetener,orblendofsweeteners,isthenoftheutmostimportance,iftime-intensitysweetnessandbitternesscurvessimilartothoseofsucrosearetobeattained(Limetal.,1989).Whenselectingasugarsubstitute,itisequallyimportanttotestitseffectontheshelflifeoftheproduct,asdifferentbulkingagentsimpactdifferentlyonthestabilityoffatspresentincookies(Ochietal.,1991).

Evidenceprovidedbydifferentstudiesonthemanufactureofsugar-freecookiesisvalidunderaparticularsetofconditionsandmust,therefore,becarefullytestedwhenappliedtonewformulations,typesofcookies,orprocessingconditions(com-mercialscale).Inanycase,allthisexperimentationhasincommonthesubstitutionofsugarbybulkingagentsand,sometimes,intensesweeteners,acarefulmonitoringofthephysicalcharacteristicsofdoughsandcookies,andthesensoryacceptabilityofthenewlydevelopedproduct.

12.5.2 FaTsuBsTiTuTion

... Cakes

Obtainingfat-freebakingproductswithsensorycharacteristicssimilartotheregularproductsisaformidablechallenge,becausenofatreplacercurrentlyinuseexhibitsperfectstructuralsimilarity(Shukla,1995).Toovercomethisobstacle,ithasbeennecessarytodevelopblendsoffatreplacers,changethedoses(1:1ratiosbeingnotalwaysadvisable),andevenreformulatetheproduct.

Broadly speaking, carbohydrate-based fat replacers are the most widely usedintheprocessingoffat-freecakes,owingtotheircapacitytoprovideproductswithgoodorganolepticproperties (Bathetal.,1992;Swansonetal.,2002),whichcaneven be improved by the addition of emulsifiers (Khalil, 1998). The substitutionof fatsbymaltodextrins incakescausesa reduction inbatterviscosity,which, inturn,leadstoasmallerfinalvolume(Lakshminarayanetal.,2006).Thesamestudyreported that thebest resultswereobtainedwhen theamountof fat removedwasreplacedbyasmalleramountofmaltodextrin,approximately50%,althoughcakesthus manufactured exhibited moderately sticky texture and mouthfeel. Moreover,itwasshown that theadditionof smallamountsofglycerolmonostearate (GMS)improvedvolume,entrapmentofairinthebatter,andthesensoryqualityofthecake,withlessdensecrumbgrainandlessstickytexture.Theadditionofsodiumsteroyllactylate,however,failedtoyieldthesamebeneficialeffects,provingthatthechoiceofanappropriateemulsifierisessential.Incakesprocessedwithmaltodextrinasfatreplacer,theirphysicalandsensorycharacteristicscanalsobeimprovedbyaddingcornamylodextrin(Kimetal.,2001).

Anumberofsignificantfatreplacersusefulintheprocessingofcakeswithlowerfatcontentsareincludedinthesamegroupasfibers.Goodresultscanbeobtainedwithinulinandoligofructose(Devereuxetal.,2003),polydextrose(FryeandSetser,1992),fiberproductsderived fromcornandoats (Warnerand Inglett,1997),andhydrocolloids,aloneorincombinationwithemulsifiers(Kauretal.,2000).Theseproductsprovideasignificantreductionincaloriccontent,negligiblecaloriceffect,

52748.indb 267 2/6/08 2:27:57 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 282: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

and, in some instances, inaddition to thecaloric reduction,a lowerflourcontentbecomespossible.However,productsincludingthesesubstitutestendtoscorelowervaluesinthehedonicscaleifcomparedwiththeoriginalproducts,onaccountofthechangesthatoccurinthetextureofthefinishedproduct.Furthermore,excessiveconsumptionoftheseproductsmayhaveadversephysiologicaleffects.

... Cookies

Although several studies about theprocessingof fat-freecookieshavebeenpub-lished,nocomprehensivecomparisonofallthedifferentsubstitutesisyetavailable.Fat-free formulations for cookiesyielddoughsdrasticallychanged in textureandfinishedproductswithdifferentphysicalandsensorycharacteristics.Thesechangescanbeminimizedbyincludingintheformulationdifferentfatreplacers,althoughinallcases,acceptabilityisnotaswideaswiththeregularproducts.Cookieswithlowfatcontenttendtoexhibitlesssurfacecracking,fewersurfaceprotusions,moreuniform cells, and more mouthcoating, apart from a different flavor (Armbristerand Setser, 1994). Carbohydrate-, protein-based, and fiber-derived replacers havebeentestedwithvaryingresults.Sudhaetal.(2007)establishedthattheadditionofmaltodextrinorpolydextrosereducedtheeffectsoffatremovalontheprocessingofcookies,andwiththeadditionofemulsifiersorguargum,thequalityofthefinishedproductapproachedthatoftheoriginalbutwasneverquitethesame.Sanchezetal.(1995)optimizedaformulationofreduced-fatshortbreadcookieswithdifferentfatreplacers.Thisstudyshowedthatcookieswithlowfatcontentexhibitedincreasedmoistureandtoughness,andlessspecificvolume;theadditionofemulsifiersledtoimprovedresults.Amodificationoftheprocessingofthedoughwasintroducedtoobtainlow-fatshortbreadcookies.Zouliasetal.(2002b)compareddifferentcarbo-hydrate-andprotein-basedfatreplacersandobservedsignificantdifferencesamongthevariousreplacers;thebestresultswereobtainedwithinulin(Raftiline),ablendofmicroparticulatedwheyproteinsandemulsifiers(Simplesse),andanoat-derivedproduct rich in ß-glucans (C*Light). Among all these, Simplesse yielded cookiesverysimilarindiametertotheoriginalcookiesbutwithhighervaluesofmoisturecontent(Zouliasetal.,2002a).

Additionalfatreplacers in themanufactureofdifferent typesofcookieshavebeentestedwithsimilarresults,includingoat-derivedfiberproducts(CharltonandSawyer-Morse, 1996; Conforti et al., 1997; Inglett et al., 1994; Lee and Inglett,2006),prunepaste (CharltonandSawyer-Morse,1996),hydrocolloid-basedprod-ucts(Confortietal.,1997),orokragum(Romanchick-Cerpoviczetal.,2002).Allofthemarecapableofminimizingtheeffectsoffatremoval,buttheyfailtomatchthephysicochemicalpropertiesoftheregularproducts.Ontheotherhand,thestrategyforthemanufactureoflow-fatcookiescannotfocusonanapproachbasedonasinglefatreplacerwhenablendofreplacersismorelikelytobesuccessfulinimprovingthefinalresult(Zoulias,2000b).Finally,theimportanceofreducingfatcontentinfillingsandicingsshouldnotbeoverlooked—thiscouldbeobtainedwiththerightblendofwheyproteinandhydrocolloids(Laneuvilleetal.,2005).

52748.indb 268 2/6/08 2:27:58 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 283: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

. ConClusIons

TherecentgrowingawarenessoftheroleofdietinhealththroughoutmostWesterncountrieshaspromptedanincreaseintheconsumptionoflow-calorie,low-fat,andsugar-freeproducts.Thisholdstruenotonlyforcomparativelysmallsegmentsofthepopulationaffectedbycertainconditions,suchasdiabetes,requiringamanda-toryrestraintintheconsumptionoffatsandsugar,butalsoforagrowingnumberofconsumersoptingfor“ahealthylifestyle”asawayofpreventingfutureailments.As a result, significant attention has been focused on the development of bakeryproductssuchascakesandcookieslowinfatandsugar.Formanymanufacturers,thedevelopmentandmarketingofthiskindofproductsmusthavehelpeddiversifyproductionandwidenthemarketbyreachingtonewconsumersandgainingacom-petitiveadvantageoverrivalfirms.

Thedevelopmentof thesedietaryproducts isacomplex task,because itmayinvolve somethingelsebeyond themere substitutionof fats and sugar. It isoftenessentialtoreformulatetheseproductsandmodifytheirprocessingvariables.Mostapproaches,however,favortheutilizationofsugarandfatsubstitutes.Informationabout theinteractionsbetweenthesesubstitutesanddoughcomponents ishardtocomeby,inmanycasesitremainsunpublished.Draftingandpublicationofstudiesdealingwithsuchinteractionsandthewaytheyimpactontechnologicalprocesseswouldbehighlyusefulfortheformulationofbakinggoodslowinfatsandsugar.Ontheotherhand,thereismoreinformationavailableonthedevelopmentofthiskindofproductswhensugarandfatsarereplacedbyothertypesofingredients.Yeteachproductshouldbedealtwithindependently;itmightevenbenecessarytovarytheformulationinresponsetothedegreeofmechanizationintheprocessingofsuchgoods.Asuccessfuldevelopmentofbakingproductslowinfatsandsugardemands,first,athoroughunderstandingofthefunctionsoffatsandsugarintheprocessingandqualityofthefinalproductand,second,anequallythoroughunderstandingofthealternativeingredientsandthepossiblemodificationsintheproductionprocessaimedatimprovingthequalityofthefinalproduct.Finally,itshouldalwaysbekeptinmindthatthesuccessofthesedietaryproductsisnotjustduetotheirnutritionalcompositionbut,mostimportantly,isduetotheirorganolepticacceptabilityamongpotentialconsumers.Hence,studiesaboutthesensoryacceptabilityofnewlydevel-opedproductsbecomeessential.

referenCes

Alexander,R.J.1998.Sweeteners: Nutritive.EaganPress,St.Paul,MN.AmericanDieteticAssociation(ADA).2005.PositionoftheAmericanDieteticAssociation:

Fatreplacers.Journal of the American Dietetic Association2:266–275.Archer,S.L.,K.Liu,A.R.Dyer,K.J.Ruth,D.R.Jacobs,L.VanHorn,J.E.Hilner,andP.J.

Savage.1998.Relationshipbetweenchangesindietarysucroseandhighdensitylipo-proteincholesterol:TheCARDIAStudy.CoronaryArteryRiskDevelopmentinYoungAdults.Annals of Epidemiology8:433–438.

Armbrister,W.L.andC.S.Setser.1994.Sensoryandphysical-propertiesofchocolatechipcookiesmadewithvegetableshorteningor fat replacersat50and75-percent-levels.Cereal Chemistry71:344–351.

52748.indb 269 2/6/08 2:27:58 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 284: Food Engineering Aspects of Baking Sweet Goods

0 Food Engineering Aspects of Baking Sweet Goods

Ascherio,A.2006.Trans fattyacids andblood lipids.Atherosclerosis Supplements 7 (2):25–27.

Ascherio,A.andW.C.Willett.1997.Healtheffectsoftransfattyacids.American Journal of Clinical Nutrition66:S1006–S1010Suppl.

Attia,E.A.,H.A.Shehata,andA.Askar.1993.Analternativeformulaforthesweeteningofreduced-caloriecakes.Food Chemistry48:169–172.

Baltsavias,A.,A.Jurgens,andT.vanVliet.1999.Fracturepropertiesofshort-doughbiscuits:Effectoffoodcomposition.Journal of Cereal Science29:235–244.

Bath,D.E.,K.Shelke,andR.C.Hoseney.1992.Fatreplacersinhigh-ratiolayercakes.Cereal Food World37:495–500.

Bean, M.M. and W.T. Yamazaki. 1978. Wheat starch gelatinization in sugar solutions. I.Sucrose:microscopyandviscosityeffects.Cereal Chemistry55:936–944.

Beereboom, J.J.1979.Lowcaloriebulkingagents.Critical Reviews in Food Science and Nutrition11:401–413.

Bolton-Smith,C.andM.Woodward.1994.Coronaryheartdisease:PrevalenceanddietarysugarsinScotland.Journal of Epidemiology and Community Health48:119–122.

Bray,G.A.andB.M.Popkin.1998.Dietaryfatintakedoesaffectobesity.American Journal of Clinical Nutrition68:1157–1173.

Bray,G.A.,S.Paeratakul,andB.M.Popkin.2004.Dietaryfatandobesity:Areviewofani-mal,clinicalandepidemiologicalstudies.Physiology and Behavior83:549–555.

CalorieControlCouncil.2006.TrendsandStatistics.www.caloriecontrol.org/lcchart.html.Charlton,O.andM.K.Sawyer-Morse.1996.Effectoffatreplacementonsensoryattributesof

chocolatechipcookies.Journal of the American Dietetic Association96:1288-1290.Colditz,G.A,W.C.Willett,M.J.Stampfer,S.J.London,M.R.Segal,andF.E.Speizer.1990.

Patternsofweightchangeandtheirrelationtodietinacohortofhealthywomen.Amer-ican Journal of Clinical Nutrition51:1100–1105.

Conforti,F.D.,S.A.Charles,andS.E.Duncan.1997.Evaluationofacarbohydrate-basedfatreplacerinafat-reducedbakingpowderbiscuit.Journal of Food Quality20:247–256.

Devereux, H.M., G.P. Jones, L. McCormack, and W.C. Hunter. 2003. Consumer accept-abilityoflowfatfoodscontaininginulinandoligofructose.Journal of Food Science68:1850–1854.

Drewnowski, A., C.L. Kurth, and J.E. Rahaim. 1991. Taste preferences in human obe-sity: Environmental and familial factors. American Journal of Clinical Nutrition54:635–641.

Esteller, M.S., A.C.O. Lima, and S.C.S. Lannes. 2006. Color measurement in hamburgerbunswithfatandsugarreplacers.LWT-Food Science and Technology39:184–187.

Feskens,E.J.andD.Kromhout.1990.Habitualdietaryintakeandglucosetoleranceineugly-cemicmen:TheZutphenStudy.International Journal of Epidemiology 19:953–959.

Frayn,K.N.andS.M.Kingman.1995.Dietarysugarsandlipidmetabolisminhumans.Amer-ican Journal of Clinical Nutrition62(suppl):250S–261S.

Freeman, T.M. 1989. Sweeting cakes and cake mixes with alitame. Cereal Foods World34:1013–1015.

Frye,A.M.andC.S.Setser.1992.Optimizingtextureofreduced-calorieyellowlayercakes.Cereal Chemistry69:338–343.

Frye,A.M.andC.S.Setser.1993.Bulkingagentsandfatsubstitutes.InLow-Calorie Foods Handbook,Ed.A.M.Altschul,MarcelDekker,NewYork.

Garcia-Palmieri,M.R.,P.Sorlie,J.Tillotson,R.Costas,Jr.,E.Cordero,andM.Rodríguez.1980.Relationshipofdietaryintaketosubsequentcoronaryheartdiseaseincidence:The Puerto Rico Heart Health Program. American Journal of Clinical Nutrition33:1818–1827.

Giese,J.H.1993.Alternativesweetenersandbulkingagents:Anoverviewoftheirproperties,function,andregulatorystatus.Food Technology47:114–126.

52748.indb 270 2/6/08 2:27:58 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 285: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

Glueck,C.J.,R.D.Streicher,E.K.Illig,andK.D.Weber.1994.Dietaryfatsubstitutes.Nutri-tion Research14:1605–1619.

Guinard,J.,H.Smiciklas-Wright,C.Marty,R.A.Sabha,I.Soucy,S.Taylor-Davis,andC.Wright.1996.Acceptabilityoffat-modifiedfoodsinapopulationofolderadults:Con-trastbetween sensorypreferenceandpurchase intent.Food Quality and Preference7:21–78.

Hanger,L.Y.,A.Lotz,andS.Lepeniotis.1996.Descriptivesprofilesofselectedhighintensitysweeteners(HIS),hisblendsandsucrose.Journal of Food Science61:456–459.

Hicsasmaz,Z.,Y.Yazgan,F.Bozoglu,andZ.Katnas.2003.Effectofpolidextrosa-substitu-tiononthecellstructureofthehigh-ratiocakesystem.LWT-Food Science and Tech-nology36:441–450.

Hill,J.O.andA.M.Prentice.1995.Sugarandbodyweightregulation.American Journal of Clinical Nutrition62(Suppl.1):264S–273S.

Howard, B.V., and J. Wylie-Rosett. 2002. Sugar and cardiovascular disease. Circulation 106:523.

Ikawa,Y.1998.Effectsofsucrosereplacementonbakingprocessofspongecakes.Journal of the Japanese Society for Food Science and Technology45:357–363.

Inglett,G.E.,K.Warner,andR.K.Newman.1994.SensoryandnutritionalevaluationsofOatrim.Cereal Foods World39:755–527.

Kaack,K.andL.Pedersen.2005.Lowenergychocolatecakewithpotatopulpandyellowpeahulls.European Food Research and Technology221:367–375.

Kamel,B.S.andV.F.Rasper.1988.Effectsofemulsifiers,sorbitol,polidextrose,andcrys-tallinecelluloseon the textureof reduced-caloriecakes.Journal of Texture Studies19:307–320.

Katan,M.B.,P.L.Zock,andR.P.Mensink.1995.Trans-fatty-acidsandtheireffectsonlipo-proteinsinhumans.Annual Review of Nutrition15:473–493.

Kaur,A.,G.Singh,andH.Kaur.2000.Studiesonuseofemulsifiersandhydrocolloidsasfat replacers in baked products. Journal of Food Science and Technology–Mysore37:250–255.

Khalil,A.H.1998.Theinfluenceofcarbohydrate-basedreplacerswithandwithoutemulsi-fiersonthequalitycharacteristicsof lowfatcake.Plant Foods for Human Nutrition52:299–313.

Khosla,P.andK.Sundram.1996.Effectsofdietaryfattyacidcompositiononplasmacholes-terol.Progress in Lipid Research35:93–132.

Kim,H.Y.L.,H.W.Yeom,H.S.Lim,andS.T.Lim.2001.Replacementofshorteninginyellowlayercakesbycorndextrins.Cereal Chemistry78:267–271.

Klug,C.,G.W.V.Lipinski,andD.Bottger.1992.Bakingstabilityofacesulfame-K.Zeitschrift fur Lebensmittel-Untersuchung und-Forschung194:476–478.

Kocer,D.,Z.Hicsasmaz,A.Bayindirli,andS.Katnas.2007.Bubbleandporeformationofthehigh-ratiocakeformulationwithpolydextroseasasugar-andfat-replacer.Journal of Food Engineering78:953–964.

Kritchevsky, D. 2000. Overview: Dietary fat and atherosclerosis. Asia Pacific Journal of Clinical Nutrition9:141–145.

Lakshminarayan,S.M.,V.Rathinam,andL.KrishnaRau.2006.Effectofmaltodextrinandemulsifiersontheviscosityofcakebatterandonthequalityofcakes.Journal of the Science of Food and Agriculture86:706–712.

Laneuville,S.I.,P.Paquin,andS.L.Turgeon.2005.Formulaoptimizationofalow-fatfoodsystemcontainingwheyproteinisolate-xanthangumcomplexesasfatreplacer.Jour-nal of Food Science 70:S513–S519.

Lee, S. and G.E. Inglett. 2006. Rheological and physical evaluation of jet-cooked oatbran in lowcaloriecookies. International Journal of Food Science and Technology41:553–559.

52748.indb 271 2/6/08 2:27:59 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 286: Food Engineering Aspects of Baking Sweet Goods

Food Engineering Aspects of Baking Sweet Goods

Lichtenstein,A.H.2000.Transfattyacidsandcardiovasculardiseaserisk.Current Opinion in Lipidology11:37–42.

Lim,H.,C.S.Setser,andS.S.Kim.1989.Sensorystudiesofhighpotencymultiplesweetenersystemsforshortbreadcookieswithandwithoutpolidextrose.Journal of Food Science54:625–628.

Liu,S.,W.C.Willett,M.J.Stampfer,F.B.Hu,M.Franz,L.Sampson,C.H.Hennekens,andJ.E.Manson.2000.Aprospectivestudyofdietaryglycemicload,carbohydrateintake,andriskofcoronaryheartdiseaseinUSwomen.American Journal of Clinical Nutri-tion71:1455–1461.

Lucca,P.A.andB.J.Tepper.1994.Fatreplacersandthefunctionalityoffatinfoods.Trends in Food Science and Technology5:9-12.

Makinen,K.K.,andP.Isokangas.1988.Relationshipbetweencarbohydratesweetenersandoraldiseases.Progress in Food and Nutrition Science 12:73–109.

Marshall,J.A.,S.Hoag,S.Shetterly,andR.F.Hamman.1994.Dietaryfatpredictsconver-sionfromimpairedglucosetolerancetoNIDDM:TheSanLuisValleyDiabetesStudy.Diabetes Care17:50–56.

Montijano, H.,F.A. Tomas-Barberan, andF. Borrego. 1998. Technological properties andregulatorystatusofhigh intensitysweeteners in theEuropeanUnion.Food Science and Technology International4:5–16.

Newsome,R.1993.Sugarsubstitutes.InLow-Calorie Foods Handbook,Ed.A.M.Altschul.MarcelDekker,NewYork.

Ngo,W.H.andM.V.Taranto.1986.Effectsofsucroselevelontherheologicalpropertiesofcakebatters.Cereal Foods World31:317–322.

Ochi,T.,K.Tsuchiya,Y.Ohtsuka,M.Aoyama,T.Maruyama,andI.Niiya.1991.Effectsofsweeteneronfatstabilityofcookies.Journal of the Japanese Society for Food Science and Technology38:910–914.

Odegaard,A.O. andM.A.Pereira. 2006.Trans fatty acids, insulin resistance, and type2diabetes.Nutrition Reviews64:364–372.

Olinger,P.M.andV.S.Velasco.1996.Opportunitiesandadvantagesofsugarreplacement.Cereal Foods World41:110–117.

Pateras,I.M.C.,K.F.Howells,andA.J.Rosenthal.1994.Hot-stagemicroscopyofcakebat-terbubblesduringsimulatedbaking:Sucrosereplacementbypolidextrosa.Journal of Food Science59:168–170,178.

Penna,E.W.,P.Avendaño,D.Soto,andA.Bunger.2003.Chemicalandsensorycharacteriza-tionofcakesenrichedwithdietaryfiberandmicronutrientsfortheelderly.Archivos Latinoamericanos de Nutrición53:74–83.

Perry, J.A., R.B. Swanson, B.G. Lyon, and E.M. Savage. 2003. Instrumental and sensoryassessmentofoatmealandchocolatechipcookiesmodifiedwithsugarandfatreplac-ers.Cereal Chemistry80:45–51.

Peterson,S.,M.Sigman-Grant,B.Eissenstat,andP.Kris-Etherton.1999.Impactofadoptinglower-fatfoodchoicesonenergyandnutrientintakesofAmericanadults.Journal of the American Dietetic Association99:177–183.

Pyler,E.J.1988.Baking Science and Technology.Sosland,Merriam,KS.Ponte,Jr.,J.G.1990.Sugarinbakeryfoods.InSugar: A User’s Guide to Sucrose,Ed.N.L.

PenningtonandC.W.Baker.VanNostrandReinhold,NewYork.Rapaille,A.,M.Gonze,andF.VanderSchueren.1995.Formulatingsugarfreechocolate

productswithmaltitol.Food Technology49:51–54.Romanchik-Cerpovicz,J.E.,R.W.Tilmon,andK.A.Baldree.2002.Moistureretentionand

consumeracceptabilityofchocolatebarcookiespreparedwithokragumasafatingre-dientsubstitute.Journal of the American Dietetic Association102:1301–1303.

52748.indb 272 2/6/08 2:27:59 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 287: Food Engineering Aspects of Baking Sweet Goods

Low-Sugar and Low-Fat Sweet Goods

Ronda,F.,M.Gomez,C.A.Blanco,andP.A.Caballero.2005.Effectsofpolyolsandnondi-gestibleoligosaccharidesonthequalityofsugar-freespongecakes.Food Chemistry90:549–555.

Rosenthal,A.J.1995.Applicationofagedegginenablingincreasedsubstitutionofsucrosebylitesse(polidextrose)inhigh-ratiocakes.Journal of the Science of Food and Agri-culture68:127–131.

Rothstein,W.G.2006.Dietaryfat,coronaryheartdisease,andcancer:Ahistoricalreview.Preventive Medicine43:356–360.

Salmeron,J.,J.E.Manson,M.J.Stampfer,G.A.Colditz,A.L.Wing,andW.C.Willett.1997a.Dietaryfiber, glycemic load, and riskof non-insulin-dependent diabetesmellitus inwomen.JAMA-Journal of the American Medical Association 277:472–477.

Salmeron, J., A. Ascherio, E.B. Rimm, G.A. Colditz, D. Spiegelman, D.J. Jenkins, M.J.Stampfer,A.L.Wing,andW.C.Willett.1997b.Dietaryfiber,glycemicload,andriskofNIDDMinmen.Diabetes Care20:545–550.

Sanchez,C.,C.F.Klopfenstein,andC.E.Walker.1995.Useofcarbohydrate-basedfatsub-stitutesandemulsifyingagents inreduced-fatshortbreadcookies.Cereal Chemistry72:25–29.

Shinsato,E.1996.Confectioneryingredientupdate.Cereal Foods World41:372–375.Shukla, T.P. 1995. Problems in fat-free and sugarless baking. Cereal Foods World

40:159–160.Sigman-Grant,M.1997.Canyouhaveyourlow-fatcakeandeatittoo?Theroleoffat-modi-

fiedproducts.Journal of the American Dietetic Association 97(Suppl.):S76–S81.Sluimer, P. 2005. Principles of breadmaking: Functionality of raw materials and process

steps.AmericanAssociationofCerealChemistry,St.Paul,MN.Sreebny,L.M.1982.Sugarandhumandentalcaries.World Review of Nutrition and Dietetics

40:19–65.Stauffer,C.E.1996.Fats & Oils.EaganPress,St.Paul,MN.Sudha,M.L.,A.K.Srivastava,R.Vetrimani,andK.Leelavathi.2007.Fatreplacementinsoft

doughbiscuits:Itsimplicationsondoughrheologyandbiscuitquality.Journal of Food Engineering80:922–930.

Swanson,R.B.,J.M.Perry,andL.A.Carden.2002.Acceptabilityofreduced-fatbrowniesbyschool-agedchildren.Journal of the American Dietetic Association102:856–859.

Tuorila,H.,F.M.Kramer,andA.V.Cardello.1997.Roleofattitudes,dietaryrestraint,andfatavoidancestrategiesinreportedconsumptionofselectedfat-freefoods.Food Quality and Preference8:119–123.

Warner,K.andG.E.Inglett.1997.FlavorandtexturecharacteristicsoffoodscontainingZ-Trimcornandoatfibersasfatandflourreplacers.Cereal Foods World42:821–825.

Wolraich,M.,R.Milich,P.Stumbo,andF.Schultz.1985.Effectsofsucroseingestiononthebehaviorofhyperactiveboys.Journal of Pediatrics106:675–682.

Yudkin,J.1978.Dietaryfactorsinatherosclerosis:Sucrose.Lipids13:370–372.Yudkin, J. andE.Evans. 1972.Low-carbohydrate diet in treatment of chronicdyspepsia.

Proceedings of the Nutrition Society31:A12.Zoulias,E.I.,V.Oreopoulou,andE.Kounalaki.2002a.Effectoffatandsugarreplacement

oncookieproperties.Journal of the Science of Food and Agriculture82:1637–1644.Zoulias, E.I., V. Oreopoulou, and C. Tzia. 2002b. Textural properties of low-fat cookies

containingcarbohydrate-orprotein-basedfatreplacers.Journal of Food Engineering55:337–342.

Zoulias,E.I.,S.Piknis,andV.Oreopoulou.2000a.Effectofsugarreplacementbypolyolsandacesulfame-Konpropertiesoflow-fatcookies.Journal of the Science of Food and Agriculture80:2049–2056.

Zoulias,E.I.,V.Oreopoulou,andC.Tzia.2000b.Effectof fatmimeticsonphysical, tex-tural and sensory properties of cookies. International Journal of Food Properties3:385–397.

52748.indb 273 2/6/08 2:27:59 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 288: Food Engineering Aspects of Baking Sweet Goods

52748.indb 274 2/6/08 2:27:59 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 289: Food Engineering Aspects of Baking Sweet Goods

IndexaAbboud,A.M.,19Acesulfame-K,259Acids,leavening,56-60,63Acrylamide,69-72Additives,functionsof,40-43Advantium®,235Agitatormixers,162-163Agyare,K.K.,125,136Alava,J.M.,107Alkalinewaterretentioncapacity(AWRC),11-12Alpha-linoleicacid,106Alveographs,13-14,122-123AmadoriandHeyn’sproducts,68Amaranthseed,198AmericanAssociationofCerealChemists

International(AACCI),4Ammoniumbicarbonate,37,52Amylodextrin,267Amylograph,11Antioxidantsformation,67-68Aromacompounds,formationof,65-67Ascorbicacid,143Ashcontentofwheatflour,10Aspartame,259Atherosclerosisandfats,250

BBaik,O.D.,100,174,193,198,205,206,207Baking

cake,156-157combinedtransportphenomenaduring,

180-184conductiveheattransferduring,175-176,177convectiveheattransferduring,176cookie,165-170crumbandcrustdevelopment,185-186evaporationonthesurfaceandmass

convectionduring,179heattransfermechanismsduring,174-178internalevaporationandcondensation,

179-180injetimpingementovens,220-223,232-235massdiffusionduring,178-179masstransfermechanismsduring,178-180microwave,223-231,232-235ovens,168-170radiativeheattransferduring,176,178soda,37,52-54volumeexpansionduring,184-185See alsoBakingtechnology

Bakingpowders,38,54-56doughandbatterreactionrates,60-61leaveningacids,56-60nutritionalvaluesof,61single-actinganddouble-acting,56

Bakingtechnologyjetimpingementoven,216-223research,215-216

Baltsavias,A.,131Bar-machinecookies,161Batter,cake

depositors,155-156emulsifiersin,107-110factorsaffectingrheologyof,102-116fatandfatreplacerin,104-107flourin,102-104hydrocolloidsin,110-113ingredients,91-94mixing,150-155reactionrate,60-61stabilityoffoamsandemulsionsin,87-89sugarin,110viscosity,62-63,95,99-100,106-107,108-

109,116See alsoCakes

Beta-glucan,106,268Bettge,A.D.,14,19Biscuitsandbiscuitdough

acrylmaidein,69fatin,36,135leaveningagentsin,38nonfatdrymilkin,40proteinsin,143,144saltin,39sugarin,35,128-129,130waterin,39

Blackbodies,178Bloodglucoseandsugar,248Bray,G.A.,250Breadandhydroxymethylfurfuralformation,

72-73,74-75Breakflour,4

yield,8Buhari,A.B.,195Bulkingagents,44,259-261

CCakes

baking,156-157cooling,157drymixes,91eggsin,36-37,43,93

52748.indb 275 2/6/08 2:28:01 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 290: Food Engineering Aspects of Baking Sweet Goods

Index

emulsifiersinproductionof,90-91enzymesin,94-96,97fat-free,267-268fatin,35,81-82,92-93,255-256flourin,150-151flourparticlesizein,20foam,152,253high-ratio,16,84,95-96,97,112-113,251hydrocolloidsin,43leaveningagentsin,38lipidsin,21,94-96microwave-baked,227-228,229-231nonfatdrymilkin,40packagingandwrappingequipment,157pentosansin,93-94productiontechnology,149-157proteinsin,20-21,93saltin,39shorteningin,92-93,152,253,255-256stabilityoffoamsandemulsionsin,87-89starchin,94substitutionstrategiesin,265-268sugarin,34,152,252-253sugarsubstitutionin,265-266surface-activematerialsin,94-96,97surfactantsandemulsifiersin,41volumeexpansionof,184-185waterin,39water-solubleproteinsin,93wheatflourin,93-94See alsoBatter,cake

Calciumacidpyrophosphate,60Calorimeters,differentialscanning,194Campana,L.E.,227Canolaoil,136Cappedcolumntestdevice,195Caprenin,264Carbohydrate-basedfatmimetics,262-264Carbondioxide

chemicalleaveningand,51-54cookiebakingand,167doughandbatterreactionratesand,60-61qualityofsoftwheatproductsand,62-63

Carbonyls,66-67Cardiovasculardiseaseandsugar,249Carmelization,33,251-252,253Carrageenan,262-264Cartoningmachines,172Cassonmodel,100-101,111Celik,I.,207Celluloseandgums,262-264Chemicalleavening,50-54

blends,61-62Chemistry,food,49-50Chlorination,flour,22-24,103-104Cholesterol

fatsand,250

sugarand,249Christenson,M.E.,198,204,205,206Classification,wheat,2-3Clements,R.I.,19Cole,E.W.,19Cole,M.S.,40Color

Maillardreactionformationof,65wheat,3

Combinedtransportphenomenaduringbaking,180-184

Combustionmethod,10Condensationandinternalevaporation,179-180Conductiveheattransfer,175-176,177Conductivity,thermal,194-196,199-204,205-

206,213Consumerconsumptionofsweetgoods,246-247Continuousmixers,163Convectiveheattransfer,176Convectoradiantovens,168-169Cookiesandcookiedough

acrylamidein,71-72baking,165-170blendsofchemicalleaveningagentsin,61-62compression,123cooling,170dynamictest,124-126eggsin,37empiricalmeasurementmethods,122-123extensionalviscosity,126-127fatandfatreplacersin,35-36,132-139,253-

254,256fat-free,268fundamentalmeasurementmethods,123-127ingredients,127-143,144interrelationshipbetweenrheological

propertiesofdoughandcookiequality,145

lipidsin,19-20-makingandmixers,159-163microwave-baked,231modifiedpenetrometer,123-124nonfatdrymilkin,40packagingprocessandequipment,170-172penetration,123pentosansin,19processingandshaping,163-165production,159-172proteinsin,14-15,17-18,139-143,144rheologicalmethods,122-127shorteningin,167spread,18starchin,18-19,168substitutionstrategiesin,265-268sugarandsugarreplacersin,34,128-132,

168,253-254sugarsubstitutionin,266-267

52748.indb 276 2/6/08 2:28:02 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 291: Food Engineering Aspects of Baking Sweet Goods

Index

testingequipment,12,14,122-123textureprofileanalysis,123transienttests,124waterin,127-128,167weakerproteinsin,14-15

Coolingcake,157cookies,170

Copelanddepositors,155-156Cornillon,P.,225Crackers,16,174Crank,J.,198Creamoftartar,57Creep,124,142Crestamachines,153,155Crumbandcrustdevelopment,185-186Cyclamate,258-259

dDamage,sprout,10-11Damagedstarch,11Datacompilationandpredictionmodels

specificheat,198-205thermalconductivity,199-204,205-206

Davies,C.G.A.,106Density,197-198,199-204,206-207Dentalcaries,247-249Depositors,155-156DeVries,U.,179Dextrins,262Diabetesandsugar,248Dicalciumphosphatedihydrate,59Dickerson,R.W.,196Dielectricproperties,225,226Dietaryfiber,106Differentialscanningcalorimeters(DSC),194,

195,208Diffusion,mass,178-179Diffusivity

moisture,198,199-204,207thermal,196-197,199-204,206

Diglycerides,83-84,95Dimagnesiumphosphate,60Direct-gas-firedovens,168Dispersionofshortening,90DisproportionationandOstwaldripening,89Dithioerythritol(DTE),143Doe,C.A.,24Donelson,J.R.,19,20,22,103Dosingeffectonrheology,113-114Double-actingbakingpowders,56Doughreactionrate,60-61Doughrheology

Alveographand,13-14,122-123extensographand,122-123MixographandFarinographand,14,122-123

Doughs

biscuit(SeeBiscuitsandbiscuitdough)cookie(SeeCookiesandcookiedough)yeasted

eggsin,36leaveningagentsin,38nonfatdrymilkin,40saltin,39sugarin,33waterin,38-39

Dumppackagingofcookies,171-172Dynamictests,124-126

eEdoura-Gaena,R.-B.,207Eggs

incakes,36-37,43,93incookies,37emulsifiersasreplacementfor,90-91functionsof,36-37rheologyeffectof,113inyeasteddoughs,36

Electric-firedovens,168Emulsifiedbakeryfat,134-135Emulsifiers,40-41

applicationincakeproduction,90-91dispersionofshorteningusing,90disproportionationandOstwaldripening,89emulsionformation,82-83asfatextenders,265filmrupture,89filmthinning,89hydrophilic-lipophilicbalanceand,85-87mixingtimereductionusing,90proteinmaterialas,85reducingfatandeggcontentusing,90-91rheologyeffectof,107-110solidparticlestabilization,88stability,87-89surfacechargesin,88-89typesandforms,83-85

Enzymes,42incakes,94-96,97surface-activematerialsgeneratedusing,

94-96,97Erythritol,261Evans,E.,249Evaporation

condensationandinternal,179-180onthesurfaceandmassconvection,180

Experimentalmilling,7Extensionalviscosity,126-127Extensographs,122-123

fFahloul,D.,185FallingNumberSystem,10

52748.indb 277 2/6/08 2:28:03 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 292: Food Engineering Aspects of Baking Sweet Goods

Index

Farinographs,14,122-123Fats

-basedreplacers,264-265inbiscuits,36,135incakes,35,81-82,92-93,255-256carbohydrate-basedfatmimetics,262-264incookies,35-36,133,253-254,256functionsof,35-36,254-256obesityand,249-250reduction,44,90-91rheologyeffectof,104-107substitutionstrategies,262-265,267-268

Fermentationprocess,252Fiber,dietary,106Fick’slaw,178,183Fillingsandicings,254,256Film,emulsion

rupture,89thinning,89

Flavor,formationof,65-67,186Flour

alkalinewaterretentioncapacityof,11-12ashcontent,10break,4,8incakes,93-94,150-151chlorination,22-24,103-104componenteffectsoncookies,17-20damagedstarch,11doughrheology,13-14heat-treated,104milling,3-5moisture,10particlesize,20polyphenoloxidasein,11proteincontent,5,14-17,139-143,144qualityevaluationof,7,10-12rheologyeffectof,102-104softwheat,3,5-7solventretentioncapacityof,12sproutdamage,10-11

Foamcakemixing,152,253Foodchemistry,49-50Fructose,129,257-258,261Frye,A.M.,265

gGaines,C.S.,12,15,17,19,20,22,103,142-143Galatea,139-141Galdeano,M.C.,192,207Gallagher,E.,44Gasesinleavening,51Gekas,V.,198Gelatinization,6,34,96,168

microwavebakingand,228-229sugarfunctionin,252-253

Gelroth,J.,16Geometrycuttingtechnique,198

Gibbs-Marangonieffect,89Glucono-d-lactone,60Gluten

incookies,167kneadinganddevelopmentof,252rheologyand,139-143,144vitalwheat,42

Glycerolmonosterate(GMS),84-85,86,107-108,267

Goebel,N.K.,228Gomez,M.,43,207Gravity,specific,197Greer,E.N.,6Grigelmo-Miguel,N.,106Grossmann,M.V.E.,192,207Growth,wheat,3Guardedhotplatemethod,194-195Gujral,H.S.,109Gumsandcellulose,262-264Guy,R.C.E.,109

hHalogenlampheating,235,237-238Harper,J.C.,176Hayakawa,K.I.,198Hazen,S.P.,9,14Heat,specific,193-194,198-205Heattransfer

andcombinedtransportphenomenaduringbaking,180-184

conductive,175-176,177halogen-lamp,235,237-238impactduringbakingonproduct

characteristics,184-186jetimpingementoventechnology,216-223mechanismsduringbaking,174-178modelingandoptimizationof,186-188,192radiative,176,178

Heat-treatedflour,104Hicsasmaz,Z.,266High-ratiocakes,16,84,95-96,97,112-113,251Hodge,J.E.,63Horizontalmixers,153Hoseney,R.C.,18-19,34,111Hou,G.H.,18,21Huebner,F.R.,18Hwang,M.P.,198Hybridtechnologies,169

hybridjetimpingementandmicrowaveoven,232-235,236

microwave-infrared,235-238Hydrocolloids,42-43,116Hydrophilic-lipophilicbalance(HLB),85-87,

108Hydroxymethylfurfural(HMF),72-73,74-75Hyperactivityandsugar,249

52748.indb 278 2/6/08 2:28:03 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 293: Food Engineering Aspects of Baking Sweet Goods

Index

IIcingsandfillings,254Impingingjets.SeeJetimpingementoven

technologyIndirectlyfiredforcedconvectionovens,169Infraredradiation,235-238Inglett,G.E.,137Ingredientsofsweetgoods

additives,40-43eggs,36-37fat,35-36leaveningagents,37-38nonfatdrymilk,40rheologyand,102-113,127-143,144salt,39studiesoneffectsof,43-44sugar,33-35,44,128-132water,38-39,127-128

InstronUniversalTestingMachine,123Intensesweeteners,258-259Interfacialrheology,88Interfacialtension,87-88Inulin,267,268Isomalt,260-261

jJanestad,H.,178Jetimpingementoventechnology,216-223

hybrid,232-235,236Johnson,A.C.,22-23Jyotsna,R.,41

KKennedy,S.C.,194,198,206Kerneltexture,9Keskin,S.O.,237Khouryieh,H.A.,106Kim,C.S.,41,106,112Kim,Y.R.,225Kissell,L.T.,19,22-23Kjeldahlmethod,10Knives,stripping,169-170Kocer,D.,44,266Kulacki,F.A.,194,198,206Kulp,K.,22,34

lLactitol,260Lamberg,I.,198Large-scalecakeproduction,157Larrea,M.A.,207L-cysteinhydrochloride(LCS),143Leaveningacids,56-60

blended,61-62Leaveningagents

bakingpowders,38,54-63chemical,50-54,61-62functionsof,37-38gasesactingin,51yeast,50-51

Lecigran,108Lee,L.,16Lee,S.,101,137Lewandowicz,G.,229Lignans,106Lind,I.,193Lipids

-basedemulsifiers,85incakes,21,94-96incookies,19-20flourchlorinationand,22-23insoftwheatflour,7

Locustbean,262-264

MMaache-Rezzoug,Z.,124Maillard,L.C.,63Maillardreaction,33,63-65,186,251-252,253

acrylamideformation,69-72antioxidantsformation,67-68colorformation,65flavorandaromacompoundsformation,

65-67,186hydroxymethylfurfuralformation,72-73,

74-75lossofnutritionalquality,68-69toxiccompoundsformation,69-73,74-75

Maltitol,260Maltodextrins,262,267Manohar,S.,41,124,128,135,143,145Marcotte,M.,198,207Margarine,134-135Marketingofsweetgoods,246-247Masoodi,F.A.,106Massconvection,180Massdiffusion,178-179Masstransfer

impactonproductcharacteristics,184-186mechanismsduringbaking,178-180modelingandoptimizationof,186-188

Matsuki,J.,21Measurement,thermophysicalproperties.See

ThermophysicalpropertiesMegahey,E.K.,231Meredith,R.J.,224Metaxas,A.C.,224Microparticulatedproteins,264Microwavebakingtechnologies,223-231

hybrid,232-235,236-infraredcombinationovens,235-238

Milk,nonfatdry,40Miller,R.A.,18-19,111

52748.indb 279 2/6/08 2:28:03 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 294: Food Engineering Aspects of Baking Sweet Goods

0 Index

Milling,flour,3-5experimental,8

Mixingcakebatter,150-155cookiedough,162-163anddosingeffectsonrheology,113-114machines,153-155methodofmeasuringspecificheat,193-194timereduction,90,131-132

Mixographs,12,14,122-123,133Mizukoshi,M.,34,115-116Modelingandoptimizationofheatandmass

transfer,186-188,192Modifiedpenetrometers,123-124Modifiedstarches,262Mohsenin,N.N.,193Moisture

diffusivity,198,199-204,207flour,10lossduringbaking,185-186lossrateinjetimpingementovens,220-221

Monocalciumphosphate,58Monodomixcontinuousaerators,155Monoelectronicdepositors,156Monoglycerides,83-84

surface-active,94-96,97Monomultipurposemachines,153,155Morr,C.V.,207Morris,C.F.,19Mortonpressurewhisks,153-154Motwani,T.,225Murakami,E.G.,193

nNemeth,L.J.,14N-ethylmaleimide(NEMI),143Neural-network-basedequationsofthermal

conductivity,213Nix,G.H.,197Nonemulsifiedhydrogenatedfat,134-135Nonfatdrymilk,40Noodles,16-17Nutritionandnutritionalproblems

ofbakingpowders,61ofconsumptionoffatsandsugars,247-250offats,249-250,254-256functionsofsugarsandfatsinsweetgoods

and,251-256Maillardreactioneffecton,68-69substitutionstrategiesfor,257-268ofsugars,247-249,251-254

oOakescontinuousmixers,154,163Oatbran,106Oatrim,107

Obesityfatand,249-250sugarand,249

Ohlsson,T.,193Okos,M.R.,193Olestra,264-265Olewnik,M.C.,34Oligofructose,267Oligosaccharides,261Omega-3-fattyacids,106Osborne,T.B.,5Ostwaldripening,89Ovens,baking,168-170

jetimpingementtechnology,216-223microwave,223-231microwave-infraredcombination,235-238modelingofheatandmasstransferin,

187-188Oxidizingagents,40Ozmutlu,O.,230

PPackagingandwrappingequipment

cake,157cookie,170-172

Palav,T.,229Particlesize,flour,20Pasting,6Payne,P.I.,18Pectin,262-264Pedersen,L.,123,124,125-126,139,141-142,

145Penetrometers,modified,123-124Pentosans

incakes,93-94incookies,19insoftwheatflour,7

Polydextrose,44,261,267Polyglycerolesters(PGE),84Polyols,259-261Polyphenoloxidase,11Popkin,B.M.,250Potassiumbicarbonate,54Potassiumbromate,143Potassiumiodate,142-143Preston,K.R.,39Probemethodofmeasuringthermaldiffusivity,

197Processingandshaping,cookie,163-165Production

cake,149-157cookie,159-172jetimpingementoven,216-223wheat,2-3

Propyleneglycolmonostearate(PGMS),84Proteins

-basedfatmimetics,264

52748.indb 280 2/6/08 2:28:04 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 295: Food Engineering Aspects of Baking Sweet Goods

Index

inbiscuits,143,144incakes,20-21,93incookies,14-15,17-18,139-143,144asemulsifiers,85flourchlorinationand,23-24microparticulated,264productsrequiringstronger,16-17productsrequiringweaker,14-16softwheatflour,5water-soluble,93wheatflour,10whey,264

Purawave®,238Pycnometers,197

rRadiativeheattransfer,176,178Raftiline,268Rahman,M.S.,196Ranhotra,G.,16Rao,H.,41,124,128,135,145Rapeseed,198Rapidheattransfertechnology,216RapidViscoAnalyzer,11Rask,C.,193Reactionrates,60-61Reciprocatingagitatormixers,163Reducingagents,40Reductionsystem,milling,4Reineccius,G.,227Replacers,fat,262-265Rheology

Alveographand,13-14ofcakebatters,102-116cookiedoughingredientsand,127-143,144effectofingredientson,102-113eggeffecton,113empiricalmeasurement,122-123emulsifierseffecton,107-110fatandfatreplacereffecton,104-107,

132-139floureffecton,102-104fundamentalmeasurementmethods,123-127hydrocolloidseffecton,110-113,116interfacial,88interrelationshipbetweenqualityofcookies

anddough,145methods,100-101,122-127mixinganddosingeffectson,113-114MixographandFarinograph,14,122-123sugareffecton,110,116,128-132temperatureeffecton,115-116textureprofileanalysis,123watereffecton,127-128

Rice,111Ritmo,139-141Rogers,D.E.,227

Ronda,F.,44,192,207,265Rosenthal,A.J.,266Rotary-moldeddoughs,160-161Rothstein,W.G.,250Rubio,A.R.I.,205Russo,J.V.,24

sSablani,S.S.,206Saccharin,258Sahi,S.S.,107,109Sahin,S.,122,123Sakonidou,E.P.,228Salt,functionsof,39Sanchez,C.,268Seetharaman,K.,229Seguchi,M.,21,23Setser,C.S.,265Sevimli,M.,237Seyhun,N.,231Shaping,cookie,163-165Shearer,A.E.H.,106Shelke,K.,42,102,103Shepherd,I.S.,115Shortening

incakes,92-93,152,253incookies,167creamingmethod,253dispersion,90rheologyeffectsof,107,136-139

Simplesse®,264,268Singh,R.P.,195Single-actingbakingpowders,56SingleKernalCharacterizationSystem(SKCS),9Sinha,N.K.,23Small-scalecakeproduction,156Sodiumacidpyrophosphate,58-59Sodiumaluminumphosphate,59Sodiumaluminumsulfate,58Sodiumbicarbonate,37,52-54Sodiumcarbonate,54Sodiummetabisulfite(SMS),141-142Sodiumsteroyllactate(SSL),108Softwheatflour,3,5-7

incookiesandbiscuits,121-122doughrheology,13-14lipidsin,7pentosansin,7proteinsin,5,14-17starchin,5strongerproteinsand,16-17weakerproteinsand,14-16

Soliddisplacementmethod,197-198Solidparticlestabilizationofemulsions,88Sollars,W.F.,23Solventretentioncapacity(SRC),12Souza,E.,18

52748.indb 281 2/6/08 2:28:04 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 296: Food Engineering Aspects of Baking Sweet Goods

Index

Specificgravity,197Specificheat,193-194,198-205Specificvolume,199-204,206-207Spies,D.,34Spindlemixers,163Springwheat,3Sproutdamage,10-11Stability,emulsion,87-89Standing,C.N.,205Starch

incakes,94incookies,18-19,168damaged,11derivativesasfatreplacers,262flourchlorinationand,22hydrocolloidsand,42-43microwavebakingand,229insoftwheatflour,5-6

Steady-statetechniquesofmeasuringthermalconductivity,194-195

Steffe,J.F.,124Stephanmachines,153,155Steward,B.A.,6Strippingknives,169-170Strongerproteins,productsrequiring,16-17Substitutionstrategies

incakesandcookies,265-268fat,262-265,267-268sugar,257-268

Sucrose.SeeSugarSudha,M.L.,268Sugar

acrylamideformationand,71-72inbiscuits,35,128-129,130bloodglucoseand,248incakes,34,152,252-253cardiovasculardiseaseand,249incookies,34,128-132,168,253-254dentalcariesand,247-249diabetesand,248fructose,129,257-258,261functionsof,33-35,44,251-254hyperactivityand,249intensesweetenersasreplacementof,258-259microwavebakingand,230nutritionalproblemsofconsumptionof,

247-249obesityand,249replacers,257-258rheologyeffectof,110,116substitutionstrategies,257-268inyeasteddoughs,33,251-252

Sumnu,S.G.,122,123,207,225Sunfloweroil,134-135Surface

chargesinemulsions,88-89evaporationandmassconvection,180

Surface-activematerialsincakes,94-96,97Surfactants,40-41Sweat,V.E.,205,206Sweetgoods

additivesin,40-43consumerconsumptionof,246-247eggsin,36-37fatin,35-36,251-256functionsofsugarsandfatsin,251-256heattransferduringbaking,174-178impactofheatandmasstransferduring

bakingoncharacteristicsof,185-186ingredientsin,32-44,127-143,144leaveningagentsin,37-38marketingof,246-247masstransfermechanismsduringbaking,

178-180modelingandoptimizationofheatandmass

transferbakingof,186-188nonfatdrymilkin,40saltin,39sugarin,33-35,251-256tasteof,32-33varietiesof,2,32-33,173-174,192-193waterin,38-39

tTadano,T.,206Takeda,K.,21Tartaricacid,57-58Tasteofsweetgoods,32-33Temperature

effectonrheology,115-116history,196-197

Tempering,4Tension,interfacial,87-88Testweight,wheatgrain,8Texture

kernal,9profileanalysis,123wheat,3

Therdthai,N.,176,180Thermalconductivity,194-196,199-204,205-

206,213Thermaldiffusivity,196-197,199-204,206Thermophysicalproperties

datacompilationandpredictionmodels,198-207

density,197-198,199-204,206-207measurementtechniques,193-198moisturediffusivity,198,199-204,207specificheat,193-194,198-205theoreticalmodels,208thermalconductivity,194-196,199-204,

205-206,213thermaldiffusivity,196-197,199-204,206

Thorvaldsson,K.,178

52748.indb 282 2/6/08 2:28:05 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 297: Food Engineering Aspects of Baking Sweet Goods

Index

Tonellimixingsystem,154Tou,K.,206Toxiccompounds

acrylamide,69-72hydroxymethylfurfural,72-73,74-75

Transfattyacids,250Transienttests,124,195-196Triglycerides,249Triticum aestivum,2Tsen,C.C.,23,41Turabi,E.,111Tweedymixers,153,155

uUriyo,M.B.,14Usage,wheat,2-3

vVarietiesofsweetgoods,2,32-33,173-174,

192-193Varriano-Marston,E.,22Verticalmixers,153Vetter,J.L.,35Viscosity

batter,62-63,95,99-100,106-107,108-109,116

extensional,126-127fateffectson,137-138

Vitalwheatgluten,42Volatilesalt.SeeAmmoniumbicarbonateVolume

expansion,184-185specific,199-204,206-207

WWalker,C.E.,41,112Wang,M.,7Water

absorption,42incookies,127-128,167functionsof,38-39holdingcapacityofsugars,252

Watson,E.L.,176Weakerproteins,productsrequiring,14-16Wheat

color,3growth,3production,classification,andusage,2-3texture,3

Wheatflour.SeeFlourWheatgrain

breakflouryield,7experimentalmilling,8kerneltexture,9qualityevaluationof,7-9testweight,8

Wheyprotein,264Whorton,C.,227Winterwheat,3Wire-cutmachines,164-165Wolraich,M.,249Wrappingandpackagingequipment,cake,157

xXanthangum,111-112,238,262-264Xylitol,129,260-261

yYamamoto,H.,14,17Yamazaki,W.T.,11,19Yasukawa,T.,116Yeasteddoughs

eggsin,36functionsofyeastin,251-252leaveningagentsin,38nonfatdrymilkin,40saltin,39sugarin,33,251-252surfactantsandemulsifiersin,40-41waterin,38-39

Yeastleavening,50-51Yoell,R.W.,115Yudkin,J.,249

zZanoni,B.,178,181,183Zhou,L.,195Zoulias,E.I.,129,266,268Zylema,B.J.,228

52748.indb 283 2/6/08 2:28:05 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 298: Food Engineering Aspects of Baking Sweet Goods

52748.indb 284 2/6/08 2:28:05 PM

Copyright 2008 by Taylor and Francis Group, LLC

Page 299: Food Engineering Aspects of Baking Sweet Goods