flow reversal in a simple dynamical model of turbulence

27
Flow Reversal in a Simple Dynamical Model of Turbulence Kees Kuijpers, 0632305 Mariska van Rijsbergen, 0636290

Upload: tanner

Post on 22-Feb-2016

42 views

Category:

Documents


0 download

DESCRIPTION

Flow Reversal in a Simple Dynamical Model of Turbulence. Kees Kuijpers, 0632305 Mariska van Rijsbergen, 0636290. Content. Introduction Shell models Pitchfork bifurcation GOY model Conclusions and further research. Introduction. Focus of the article: Rayleigh- Benard convection - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: Flow Reversal in a Simple Dynamical Model of Turbulence

Flow Reversal in a Simple Dynamical Model of TurbulenceKees Kuijpers, 0632305Mariska van Rijsbergen, 0636290

Page 2: Flow Reversal in a Simple Dynamical Model of Turbulence

Content

• Introduction• Shell models• Pitchfork bifurcation• GOY model• Conclusions and further research

04/22/2023 2Flow Reversal in a Simple Dynamical Model of Turbulence

Page 3: Flow Reversal in a Simple Dynamical Model of Turbulence

Introduction

• Focus of the article: Rayleigh-Benard convection

• Research also useful for the magnetic polarity of the Earth

04/22/2023 3Flow Reversal in a Simple Dynamical Model of Turbulence

Page 4: Flow Reversal in a Simple Dynamical Model of Turbulence

Shell models

• Simple model of turbulence• Find a simplified version of the Navier-Stokes

equations• Shell models

04/22/2023 4Flow Reversal in a Simple Dynamical Model of Turbulence

Page 5: Flow Reversal in a Simple Dynamical Model of Turbulence

From Navier-Stokes to the GOY-model

The Navier-Stokes equation:

The Fourier transformed Navier-Stokes equation is

The GOY model is given by

2 pt

u u u u f

* * * * * * 21 2 1 1 1 2 1 2

nn n n n n n n n n n n n n n n

du i a k u u b k u u c k u u k u fdt

2 , , ,n m ij j jk u t ik P u t u t dt

p q k

k k p p p

04/22/2023 5Flow Reversal in a Simple Dynamical Model of Turbulence

Page 6: Flow Reversal in a Simple Dynamical Model of Turbulence

Conservative quantities (1)

• Conservation of these quantities require f=0 and ν=0.

• The GOY model reduces to:

• Theorem of Noether: For each symmetry there is a corresponding conservation law

* * * * * *1 2 1 1 1 2 1 2

nn n n n n n n n n n n n

du i a k u u b k u u c k u udt

04/22/2023 6Flow Reversal in a Simple Dynamical Model of Turbulence

Page 7: Flow Reversal in a Simple Dynamical Model of Turbulence

Conservative quantities (2)

• Conservation of energy

• Conservation of helicity

• Conservation of enstrophy

22

0

1 12 2

NFourier

nn

E v dx E u

22 2 2

0

NFourier

n nn

d x k u

2

0

' ' 1N

nn n

n

H d H k u

v ω x

04/22/2023 7Flow Reversal in a Simple Dynamical Model of Turbulence

Page 8: Flow Reversal in a Simple Dynamical Model of Turbulence

Conservation of energy

• The energy is given by:

• Conservation of energy requires:

• Taking a=1, and b=-eps then c=-(1+eps)

*2 * *

0 0 0

1 1 1 02 2 2

N N Nn n

n n n n nn n n

du dud dE u u u u udt dt dt dt

* * *1 2 1 2 1 2

0

02

N

n n n n n n n n n nn

iE k a b c u u u u u u

1 2 0n n na b c

2

0

12

N

nn

E u

04/22/2023 8Flow Reversal in a Simple Dynamical Model of Turbulence

Page 9: Flow Reversal in a Simple Dynamical Model of Turbulence

Conservation of enstrophy

• The enstrophy is given by:

• Conservation of enstrophy requires:

• Take bn=-eps=-5/4, and kn=2n k0 then the enstrophy is conserved

2 2 21 1 2 2 0n n n n n na k b k c k

*22 2 * 2 * 2

0 0 0

0N N N

n nn n n n n n n n n

n n n

du dud dk u k u u k u k udt dt dt dt

22

0

N

n nn

k u

04/22/2023 9Flow Reversal in a Simple Dynamical Model of Turbulence

Page 10: Flow Reversal in a Simple Dynamical Model of Turbulence

Conservation of helicity

• The helicity is given by:

• Conservation of helicity requires:

• Take bn=-eps=-1/2, and kn=2n k0 then the helicity is conserved

2

0

1N

nn n

n

H k u

1 1 2 2 0n n n n n na k b k c k

*

2 * *

0 0 0

1 1 1 1 0N N N

n n n nn nn n n n n n n n n

n n n

du dud dH k u k u u k u k udt dt dt dt

04/22/2023 10Flow Reversal in a Simple Dynamical Model of Turbulence

Page 11: Flow Reversal in a Simple Dynamical Model of Turbulence

GOY shell model vs. Sabra shell model

• GOY shell model:

• a=1 and c=-(1+b)

• Sabra shell model:

• a=1 and c=(1+b)

* * * * * * 21 2 1 1 1 2 1 2

nn n n n n n n n n n n n n n n

du i a k u u b k u u c k u u k u fdt

* * 21 1 2 1 1 1 1 2

nn n n n n n n n n n n n n n n

dui a k u u b k u u c k u u k u f

dt

04/22/2023 11Flow Reversal in a Simple Dynamical Model of Turbulence

Page 12: Flow Reversal in a Simple Dynamical Model of Turbulence

Flow reversal in the model

• GOY shell model:

• Instead of a force, we use a different approach

* * * * * * 21 2 1 1 1 2 1 2

nn n n n n n n n n n n n n n n

du i a k u u b k u u c k u u k u fdt

04/22/2023 12Flow Reversal in a Simple Dynamical Model of Turbulence

Page 13: Flow Reversal in a Simple Dynamical Model of Turbulence

Pitchfork bifurcation

Two possible standard solutions:• Subcritical bifurcation:

• Supercritical bifurcation

3xrxx

3xrxx

04/22/2023 13Flow Reversal in a Simple Dynamical Model of Turbulence

Page 14: Flow Reversal in a Simple Dynamical Model of Turbulence

04/22/2023

Our problem: Goy-model

12

13

120

11 ukuu

uu Imperfect parameter

In our case we have a special form of the supercritical pitchfork bifurcation:

Imperfect supercritical pitchfork bifurcation3xrxhx

14Flow Reversal in a Simple Dynamical Model of Turbulence

Page 15: Flow Reversal in a Simple Dynamical Model of Turbulence

04/22/2023

Our problem: Goy-model

Introduce 120

*1 u

uu

Rewriting 12

13

120

11 ukuu

uu

We get the standard form with

3xrxhx 2

1

32120

20

*1

kr

uuaikuu

h

ux

15Flow Reversal in a Simple Dynamical Model of Turbulence

Page 16: Flow Reversal in a Simple Dynamical Model of Turbulence

Solutions imperfect supercritical bifurcation• For h=0 we get the same solution as in the normal

supercritical bifurcation

04/22/2023 16Flow Reversal in a Simple Dynamical Model of Turbulence

Page 17: Flow Reversal in a Simple Dynamical Model of Turbulence

Solutions imperfect supercritical bifurcation• For h≠0 we get solutions depending on h:

04/22/2023 17Flow Reversal in a Simple Dynamical Model of Turbulence

Page 18: Flow Reversal in a Simple Dynamical Model of Turbulence

Solutions imperfect supercritical bifurcation, with r constant

21r k

04/22/2023 18Flow Reversal in a Simple Dynamical Model of Turbulence

Page 19: Flow Reversal in a Simple Dynamical Model of Turbulence

Calculation GOY model with bifurcation

04/22/2023 19Flow Reversal in a Simple Dynamical Model of Turbulence

Page 20: Flow Reversal in a Simple Dynamical Model of Turbulence

Calculation GOY model with bifurcation

04/22/2023 20Flow Reversal in a Simple Dynamical Model of Turbulence

Page 21: Flow Reversal in a Simple Dynamical Model of Turbulence

Calculation GOY model with bifurcation

04/22/2023 21Flow Reversal in a Simple Dynamical Model of Turbulence

Page 22: Flow Reversal in a Simple Dynamical Model of Turbulence

Calculation GOY model with bifurcation

04/22/2023 22Flow Reversal in a Simple Dynamical Model of Turbulence

Page 23: Flow Reversal in a Simple Dynamical Model of Turbulence

Two state model

• In order to get a two state model, we introduced a pitchfork bifurcation:

• The quantity real(Φu1*) is the amount of energy

transferred by mode u1 to smaller scales (u2, u3)

221 1

1 1 120

1du uu k udt u

04/22/2023 23Flow Reversal in a Simple Dynamical Model of Turbulence

Page 24: Flow Reversal in a Simple Dynamical Model of Turbulence

Find the average values for the upper and lower state (1)

• Assume:

where

• Now, we can compute β:

• Our bifurcation formula:

• Combination of the last two equations:

1 'u *1' 0 and 0u

221 1

1 1 120

1du uu k udt u

2 31 2

0

0R Rk U Uu

2*1 1real u u

04/22/2023 24Flow Reversal in a Simple Dynamical Model of Turbulence

Page 25: Flow Reversal in a Simple Dynamical Model of Turbulence

Find the average values for the upper and lower state (2)

04/22/2023 25Flow Reversal in a Simple Dynamical Model of Turbulence

Page 26: Flow Reversal in a Simple Dynamical Model of Turbulence

Conclusion

• We can work with a simple model for the fluid motion

• We can simulate:• A system with two stable solutions• The reversal of the flow

04/22/2023 26Flow Reversal in a Simple Dynamical Model of Turbulence

Page 27: Flow Reversal in a Simple Dynamical Model of Turbulence

Further research

• The influence of k0 needs to be investigated• The influence and physical meaning of b (-eps)• The reliability of the model• Is the energy really conserved?• Why do our solutions sometimes explode?

04/22/2023 27Flow Reversal in a Simple Dynamical Model of Turbulence