flow patterns and wind forces

Upload: blackcat555555

Post on 03-Jun-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/12/2019 Flow Patterns and Wind Forces

    1/571

    Flow Patterns andFlow Patterns and

    Wind ForcesWind Forces

    Tokyo Polytechnic UniversityTokyo Polytechnic University

    The 21st Century Center of Excellence ProgramThe 21st Century Center of Excellence Program

    Yukio TamuraYukio Tamura

    Lecture 4Lecture 4

    Flows Around Bluff BodiesFlows Around Bluff Bodies

  • 8/12/2019 Flow Patterns and Wind Forces

    2/572

    Flow Patterns AroundFlow Patterns AroundBluff BodiesBluff Bodies

    Stream LinesStream Lines

  • 8/12/2019 Flow Patterns and Wind Forces

    3/573

    Flow pattern around a square prism (ParticleFlow pattern around a square prism (Particlepaths, 2D, Uniform flow, CFD)paths, 2D, Uniform flow, CFD)

    Flow pattern around a square prism (StreakFlow pattern around a square prism (StreakLines, 2D, Uniform Flow, CFD)Lines, 2D, Uniform Flow, CFD)

  • 8/12/2019 Flow Patterns and Wind Forces

    4/574

    Flow pattern between building modelsFlow pattern between building models(Streak Lines)(Streak Lines)

    Periodic vortices shed from a square prismPeriodic vortices shed from a square prism(Streak Lines, CFD)(Streak Lines, CFD)

    K. Shimada

  • 8/12/2019 Flow Patterns and Wind Forces

    5/575

    Flow pattern around a square prismFlow pattern around a square prism(Stream lines, Wind tunnel, by T.(Stream lines, Wind tunnel, by T. MizotaMizota))

    Temporal variation of flow pattern aroundTemporal variation of flow pattern arounda square prisma square prism (Stream lines, 2D, Uniform flow, CFD)(Stream lines, 2D, Uniform flow, CFD)

  • 8/12/2019 Flow Patterns and Wind Forces

    6/576

    Temporally averaged flow pattern aroundTemporally averaged flow pattern arounda square prisma square prism (Stream lines, 2D, Uniform flow, CFD)(Stream lines, 2D, Uniform flow, CFD)

    Temporally averaged flow patternTemporally averaged flow patternaround a square prismaround a square prism

    A: Front stagnationA: Front stagnationpointpoint

    B: Rear stagnationB: Rear stagnationpointpoint

    1, 2: Separation1, 2: Separationpointpoint

  • 8/12/2019 Flow Patterns and Wind Forces

    7/577

    Temporally averaged flow pattern around aTemporally averaged flow pattern around acircular cylindercircular cylinder

    SPSP

    SPSP

    FPFP

    RPRP

    Temporally averaged flow pattern around aTemporally averaged flow pattern around arectangular cylinderrectangular cylinder

    with a large side ratiowith a large side ratio

    ReattachmentReattachment

  • 8/12/2019 Flow Patterns and Wind Forces

    8/578

    Inflow and outflow into an infinitesimalInflow and outflow into an infinitesimalhexahedronhexahedron

    Inflow through the (Inflow through the (dydydzdz) plane:) plane:11 uu 11 uu((uu dxdx ))dydzdydz ((uu ++ dxdx ))dydzdydz22 xx 22 xx uu== dxdydzdxdydz (1)(1)xx

    Inflow through the (Inflow through the (dzdzdxdx) plane:) plane: vv== dxdydzdxdydz (2)(2)yyInflow through the (Inflow through the (dxdxdydy) plane:) plane: ww== dxdydzdxdydz (3)(3)zz

  • 8/12/2019 Flow Patterns and Wind Forces

    9/579

    Law of Conservation of MassLaw of Conservation of Mass

    ((IncompressiveIncompressive Fluid) : Eq.(1)+Eq.(2)+Eq.(3)=0Fluid) : Eq.(1)+Eq.(2)+Eq.(3)=0 uu vv ww dxdydzdxdydz dxdydzdxdydz dxdydzdxdydz = 0= 0xx yy zzEquation of Continuity:Equation of Continuity:

    uu vv ww ++ ++ = 0= 0xx yy zz(div vv == 0)

    VorticityVorticity VectorVector :: = (= (,, ,, ) = rot) = rot vv ww vv == yy zz uu ww == zz xx vv uu == xx yy,, ,, = 2= 2xx, 2, 2yy,2,2zz :: VorticityVorticityxx,, yyzz : Rotational angular velocity: Rotational angular velocityaboutaboutxx andand axesaxes

  • 8/12/2019 Flow Patterns and Wind Forces

    10/5710

    vv ttxx xx

    yy

    uu ttyy

    Angular Velocity of RotationAngular Velocity of Rotation

    11 vv uuzz == (( ))22 xx yy11

    == 22

    average

    :: VorticityVorticity

    NonNon--viscous andviscous and IrrotationalIrrotational FluidFluid

    = rot= rot vv == 00 Velocity potentialVelocity potential can becan be

    assumed:assumed:

    uu == ,, vv == ,, ww == xx yy zz

  • 8/12/2019 Flow Patterns and Wind Forces

    11/5711

    Equation of Continuity:Equation of Continuity: uu vv ww ++ ++ = 0= 0xx yy zz uu == ,, vv == ,, ww == xx yy zz : Velocity potential: Velocity potential

    LaplaceLaplace Equation:Equation:

    22 22 22 ++ ++ = 0= 0xx 22 yy 22 zz 22

    Flow PatternFlow Patternand Pressureand Pressure

  • 8/12/2019 Flow Patterns and Wind Forces

    12/5712

    Stream line and flow velocityStream line and flow velocity

    streamlin

    ea

    stream

    lineb

    Stream tube and flow velocityStream tube and flow velocity

    Sectional Area:AA

    Sectional Area:AB

    Pressure:PA UUAA

    UUBB

    zzAA

    zzBB

    Pressure:PB

    ClosedCurve:C

  • 8/12/2019 Flow Patterns and Wind Forces

    13/5713

    IncompressiveIncompressive FlowFlow (Law of conservation of mass)(Law of conservation of mass)AAAAUUAA == AABBUUBB ==mmmm :: Air mass of inflow and outflow portionsAir mass of inflow and outflow portions

    Increase of kinetic energy during unit timeIncrease of kinetic energy during unit timemm ((UUBB

    22 UUAA22) (1)) (1)

    22Increase of potential energy during unit timeIncrease of potential energy during unit time

    mmgg ((zzBB zzAA) (2)) (2)Work done by pressure difference during unitWork done by pressure difference during unit

    timetime ((PPAAAAAA))UUAA ((PPBBAABB))UUBB (3)(3) :: Air density,Air density, UUii :: Wind speed at pointWind speed at point iiPPii :: Pressure at pointPressure at point i,i,gg :: Gravity accelerationGravity accelerationzzii :: Altitude of pointAltitude of point ii

    For the same stream tube:For the same stream tube:11

    UUAA22 ++PPAA ++ gzgzAA22

    11== UUBB22 ++PPBB ++ gzgzBB22 : Air density: Air densityUUii : Wind speed at point: Wind speed at point ii

    PPii : Pressure at point: Pressure at point iigg : Gravity acceleration: Gravity accelerationzzii : Altitude of point: Altitude of point iiE .(1)+E .(2)= E .(3)Eq.(1)+Eq.(2)= Eq.(3)

  • 8/12/2019 Flow Patterns and Wind Forces

    14/5714

    BernoulliBernoullis Equations Equation (Steady / Ideal flow)(Steady / Ideal flow)

    11 UU 22 ++PP ++ g zg z ==HHTT (constant)(constant)22

    : Air density: Air densityUU : Wind speed: Wind speedPP : Pressure: Pressure

    gg : Gravity acceleration: Gravity accelerationzz : Altitude: AltitudeHHTT : Total pressure: Total pressure

    (On Stream(On Stream

    BernoulliBernoullis equation:s equation:11

    UU 22 ++PPSS ==HHTT (constant)(constant)22 : Air density: Air densityUU : Wind speed: Wind speed

    PPSS : Static pressure =: Static pressure =PP ++ gzgz11UU 22 : Dynamic pressure: Dynamic pressure22

    HHTT : Total pressure: Total pressure

  • 8/12/2019 Flow Patterns and Wind Forces

    15/5715

    BernoulliBernoullis equation:s equation:

    11 UU 22 ++PPSS ==HHTT (constant)(constant)22

    UU :: LargeLarge (Small)(Small)PPSS :: SmallSmall (Large)(Large)

    Pressure distribution and resultant forcePressure distribution and resultant forceacting on a fluid cellacting on a fluid cell

    High Pressure

    Low Pressure

    Resultant

    Force

  • 8/12/2019 Flow Patterns and Wind Forces

    16/5716

    Curved stream line andCurved stream line andpressure gradientpressure gradient

    High Pressure

    Low Pressure

    Force

    UU22 PP ++ = 0= 0rr nn

    Wind Pressure at pointWind Pressure at point ii

    ppii ==PPii PPRRPPii :: Pressure at pointPressure at point ii

    PPRR :: Pressure at reference pointPressure at reference pointRR farfaraway from the body, where thereaway from the body, where thereis no effect of the body on the flowis no effect of the body on the flowfieldfield

  • 8/12/2019 Flow Patterns and Wind Forces

    17/5717

    Stream lines around a square prism andStream lines around a square prism andspatial variation of pressurespatial variation of pressure

    PPAA >>PPRR ((ppAA >0)>0)

    PPBB >>PPRR ((ppBB >0)>0)

    PPDD

  • 8/12/2019 Flow Patterns and Wind Forces

    18/5718

    NavierNavier--Stokes EquationStokes Equation

    Substantial DifferentiationSubstantial Differentiation

    Velocity componentsVelocity components

    uu = u= u((x,y,z,tx,y,z,t))

    vv

    = v= v

    ((x,y,z,tx,y,z,t

    ))

    w = ww = w((x,y,z,tx,y,z,t))

    Displacement of a small element of fluid atDisplacement of a small element of fluid at

    point P during an infinitesimal intervalpoint P during an infinitesimal interval ttx = ux = u((x,y,z,tx,y,z,t))tty = vy = v((x,y,z,tx,y,z,t)) tt Eq.(aEq.(a))z = wz = w((x,y,z,tx,y,z,t))tt

    P(P(x,y,z,tx,y,z,t))

    Q(Q(x+x+xx,y+,y+yy,z+,z+zz,t+,t+tt))VVtt

    }

  • 8/12/2019 Flow Patterns and Wind Forces

    19/5719

    Changing rate (Changing rate (f /f /tt)) of a propertyof a propertyffff++ ff= f= f((x +x +x , y +x , y +y , z +y , z +zz,, t +t +tt ))ff ff ff ff==ff((x, y, z, tx, y, z, t)) ++x +x +y +y +z +z +ttxx yy zz tt

    + O(+ O(tt22))tt 0, substituting0, substituting Eq.(aEq.(a))DDff ff ff ff ff == ++ uu ++ vv ++ ww

    DD

    tt tt xx yy zzSubstantial AccelerationSubstantial Acceleration

    DDuu uu uu uu uu == ++ uu ++ vv ++ ww DDtt tt xx yy zz

    3535

    Changing rate (Changing rate (f /f /tt)) of a propertyof a propertyffff++ ff= f= f((x +x +x , y +x , y +y , z +y , z +zz,, t +t +tt ))ff ff ff ff==ff((x, y, z, tx, y, z, t)) ++x +x +y +y +z +z +ttxx yy zz tt

    + O(+ O(tt22))tt 0, substituting0, substituting Eq.(aEq.(a))DDff ff ff ff ff == ++ uu ++ vv ++ ww DDtt tt xx yy zzSubstantial AccelerationSubstantial Acceleration

    DDuu uu uu uu uu == ++ uu ++ vv ++ ww DDtt tt xx yy zz

  • 8/12/2019 Flow Patterns and Wind Forces

    20/5720

    Velocity gradient and viscous stressVelocity gradient and viscous stress(Newtonian fluid)(Newtonian fluid)

    ddUU == ddnn

    NewtonNewtons Laws Lawof Viscosityof Viscosity

    Coefficient of Viscosity 15Coefficient of Viscosity 15CC == 1.781.78101055 kg/m/s (Airkg/m/s (Air)) == 114114 101055 kg/m/s (Waterkg/m/s (Water))

    Shear deformation velocityShear deformation velocityininxyxy -- planeplane

  • 8/12/2019 Flow Patterns and Wind Forces

    21/5721

    Shear stresses acting onShear stresses acting onan infinitesimal hexahedron of fluidan infinitesimal hexahedron of fluid

    vv uuxyxy== yxyx == (( ++ ))xx yyuuxxxx= 2= 2 xx

    Total shear forces actingTotal shear forces actingxx--direction:direction:

    xxxx yxyx zxzx(( ++ ++ )) ddxxddyyddzzxx yy zz

  • 8/12/2019 Flow Patterns and Wind Forces

    22/5722

    NavierNavier Stokes Equations:Stokes Equations:

    Inertial force per unit volumeInertial force per unit volume uu uu uu uu [[ ++ uu ++ vv ++ ww ]]tt xx yy zzSubstantial accelerationSubstantial acceleration

    pp 22uu 22uu 22uu== ++ [[ ++ ++ ]]xx xx 22 yy 22 zz 22PressurePressure ViscousViscousgradientgradient stressstress

    LocalLocal ((InstantaneousInstantaneous))accelerationacceleration

    Convective accelerationConvective acceleration

    NavierNavier Stokes Equations:Stokes Equations: uu uu uu uu [[ ++ uu ++ vv ++ ww ]]tt xx yy zzpp 22uu 22uu 22uu== ++ [[ ++ ++ ]]

    xx xx 22 yy 22 zz 22 vv vv vv vv [[ ++ uu ++ vv ++ ww ]]tt xx yy zzpp 22vv 22vv 22vv== ++ [[ ++ ++ ]]yy xx 22 yy 22 zz 22 ww ww ww ww [[ ++ uu ++ vv ++ ww ]]tt xx yy zzpp 22ww 22ww 22ww== ++ [[ ++ ++ ]]zz xx 22 yy 22 zz 22

  • 8/12/2019 Flow Patterns and Wind Forces

    23/5723

    NonNon--dimensional expression ofdimensional expression of NavierNavier StokesStokesEquations:Equations:

    uu** uu** uu** uu** ++ uu** ++ vv** ++ ww** tt ** xx** yy** zz**pp** 11 22uu** 22uu** 22uu**== ++ [[ ++ ++ ]]xx** ReRexx** 22 yy** 22 zz** 22

    x y zx y z t U pt U p

    xx**

    == ,, yy** == ,, zz** == ,, tt** == ,, pp** == L L L LL L L L UU22u v wu v w ULUL

    uu**== ,, vv** == ,, ww** == ,, ReRe == UU U UU U

    Reynolds NumberReynolds NumberULUL ULULReRe == == LL 33 UU22/ L/ L

    == LL 22 U / LU / LInertial ForceInertial Force

    == Viscous ForceViscous Force 77 101044LL UU (Air)(Air)

    (m/s)(m/s) Reference SpeedReference Speed

    (m)(m) Reference LengthReference Length 99 101055LL UU (Water)(Water)

    T =T = 1515C,C,PP = 1013hPa= 1013hPa == 1.22 kg/m1.22 kg/m33 == 1.781.78101055 kg/m/s (Air)kg/m/s (Air) == 114114 101055 kg/m/s (Water)kg/m/s (Water)Dynamic ViscosityDynamic Viscosity == // == 1.451.45101055 mm22/s (A)/s (A) == // == 1.141.14101066 mm22/s (W)/s (W)

  • 8/12/2019 Flow Patterns and Wind Forces

    24/5724

    HagenHagen--Poiseuille flow in a straight circularPoiseuille flow in a straight circulartubetube

    -- Laminar flowLaminar flow-- A parabola profileA parabola profile-- Quantity of flowingQuantity of flowing

    r 4pQ

    --r :r : Radius of tubeRadius of tube

    -- Viscosity meterViscosity meter

    Flow around a circular cylinderFlow around a circular cylinderin an ideal flow (Nonin an ideal flow (Non--viscous)viscous)

    H.P.H.P. H.P.H.P.

    L.P.L.P.

    (FP)

    (RP)

    AccelerateAccelerate DecelerateDecelerate

  • 8/12/2019 Flow Patterns and Wind Forces

    25/5725

    Surface Boundary LayerSurface Boundary Layer

    Flow near surface of bodyFlow near surface of body

    WallSurf

    ace

    Flowv

    elocity

    Boun

    darylayer

    Flow around a circular cylinderFlow around a circular cylinderin an ideal flow (Nonin an ideal flow (Non--viscous)viscous)

    H.P.H.P. H.P.H.P.

    L.P.L.P.

    (FP)

    (RP)

    AccelerateAccelerate DecelerateDecelerate

  • 8/12/2019 Flow Patterns and Wind Forces

    26/5726

    -- Separated shear layerSeparated shear layer

    -- Vortex sheetVortex sheet

    -- Shear layer instabilityShear layer instability

    Flow near the separation pointlow near the separation pointSeparation

    Point

    -- Separated shear layerSeparated shear layer

    -- Vortex sheetVortex sheet

    -- Shear layer instabilityShear layer instability

    Flow near the separation pointFlow near the separation point

    SeparationPoint

  • 8/12/2019 Flow Patterns and Wind Forces

    27/5727

    Flow separation from body surfaceFlow separation from body surface(Viscous Flow)(Viscous Flow)

    SP

    FP

    (a) Definition of circulation (b) Rigid vortex and Circulation

    Circulation and vorticity

    CirculationCirculationCC == CC UUcoscosdsds

    ClosedCurve:C

    ClosedCurve: C

    Area:AAngularVelocity

    --CC = 2= 200AA-- VorticityVorticity = 2= 200

    CC ==rr00 22rr== 2200 rr22 == 2200AArr

    rr00

    ==CC/A/A

  • 8/12/2019 Flow Patterns and Wind Forces

    28/5728

    - CirculationC = (UA UB )

    Circulation along a line ofCirculation along a line ofvelocit discontinuitvelocit discontinuit

    Unit Length : 1

    Closed Curve:C

    Line of VelocityDiscontinuity

    Causes of Wind ForcesCauses of Wind Forces

  • 8/12/2019 Flow Patterns and Wind Forces

    29/5729

    Flow around a circular cylinderFlow around a circular cylinderin an ideal flow (Nonin an ideal flow (Non--viscous)viscous)

    H.P.H.P. H.P.H.P.

    L.P.L.P.

    (FP)(RP)

    AccelerateAccelerate DecelerateDecelerate

    -- DDAlambertAlambertss ParadoxParadox

    Pressure distribution on a circular cylinder inPressure distribution on a circular cylinder inthe ideal nonthe ideal non--viscous flowviscous flow

  • 8/12/2019 Flow Patterns and Wind Forces

    30/5730

    Flow separation from body surfaceFlow separation from body surface(Viscous Flow)(Viscous Flow)

    SP

    FP

    Pressure distribution on a circular cylinder inPressure distribution on a circular cylinder inactual viscous flowactual viscous flow

  • 8/12/2019 Flow Patterns and Wind Forces

    31/5731

    Superimposition of a rotational flow around aSuperimposition of a rotational flow around acircular cylinder with a uniform flowcircular cylinder with a uniform flow

    UniformUniformFlowFlow

    CirculationCirculation

    Stream lines around a circular cylinderStream lines around a circular cylinderin a uniform ideal flow superimposed onin a uniform ideal flow superimposed on

    a clockwise circulationa clockwise circulation

    FlowFlowVelocityVelocity Lift Force:Lift Force:UU

    L.P.L.P.

    KuttaKutta--JoukowskiJoukowskiss TheoremTheorem

    H.P.H.P.

  • 8/12/2019 Flow Patterns and Wind Forces

    32/5732

    -- Starting vortexStarting vortex

    A vortex generated when an airfoil starts toA vortex generated when an airfoil starts tomove in a stationar flowmove in a stationary flow

    Just after startingJust after starting

    LiftLift

    = 0

    = 0

    = 0 = = +

    +

    Starting vortexStarting vortex

    ((KuttaKuttass Condition,Condition,JoukowskiJoukowskissHypothesisHypothesis ))

    A starting vortex and a remainingA starting vortex and a remainingcirculation around an airfoilcirculation around an airfoil

    ((KelvinKelvins Times Time--Invariant CirculationInvariant CirculationTheoremTheorem ))

    Release of a vortex stuck to an airfoilRelease of a vortex stuck to an airfoilby sudden stop of motionby sudden stop of motion

    Sudden stop of motionSudden stop of motion

  • 8/12/2019 Flow Patterns and Wind Forces

    33/5733

    Turbulence after airplaneTurbulence after airplane

    2 5m/sec 2 5m/sec

    Reynolds NumberReynolds Numberandand

    Flow PatternsFlow Patterns

  • 8/12/2019 Flow Patterns and Wind Forces

    34/5734

    Variation of flow pattern around a circularVariation of flow pattern around a circularcylinder due to Reynolds numbercylinder due to Reynolds number

    ReRe < 5< 555101033

  • 8/12/2019 Flow Patterns and Wind Forces

    35/5735

    --dd : Diameter of particles: Diameter of particles

    attached to the surfaceattached to the surface--DD : Diameter of a circular: Diameter of a circular

    cylindercylinder

    Variation of drag coefficient of a circularVariation of drag coefficient of a circularcylinder due to Reynolds numbercylinder due to Reynolds number

    OkajimaOkajima

    D

    ragCoefficient

    D

    ragCoefficientCCDD

    Reynolds Number :Reynolds Number :ReRe members buildingsmembers buildings

    RRcrcr : Critical Reynolds: Critical ReynoldsNumberNumber

    RRcrcr1010 101022 101033 101044 101055 101066 101077

    Variation of mean drag coefficient of aVariation of mean drag coefficient of acircular cylinder with turbulencecircular cylinder with turbulence

    intensity and Reynolds number (2D)intensity and Reynolds number (2D)

    Reynolds NumberReynolds NumberReRe

    DragCoe

    fficient

    DragCoe

    fficientCCDD

    TurbulenceTurbulenceIntensityIntensity

    SmoothSmoothFlowFlow

  • 8/12/2019 Flow Patterns and Wind Forces

    36/5736

    3.2.153.2.15

    Variation of the critical ReynoldsVariation of the critical Reynoldsnumbers of a sphere and a circularnumbers of a sphere and a circular

    cylinder with turbulence indexcylinder with turbulence indexIIuu((D/LD/L ))

    1/51/5(Bearman, 1968)(Bearman, 1968)

    Critical Reynolds NumberCritical Reynolds Number

    RR

    crcr

    CircularCircularCylinderCylinder

    Sphere (Dryden etSphere (Dryden etal.)al.)

    TurbulenceIndex

    TurbulenceIndexIIu

    u((D/LD/L

    yy))1/51/5

    Field data of mean drag coefficients ofField data of mean drag coefficients ofactual circular structures (chimneys etc.)actual circular structures (chimneys etc.)

    Reynolds NumberReynolds NumberReRe

    DragCoe

    fficient

    DragCoe

    fficientCCDD

    101066 101077 101088

  • 8/12/2019 Flow Patterns and Wind Forces

    37/5737

    Vortices Shed From BluffVortices Shed From BluffBodiesBodies

    Karman vortices shed fromKarman vortices shed froma square prisma square prism

  • 8/12/2019 Flow Patterns and Wind Forces

    38/5738

    Karman vortex streetsKarman vortex streets

    wwvv//ppvv = 0.281= 0.281

    Periodic lateral force due to alternatePeriodic lateral force due to alternatevortex sheddingvortex shedding

    FFLL

    FFLL

    KuttaKutta--JoukowskiJoukowskiss TheoremTheorem

    FFLL == UU

  • 8/12/2019 Flow Patterns and Wind Forces

    39/5739

    Vortex shedding and Strouhal NumberVortex shedding and Strouhal Number

    UU ffvvBBffvv == SS ,, SS == BB UU

    --ffvv : Shedding frequency of Karman vortices: Shedding frequency of Karman vortices-- SS : Strouhal number: Strouhal number-- UU : Wind Speed: Wind Speed--BB : Reference Length: Reference Length

    UU BB

    CFD by K. Shimada

    Variation of Strouhal numberVariation of Strouhal numberwith Reynolds numberwith Reynolds number

    (Circular cylinder, 2D, Uniform flow,(Circular cylinder, 2D, Uniform flow, SheweShewe 19831983))

    Reynolds NumberReynolds NumberReRe

    Strouha

    lNumber

    Strouha

    lNumberSS

    101055 101066 101077

  • 8/12/2019 Flow Patterns and Wind Forces

    40/5740

    (a) front side (b) rear side(a) front side (b) rear sideFlow around a buildingFlow around a building

    (a) Small(a) SmallH/BH/B (Aspect Ratio)(Aspect Ratio) (b) Large(b) LargeH/BH/BVortex formation behind building modelsVortex formation behind building models

    (T.Tamura)

    BBBB

    HHHH

  • 8/12/2019 Flow Patterns and Wind Forces

    41/5741

    Static Wind ForcesStatic Wind Forces

    Velocity PressureVelocity Pressureandand

    Wind Pressure CoefficientWind Pressure Coefficient

  • 8/12/2019 Flow Patterns and Wind Forces

    42/5742

    Wind speed at reference pointind speed at reference pointfar away form body and stagnation pointar away form body and stagnation point

    SPSPUU00 = 0,= 0,PP00

    UURRPPRR

    Wind Pressure at Stagnation PointWind Pressure at Stagnation Point

    pp00 ==PP00PPRR = (1/2)= (1/2) UURR22Velocit Pressure (D namicVelocity Pressure (Dynamic

    Wind Pressure CoefficientWind Pressure Coefficient

    ppkkCCpkpk == 11UURR2222ppkk ==PPkk PPRR

    ppkk :: Wind pressure at pointWind pressure at pointkkPPkk :: Static pressure at pointStatic pressure at pointkkPPRR :: Reference static pressureReference static pressure :: Air densityAir densityUURR :: Reference wind speedReference wind speed

    Velocity Pressure :Velocity Pressure : qqRR

  • 8/12/2019 Flow Patterns and Wind Forces

    43/5743

    Stagnation point of a 3D buildingStagnation point of a 3D building

    Internal Pressure CoefficientInternal Pressure Coefficient

    andand

    External Pressure CoefficientExternal Pressure Coefficient

  • 8/12/2019 Flow Patterns and Wind Forces

    44/5744

    0.50.5

    CCpepe = + 0.8= + 0.8 CCpipi == 0.340.34 0.40.4Internal SpaceInternal Space

    0.50.5External pressure coefficientExternal pressure coefficient CCpepe and internaland internal

    pressure coefficientpressure coefficient CC ii

    Equilibrium Equation of FlowsEquilibrium Equation of FlowsThrough Gaps:Through Gaps:-- The flow is proportional to the velocityThe flow is proportional to the velocity

    at each gap.at each gap.

    -- The velocity is assumed to beThe velocity is assumed to beproportional to the square root of theproportional to the square root of thepressure difference between the gap.pressure difference between the gap.0.80.8 CCpipi

    = 2= 2CCpipi + 0.5+ 0.5 ++ CCpipi + 0.4+ 0.4CCpipi == 0.340.34

  • 8/12/2019 Flow Patterns and Wind Forces

    45/5745

    Temporal variations of mean internal pressuresTemporal variations of mean internal pressuresFull(Full--scale Kato et al. 1996scale, Kato et al., 1996)

    GroundGround7th story7th story

    13th13th18th18th24th24th

    M

    eanInternalPressure(

    M

    eanInternalPressure(hPahPa))

    GroundGround7th7th

    13th13th

    18th18th

    24th24th

    Variation of mean internal pressures with referenceVariation of mean internal pressures with referencevelocity pressure (Fullvelocity pressure (Full--scale, Kato et al., 1996)scale, Kato et al., 1996)

    24th story24th story

    18th18th

    1313thth

    (Office)(Office)

    13th13th

    7th7th

    DifferenceFromReferencePressure(

    DifferenceFromReferencePressure(mmAq

    mmAq))

    Mean Velocity Pressure at TopMean Velocity Pressure at Top

    (after altitude compensation)(after altitude compensation)

    InternalInternalPressure CoefficientPressure Coefficient

    CCpipi = p= pii // qqRRpp

    ii

    :: qqRR

  • 8/12/2019 Flow Patterns and Wind Forces

    46/5746

    Wind Force CoefficientWind Force Coefficient

    3.2.3

    Wind pressure and wind forcesWind pressure and wind forcesdefined for axes fixed to bodydefined for axes fixed to body

    Projected

    Width:B

    (Body Length:

    h)

    pp

    FFXX

    FFYY

    UU

    xx

    yy

    MMZZ

  • 8/12/2019 Flow Patterns and Wind Forces

    47/5747

    Wind ForcesWind Forces

    FFXX == SSpp coscoshhdsdsFFYY == SSpp sinsinhhdsdshh : Body length: Body length

    Wind Force CoefficientsWind Force Coefficients

    FFXX FFYYCCFXFX == ,, CCFYFY == 11 11 UURR22AA UURR22AA22 22

    AA : Projected area =: Projected area =BhBh

    Aerodynamic Moment CoefficientsAerodynamic Moment Coefficients

    MMZZCCMZMZ == 11 UURR22ALAL22MMZZ : Aerodynamic Moment: Aerodynamic MomentAA : Projected area: Projected areaLL : Reference Length: Reference Length

  • 8/12/2019 Flow Patterns and Wind Forces

    48/5748

    AlongAlong--wind force and acrosswind force and across--wind forcewind forcedefined for the axes fixed to winddefined for the axes fixed to wind

    AlongAlong--wind Force:wind Force:FFDD

    AcrossAcross--wind Force:wind Force:FFLL

    (Drag)(Drag)

    (Lift)(Lift)

    Wind pressure coefficient and wind forceWind pressure coefficient and wind forcecoefficient for a buildingcoefficient for a building

    with an internal spacewith an internal space

    AlongAlong--wind Force Coefficientwind Force Coefficient

    CCFF == CCpe,Wpe,W CCpe,Lpe,LCCpe,Wpe,WCCpe,Lpe,L

    CCpe,Spe,S

    CCpe,Spe,S

    CCpipi

  • 8/12/2019 Flow Patterns and Wind Forces

    49/5749

    Static Wind ForcesStatic Wind Forces

    Acting On Bluff BodiesActing On Bluff Bodies

    Variations of mean drag and lift coefficientsVariations of mean drag and lift coefficientswith attacking anglewith attacking angle (2D)(2D)

    Turbulent FlowTurbulent Flow

    TurbulentTurbulentFlowFlow SmoothSmooth

    FlowFlow

    SmoothSmoothFlowFlow

    DragCoefficient

    DragCoefficientCCDD

    LiftCoefficient

    LiftCoefficientCCLL

  • 8/12/2019 Flow Patterns and Wind Forces

    50/5750

    Effects of turbulence on mean dragEffects of turbulence on mean dragcoefficients of 2D prismscoefficients of 2D prisms

    Turbulence IntensityTurbulence IntensityIIuu(%)(%)

    DragCoefficient

    DragCoefficientCCDD

    Entrainment effects of turbulenceEntrainment effects of turbulence

    (a)(a)Flat plate (Flat plate (D/BD/B = 0.1) (b) Prism (= 0.1) (b) Prism (D/BD/B = 0.5)= 0.5)

    Effects of turbulence on separated shearEffects of turbulence on separated shearlayerslayers (Laneville et al., 1975)(Laneville et al., 1975)

    Large DragLarge Drag

    Small DragSmall Drag

    Large DragLarge Drag

    SmallSmall

    DragDrag

    Smooth FlowSmooth FlowTurbulent FlowTurbulent Flow

  • 8/12/2019 Flow Patterns and Wind Forces

    51/5751

    Variation of mean drag coefficient, backVariation of mean drag coefficient, back--pressure coefficient, and wake stagnationpressure coefficient, and wake stagnationpoint with side ratio (2D, Uniform flow)point with side ratio (2D, Uniform flow)

    D/BD/B

    DragCoefficient

    DragCoefficient

    CCDD

    Back

    Back--pressurecoefficient

    pressurecoefficientCC

    pbpb

    Wakestagnationpoint

    Wakestagnationpoint

    XXwsws

    0.620.62

    Back pressureBack pressureCCpbpb

    Variation of mean drag coefficients of 3DVariation of mean drag coefficients of 3Drectangular prisms with aspect ratiorectangular prisms with aspect ratio

    H/BH/B

    D/BD/B : Side Ratio: Side RatioH/BH/B : Aspect Ratio: Aspect RatioTurbulentTurbulent

    UniformUniform

    Dr

    ag

    C oef

    ficie

    nt

    Dra

    gC

    oef

    fic

    ien

    tCC

    DD

    HH

    BB

  • 8/12/2019 Flow Patterns and Wind Forces

    52/5752

    Mean pressure distributionMean pressure distributionon a lowon a low--rise building modelrise building model

    Shimizu Corp.

    Instantaneous pressure distributionInstantaneous pressure distributionon a lowon a low--rise building model (45rise building model (45 Wind)Wind)

    Shimizu Corp.

  • 8/12/2019 Flow Patterns and Wind Forces

    53/5753

    Instantaneous pressure distributionInstantaneous pressure distributionon a lowon a low--rise building model (45rise building model (45 Wind)Wind)

    Shimizu Corp.

    Mean pressure distributionsMean pressure distributionson a lowon a low--rise building model (45rise building model (45 Wind)Wind)

    Conical VorticesConical Vortices

    Shimizu Cor

  • 8/12/2019 Flow Patterns and Wind Forces

    54/5754

    (a) 0(a) 0 WindWind (b) 45(b) 45 WindWindMean pressure distributionsMean pressure distributionson a lowon a low--rise building modelrise building model

    --0.50.5

    -- 0.50.5

    -- 0.50.5

    -- 0.50.5

    --0.60.6

    --0.60.6

    -- 0.60.6

    -- 0.60.6-- 0.60.6

    -- 0.60.6

    -- 0.40.4

    -- 0.40.4 -- 0.40.4

    -- 0.70.7

    -- 0.70.7-- 0.80.8

    -- 0.80.8

    -- 0.30.3

    -- 0.10.1

    -- 0.10.1

    -- 0.90.9

    -- 0.90.9

    -- 1.01.0

    -- 1.01.0

    -- 1.41.4

    -- 1.41.4

    0.10.1

    0.10.1 0.20.2

    0.20.2

    0.40.4

    0.40.4

    -- 0.40.4

    -- 0.30.3

    -- 0.30.3

    -- 0.30.3

    -- 0.40.4-- 0.40.4

    -- 0.40.4-- 0.50.5

    -- 0.50.5-- 0.50.5-- 0.80.8

    -- 0.80.8 -- 0.80.8-- 1.11.1-- 1.31.3 -- 1.21.2

    0.40.40.30.3 0.30.30.20.2

    -- 0.30.3

    Conical vortices generatedConical vortices generatedfrom corner eavesfrom corner eaves

  • 8/12/2019 Flow Patterns and Wind Forces

    55/5755

    Instantaneous pressure distributionInstantaneous pressure distributionon a highon a high--rise building modelrise building model

    Shimizu Corp.

    (a) 0(a) 0 WindWind (b) Glancing(b) Glancing WindWindMean pressure distributionsMean pressure distributionson a highon a high--rise building modelrise building model

    0.80.8

    0.70.7

    0.60.6

    0.50.5

    0.40.4 0.40.4

    -- 0.70.7

    -- 0.60.6

    -- 0.60.6 -- 0.60.6

    -- 0.50.5

    -- 0.80.8

    -- 0.80.8

    -- 0.60.6

    -- 0.80.8

    -- 0.80.8-- 0.60.6

    -- 0.50.5

    -- 1.21.2-- 0.30.3

    -- 0.70.7

    -- 1.01.0

    -- 0.90.9

    -- 0.40.4

    -- 0.50.5

    -- 0.80.8-- 0.90.9

    -- 0.70.7-- 0.80.8

    0.80.8

    0.70.7

    0.60.6

    0.50.5

    0.30.30.40.4

    -- 0.70.7

    -- 0.60.6

    -- 0.60.6

    -- 0.50.5

    -- 0.70.7-- 0.90.9-- 0.80.8 -- 0.80.8

    -- 0.50.5

    -- 0.50.5

    1515

    1515

    00

    00

  • 8/12/2019 Flow Patterns and Wind Forces

    56/5756

    Surface flow pattern near the tip ofSurface flow pattern near the tip of3D circular cylinder3D circular cylinder (Oil film technique, view(Oil film technique, view

    obli uel from behind,obliquely from behind, Lawson, 1980Lawson, 1980))

    SP 180SP 180

    (a) Post(a) Post--supercritical Regime (b) Subsupercritical Regime (b) Sub--critical Regimecritical Regime

    ReRe = 2.7= 2.75.45.4101066 ReRe =1.33=1.33101044Vertical distributions of local mean dragVertical distributions of local mean drag

    coefficients of 3D circular cylinderscoefficients of 3D circular cylinders

    Drag CoefficientDrag Coefficient CCDDDrag CoefficientDrag Coefficient CCDD

    DD

    HH

    zz

    Distance

    fromtip

    Distance

    fromtipz/Dz/D

  • 8/12/2019 Flow Patterns and Wind Forces

    57/57

    3 2 182 18

    Mean pressure distributionMean pressure distributionon a circular cylinderon a circular cylinder ((SachSach, 1972), 1972)

    Potential FlowPotential Flow

    SubSub--criticalcritical

    SupercriticalSupercritical

    MeanPressureCoefficient

    MeanPressureCoefficientCC

    pp

    Mean press re distrib tions on a f llMean pressure distributions on a full

    PressurePressuretaptap

    PressurePressuretaptap

    1mm1mm barbar

    2mm2mm barbar

    SurfaceSurfaceRoughnessRoughness

    WindWindSpeedSpeed

    FullFull--scalescale 121240 m/s40 m/s

    MeanPressureCoefficient

    MeanPressureCoefficientCC

    pp

    SmoothSmooth 10 m/s10 m/s

    1mm1mm 5 m/s5 m/s1mm1mm 10 m/s10 m/s2mm2mm 10 m/s10 m/s