fizikos egzamino medziaga pilna

67
– 1 – 12. Elektrostatinis laukas vakuume Šiuo metu žinomos keturios sąveikos tarp elementariųjų dalelių rūšys: stiprioji, elektromagnetinė, silpnoji ir gravitacinė. Elektromagnetinė sąveika, pagal savo stiprumą būdama antroje vietoje, gamtoje yra itin svarbi. Jos dėka egzistuoja atomai, molekulės, skystieji ir kietieji kūnai. Daugelis mechanikos bei molekulinės fizikos kurse nagrinėtų jėgų (pvz., smūgio, trinties, klampumo, tamprumo ir kt. jėgos) iš esmės yra elektromagnetinės prigimties. 12.1. Elektros krūvis, jo diskretiškumas (kvantavimas), vienetai. Krūvio tvermės dėsnis Elektros krūvis – tai vienas iš pagrindinių elementariųjų dalelių apibūdinimų (šalia masės, judėjimo kiekio (impulso) momento (sukinio) ir kt.). Pagal visuotinės traukos dėsnį, vandenilio atomo branduolys (protonas) traukia elektroną gravitacijos jėga. Tačiau tarp protono ir elektrono veikia dar viena apie 10 39 karto stipresnė traukos jėga. Ši jėga vadinama elektrine. Panašiai sąveikauja ir kai kurios kitos dalelės. Kad būtų galima elektrinės sąveikos jėgą išreikšti matematiškai, dalelei priskiriamas tam tikras fizikinis dydis, vadinamas elektros krūviu. Taigi elektros krūvis nėra materijos rūšis, o tik tam tikra jos savybė. Kiekviena elementarioji dalelė turi arba teigiamąjį, arba neigiamąjį elektros krūvį, ar yra elektriškai neutrali (t.y. neturi krūvio arba turi po lygiai teigiamųjų ir neigiamųjų krūvių). Bet kokio kūno krūvis yra tą kūną sudarančių elementariųjų dalelių krūvių algebrinė suma. Krūvio matavimo vienetas – kulonas (C). Eksperimentiškai nustatyta, kad bet kokio kūno krūvis q yra kvantuotas, t. y. gali būti išreikštas sąryšiu q = ±Ne (čia N – sveikasis skaičius, o e vadinamas elementariuoju krūviu: e = 1,60210 19 C ir yra lygus protono krūviui). Elektrono krūvis yra neigiamas ir lygus e. Kai kūno krūvis daug didesnis už e (siekia nanokulonus, mikrokulonus ar pan.), t. y. N – didelis, tuo atveju galima tarti, kad krūvio didumas gali kisti tolydžiai ir nebekelti klausimo, ar jis yra kartotinis e, ar ne. Elektros krūvio tvermės dėsnis teigia, kad uždarosios sistemos krūvių algebrinė suma nekinta. Matematiškai šį teiginį galima užrašyti taip: = i i q . const Šis dėsnis galioja bet kokiu atveju, kad ir kokie vyksmai vyktų sistemos viduje. Joje gali vykti įvairios cheminės, branduolinės bei elementariųjų dalelių virsmų reakcijos. Pastebėsime, jog elektros krūvis nepriklauso nuo greičio. Imkime tokį pavyzdį. Žinoma, kad bet kokios medžiagos atomą sudaro branduolys ir aplink jį skriejantys elektronai. Toks atomas yra neutrali sistema, nors elektronai aplink branduolį skrieja gana dideliais (reliatyvistiniais) greičiais. Atomą galima jonizuoti nuo branduolio atplėšus elektronus. Eksperimentas rodo, kad nuo branduolio atplėštų ir sustabdytų elektronų krūvių suma absoliutiniu didumu lygi branduolio krūviui. Sakoma, jog krūvis yra reliatyvistinis invariantas. To negalima pasakyti, pavyzdžiui, apie masę, kuri pagal reliatyvumo teoriją priklauso nuo greičio. Krūvio ilginis, paviršinis ir tūrinis tankiai. Taškiniai krūviai, kaip ir materialieji taškai, gamtoje neegzistuoja, o krūviai būna pasiskirstę linijose, paviršiuose ar tūriuose. Šiems pasiskirstymams apibūdinti įvedami atitinkami dydžiai. Jei krūvis q yra tolygiai pasiskirstęs l ilgio linijos atkarpoje, tai dydis l q = τ vadinamas ilginiu krūvio tankiu. Jis išreiškia krūvį, tenkantį ilgio vienetui. Netolygiai pasiskirsčius krūviui reikia imti be galo mažą linijos atkarpėlę dl. Jei tos atkarpėles krūvis dq, tai . dl dq = τ Ilginio krūvio tankio SI vienetas yra 1 C/m. Analogiškai apibrėžiami paviršinis krūvio tankis S q = σ (netolygiam krūvio pasiskirstymui dS dq = σ ) ir tūrinis krūvio tankis V q = ρ ( dV dq = ρ ), išreiškiantys krūvį tenkantį atitinkamai ploto ir tūrio vienetams. Šių dydžių SI vienetai atitinkamai yra 1 C/m 2 ir 1 C/m 3 . Žinant krūvių tankius, sistemos krūviai nustatomi integruojant: = ) ( , l dl q τ = ) ( , S dS q σ = ) ( . V dV q ρ 12.2. Krūvių sąveika. Kulono dėsnis 1785 m., eksperimentiškai matuodamas įelektrintų kūnų sąveikos jėgą naudodamasis sukamosiomis svarstyklėmis, Kulonas (Ch. O. Coulomb) atrado dėsnį: du sąveikaujantys taškiniai krūviai q 1 ir q 2 , esantys vakuume r atstumu vienas nuo kito, veikia vienas kitą jėga, proporcinga krūvių sandaugai ir atvirkščiai proporcinga atstumo tarp jų kvadratui: 2 2 1 r q q k F = ; (12.1) čia k proporcingumo koeficientas, priklausantis nuo pasirinktos vienetų sistemos. Tarptautinėje (SI) vienetų sistemoje jėgos vienetas yra niutonas (N), atstumo – metras (m), o krūvio – kulonas ( C). Tuomet k = 910 9 m/F. Tačiau konstanta k Kulono dėsnyje retai vartojama. Kad būtų paprastesnės kitos elektros moksle naudojamos formulės, įvedama nauja konstanta ε 0 = 1/(4πk). Tuomet Kulono dėsnis užrašomas taip: . π 4 2 0 2 1 r q q F ε = (12.2) Dydis ε 0 vadinamas elektrine konstanta. Jos skaitinė vertė tokia: ε 0 = 10 9 /(36π) 8,8510 12 F/m.

Upload: agne-zvirblyte

Post on 02-Dec-2015

99 views

Category:

Documents


8 download

DESCRIPTION

fizika

TRANSCRIPT

Page 1: Fizikos Egzamino Medziaga Pilna

– 1 –

12. Elektrostatinis laukas vakuume

Šiuo metu žinomos keturios sąveikos tarp elementariųjų dalelių rūšys: stiprioji, elektromagnetinė, silpnoji ir gravitacinė. Elektromagnetinė sąveika, pagal savo stiprumą būdama antroje vietoje, gamtoje yra itin svarbi. Jos dėka egzistuoja atomai, molekulės, skystieji ir kietieji kūnai. Daugelis mechanikos bei molekulinės fizikos kurse nagrinėtų jėgų (pvz., smūgio, trinties, klampumo, tamprumo ir kt. jėgos) iš esmės yra elektromagnetinės prigimties.

12.1. Elektros krūvis, jo diskretiškumas (kvantavimas), vienetai. Krūvio tvermės dėsnis

Elektros krūvis – tai vienas iš pagrindinių elementariųjų dalelių apibūdinimų (šalia masės, judėjimo kiekio (impulso)

momento (sukinio) ir kt.). Pagal visuotinės traukos dėsnį, vandenilio atomo branduolys (protonas) traukia elektroną gravitacijos jėga. Tačiau tarp protono ir elektrono veikia dar viena apie 1039 karto stipresnė traukos jėga. Ši jėga vadinama elektrine. Panašiai sąveikauja ir kai kurios kitos dalelės. Kad būtų galima elektrinės sąveikos jėgą išreikšti matematiškai, dalelei priskiriamas tam tikras fizikinis dydis, vadinamas elektros krūviu. Taigi elektros krūvis nėra materijos rūšis, o tik tam tikra jos savybė. Kiekviena elementarioji dalelė turi arba teigiamąjį, arba neigiamąjį elektros krūvį, ar yra elektriškai neutrali (t.y. neturi krūvio arba turi po lygiai teigiamųjų ir neigiamųjų krūvių). Bet kokio kūno krūvis yra tą kūną sudarančių elementariųjų dalelių krūvių algebrinė suma. Krūvio matavimo vienetas – kulonas (C). Eksperimentiškai nustatyta, kad bet kokio kūno krūvis q yra kvantuotas, t. y. gali būti išreikštas sąryšiu q = ±Ne (čia N – sveikasis skaičius, o e vadinamas elementariuoju krūviu: e = 1,602⋅10−19 C ir yra lygus protono krūviui). Elektrono krūvis yra neigiamas ir lygus −e. Kai kūno krūvis daug didesnis už e (siekia nanokulonus, mikrokulonus ar pan.), t. y. N – didelis, tuo atveju galima tarti, kad krūvio didumas gali kisti tolydžiai ir nebekelti klausimo, ar jis yra kartotinis e, ar ne.

Elektros krūvio tvermės dėsnis teigia, kad uždarosios sistemos krūvių algebrinė suma nekinta. Matematiškai šį teiginį galima užrašyti taip:

∑ =i

iq .const

Šis dėsnis galioja bet kokiu atveju, kad ir kokie vyksmai vyktų sistemos viduje. Joje gali vykti įvairios cheminės, branduolinės bei elementariųjų dalelių virsmų reakcijos.

Pastebėsime, jog elektros krūvis nepriklauso nuo greičio. Imkime tokį pavyzdį. Žinoma, kad bet kokios medžiagos atomą sudaro branduolys ir aplink jį skriejantys elektronai. Toks atomas yra neutrali sistema, nors elektronai aplink branduolį skrieja gana dideliais (reliatyvistiniais) greičiais. Atomą galima jonizuoti nuo branduolio atplėšus elektronus. Eksperimentas rodo, kad nuo branduolio atplėštų ir sustabdytų elektronų krūvių suma absoliutiniu didumu lygi branduolio krūviui. Sakoma, jog krūvis yra reliatyvistinis invariantas. To negalima pasakyti, pavyzdžiui, apie masę, kuri pagal reliatyvumo teoriją priklauso nuo greičio.

Krūvio ilginis, paviršinis ir tūrinis tankiai. Taškiniai krūviai, kaip ir materialieji taškai, gamtoje neegzistuoja, o krūviai būna pasiskirstę linijose, paviršiuose ar tūriuose. Šiems pasiskirstymams apibūdinti įvedami atitinkami dydžiai.

Jei krūvis q yra tolygiai pasiskirstęs l ilgio linijos atkarpoje, tai dydis lq

=τ vadinamas ilginiu krūvio tankiu. Jis

išreiškia krūvį, tenkantį ilgio vienetui. Netolygiai pasiskirsčius krūviui reikia imti be galo mažą linijos atkarpėlę dl. Jei tos

atkarpėles krūvis dq, tai .dldq

=τ Ilginio krūvio tankio SI vienetas yra 1 C/m.

Analogiškai apibrėžiami paviršinis krūvio tankis Sq

=σ (netolygiam krūvio pasiskirstymui dSdq

=σ ) ir tūrinis krūvio

tankis Vq

=ρ (dVdq

=ρ ), išreiškiantys krūvį tenkantį atitinkamai ploto ir tūrio vienetams. Šių dydžių SI vienetai atitinkamai

yra 1 C/m2 ir 1 C/m3. Žinant krūvių tankius, sistemos krūviai nustatomi integruojant:

∫=)(

,l

dlq τ ∫=)(

,S

dSq σ ∫=)(

.V

dVq ρ

12.2. Krūvių sąveika. Kulono dėsnis

1785 m., eksperimentiškai matuodamas įelektrintų kūnų sąveikos jėgą naudodamasis sukamosiomis svarstyklėmis,

Kulonas (Ch. O. Coulomb) atrado dėsnį: du sąveikaujantys taškiniai krūviai q1 ir q2, esantys vakuume r atstumu vienas nuo kito, veikia vienas kitą jėga, proporcinga krūvių sandaugai ir atvirkščiai proporcinga atstumo tarp jų kvadratui:

221

rqqkF = ; (12.1)

čia k − proporcingumo koeficientas, priklausantis nuo pasirinktos vienetų sistemos. Tarptautinėje (SI) vienetų sistemoje jėgos vienetas yra niutonas (N), atstumo – metras (m), o krūvio – kulonas ( C). Tuomet k = 9⋅109 m/F. Tačiau konstanta k Kulono dėsnyje retai vartojama. Kad būtų paprastesnės kitos elektros moksle naudojamos formulės, įvedama nauja konstanta ε0 = 1/(4πk). Tuomet Kulono dėsnis užrašomas taip:

.π4 2

0

21

rqqFε

= (12.2)

Dydis ε0 vadinamas elektrine konstanta. Jos skaitinė vertė tokia: ε0 = 10−9/(36π) ≈ 8,85⋅10−12 F/m.

Page 2: Fizikos Egzamino Medziaga Pilna

– 2 –

Taškiniai krūviai – tai įelektrinti kūnai, kurių matmenys daug mažesni už atstumus tarp jų. Taigi taškinio krūvio sąvoka analogiška materialiojo taško sąvokai mechanikoje. Taip pat buvo eksperimentiškai nustatyta ir Kulono jėgos kryptis: ji yra tiesėje, einančioje per krūvius q1 ir q2, t.y. kuloninės sąveikos jėgos yra centrinės (1 pav.).

Nuo seno yra žinoma, kad du krūviai gali arba stumti, arba traukti vienas kitą. To paties ženklo (vienarūšiai) krūviai vienas kitą stumia (1 pav., a), o skirtingų ženklų (įvairiarūšiai) krūviai – traukia (1 pav., b). Pažymėję r

r vektorių, nukreiptą nuo pirmojo

krūvio q1 į antrąjį krūvį q2, antrąjį krūvį veikiančios jėgos vektorių Fr

galime užrašyti taip:

.π4 3

0

21

rrqqF

ε

rr= (12.3)

Tuomet stūmos atveju (q1q2>0) 1Fr⎜⎜ rr

, o traukos atveju (q1q2<0) F2

r ⎜⎜ r

r− .

Elektrostatinė sąveika tarp krūvių perduodama per tarpininką − elektrostatinį lauką. Tai yra tam tikra materijos forma. Šiuo metu žinomos dvi materijos formos – medžiaga ir

laukas. Taigi kiekvienas krūvis erdvėje aplink save kuria elektrostatinį lauką. Jei tame lauke yra kitas krūvis, tai jį veikia jėga. Dažnai sakoma, kad krūvį veikia elektrostatinis (arba elektrinis) laukas, tuo lyg ir atsiribojant nuo tą lauką sukuriančių krūvių.

`

a)

rr

q1

q1 q2

q2

1Fr

rr

2Fr

b)

1 pav.

Pažymėsime, kad be elektrostatinio (t.y. sukurto nejudančių krūvių) lauko yra žinomas ir kitos kilmės elektrinis laukas, kurį sukuria kintantis laike magnetinis laukas. Nors tas laukas kai kuriomis savybėmis skiriasi nuo elektrostatinio lauko, vis dėlto svarbiausia jo savybė – veikti krūvį tam tikra jėga, yra ta pati. Todėl dažnai vietoj elektrostatinio lauko sakoma ir rašoma elektrinis laukas.

12.3. Elektrostatinis laukas. Lauko stipris, laukų grafinis vaizdavimas

Tai pagrindinė elektrinio lauko charakteristika. Jėga, veikianti tam tikrame lauko taške esantį krūvį q, yra proporcinga

to krūvio dydžiui, taip pat ji priklauso nuo lauko savybių. Ta priklausomybė gali būti taip užrašyta: .qEF

rr= (12.4)

Iš (12.4) gauname:

.qFEr

r= (12.5)

Dydis Er

vadinamas elektrinio lauko stiprio vektoriumi. Taigi elektrinio lauko stipris skaitine verte lygus jėgai, veikiančiai vienetinį teigiamąjį krūvį. Jo SI vienetas yra 1 N/C = 1 V/m.

Kiekvieną elektrinio lauko tašką apibūdina vektorius Er

(2 pav.). Jį būtų galima pavaizduoti tiesės atkarpa su rodykle, kaip kad yra vaizduojami vektoriai. Tačiau toks vaizdavimo būdas nėra patogus, kai mus domina ne vienas lauko taškas, o tam tikra lauko sritis. Patogesnis būtų Faradėjaus (M. Faraday) pasiūlytas lauko vaizdavimas jėgų linijomis.

Jėgų linija yra tokia linija, kurios liestinės kiekviename taške kryptis sutampa su Er

vektoriaus kryptimi tame taške. Kad būtų aišku, kuria iš dviejų galimų liestinės krypčių nukreiptas vektorius E

r, jėgų linijos pažymimos rodyklėmis (3 pav.).

Sutarta, jog jėgų linijos prasideda teigiamuosiuose krūviuose ir baigiasi neigiamuosiuose (arba begalybėje, jei tokių krūvių nėra). Kaip sužinosime vektoriaus E

r ilgį (modulį)? Jei turėtume nubrėžtą tik vieną jėgos liniją, einančią per mums

rūpimą tašką, to padaryti negalėtume. Reikia turėti jėgų linijų vaizdą to taško aplinkoje. Tada Er

modulis yra proporcingas skaičiui jėgų linijų, kertančių vienetinį statmenai jėgų linijoms paimtą plotą (jėgų linijų tankiui).

2 pav.

q

q

A

A

rE

rE

rr

rr

12.4. Taškinio krūvio elektrinis laukas. Laukų superpozicijos principas

Taškinio krūvio q lauko stipris taške, nutolusiame atstumu r nuo to krūvio, lengvai

apskaičiuojamas, į (12.5) įrašius jėgos išraišką pagal Kulono dėsnį (12.3). Gausime:

,π4 3

0rrqEε

rr= (12.6)

A

B

AEr

BEr

3 pav.

o Er

modulis

.π4 2

0rqEε

= (12.7)

Esant teigiamam taškiniam krūviui, Er

yra nukreiptas nuo krūvio, o neigiamam – į krūvį (2 pav.). Laukų superpozicijos principas teigia, kad taškinių krūvių sistemos sukurto elektrinio lauko stipris yra lygus atskirų

tos sistemos krūvių sukurtų laukų stiprių vektorinei sumai:

∑ ∑==i i i

iii r

rqEE .π41

30

rrr

ε (12.8)

Page 3: Fizikos Egzamino Medziaga Pilna

– 3 –

+ + + + + + + + + + + + +

rE

+q

4 pav.

C

Superpozicijos principo negalima įrodyti vien tik teoriniais samprotavimais. Tai yra eksperimentinių faktų apibendrinimo rezultatas.

Superpozicijos principas leidžia bet kokios krūvių sistemos sukurtą lauką apskaičiuoti naudojantis taškinio krūvio lauko stiprio formule (12.6). Pavyzdžiui, norėdami apskaičiuoti tiesios įelektrintos atkarpos lauką bet kokiame taške C, mintyse padalykime tą atkarpą į tokias mažas atkarpėles, kad jose esančius krūvius būtų galima laikyti taškiniais, ir vektoriškai sudėkime tų atkarpėlių laukus (4 pav.). Praktiškai tai atliekama integruojant.

12.5. Elektrinio dipolio laukas

Elektriniu dipoliu (5 pav.) vadiname sistemą,

sudarytą iš dviejų vienodo didumo ir priešingo ženklo taškinių krūvių +q ir –q, atstumas tarp kurių l yra mažas, palyginti su atstumu iki nagrinėjamųjų laukų taškų (r+>>l, r−>>l). Per abu krūvius nubrėžta tiesė vadinama dipolio ašimi. Dipolio petimi vadinamas vektorius l

r kurio kryptis

yra išilgai dipolio ašies nuo neigiamojo krūvio link teigiamojo, o modulis lygus atstumui l. Dipolio teigiamojo elektros krūvio ir jo peties sandauga vadinama elektriniu dipoliniu momentu:

θx

A(x,y)

+q

r-

+Er

−Er

lr

r

Er

r+

–q

y

.lqprr

=

.−+ += EEE

Dipolis kuria savo elektrinį lauką. Jį skaičiuosime taikydami laukų superpozicijos

principą. Dipolio lauką skaičiuosime laisvai pasirinktame taške A(x,y), esančiame toli nuo dipolio, t.y., kai atstumai nuo taško A iki krūvių −q ir +q r− ir r+ daug didesni už dipolio ašį l. Lauką taške A sudarys krūvių +q ir –q kuriamų laukų geometrinė suma:

rrr

Laukų +Er

ir −Er

stiprius galima apskaičiuoti pasinaudojant taškinio krūvio lauko stiprio formule (12.6). Atlikus veiksmus gaunama:

5 pav.

.π4

cos313

0

2

rpE

εθ+

=

Atkreipkime dėmesį, kad dipolio kuriamo lauko stipris atvirkščiai proporcingas atstumo kubui.

12.6. Elektrinio lauko stiprio vektoriaus srautas. Gauso dėsnis laukui vakuume

Er

vektoriaus modulis yra proporcingas skaičiui jėgų linijų, kertančių vienetinį statmenai jėgų linijoms paimtą plotą (jėgų linijų tankiui). Kad taip yra taškinių krūvių atvejais, matyti iš 6 pav.

Jei taškas A nutolęs nuo krūvio atstumu rA, o taškas B − atstumu rB, pagal (12.7)

.2A

2B

B

A

rr

EE

=

Kadangi sferų paviršių plotai SA=4πrA2, SB=4πrB

2 ir abu paviršius kerta tiek pat jėgų linijų, akivaizdu, kad

,A

B

B

A

SS

EE

=

arba EASA = EBSB =ΦE; (12.9)

A

rA

rB

B

q

čia ΦE – skaičius jėgų linijų, kertančių plotą SA arba SB. ΦE vadinamas jėgų linijų srautu arba elektrinio lauko stiprio vektoriaus srautu per paviršius SA bei SB.

Kai jėgų linijos nėra statmenos paviršiui S, jėgų linijų (arba Er

vektoriaus) srautu per paviršių S vadinamas dydis ΦE = En S = E S cosα; (12.10)

čia α − kampas tarp Er

ir paviršiaus normalės (statmens) nr

, En=Ecosα − Er

projekcija į paviršiaus normalę (7 pav.). Esant nevienalyčiam laukui reikia sumuoti srautus dΦE per be galo mažus plotelius dS. Tada

SdEdSES S

E

rr∫ ∫ ⋅==Φ

)( )(n ; (12.11)

čia ndSSdrr⋅= – elementariojo plotelio pseudovektorius, n

r – normalės vienetinis vektorius,

t.y. .1=nr

Dviejų vektorių Er

ir dSr

skaliarinė sandauga EdS Φ=dE ⋅rr

vadinama elementariuoju srautu.

6 pav.

nrEn

S Er

α

Elektrostatinio lauko srauto SI vienetas yra 1 (V/m)⋅1 m2 = 1 V⋅m. 7 pav.

Page 4: Fizikos Egzamino Medziaga Pilna

– 4 –

Gauso dėsnis. Taškinį krūvį q padėkime R spindulio sferos centre ir apskaičiuokime srautą per sferos paviršiaus plotą S = 4πR2 (8 pav.). Kadangi visos E

r

linijos šiuo atveju statmenos sferos paviršiui ir Er

modulis visuose sferos paviršiaus taškuose yra vienodas ir lygus E = q/(4πε0R2), tai S1

S

R q

⋅=⋅==Φ0

22

0

π4π4 εε

qRR

qESE (12.12)

Kaip matome, srautas ΦE nepriklauso nuo sferos spindulio R, jis priklauso tik nuo krūvio q.

Dabar vietoj sferos imkime bet kokios formos uždarą paviršių, apgaubiantį krūvį q, pavyzdžiui, S1 (8 pav.). Tuomet srautą turėsime skaičiuoti pagal (12.11), nes Er

nebus statmenas tam paviršiui, o ir Er

modulis įvairiose paviršiaus vietose bus skirtingas. Tačiau tą paviršių kirs visos tos jėgų linijos, kaip ir sferos paviršių S. Tad srautas per abu paviršius S ir S1 bus vienodas ir lygus q/ε 0. Todėl galėsime užrašyti: 8 pav.

∫ ⋅=⋅0ε

qSdErr

(12.13)

Imkime bet kokią krūvių sistemą (9 pav.). Joje gali būti taškinių, linijinių, paviršinių bei tūrinių krūvių. Bent dalį tų krūvių apgaubkime bet kokios formos uždaru paviršiumi S. Tos sistemos mažą krūvį dqi galima laikyti taškiniu. Pagal (12.13) šio krūvio sukurto lauko iEd

rsrautui per paviršių S galima užrašyti:

∫ =⋅)( 0

,S

ii

dqSdEdε

rr q1

q2

q3

q4

q5

9 pav.

S

(12.14)

o visos sistemos sukurtą srautą gausime sumuodami:

∑ ∫ ∫ ∑∑

⋅=⋅=⋅i S S i

ii

ii

dqSdEdSdEd

)( )( 0ε

rrrr (12.15)

Kadangi pagal superpozicijos principą

∑ =i

i EEd ,rr

(12.16)

o nagrinėjamu atveju ∑ ++−=

ii qqqqdq ,4321 (12.17)

vadinasi

∫ ⋅++−

=⋅)( 0

4321

S

qqqqSdEε

rr (12.18)

Krūvis q5 yra šalia uždaro paviršiaus S, taigi, jo įnašas į srautą lygus nuliui. Todėl šis krūvis sumuojant neįskaitomas. Apibendrintai Gauso (K. F. Gauss) dėsnį galima užrašyti taip:

∫∑

=⋅)( 0

,S

iiq

SdEε

rr (12.19)

o žodžiais − taip suformuluoti: E vektoriaus srautas per bet kokį uždarą paviršių lygus algebrinei sumai krūvių, apgaubtų šiuo paviršiumi, padalytai iš elektrinės konstantos ε0.

Begalinės tolygiai įelektrintos

plokštumos lauko stiprio skaičiavimas taikant Gauso dėsnį. Tarkime, begalinė plokštuma tolygiai įelektrinta paviršiniu krūviu, kurio tankis ./ dSdq=+σ Plokštumos sukurto lauko stiprio vektorius Er

yra statmenas plokštumai ir nukreiptas nuo jos į abi puses (10 pav.). Norėdami apskaičiuoti lauko stiprį, pvz., taške A, uždaruoju paviršiumi pasirinkime statmeną plokštumai cilindrą, kurio pagrindo plotas

S∆ . Kadangi Er

linijos lygiagrečios šoninio paviršiaus sudaromosioms, vektoriaus E

r

srautas pro šoninį paviršių lygus nuliui, o pilnasis srautas lygus srautų pro abu pagrindus sumai:

∆S

A nr

+

nr

σ

Er

Er+

+++

+

10 pav.

.22 SESESESE nnnE ∆=∆=∆+∆=Φ (12.20)

, todėl pagal Gauso dėsnį Er

vektoriaus srautas Cilindras gaubia krūvį q S∆=σ

Page 5: Fizikos Egzamino Medziaga Pilna

– 5 –

,00 ε

σε

SqE

∆==Φ o .

2 0εσ

=E (12.21)

Matome, kad begalinės plokštumos sukurto lauko erdvės taške stipris nepriklauso nuo to taško atstumo iki plokštumos. Elektrostatinio lauko tarp dviejų lygiagrečių begalinių

plokštumų, įelektrintų priešingo ženklo krūviais, stiprį nustatysime pasinaudoję laukų superpozicijos principu (11 pav.). Nesunku suprasti, kad už plokštumų vektorių +E

r ir −E

r kryptys priešingos,

taigi lauko stipris lygus nuliui, tarpe tarp plokštumų +

–σ

Er

ir −Ev

kryptys sutampa, todėl

.0εσ

=+= −+ EEE

),cos(00 ldEEdlqldEqldFdA ===

(12.22)

12.7. Elektrostatinio lauko potencialumas. Darbas perkeliant

krūvį elektriniame lauke

Elektrostatiniame lauke veikiančios jėgos verčia krūvius slinkti, todėl jos atlieka darbą. Krūvį q0, esantį stiprio E lauke, veikia elektrinė jėga F = q0E (12 pav.). Nustumdama krūvį q0

elementariuoju poslinkiu dl, ši jėga atlieka elementarųjį darbą dA: .0Edrq=

rrrrrr (12.23)

Jėgos F atliktas darbas baigtiniame kelyje l išreiškiamas taip:

∫ ∫==l l

ldEEdlqldEqA ).,cos(00

rrrr (12.24)

Jeigu elektrostatinį lauką sukuria taškinis krūvis q, tai krūvio q0 poslinkio projekcija į padėties vektorių dlcos(E,dl) lygi padėties vektoriaus modulio pokyčiui dr. Jeigu krūvis q0 paslenkamas iš taško, kurio padėties vektorius r1, į tašką, kurio padėties vektorius r2, darbas išreiškiamas taip:

∫∫ −===2

1

2

1

).11(4

14

14

1

210

020

020

0

r

r

r

r rrqq

rdrqqdr

rqqA

πεπεπε (12.25)

Matome, kad darbas priklauso nuo krūvio galinės ir pradinės padėčių ir visai nepriklauso nuo krūvio slinkimo

trajektorijos. Jau žinome, kad tokie laukai vadinami potencialiniais, o juose veikiančios jėgos potencialinėmis arba konservatyviosiomis. Šių jėgų darbas, atliktas perkeliant krūvį uždara kreive l, lygus nuliui:

∫ ==l

ldEqA .00

rr

Kadangi tai ,00 ≠q

0)(

=⋅∫ ldEl

rr; (12.26)

čia l yra bet kokio uždaro kontūro, esančio elektrostatiniame lauke, ilgis. Lygtis (12.26) yra elektrostatinio lauko potencialumo integralinė išraiška. Į (12.26) įeinantis integralas vadinamas E vektoriaus cirkuliacija, todėl žodžiais elektrostatinio lauko potencialumą galima nusakyti taip: elektrostatinio lauko stiprio vektoriaus cirkuliacija lygi nuliui. Laukai, kurie šios sąlygos netenkina vadinami sūkuriniais.

12.8, 12.9. Elektrostatiniame lauke esančio krūvio potencinė energija. Elektrostatinio lauko taško potencialas, potencialų skirtumas. Taškinio krūvio potencialas. Ekvipotencialiniai paviršiai

Iš mechanikos kurso žinome, kad potencialinių jėgų atliktas darbas lygus kūno potencinių energijų pradiniame ir

galiniame trajektorijos taškuose skirtumui )( 122112 pppp WWWWA −−=−= . (12.27)

Todėl ir elektrostatinio lauko jėgų darbą galima išreikšti krūvio potencinių energijų skirtumu:

.44 20

0

10

02112 r

qqr

qqWWA pp πεπε−=−= (12.28)

Taigi, krūvio q0, esančio krūvio q sukurtame elektrostatiniame lauke, potencinė energija lygi:

.4 0

0 Cr

qqWp +=πε

(12.29)

Dažniausiai lygia nuliui laikoma nuo krūvio q be galo nutolusio krūvio q0 potencinė energija (r ~ ∞), tada konstanta C = 0, o potencinė energija

.4 0

0

rqqWp πε

= (12.30)

−Er

+Er

+Er

+Er

−Er

−Er

11 pav.

dr

q q0

rr

12 pav. ldr

Er

Page 6: Fizikos Egzamino Medziaga Pilna

– 6 –

Kai krūviai q ir q0 vienarūšiai, jų sąveikos potencinė energija teigiama (qq0 >0), kai įvairiarūšiai – neigiama. Matome, kad konkrečiame lauko taške esančio taškinio krūvio potencinės energijos ir to krūvio didumo santykis nuo krūvio nepriklauso ir gali būti panaudotas kaip kiekybinė lauko charakteristika. Dydis, lygus potencinės energijos, kurią turi krūvis būdamas tam tikrame lauko taške, ir to krūvio santykis, vadinamas to lauko taško potencialu ϕ:

.4 00 r

qqWp

πεϕ == (12.31)

Potencialas yra algebrinis dydis, jo ženklas priklauso nuo lauką kuriančiojo krūvio ženklo. Potencialui taip pat galioja superpozicijos principas: jeigu erdvėje elektrostatinį lauką kuria keli krūviai, jų sukurto lauko bet kurio taško potencialas lygus atskirų krūvių sukurtų laukų potencialų algebrinei sumai:

∑=i

i .ϕϕ (12.32)

Elektrostatinio lauko jėgų darbas su potencialų skirtumu susijęs taip: .)( 120210 UqqA =−= ϕϕ (12.33)

Potencialų skirtumas vadinamas įtampa, potencialo vienetas yra voltas. Būtina pabrėžti, jog potencinės energijos vertės nėra vienareikšmiai apibrėžtos. Panašiai yra ir mechanikoje.

Pavyzdžiui, Žemės traukos lauke esančio kūno potencinės energijos išraiškos mgh skaitinė vertė priklauso nuo to, nuo kurio lygmens matuojamas aukštis h. Kitaip sakant prie potencinių energijų galima pridėti bet kokią laisvai pasirinktą konstantą. Apibrėžtą skaitinę vertę turi tik potencialų skirtumas. Norint, kad potencialo vertės irgi būtų apibrėžtos, reikia pasirinkti, kokio lauko taško potencialą laikysime lygiu nuliui. Šis pasirinkimas vadinamas potencialo normavimu. Iš principo bet kurio lauko taško potencialą galima pasirinkti lygiu nuliui. Aišku, nuo to pasirinkimo priklausys visų kitų lauko taškų potencialų skaitinės vertės. Dažniausiai sutariama be galo toli nutolusių taškų (begalybės) potencialą laikyti lygiu nuliui. Tuomet kalbame apie potencialą begalybės atžvilgiu. Taip pat dažnai Žemės potencialas laikomas lygiu nuliui.

Er

1ϕ 2ϕ

q

Kadangi potencialas yra skaliarinis dydis, (12.32) formulėje suma yra algebrinė. Todėl krūvių sistemų potencialą apskaičiuoti dažnai būna lengviau nei lauko stiprį.

Geometrinė vieta elektrinio lauko taškų, kurių potencialai vienodi, vadinama ekvipotencialiniu paviršiumi. Taškinio krūvio elektrinio lauko ekvipotencialiniai paviršiai yra koncentrinės sferos (13 pav.). 13 pav.

12.10. Elektrinio lauko stiprio ir potencialo ryšys

Kiekvieną elektrostatinio lauko tašką galima apibūdinti dvejopai: vektoriumi – lauko stipriu E

r ir skaliaru – potencialu

ϕ. Tarp šių dydžių egzistuoja ryšys, kurį galima nustatyti skaičiuojant elektrostatinių jėgų atliekamą darbą elementariame kelyje dl perkeliant q0 dydžio krūvį. Iš (12.23) lygybės turime:

.00 dlEqldEqldFdA l===rrrr

(12.34) Iš (12.33) lygybės išplaukia, kad elektrostatinių jėgų atliekamas elementarusis darbas dA su perkeliamu krūviu q0 bei

potencialo elementariuoju pokyčiu dϕ susietas šitaip: ϕdqdWdA p 0−=−= . (12.35)

Sulyginę (12.34) ir (12.35) dešiniąsias puses gauname: ,00 ϕdqdlEq l −= (12.36)

arba

,dldElϕ

−= (12.37)

čia El – vektoriaus Er

projekcija kryptyje . Iš (12.37) matome, kad lauko stiprio vektoriaus projekcija laisvai pasirinktoje kryptyje lygi potencialo neigiamai išvestinei išilgai tos krypties. Todėl vektoriaus

ldr

Er

projekcijos Dekarto koordinačių ašyse užrašomos šitaip:

.,,dzdE

dydE

dxdE zyx

ϕϕϕ−=−=−= (12.38)

Kadangi vektorius zyx EkEjEiErrrr

++= , tai

,ϕϕϕϕ gradz

ky

jx

iE −=⎟⎟⎠

⎞⎜⎜⎝

⎛∂∂

+∂∂

+∂∂

−=rrrr

(12.39)

čia simboliu grad žymimas vektorinis diferencijavimo operatorius, dar vadinamas gradiento operatoriumi. Šis vektorius nukreiptas ta kryptimi, kuria sparčiausiai didėja funkcija.

Taigi elektrostatinio lauko stipris yra lygus potencialo neigiamam gradientui. „–“ ženklas rodo, kad Er

vektorius nukreiptas potencialo sparčiausio mažėjimo kryptimi.

Page 7: Fizikos Egzamino Medziaga Pilna

– 7 –

13. Elektrostatinis laukas dielektrike

13.1. Dielektrikai. Laisvieji ir surištieji krūvininkai. Polinės ir nepolinės molekulės

Visos medžiagos sudarytos iš atomų ir molekulių. Atomo branduolio teigiamąjį krūvį kompensuoja elektroniniuose apvalkaluose esančių elektronų neigiamasis krūvis. Taigi atomai ir iš jų sudarytos molekulės yra elektriškai neutralūs. Jų elektringųjų dalelių sąveika gali būti stipri arba palyginti silpna. Dalelės, kurios lemia medžiagos elektrinį laidumą, vadinamos arba surištaisiais, arba laisvaisiais krūvininkais. Kristalinio kūno jonai ir konkretaus atomo ar molekulės krūvininkai, kurie išorinio elektrinio lauko veikiami, mažai tepasislenka nuo pusiausvyros padėties ir nesukuria elektros srovės, vadinami surištaisiais krūvininkais. Surištieji krūvininkai yra ir tie, kurie atsiranda medžiagoje dėl jos poliarizacijos, t.y. dėl esamų ar indukuotųjų elektrinių dipolių orientacijos išoriniame elektriniame lauke. Laisvieji krūvininkai – tai laidumo (valentiniai) elektronai metale, elektronai ir skylės puslaidininkiuose, jonai elektrolituose ir dujose, apskritai, krūviai, kuriais įelektrintas kūnas ir kurie gali judėti elektriniame lauke ir taip sukurti elektros srovę.

Dielektriku, arba izoliatoriumi, vadinama medžiaga, kurioje nėra laisvųjų krūvininkų arba jų yra labai mažai. Jo molekulių teigiamų ir neigiamų krūvių centrai gali sutapti arba nesutapti.

Pagal tai molekulės skirstomos į tris grupes. Pirmajai grupei priskiriamos vadinamosios nepolinės, arba simetriškos, molekulės, kuriose teigiamųjų ir neigiamųjų

krūvių centrai sutampa ir todėl jų dipolinis momentas 0=⋅= lqp (1 pav. a). Tokios molekulės yra N2, H2, O2, CO2, CH4 ir kt. Vienalyčiame elektriniame lauke molekulė deformuojama, nes krūviai pasislenka į priešingas puses atstumu ℓ

(1 pav., b), proporcingu elektrinio lauko stipriui Er

. Indukuotasis dipolinis momentas Eprr

0αε= ; (13.1) čia α – nuo molekulės prigimties priklausantis dydis, vadinamas molekuliniu poliarizuojamumu.

Taigi nepolinė molekulė elektriniame lauke elgiasi kaip minkštasis dipolis. Kai medžiagos tūrio vienete yra n tokių dipolių, jo poliarizuotumas proporcingas elektrinio lauko medžiagoje stipriui:

EpnPrrr

0χε== (13.2) čia αχ n= – medžiagos dielektrinis jautris.

Antrąją grupę sudaro polinės molekulės, kurių elektronų ir branduolių krūvių centrai nesutampa ir tada, kai nėra

išorinio elektrinio lauko (H2O, NH3, HCl, SO2, …). Vadinasi, šių medžiagų molekulės yra elektriniai dipoliai. Todėl vienalytis elektrinis laukas stengiasi pasukti dipolį lauko kryptimi (2 pav.). Sukimo momentas

00 =⋅= qp E~qp l⋅=

a

E = 0

00qp

bl

E

E = 0

E~qp l

1 pav.

EpMrrr

×=

EpWp

(13.3) tuo didesnis, kuo stipresnis elektrinis laukas. Kai kampas α lygus nuliui, šio kietojo dipolio potencinė energija

rr⋅−= (13.4)

-q

+q

−rF

rF

rE

rl

ϕ

2 pav. yra minimali ir ją atitinkanti būsena stabili.

Nevienalytis elektrinis laukas dipolio krūvius veikia nevienodo didumo jėgomis (3 pav.). Dėl to dipolį veikiančios jėgos modulis

αcosdxdEpF = ; (13.5)

čia dxdE – elektrinio lauko stiprio gradiento x kryptimi modulis.

Šios jėgos veikiamas dipolis slinks į stipriausio lauko sritį (α smailus) arba bus iš jos išstumiamas (α bukas).

Trečiąją grupę sudaro joninio ryšio molekulės, pvz., NaCl, KCl, KBr ir kt. Elektrinis laukas deformuoja šių kristalų gardeles – atsiranda elektriniai dipoliai. 3 pav.

13.2-4. Dielektrikų poliarizacija elektriniame lauke. Poliarizacijos vektorius

Dielektriko molekulių dipoliniai momentai, kai nėra išorinio elektrinio lauko, arba lygūs nuliui (nepolinės molekulės),

arba netvarkingai išsidėstę medžiagoje (polinės molekulės). Dėl to suminis dipolinis momentas lygus nuliui. Išorinis elektrinis laukas arba indukuoja dipolinį momentą, arba stengiasi jau esamus momentus orientuoti lauko

kryptimi. Tai ir sudaro dielektriko poliarizacijos reiškinio esmę. Kiekybinis poliarizacijos matas yra medžiagos tūrio vieneto dipolinis momentas, vadinamas dielektriko poliarizuotumu (poliarizacijos vektoriumi):

Page 8: Fizikos Egzamino Medziaga Pilna

– 8 –

V

pP i

i

∆=

∑ rr

. (13.6)

Skiriamos trys poliarizacijos rūšys. 1. Elektroninė, arba deformacinė, poliarizacija būdinga nepolinėms molekulėms, kurios išoriniame elektriniame lauke

elgiasi kaip minkštieji dipoliai, t. y. deformuojasi. Kai medžiagos tūrio vienete yra n tokių dipolių, tai jos poliarizuotumas proporcingas elektrinio lauko medžiagoje stipriui:

EpnPrrr

0χε== ; (13.7) čia αχ n= – medžiagos dielektrinis jautris, kuris susietas su jos santykine dielektrine skvarba taip:

χε += 1 . (13.8) 2. Joninė poliarizacija būdinga joninėms kristalinėms gardelėms, kurias sudaro įstatytos viena į kitą teigiamųjų ir

neigiamųjų jonų subgardelės. Elektriniame lauke šios subgardelės pasislenka į priešingas puses, o atsiradęs kristalo poliarizuotumas proporcingas elektrinio lauko stipriui.

3. Orientacinė, arba dipolinė, poliarizacija atsiranda elektriniam laukui orientuojant jau esamus dipolinius momentus, t. y. kietuosius dipolius. Dėl molekulių šiluminio (netvarkingo) judėjimo, esant termodinaminei pusiausvyrai, jos pagal savo potencinės energijos W vertes pasiskirsto eksponentiškai (pagal Bolcmano dėsnį):

( ) kT

W

p

p

AWn−

= e . Arba, įrašius čia potencinės energijos (13.4) išraišką, gaunamas kietųjų dipolių skirstinys pagal jų orientavimosi

elektriniame lauke kampus φ:

( ) kTpE

Anϕ

ϕcos

e=

EP

. (13.9) 4 paveiksle pavaizduota polinių molekulių orientacija vienalyčiame elektriniame

lauke. Kol elektrinis laukas silpnas (pE << kT), ir šio tipo dielektriko poliarizuotumas

proporcingas elektrinio lauko dielektrike stipriui: rr

0χε= . (13.10) Tačiau jo dielektrinis jautris atvirkščiai proporcingas temperatūrai:

kTpn

0

2

3εχ = . (13.11)

Taigi polinio dielektriko poliarizuotumas šildant

mažėja, nes molekulių šiluminis judėjimas ardo jų orientavimąsi elektriniame lauke.

4 pav.

Stiprių laukų srityje (pE ≥ kT) praktiškai visi dipoliai orientuoti lauko kryptimi (įsotinimas) ir todėl poliarizuotumas nuo lauko stiprio nebepriklauso.

Dėl poliarizacijos vienalyčio dielektriko paviršiuose atsiradę priešingų ženklų krūviai vadinami surištaisiais. Surištųjų krūvių paviršinis tankis lygus poliarizuotumo P

r

normalinei projekcijai: nnS EP 0εχσ ==

0

. (13.12) Kai dielektriko plokštelės paviršiai tarpusavyje

lygiagretūs (5 pav.), dešiniajam paviršiui Pn > 0 ir <Sσ , o kairiajam Pn < 0 ir todėl 0<Sσ .

− σs

+ σs

E0

n

n 180 −α

5 pav.

− σs

− σ+ σ

+ σsE0

sE

13.5. Elektrostatinis laukas dielektrike

Elektrinį lauką dielektrike kuria tiek laisvieji, tiek ir surištieji krūviai. Tarkime,

vienalyčio ir izotropinio dielektriko lygiagrečių paviršių plokštelė yra vienalyčiame elektriniame lauke (6 pav.). Surištieji elektros krūviai kuria priešingos krypties negu 0E

r

elektrinį lauką. Todėl lauko stipris dielektrike

SEEErrr

, (13.13) += 0

o jo modulis

000 ε

σ SS EEEE −=−= ; (13.14)

čia Sσ – surištųjų krūvių paviršinis tankis. 6 pav. Kadangi lauko jėgų linijos statmenos plokštelės sienelėms, n o nS EP 0εχσ == (žr.

Page 9: Fizikos Egzamino Medziaga Pilna

– 9 –

(13.12) formulę), tai EEE χ−= 0 .

Iš čia ir gauname suminio elektrinio lauko dielektrike stiprio modulio išraišką:

εχ00

1EEE =

+= . (13.15)

Vadinasi, elektrinis laukas vienalyčiame izotropiniame poliarizuotame dielektrike yra ε kartų silpnesnis negu tuštumoje. Taigi ir santykinė dielektrinė skvarba ε parodo, kiek kartų elektrinio lauko stipris (tiksliau, jo normalinė dedamoji)

tuštumoje didesnis negu dielektrike, kuris tame lauke poliarizuojasi ir taip silpnina elektrinį lauką savo viduje.

13.6. Gauso dėsnis dielektrikui. Elektrinė slinktis

Elektrine slinktimi Dr

vadinamas fizikinis dydis, apibūdinantis tik laisvųjų krūvių sukurtą elektrinį lauką medžiagoje ir todėl nepriklausantis nuo jos savybių (nuo ε). Svarbu, kad laisvieji krūviai tuštumoje būtų pasiskirstę taip, kaip ir esant dielektrikui. Vienalytės ir izotropinės medžiagos atveju elektrinė slinktis ir lauko stipris joje susieti taip:

EDrr

. (13.16) 0εε=Elektrinės slinkties vienetas yra kulonas kvadratiniam metrui

(C/m2). Slinkties vektoriaus linijos prasideda ir baigiasi tik laisvuosiuose krūviuose ar begalybėje. Todėl jos yra netrūkios (7 paveiksle pavaizduota Er

(a) ir Dr

(b) linijų eiga iš tuštumos (ε = 1) į parafiną (ε =2). Jų ir skaičius bet kurioje aplinkoje lieka tas pats.

Gauso dėsnis dielektrikui teigia, kad elektrinės slinkties srautas per uždarąjį paviršių lygus laisvųjų krūvių, kuriuos gaubia tas

ršius, algebrinei sumai: pavi

∑∫=

=⋅=Φn

ii

SD qSdD

1

rra b

q qε = 2 ε = 2

E Dε =1 ε =1

7 pav. . (13.17)

Gauso dėsnis tinka bet kokių įelektrintų kūnų kuriamiems elektriniams laukams, nes kiekvieną elektros krūvį galima laikyti daugelio taškinių krūvių visuma.

13.7. Segnetoelektrikai ir supratimas apie pjezoelektrikus ir piroelektrikus

Atskirą dielektrikų grupę sudaro vadinamieji segnetoelektrikai, kuriems būdinga spontaninė, t. y. savaiminė,

poliarizacija ir be elektrinio lauko. Tai pirmiausia segneto druska NaKC4H4O6⋅4H2O ir bario titanatas BaTiO3. Segnetoelektrikai skiriasi nuo paprastųjų dielektrikų keliomis savybėmis:

ε1. Segnetoelektrikų santykinė dielektrinė skvarba gali siekti tūkstančius ir dešimtis tūkstančių (segneto druskos ε ≈ 104, kai tuo tarpu vandens ε = 81).

2. Kiekvienam segnetoelektrikui būdinga temperatūra θ, virš kurios medžiaga virsta paprastu dielektriku. Temperatūros vertė θ vadinama Kiuri tašku. Segneto druskai būdingi du Kiuri taškai: θ1 = 258 K ir 295 K. Kalio fosfato KH2PO4 segnetoelektrinės savybės būdingos, esant temperatūrų intervalui 183–143 K.

3. Kai medžiagos T < θ, jos dielektrinis jautris, taigi ir santykinė dielektrinė skvarba χε += 1 netiesiškai priklauso nuo elektrinio lauko stiprio (8 pav.). Todėl ir poliarizuotumas taip pat yra netiesinė elektrinio lauko stiprio funkcija (9 pav.)

Stiprinant elektrinį lauką, poliarizuotumas didėja iki soties (kreivė OA). Po to silpninant lauką iki nulio, medžiaga lieka poliarizuota (dydis Pℓ vadinamas liktiniu poliarizuotumu). Pakeitus elektrinio lauko kryptį, galima panaikinti poliarizuotumą (dydis Ek vadinamas koerciniu lauko stipriu), vėl įsotinti (taškas B) ir t. t. Taip cikliškai keičiant elektrinį lauką, P priklausomybė nuo E vaizduojama kreive, vadinama histerezės kilpa. Pats šios priklausomybės nevienareikšmiškumas sudaro histerezės (atsilikimo) reiškinio esmę. Histerezės kilpos plotas lygus vieno ciklo darbui, perorientuojant elektrinius dipolius.

E0

ε

8 pav. Segnetoelektrikų ε priklausomybė nuo elektrinio lauko stiprio

9 pav. Segnetoelektriko histerezės kilpa

Segnetoelektrikų elektrinės savybės aiškinamos savaiminiu dipolinių momentų orientavimusi lygiagrečiai medžiagos sritelėse, vadinamuose domenais. Domenų momentų kryptys įvairios ir todėl kristalo poliarizuotumas lygus nuliui, o domenų tarpusavio sąveikos potencinė energija yra mažiausia. Kai T > θ, molekulių šiluminis judėjimas suardo domenus ir medžiaga virsta paprastu dielektriku.

Segnetoelektrikai vartojami didelės elektrinės talpos ir elektriškai valdomos talpos kondensatorių gamyboje, įtampos stabilizatoriuje ir kt.

Page 10: Fizikos Egzamino Medziaga Pilna

– 10 –

Pjezoelektrikais vadinami visi tie kristalai, kuriuos deformuojant jų paviršiuose atsiranda elektros krūviai. Tai kvarcas, turmalinas, segneto druska, cukrus ir kt. Lygaus didumo, bet priešingų ženklų krūviai atsiranda kristalo polinei ašiai statmenuose paviršiuose. Slegiant atitinkamai išpjautą kristalo plokštelę, jos briaunos įsielektrina taip, kaip parodyta 10 paveiksle, a, pakeitus deformuojančios jėgos kryptį, pakinta briaunų poliaringumas (10 pav., b). Taip gaunamas skersinis pjezoelektrinis reiškinys.

Deformuojant išilgai nei kita polinė ašis Y, gaunamas išilginis pjezoelektrinis reiškinys (10 pav., c ir d). Svarbu, kad kristalas būtų be simetrijos centro. Polinių ašių skaičius ir kryptys priklauso nuo gardelės simetrijos savybių.

Pjezoelektrinis reiškinys paaiškinamas joninį kristalą sudarančių

subgardelių skirtinga deformacija, dėl ko kristalas poliarizuojamas. Jo poliarizuotumas proporcingas deformacijos jėgai. Šiuo principu veikia praktiškai beinerciniai greitai kintančio slėgio matuokliai, pjezoelektriniai mikrofonai, adapteriai ir kt.

X XX Xa b c d

YYYYFF

FF

10 pav.

Yra ir atvirkštinis pjezoelektrinis reiškinys: išorinis elektrinis laukas deformuoja pjezoelektriką. Veikiama kintamo elektrinio lauko, kristalo plokštelė virpa. Šis reiškinys pritaikomas ultragarso generatoriuose.

Kai kurių pjezoelektrikų kristalai yra savaime poliarizuoti ir be išorinio elektrinio lauko. Kaitinant tokį kristalą, jis deformuojasi dėl šiluminio plėtimosi. Dėl to kinta jo poliarizuotumas ir atsiranda surištieji krūviai.

Tai sudaro piroelektrinio reiškinio esmę. Kiekvienas piroelektrikas yra pjezoelektrikas, tačiau ne kiekvienas pjezoelektrikas yra piroelektrikas. Reiškinys pritaikomas spinduliavimo indikatoriuose ir jutikliuose.

Page 11: Fizikos Egzamino Medziaga Pilna

– 11 –

14. Laidininkai elektrostatiniame lauke

14.1 - 3. Elektrostatinis laukas įelektrintame laidininke ir ties jo paviršiumi

Laidininkai – tai medžiagos, kuriose judriųjų krūvininkų koncentracija, palyginti su dielektrikais, gana didelė. Tai metalai, druskų ir rūgščių vandeniniai tirpalai bei jonizuotos dujos (plazma). Metaluose tokie krūvininkai yra sąveikaujančių atomų valentiniai laidumo elektronai, elektrolituose – jonai, plazmoje – jonai ir elektronai.

Šie krūvininkai gali kryptingai judėti net ir veikiant labai silpnai elektrinei jėgai. Laidininkui patekus į elektrinį lauką, laisvieji krūvininkai jo veikiami ima judėti. Teigiamieji krūvininkai juda lauko kryptimi, o neigiamieji - prieš lauką. Taigi priešingų ženklų krūvininkai yra atskiriami erdvėje. Šis procesas trunka labai trumpai, nes atskirtieji krūvininkai kuria savo elektrinį lauką, nukreiptą prieš išorinį. Kai šio lauko stipris susilygina su išorinio, atstojamojo lauko laidininke nelieka. Nelieka ir krūvininkus veikiančios jėgos. Geruose laidininkuose, pavyzdžiui, metaluose, išoriniam laukui kompensuoti užtenka laidininko paviršiuje esančių laisvųjų elektronų. Dėl to kompensuojantys lauką krūvininkai būna susitelkę labai ploname (gardelės konstantos matmenų) paviršiniame sluoksnyje. Paviršinių krūvių atsiradimas laidininko paviršiuje, veikiant išoriniam elektriniam laukui, yra vadinamas elektrostatine indukcija, o tie krūviai - indukuotaisiais krūviais (1 pav.).

Metaluose laisvai judėti gali tik neigiamieji krūvininkai (laisvieji elektronai). Teigiamieji krūvininkai (jonai) būna tvirtai susikibę gardelės mazguose. Teigiamąjį indukuotąjį krūvį metaluose sudaro tie jonai, kurių aplinkoje nelieka pakankamo kiekio laisvųjų elektronų. Remdamiesi krūvio tvermės dėsniu galime teigti, kad indukuotųjų krūvių algebrinė suma visada lygi nuliui.

Panašiai būna ir suteikus metalo gabalui perteklinį krūvį, t.y. jį įelektrinus. Ir šiuo atveju suteiktasis krūvis pasiskirsto tik metalo paviršiuje, o metale krūvio ir lauko nebūna )0( =E

r (2 pav.). Pasinaudojus (12.39) matyti, jog ϕ = const, nes

konstantos išvestinė yra lygi nuliui. Taigi visų laidininko taškų potencialas yra vienodas. Todėl galime kalbėti apie laidininko

Laukas ties įelepotencialą nenurodydami, apie kurio jo taško potencialą kalbame.

ktrinto laidini

6 pav.

nko paviršiumi. Visais atvejais prie pat laidininko paviršiaus jėgų linijos turi būti statmenos paviršiui, nes priešingu atveju būtų lygiagreti su paviršiumi E

r dedamoji.

Jai veikiant laisvieji krūvinink judėtų laidininko paviršiumi, t.y. neturėtume elektrostatikos atvejo.

Nustatysime sąryšį tarp paviršinio krūvio tank

ai

io laidininko paviršiuje ir lauko stiprio prie to

paviršiaus. Mažą paviršiaus plotelį ∆S su krūviu q = σ∆S apgaubkime stačiuoju cilindru, kurio vienas pagrindas yra šalia laidininko, nutolęs nuo jo mažu atstumu ∆h, o kitas - laidininke (3 pav.). Kadangi jėgų linijos statmenos laidininko paviršiui, o laidininko viduje E

r=0, srautas per cilindro paviršių bus lygus srautui pro šalia laidininko esantį pagrindą. Pagal Gauso dėsnį

0=Er

2 pav.1 pav.

.0ε

σ SSE ∆=∆

Iš čia gauname:

.0εσ

= (14.1)

Elektrostatinis ekranavimas. Laidininko

tūryj

σ∆S

r

E

e išskirkime bet kokį uždarąjį paviršių (2 pav. pažymėta punktyru). Jį kertantis E

r srautas

jog ir krūvis, esantis tuo paviršiumi apgaubtame tūryje, taip pat turi būti lygus nuliui. Elektrostatikos atveju laidininko tūris yra neutralus. Jei tą tūrį pašalintume, laidininke atsirastų ertmė, o krūvių pasiskirstymas laidininko paviršiuje bei laukas šalia laidininko nepakistų. Ertmėje laukas taip pat neatsirastų. Taigi norint kokį nors tūrį apsaugoti nuo išorinių elektrostatinių laukų, reikia jį apgaubti bet kokio storio laidžiu (metaliniu) apvalkalu. Toks apvalkalas vadinamas elektrostatiniu ekranu (4 pav.).

Panagrinėkime, kas atsitiktų, jei

E

∆h

3 pav.

E=0

4 pav.

lygus nuliui, nes laidininke lauko nėra. Pagal Gauso dėsnį (12.19) nustatome,

ertmėje uždarytume elektros krūvius. Ar toks ek

5 pav.

ranas apsaugotų už ekrano esančią erdvę nuo šių krūvių elektrostatinio lauko? Kaip matyti iš 5 pav., neapsaugotų, nes uždarytieji krūviai ekrano vidiniame paviršiuje indukuotų tokio pat dydžio priešingo ženklo krūvius, o išorinis ekrano paviršius įsielektrintų tokio pat ženklo ir dydžio krūviu, kaip ir uždarytieji viduje. Tačiau jei ekraną įžemintume, išoriniame paviršiuje buvę krūviai nutekėtų į žemę, ir toks ekranas apsaugotų išorinę erdvę nuo uždarytų jame krūvių lauko (6 pav.). Nepakenktų įžeminimas ir tuo atveju, kai nuo pašalinių laukų veikimo norima apsaugoti ekranu apsuptą erdvę (4 pav.). Todėl elektrostatiniai ekranai visada įžeminami. Praktiškai gana dažnai vietoje ištisinio metalinio apvalkalo efektyviam ekranavimui pasiekti užtenka ir tankaus metalinio

Page 12: Fizikos Egzamino Medziaga Pilna

– 12 –

tinklelio.

14.4 - 6. Laidininko ir kondensatoriaus elektrinė talpa

Laidininko potencialas φ proporcingas jo krūviui q, t. y. n kartų padidėjus krūviui, tiek pat kartų padidėja ir potencialas. Tačiau skirtingus laidininkus įelektrinus vienodai, jų potencialai pakinta skirtingai. Todėl laidininko krūvio ir potencialo santykis apibūdina tik tą laidininką ir vadinamas laidininko elektrine talpa:

ϕqC = . (14.2)

Taigi elektrinė talpa lygi krūviui, kurį suteikus laidininko potencialas pakinta 1 voltu. Jos vienetas yra faradas: 1F = 1C/1V.

Laidininko elektrinė talpa priklauso tik nuo jo formos ir matmenų, bet nepriklauso nei nuo krūvio, nei nuo laidininko viduje esančios medžiagos. Pvz., vienalytėje dielektrinėje aplinkoje esančio R spindulio laidaus rutulio paviršiaus potencialas

Rq

επεϕ

041

= . (14.3)

Todėl rutulio elektrinė talpa RC επε04= , (14.4)

t.y. ji proporcinga rutulio spinduliui R ir aplinkos dielektrinei skvarbai ε, o 1 F talpa yra rutulio, kurio spindulys , talpa. Taigi atskiro laidininko elektrinė talpa tuo didesnė, kuo jis pats didesnis. Tačiau prie įelektrinto

laidininko artinant kitus kūnus, juose atsiranda indukuotieji (laidininke) arba surištieji (dielektrike) krūviai, kurie silpnina laisvųjų krūvių sukurtą elektrinį lauką, vadinasi, mažina laidininko potencialą ir kartu didina jo elektrinę talpą. Praktiškai svarbi dviejų arti esančių laidininkų sistema. Jų krūviai lygūs, bet priešingų ženklų, o patys laidininkai vadinami kondensatoriaus elektrodais. Norint išvengti aplinkinių kūnų įtakos, elektrodai gali būti plokštieji, koaksialiniai ir sferiniai – tik šiais atvejais elektrinis laukas yra tik tarp elektrodų. Kondensatoriaus elektrinė talpa lygi jo krūvio (vieno elektrodo krūvio) ir elektrodų potencialų skirtumo santykiui:

( ) m1094 910 ⋅== −πεR

ϕ∆=

qC . (14.5)

Apskaičiuokime plokščiojo kondensatoriaus elektrinę talpą. Kai plokštelių tarpusavio atstumas d, mažas palyginti su jų matmenimis (7 pav.), tai elektrinis laukas tarpe yra vienalytis. Todėl potencialų skirtumas

ddEεε

σϕ0

==∆ , (14.6)

čia ε – tarpą užpildančio dielektriko skvarba; Sq=σ – plokštelės krūvio paviršinis tankis. Taigi plokščiojo kondensatoriaus elektrinė talpa

dSC εε 0=

plotą, atstumą tarp jų ar dielektriko

nab CCCC

, (14.7)

t. y. ji priklauso nuo plokštelių persiklojimo ploto ir atstumo tarp jų, taip pat nuo dielektriko skvarbos.

Kondensatoriaus elektrinė talpa gali būti kitokia, keičiant elektrodų persiklojimo ε (šildant ar keičiant elektrinio lauko stiprį). Kondensatorius jungiant tarpusavyje, gaunama

kondensatorių baterija, kurios elektrinė talpa priklauso nuo jų jungimo būdo.

7 pav.

1. Sujungus lygiagrečiai (8 pav.) baterijos elektrinė talpa lygi kondensatorių elektrinių talpų sumai: +++= K21 . (14.8)

2. Sujungus nuosekliai (9 pav.), gautos baterijos elektrinė talpa yra mažesnė už pačią mažiausia joje esančią talpą ir randama sudėjus atvirkštines elektrines talpas:

nab CCCC1111

21

+++= K . (14.9)

8 pav.

a

b

C 1 C 2 C n

a bC 1 C 2 C n

9 pav.

Tokia baterija gali atlaikyti tiek kartų aukštesnę įtampą, kiek yra sujungtų vienodų kondensatorių.

14.7 - 8. Elektrostatinio lauko energija Dviejų nejudančių taškinių elektros krūvių q1 ir q2, tarp kurių atstumas r, sąveikos potencinė energija (žr. (12.30)

formulę) lygi

211 ϕ⋅= qWp arba W ; (14.10) 122 ϕ⋅= qp

Page 13: Fizikos Egzamino Medziaga Pilna

– 13 –

čia φ21 – q2 krūvio sukurto lauko potencialas pirmojo krūvio buvimo vietoje; φ12 – q1 krūvio sukurto lauko potencialas antrojo krūvio buvimo riboje, t. y.

rqk

rqk 1

122

21 , == ϕϕ .

Taigi nagrinėjamos dviejų krūvių sistemos energija

( 12221121

21ϕϕ ⋅+⋅=== qqWWW ppp ) . (14.11)

Pastaba. 1/2 rašoma dėl simetrijos, nes abi sandaugos lygios. Kai sistemoje yra n taškinių krūvių, jos sąveikos potencinė energija lygi

i

n

iip qW ϕ∑

=

=12

1 ; (14.12)

čia φi – visų krūvių sukurto elektrinio lauko, išskyrus i-tąjį krūvį, potencialas taške, kuriame yra tas i-tasis krūvis. Gautą formulę galima pritaikyti ir įelektrintam laidininkui, kurio paviršius yra ekvipotencialinis, o jo perteklinis krūvis

q lygus taškinių krūvių qi sumai. Todėl šių krūvių sąveikos potencinė energija lygi

qqWn

iip ϕϕ

21

21

1

== ∑=

. (14.13)

Ši energija vadinama savąja įelektrinto laidininko energija. Fizikine prasme ji lygi laidininko įelektrinimo darbui, nugalint perteklinių krūvių stūmos jėgas.

Įelektrinto laidininko savoji energija yra jo sukurtame elektriniame lauke ir todėl ji yra to lauko energija. Ji proporcinga lauko tūriui. Pvz., plokščiojo kondensatoriaus savoji energija

( ) VdSECqWp ~222

1 20

2

⋅=∆

=∆=εεϕϕ ,

nes kondensatoriaus elektrostatinio lauko tūris lygus tarpo tarp plokštelių tūriui V = Sd. Elektrostatinio lauko energija apskaičiuojama, integruojant nykstamai mažų jo elementų energijas:

dVwWV∫= ;

čia dydis

2

20 E

dVdWw εε

== (14.14)

vadinamas elektrostatinio lauko energijos tūriniu tankiu. Ši išraiška tinka tiek vienalyčiam, tiek ir nevienalyčiam laukui.

Page 14: Fizikos Egzamino Medziaga Pilna

– 14 –

15. NUOLATINĖ ELEKTROS SROVĖ Elektrodinamika – fizikos mokslo šaka, tirianti elektros krūvininkų judėjimą ir sąveiką bei reiškinius, susijusius su

elektriniais ir magnetiniais laukais.

15.1. Nuolatinė laidumo srovė. Srovės stipris ir tankis. Srovės tankio ir krūvininkų koncentracijos ryšys Kryptingas elektros krūvininkų judėjimas vadinamas elektros srove. Jos kryptimi sutarta laikyti teigiamų krūvių

judėjimo elektriniame lauke kryptį. Elektros srovei tekėti būtinos šios sąlygos: 1) turi būti laisvųjų elektros krūvininkų (elektronų, teigiamųjų ar neigiamųjų jonų); 2) reikalinga jėga, verčianti juos kryptingai judėti; 3) elektros srovės grandinė privalo būti uždara. Elektrinio lauko jėgos, perkeldamos elektros krūvininkus, atlieka darbą ir todėl lauko energija mažėja. Energija

papildoma iš šaltinio, kurį apibūdina jo elektrovara ξ . Elektrovara lygi darbui, kurį atlieka pašalinės jėgos, perkeldamos teigiamą vienetinį elektros krūvininką grandine:

qApaš=ξ . (15.1)

Elektros srovė apibūdinama srovės stipriu I ir srovės tankiu j. Srovės stipris lygus krūviui, pratekėjusiam laidininko skerspjūviu per sekundę:

⎥⎦⎤

⎢⎣⎡ ==

sCA

dtdqI 11 . (15.2)

Pastaba: apie srovės stiprio vieneto ampero fizikinę prasmę žr. § 16.7 „Dviejų tiesių lygiagrečių elektros srovių magnetinė sąveika“.

Kai elektros srovę lemia elektronai, tai 1 A stiprio elektros srovė rodo, kad laidininko skerspjūvį kas sekundę pereina 6,2⋅1018 elektronų.

Elektros srovės stiprio skirstiniui laidininko skerspjūvyje apibūdinti vartojama elektros srovės tankio sąvoka. Jis skaitine verte lygus srovės, tekančios 1 m2 skersinio pjūvio ploto laidininku statmenai pjūviui, stipriui:

αcosdSdI

dSdIj ==

; (15.3)

čia α – kampas tarp teigiamojo krūvininko judėjimo krypties ir normalės (1 pav.). Taigi elektros srovės stipris

α

n

IS

1 pav.

∫ ⋅=S

SdjIrr

; (15.4)

čia ndSSdrr⋅= . Vadinasi, elektros srovės stipris lygus elektros srovės

tankio vektoriaus srautui per S ploto paviršių. Remiantis elektros srovės stiprio ir jos tankio apibrėžimais,

įrodoma, kad elektros srovės tankio metale modulis

⟩⟨= uenj 0

⟨; (15.5)

čia n0 – laisvųjų elektronų koncentracija; – jų dreifo greičio vidurkis, proporcingas išilginio elektrinio lauko stiprio moduliui:

⟩u

Eu µ=⟩⟨ ; (15.6) čia µ – krūvininko judrumas, lygus vidutiniam krūvininko dreifo greičiui vienetinio stiprio elektriniame lauke.

Taigi elektros srovės tankio modulis proporcingas elektrinio lauko stiprio moduliui: Eenj µ0= . (15.7)

Dydis γµ =0en (15.8)

vadinamas laidininko savituoju elektriniu laidumu. Tai dydis, atvirkščias laidininko savitajai varžai: ρ = 1/γ. Vadinasi, elektros srovės tankis

Ejrr

γ= . (15.9) Ši formulė yra diferencialinė Omo dėsnio išraiška, iš kurios išplaukia, kad srovės tankis lygus savitojo laidumo ir

elektrinio lauko stiprio sandaugai ir nukreiptas lauko kryptimi.

15.2-3. Omo dėsnis nevienalytei grandinės daliai. Elektrinė varža Grandinės dalyje gali egzistuoti ir elektrostatinis, ir pašalinių jėgų laukas (2 pav.). Tokia grandinės dalis vadinama

nevienalyte. Omo dėsnio diferencialinė išraiška jai tokia: ( )pašEEj

rrr+= γ (15.10)

arba

Page 15: Fizikos Egzamino Medziaga Pilna

– 15 –

⎟⎠⎞

⎜⎝⎛ += pašE

dld

SI ϕ

γ .

Padauginus abi lygties puses iš γρ dldl = , gaunama:

dlEdSdlI

paš+= ϕρ ;

čia ρ – laidininko savitoji varža. Nagrinėjamajai grandinės daliai:

∫∫ +∆=2

112

2

1

dlESdlI pašϕρ . (15.11) 2 pav.

Dydis 12

2

1

RSdl

=∫ρ vadinamas grandinės dalies elektrine varža.

Dydis – šioje grandinės dalyje veikianti elektrovara. Ji lygi pašalinių jėgų darbui, perkeliant teigiamą

vienetinį krūvį. Dydis

ξ=∫2

1

dlEpas

UIR =12 (15.12) vadinamas grandinės dalies įtampa. Ji lygi elektrostatinių ir pašalinių jėgų atliekamam darbui, perkeliant vienetinį teigiamą krūvį grandinės dalyje 1–2. Įtampos vienetas – voltas: 1 Ω1A1V ⋅= . Taigi (15.10) lygybė dabar tokia:

ξϕ∆ += 1212IR . (15.13) Tai ir yra Omo dėsnio integralinė išraiška nevienalytei grandinei. Kai taškas 2 sutampa su tašku 1, 12 ϕϕ = ir

∑=

=n

iiIR

1ξ ; (15.14)

čia R – visa uždaros grandinės elektrinė varža. Grandinės varžą R sudaro apkrovos varža Ra (vartotojo) ir šaltinių vidaus varžų r atstojamoji:

∑=

+=n

iia rRR

1. (15.15)

Taigi išraiška

=

=

+= n

iia

n

ii

rRI

1

. (15.16)

yra Omo dėsnio išraiška uždarai grandinei. Trumpojo jungimo atveju Ra = 0, srovės stipris maxii IrI == ∑∑ξ . Kai

grandinė atvira ( ), srovės stipris ∞=aR 0=∞=∑ iI ξ ir potencialų skirtumas , t. y. lygus grandinės dalies

elektrovarai.

∑=i

iξϕ∆ 12

Laidininko elektrinė varža. Elektrine varža vadinama laidininko savybė priešintis elektros srovei, t. y. kryptingam krūvininkų judėjimui elektriniame lauke. Varžos vienetas omas (Ω): tai grandinės dalies, kuria tekant 1 A stiprio elektros srovei jos galuose susidaro 1 V įtampa, varža.

Laidininko elektrinė varža R priklauso nuo medžiagos, jo matmenų, temperatūros ir priemaišų. Pvz., vienalyčio cilindrinio laido varža proporcinga jo ilgiui L ir atvirkščiai proporcinga skerspjūvio plotui S:

SLR ρ= ; (15.17)

čia ρ – savitoji varža, lygi tos medžiagos kubo, kurio kraštinė 1 m, varžai. Nustatyta, kad savitoji varža (taigi ir varža) tiesiškai priklauso nuo temperatūros (3 pav.):

( ) ( )tt Rαρρ += 10 ; (15.18) čia ρ0 – savitoji varža, esant 0 °C temperatūrai; αR – temperatūrinis varžos koeficientas.

Temperatūrinis varžos koeficientas lygus santykiniam varžos pokyčiui, pakitus temperatūrai 1 K:

tRRR

R ∆α

0

0−=

( )

, (15.19)

nes varža ( )tRtR Rα+= 10 . (15.20)

Dydis SLR 00 ρ= – varža, esant 0 °C temperatūrai.

3 pav. Praktiškai daugelio grynųjų metalų varža proporcinga temperatūrai. Tačiau žemų

Page 16: Fizikos Egzamino Medziaga Pilna

– 16 –

temperatūrų srityje ( ) jų, taip pat lydinių ir netgi keramikos varža staiga išnyksta (4 pav.). Šis reiškinys vadinamas superlaidumu. Tai paaiškinama laidumo elektronų visiška nesąveika su metalo kristaline gardele, nes varžą sąlygoja šių elektronų susidūrimai su gardelės jonais ir jos defektais. Jų tuo mažiau, kuo žemesnė temperatūra. Taigi elektros srovė superlaidininke neišskiria šilumos. Superlaidžią būseną panaikina magnetinis laukas, kurio magnetinė indukcija viršija tam tikrą krizinę vertę. Ši vertė priklauso nuo superlaidininko medžiagos ir temperatūros.

krizTT ≤

15.4. Srovės darbas ir galia

Tekant elektros srovei, krūvininkai juda kryptingai. Vadinasi, elektrinio lauko jėgos

perneša juos grandine iš vieno jos taško į kitą, t. y. atlieka darbą. Elementarusis elektros srovės darbas, kai laidas nejuda, lygus

R

Tl

Sn

Hg

T, K0 42 64 pav.

UdqdA = ; čia U – įtampa laido galuose; dq – per laiką dt perneštas elektros krūvis. Šis darbas lygus laide išsiskyrusiai energijai:

UIdtUdqdW == . Pastovios nuolatinės srovės atveju I = const. Todėl visa laide išsiskyrusi energija

QUItW == . (15.21) Tai energija, kurią elektros srovė iš šaltinio perkelia į laidą. Dėl to jis įšyla iki temperatūros, atitinkančios dinaminę

pusiausvyrą: kiek šilumos išskiriama, tiek jos ir išspinduliuojama per tą patį laiką. (15.21) išraiška yra integralinė Džaulio ir Lenco dėsnio išraiška: laide išsiskyręs šilumos kiekis proporcingas srovės

stipriui, jos tekėjimo laikui ir įtampai jo galuose. Dažnai šis dėsnis rašomas ir kitaip: RtIQ 2= , (15.22)

arba RtUQ 2= . (15.23) Išraišką (15.22) tikslinga vartoti nuosekliai sujungtiems vartotojams, o (15.23) – lygiagrečiai. Kadangi srovės stipris , o varža jSI = SlR ρ= , tai šilumos kiekis Q . Sandauga lygi laidininko

tūriui. Q išraišką dalindami iš V ir t, gauname elektros srovės šiluminės galios tankį: lStj ρ2= VlS =

( ) 2jVtQw ρ== . (15.24) Tai Džaulio ir Lenco dėsnio diferencialinė išraiška. Kadangi Ej γ= , o γρ 1= , tai

2Ew γ= arba Ejwrr

⋅= , (15.25) t. y. elektros srovės šiluminės galios tankis lygus srovės tankio ir elektrinio lauko stiprio skaliarinei sandaugai. Tas pačias išraiškas galima gauti ir iš klasikinės metalų elektroninio laidumo teorijos įvaizdžių.

15.5. Klasikinės elektroninės metalų elektrinio laidumo teorijos pagrindai

Elektros srovę metaliniuose laidininkuose lemia jų laisvieji (atomų valentiniai) elektronai. Tai įrodyta daugeliu

eksperimentų, kuriais nustatytas krūvio ženklas ir savitasis krūvis q/m. Vokiečių fizikas K. Rikė vienerius metus leido elektros srovę nuosekliai sujungtais trim vienodo skerspjūvio ploto, bet skirtingų medžiagų (Cu, Al, Cu) cilindriniais laidininkais (5 pav.). Medžiagos pernešimo iš vieno laidininko į kitą nepastebėta. Vadinasi, elektros krūvį pernešė ne jonai, o visuose laidininkuose esančios vienodos lengvos dalelės. Vėliau rusų fizikai L. Mandelštamas ir N. Papaleksis pasiūlė idėją staigiai stabdyti judantį laidininką. Vieno tokio eksperimento schema pavaizduota 6 paveiksle.

Strypeliui atsitrenkus į metalinę plokštę, galvanometro rodyklė trumpai krypteli. Vadinasi, grandinėje atsirado elektros srovės impulsas, kurį lėmė strypelio laisvieji krūvininkai, toliau judėję iš inercijos. Iš eksperimento duomenų nustatytas laisvojo krūvininko savitasis krūvis:

Cu CuAl

0

l v

5 pav. 6 pav.

RQv

mq l= ; (15.26)

čia Q – galvanometru prabėgęs suminis krūvis; R – grandinės elektrinė varža. Šiais ir dar vėlesniais tyrimais nustatyta, kad elektros srovę laidininkuose lemia neigiamai įelektrintos dalelės, kurių

savitieji elektros krūviai apytiksliai vienodi ir artimi elektrono savitajam krūviui vakuume:

kgC,

me 11107591 ⋅= .

Metalo laisvieji elektronai – tai jo atomų valentiniai elektronai, kurie, atomams sudarant kristalą, subendrinami ir lengvai keičia savo vietą kristale. Todėl kristalo mazguose yra teigiami jonai, o tarp jų – netvarkingai judantys laisvieji elektronai.

Page 17: Fizikos Egzamino Medziaga Pilna

– 17 –

Klasikinę metalų elektrinio laidumo teoriją sukūrė vokiečių fizikas P. Drudė ir olandų fizikas H. Lorencas. P. Drudės siūlymu laisvuosius elektronus metale galima nagrinėti kaip vienatomių idealiųjų dujų molekules ir taikyti joms šių dujų dėsnius. Pavyzdžiui, laisvojo elektrono metale vidutinis šiluminio judėjimo greitis, kai temperatūra 300 K, lygus

sm,

mkTv

e

5100818⋅==⟩⟨

π, (15.27)

o jo vidutinis kvadratinis greitis tomis pačiomis sąlygomis lygus

sm,

mkTv~

e

5101713⋅== . (15.28)

Sudarius išilginį elektrinį lauką laide, atsiranda elektronų dreifas, t.y. kryptingas jų judėjimas, – elektros srovė. Orientacinė elektrono dreifo vidutinio greičio vertė nustatoma iš srovės tankio išraiškos (15.5):

0neju⋅

=⟩⟨ . (15.29)

Pvz., variniam laidui 2max m

A,j 71011 ⋅= , laisvųjų elektronų koncentracija . Taigi , t. y.

elektrono dreifo greitis gerokai mažesnis už jo šiluminio ir netvarkingo judėjimo greitį (

3280 108 −⋅= mn m/s,u 41087 −⋅=⟩⟨

⟩⟨<<⟩⟨ vu ). Lauko veikiami elektronai laisvą kelią juda tolygiai greitėdami, o, susidūrę su gardelės mazgo jonu, perduoda jam visą

savo kinetinę energiją. Todėl elektrono vidutinis kryptingo judėjimo greitis

( ) 20 maxuu +=⟩⟨ ; (15.30) čia umax – maksimalus elektrono kryptingo judėjimo greitis prieš pat susidūrimą su gardelės jonu (7 pav.).

meEaumax ττ == ir meEu 2τ=⟩⟨ ; (15.31)

7 pav.

čia τ – vidutinis lėkio laikas, t.y. laikas tarp dviejų gretimų susidūrimų:

( ) ⟩⟨vl≈⟩⟨+⟩⟨= vulτ . Vadinasi,

⟩⟨=⟩⟨

vmEle

u2

. (15.32)

Taigi elektros srovės tankis

⟩⟨=

vmElne

j2

2

. (15.33)

Iš (15.9) ir (15.33) išraiškų gaunama, kad savitasis elektrinis laidumas

⟩⟨=

vmlne

2

2

γ . (15.34)

Ši išraiška yra makroparametro sąryšis su elektrono mikroparametrais. Kadangi savitasis elektrinis laidumas γ = 1/ ρ, tai laido varža

SL

nevm

SLR

⟩⟨⟩⟨

==l2

2ρ . (15.35)

Kadangi elektronų šiluminio judėjimo vidutinis greitis T~v⟩⟨ , tai teoriškai laido varža turėtų būti T~ . Tačiau eksperimentiniai tyrimai rodo, kad T~R (3 pav.). Toks teorinių ir eksperimentinių rezultatų nesutapimas rodo klasikinio elektroninio laidumo modelio netobulumą.

15.6. Elektros srovė dujose. Dujų jonizacija ir krūvininkų rekombinacija

Elektros srovės tekėjimas dujomis vadinamas elektros išlydžiu. Tačiau normaliomis sąlygomis jose beveik nėra laisvųjų

krūvininkų. Todėl dujos yra geras izoliatorius. Jas jonizuojant, t. y. iš jų atomų ar molekulių išplėšiant po vieną ar po kelis elektronus, atsiranda teigiamieji jonai ir elektronai. Elektronus gali prisijungti atomai ir molekulės. Taip susidaro neigiamieji jonai. Taigi elektros srovę dujose sąlygoja teigiamieji ir neigiamieji jonai bei elektronai.

Išorinis dujų jonizatorius gali būti liepsna, ultravioletiniai ar rentgeno spinduliai, elektronai, protonai, alfa dalelės ir pan. Visais atvejais elektronui išplėšti iš atomo reikalinga jonizacijos energija siekia 4–30 eV. Tačiau elektrinio lauko

pagreitintam jonui tampriai susidūrus su molekule ir perdavus jai praktiškai visą kinetinę energiją Wk, t. y. perdavus energiją

( ) kWmmmmW 2

21

214+

=∆ , (15.36)

jis nesugeba molekulės jonizuoti. Kai su molekule tampriai susiduria elektronas, kurio masė m1 gerokai mažesnė už molekulės masę m2 (m1 << m2), tai perduotos energijos kiekis

Page 18: Fizikos Egzamino Medziaga Pilna

– 18 –

kk WWmmW <<=

2

14∆ . (15.37)

Vadinasi, elektronas beveik nepraranda energijos ir todėl gali įgyti jonizacijai reikalingą energiją. Kai smūgis netamprus, perduotos energijos kiekis

kWmm

mW21

2

+=∆ ; (15.38)

čia m2 – nejudančios dalelės masė. Taigi jonui susidūrus su molekule (m1 = m2), dydis 2kWW =∆ , t. y. tik pusė jo kinetinės energijos gali būti suvartota

jonizacijai. Elektronui kWW =∆ , t.y. visa jo energija gali būti suvartota molekulei jonizuoti. Tačiau net ir greitas elektronas

nebūtinai jonizuoja molekulę. Jis gali molekulę tik sužadinti. Kuo elektronas greitesnis, tuo mažesnė jo ir molekulės sąveikos trukmė, todėl molekulės sužadinimo tikimybė mažesnė. Taigi, kuo greitesnis elektronas, tuo didesnė molekulės jonizacijos tikimybė.

Atvirkštinis jonizacijai ir nuolat vykstantis procesas dujose – rekombinacija: teigiamųjų ir neigiamųjų jonų, teigiamųjų jonų ir elektronų jungimasis į atomus ir molekules. Dėl to jonų porų koncentracija dujose mažėja, o pačios dujos švyti. Išlydžio dujose pobūdis priklauso nuo dujų cheminės prigimties, temperatūros, slėgio, elektrodų formos, matmenų, įtampos tarp jų.

15.7. Nesavaiminis išlydis

Išlydis, vykstantis veikiant išoriniam jonizatoriui, vadinamas nesavaiminiu. Jonų porų koncentracijos kitimo sparta

.l.elrekjon dtdn

dtdn

dtdn

dtdn

⎟⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛+⎟

⎠⎞

⎜⎝⎛=

arba

l⋅−−=

ejnrG

dtdn 2 ; (15.39)

čia G – jonizacijos stipris; r – rekombinacijos koeficientas; l – atstumas tarp elektrodų. Susidarius pusiausvyrai, jonų porų koncentracija nekinta. Taigi

l⋅+=

ejnrG 2 . (15.40)

Kol įtampa tarp elektrodų maža (elektrinis laukas silpnas), išlydžio srovės tankis taip pat mažas ⎟⎠⎞

⎜⎝⎛ <<

⋅2nr

ejl

. Tuomet

jonų porų koncentracija

constrGn ==0 , (15.41)

t. y. nepriklauso nuo elektrinio lauko stiprio. Todėl išlydžio srovės tankis proporcingas elektrinio lauko stipriui:

( ) ErGej ⋅+= −+ µµ . (15.42)

leGjsot

U1 U2 U3 U

jsot

j

Nesavaiminioišlydžio sritis

Savaiminioišlydžio sritis

8 pav.

Vadinasi, silpnų elektrinių laukų srityje (U < U1) nesavaiminiam išlydžiui galioja Omo dėsnis (8 pav.).

Stiprių laukų srityje (U2 < U < U3) srovės tankis praktiškai nepriklauso nuo lauko stiprio ir asimptotiškai artėja prie soties srovės tankio:

= . (15.43) Taigi išmatavus jsot, paprasta nustatyti jonizacijos stiprį G. Išjungus jonizatorių, jonų porų koncentracijos kitimo sparta, kai

U < U1, lygi 2nr

dtdn

−=

( )

. (15.44)

Atskyrus kintamuosius ir suintegravus, gaunama, kad ta koncentracija dėl rekombinacijos mažėja hiperboliškai:

10

0

+=

tnrntn ; (15.45)

čia n0 – jonų porų koncentracija išjungimo momentu. Labai stiprių laukų srityje (U > U3) nesavaiminis išlydis pereina į savaiminį.

Page 19: Fizikos Egzamino Medziaga Pilna

– 19 –

15.8-9. Savaiminis išlydis Išlydis, vykstantis be išorinio jonizatoriaus stipriame elektriniame lauke, vadinamas savaiminiu. Tačiau vien elektronų

sukelta molekulių smūginė jonizacija yra būtina, bet nepakankama savaiminio išlydžio sąlyga: dujose turi vykti griūtinė jonizacija, kurios esmė – jonizuoja elektronai, jonai ir fotonai (9 pav.).

Be to, jonai ne tik jonizuoja, bet ir

išmuša iš katodo elektronus (4 procesas). Dėl to krūvininkų koncentracija sparčiai didėja praktiškai nedidinant įtampos. Įtampa, kurią viršijus prasideda savaiminis išlydis, vadinama pramušimo įtampa Upr.

Vokiečių fizikas F. Pašenas nustatė, kad dujos elektriškai pramušamos, esant tam tikram tik joms būdingam elektrinio lauko stiprio ir slėgio santykiui (E/p). Be to, kelis kartus padidinus slėgį p ir tiek pat kartų sumažinus atstumą l tarp elektrodų,

pramušimo įtampa nepakinta. Apskritai, esant tam tikrai l⋅p vertei, pramušimo įtampa yra minimali (10 pav.).

K

3

1

2

4

5

6

- elektronai- teigiami jonai- molekulės- fotonai

A

9 pav.

Tai paaiškinama šiomis priežastimis: 1) kol slėgis didelis, krūvininkų laisvasis lėkis trumpas. Todėl tik stipriuose elektriniuose laukuose jie gali sukelti griūtinę jonizaciją; 2) kai slėgis mažas, šis lėkis lygus atstumui tarp elektrodų ir nekinta, slėgį toliau mažinant. Taigi susidūrimo su molekule, vadinasi, ir jos jonizacijos tikimybė maža. Todėl, norint pramušti mažo slėgio dujas, būtina greitinti jonus, kurie išmuštų iš katodo daugiau elektronų.

Savaiminis išlydis gali būti kelių rūšių. Tai priklauso nuo slėgio dujose, elektrodų padėties ir pan.

1. Rusenantysis išlydis vyksta išretintose dujose. Kai slėgis sumažinamas iki 660 Pa, švytintis ruožas tampa stabilus ir susideda iš kelių šviesių sričių. Matuojant potencialo pasiskirstymą tarp anodo ir katodo išlydžio vamzdelyje gaunama, kad labiausiai potencialas kinta prie katodo. Taigi ir elektrinis laukas čia yra stiprus. Toks netolygus potencialo (kartu ir elektrinio lauko stiprio) kitimas paaiškinamas netolygiu elektronų ir jonų pasiskirstymu. Šioje srityje jonams išmušus iš katodo elektronus, šie, elektrinio lauko pagreitinti, žadina arba jonizuoja dujų molekules, o dėl to atsiradę teigiamieji jonai lėti, čia jų koncentracija didelė, elektrinis laukas stiprus. Toliau nuo katodo esančioje rusenančiojo švytėjimo srityje elektrinis laukas silpnas, o elektronų ir jonų rekombinacija intensyvi. Todėl dujos šioje srityje švyti. Teigiamojo stulpo srityje elektronų ir jonų koncentracija didelė ir praktiškai nekintanti dėl atomų (molekulių) smūginės jonizacijos greitais elektronais. Taigi teigiamąjį stulpą sudaro neizoterminė plazma (elektronų, jonų ir atomų temperatūros yra skirtingos).

Upr

Umin

.. p lp 0 0l

10 pav.

Pats rusenantysis išlydis vartojamas dujošvyčiuose vamzdeliuose, dienos šviesos lempose, dujiniams lazeriams žadinti, joninio dulkėjimo įrenginiuose ir kt.

2. Lankinis išlydis vyksta dujose tarp priešpriešais ar lygiagrečiai orientuotų elektrodų. Suglaudus elektrodus, o po to juos atitolinus, tarpe vyksta išlydis, lydimas intensyvaus spinduliavimo. Elektros srovės tankis siekia tūkstančius amperų kvadratiniam milimetrui. Tai paaiškinama termoelektronine emisija iš karšto katodo (įkaista dėl jonų smūgių) ir smūgine šilumine jonizacija. Taigi tarp elektrodų yra plazma, kurią sudaro elektronai, jonai, dujų ir elektrodų medžiagos normalieji bei sužadintieji atomai. Mažo slėgio lankinio išlydžio plazma neizoterminė, nes jonų temperatūra šiek tiek aukštesnė už neutraliųjų dujų temperatūrą, o elektronų temperatūra siekia šimtus tūkstančių kelvinų. Didelio slėgio plazma izoterminė (minėtų dalelių temperatūros vienodos – 104 K eilės).

Lankinis išlydis naudojamas metalams lydyti lankinėse lydkrosnėse, metalams pjaustyti ir virinti, stipriai šviesai gauti ir pan.

3. Kibirkštinis išlydis atsiranda normalaus slėgio dujose, kuriose aukštos įtampos nepakanka lankiniam ar rusenančiajam išlydžiui, t. y. jose elektrinio lauko stipris lygus dujų pramušimo vertei Epr (sauso oro Epr = 30000 V/cm). Pramušus dujas tarp elektrodų, atsiranda siauras vingiuotas švytintis kanalas, kuriuo teka vis stiprėjanti elektros srovė (3.35 pav.). Įtampa tarp elektrodų sumažėja ir išlydis nutrūksta. Po to įtampa vėl didėja, pasiekia pramušimo įtampos vertę ir t. t.

Žaibas – natūralus kibirkštinis išlydis, kurio kanalo ilgis gali siekti 10 km, skersmuo – 0,4 m, vieno impulso trukmė – τ ≈ 10–4 s, srovės stipris – I ≈ 100000 A, dujų temperatūra kanale – 10000 K. Greitai įkaitusios dujos staigiai plečiasi. Taip susidaro smūginės garso bangos.

Ypatinga žaibo rūšis – kamuolinis žaibas. Tai švytintis, kartais kibirkščiuojantis ir šnypščiantis 10–30 cm skersmens kamuolys, dažniausiai atsirandantis po linijinio žaibo. Kamuolys būna baltos, mėlynos ar oranžinės spalvos ir egzistuoja iki 10 minučių. Kamuolinio žaibo prigimtis nėra ištirta.

4. Vainikinis išlydis vyksta normalaus slėgio dujose, kuriose yra stiprus nevienalytis elektrinis laukas. Taip būna ties įelektrintais smaigaliais, plonais aukštos įtampos laidais ir kt. Dujos švyti tik tose vietose, kuriose nuteka elektros krūviai ir taip jonizuoja bei sužadina molekules – smaigalį supa šviesos vainikas.

Page 20: Fizikos Egzamino Medziaga Pilna

– 20 –

15.10. Plazma ir jos savybės Plazma – tai kvazineutrali atomų ir didelės koncentracijos įvairiaženklių krūvininkų sistema, kurios savybes lemia

toliasiekės elektrostatinės jėgos. Ji apibūdinama jonizacijos laipsniu α, kuris parodo tūrio vienete esančių atomų (molekulių) jonizuotą dalį. Būdingiausias plazmos pavyzdys – jonizuotos dujos, kuriose gausu elektronų ir teigiamųjų jonų. Šių krūvininkų kinetinė energija tokia didelė, kad jie nerekombinuoja. Priminkime, kad jonizuoti galima kaitinant, apšvitinant trumpomis elektromagnetinėmis bangomis ar apšaudant energingomis dalelėmis.

Gamtinė plazma sudaro apie 99,9 % Visatos masės. Iš plazmos susideda Žemės jonosfera, Saulė, žvaigždės, kurios yra tarpžvaigždinėje erdvėje. Žemės medžiaga tanki, o temperatūra žema, todėl gamtinės plazmos joje beveik nėra. Tačiau ši sukuriama elektros išlydžiu, liepsna ir pan. Plazmos savybių turi metalų ir puslaidininkių elektringųjų dalelių visuma.

Plazma, kurios temperatūra T < 105 K, vadinama žemosios temperatūros plazma; plazma, kurios T > 105 K, – aukštosios temperatūros plazma.

Aukštosios temperatūros plazma naudojama valdomai termobranduolinei reakcijai sukurti. Žemosios temperatūros plazma susidaro dujinio išlydžio šviesos šaltiniuose, dujiniuose lazeriuose, magnetiniuose hidrodinaminiuose ar plazminiuose generatoriuose ir kt. Plazmotronų veikimas pagrįstas tankios žemosios temperatūros plazmos vartojimu metalams pjaustyti ir virinti.

Visiškai jonizuotos plazmos elektrinis laidumas tam tikrame elektrinio lauko stiprių intervale nepriklauso nuo jos tankio ir proporcingas T 3/2. Kai plazmos T ≥ 15⋅106 K, jos elektrinis laidumas viršija sidabro elektrinį laidumą ir todėl ji laikoma idealiu laidininku.

Būdingos plazmos savybės yra šios: 1. Plazmos krūvininkai sąveikauja toliasiekėmis Kulono jėgomis, t. y. į bet kokį išorinį poveikį plazma reaguoja

kolektyviškai. Todėl joje sužadinami virpesiai ir bangos. 2. Dėl elektrinio lauko ekranavimo kiekvienas plazmos krūvininkas sąveikauja tik su tais, kurie yra Debajaus

ekranavimo spindulio LD sferoje. Šių krūvininkų skaičius vadinamas Debajaus skaičiumi. Debajaus ekranavimo nuotolis lygus atstumui nuo medžiagos paviršiaus iki taškų, kuriuose elektrinio lauko stipris sumažėja e = 2,72 kartus.

3. Kai plazmos neveikia išoriniai elektriniai laukai, jos krūvininkai virpa. Šių Langmiūro virpesių amplitudė yra LD eilės.

4. Plazma gali būti pusiausviroji, arba izoterminė (visų ją sudarančių dalelių netvarkingo judėjimo vidutinė kinetinė energija yra vienoda), ir nepusiausviroji, arba neizoterminė (elektronų temperatūra Te >> už jonų temperatūrą Tj ir atomų temperatūrą Ta).

15.11. Elektrono išlaisvinimo iš metalo darbas. Termoelektroninė emisija ir jos dėsningumai

Metalas, kaip ir bet kuri kita medžiaga, sudarytas iš teigiamųjų ir neigiamųjų dalelių. Neigiamosios dalelės yra

elektronai. Valentiniai elektronai silpnai susieti su atomais ir gardelėmis, todėl jie beveik nevaržomi gali klaidžioti kristale. Kai prie metalo paviršiaus esantis ir pakankamai energijos turintis elektronas išlekia iš metalo, jame lieka nesukompensuotas teigiamasis krūvis, kuris traukia elektroną atgal į metalą. Taip prie paviršiaus susidaro judri pusiausvyra. Išlėkę elektronai sudaro neigiamo krūvio debesėlį (11 pav.). Metale yra toks pat nesukompensuotas teigiamasis krūvis. Vadinasi, prie paviršiaus susidaro dvigubas elektrinis sluoksnis, kuriame sukuriamas elektrinis laukas. Šis laukas elektronus veikia metalo kryptimi ir taip trukdo naujiems elektronams išlėkti iš jo. Tačiau elektronams, turintiems pakankamai energijos, pavyksta nugalėti šią jėgą ir išlėkti į vakuumą. Elektrono išlaisvinimo darbas yra lygus energijos kiekiui, kurio reikia elektronui, kad išlėktų iš kietojo ar

skystojo kūno į vakuumą, neturėdamas kinetinės energijos.Elektronui reikalingą energiją galima suteikti įvairiais būdais: kūną bombarduojant didelės energijos dalelėmis, švitinant trumpabangiais elektromagnetiniais spinduliais, kaitinant ir kt.

11 pav.

Termoelektronine emisija vadinamas elektronų išspinduliavimo iš karštų kietųjų ar skystųjų kūnų reiškinys. Išlėkti iš kūno gali tik tie elektronai, kurių šiluminio judėjimo energija ne mažesnė už jų išlaisvinimo darbą ( ). Elektronų spinduliuojama tuo daugiau, kuo karštesnis kūnas ir kuo mažesnis elektronų išlaisvinimo darbas. Pastebima termoelektroninė emisija iš grynųjų metalų prasideda, kai jų temperatūra viršija 2000 °C. Kai metalo paviršius padengiamas kito, mažesnio išlaisvinimo darbo, metalo ar kai kurių metalų oksidų plėvele, spinduliuojama labai daug elektronų.

AkT ≥

Pagrindinė termoelektroninės emisijos charakteristika yra jos soties srovės tankis. Jis išreiškiamas Ričardsono ir Dašmeno formule:

kTA

sot eTBj−

= 2 , (15.46) čia B – beveik visiems metalams vienoda konstanta, A – elektronų išlaisvinimo darbas, k – Bolcmano konstanta, T – temperatūra.

Termoelektroninės emisijos reiškinys pritaikytas elektroninėse lempose, elektroniniuose vamzdžiuose, rentgeno vamzdžiuose, kineskopuose ir kitur. Juose elektronų šaltiniai yra tiesioginio arba netiesioginio kaitinimo katodai. Paprasčiausia elektroninė lempa – vakuuminis diodas, sudarytas iš katodo K ir anodo A (12 pav.) Nekintant katodo temperatūrai, anodinės srovės stiprio priklausomybė nuo įtampos tarp anodo ir katodo yra netiesinė (13 pav.). Mažų teigiamų įtampų srityje galioja trijų antrųjų dėsnis:

23UCI ⋅= , (15.47)

Page 21: Fizikos Egzamino Medziaga Pilna

– 21 –

čia C – koeficientas, priklausantis nuo elektrodų formos ir jų matmenų bei tarpusavio padėties.

A

K

mA

12 pav. 13 pav.

Be to, kai , kai kurie iš katodo išlėkę elektronai pasiekia anodą – teka silpna I

0=U0 stiprio elektros

srovė. Kai elektrinis laukas pakankamai stiprus (U > U1),

visi emituojami elektronai pasiekia anodą ir anodinė srovė daugiau nebestiprėja – gaunamas įsotinimo reiškinys. Didinant katodo temperatūrą, be abejo, didėja ir soties srovės stipris, proporcingas išspinduliuojamų elektronų skaičiui..

Page 22: Fizikos Egzamino Medziaga Pilna

– 22 –

16. Magnetinis laukas vakuume

16.1. Svarbiausios magnetinio lauko charakteristikos. Magnetinė indukcija, magnetinės indukcijos linijos

Magnetinis laukas yra viena iš elektromagnetinio lauko, kaip materijos egzistavimo, formų. Jį kuria nuolatinis magnetas, elektros srovė ar judantis įelektrintas kūnas. Be to, kiekvienas laike kintantis elektrinis laukas kuria magnetinį lauką ir atvirkščiai, kiekvienas kintantis magnetinis laukas kuria elektrinį lauką. Nejudantys, bet magnetinį momentą turintys kūnai (nuolatiniai magnetai) ir nuolatinė elektros srovė kuria nuolatinį magnetinį lauką, kuris vadinamas magnetostatiniu lauku. Kintamoji elektros srovė ar kintamasis elektrinis laukas kuria kintamąjį magnetinį lauką.

Magneto pavadinimas senovės Mažojoje Azijoje kilo nuo magnetito (Fe3O4), kuris traukė geležį. Įmagnetintas strypelis pasisuka šiaurės-pietų kryptimi.

V.Gilbertas XVIa. Tyrė magnetizmo reiškinius. Pjaustydamas magnetą parodė, kad negalima atskirti polių. Taigi magneto poliai ir krūviai turi skirtingos kilmės savybes. Tokia nuomonė įsivyravo šimtams metų.

Magnetinį lauką galima vizualizuoti (magnetinio lauko linijas pirmasis stebėjo M.Faradėjus). H.L.Erstedas 1820 m. atsitiktinai pastebėjo, kad kompaso rodyklė orientuojasi statmenai srovės krypčiai. Pirmą kartą

susidurta su necentrinėmis jėgomis. A.Amperas netrukus parodė, kad du gretimi laidininkai traukia vienas kitą, kai jais teka elektros srovės. Amperas įspėjo

magnetizmo prigimtį, tardamas, kad medžiagos viduje cirkuliuoja miniatiūrinės uždaros elektros srovės (patvirtinta po 100 metų). Kai jos orientuotos tvarkingai, susidaro magnetas.

M.Faradėjus 1822 m. tikrino hipotezę: jei srovė kuria magnetinį lauką, tai ir magnetinis laukas turi kurti srovę. 1831 m. jis atrado elektromagnetinės indukcijos reiškinį. Paaiškėjo, kad elektros srovę kuria ne pastovus, o kintamasis magnetinis laukas.

J.Maksvelis 1864 pateikė išbaigtą elektromagnetinio lauko matematinę formą. Magnetinė indukcija. Kiekybiniam magnetinio lauko apibūdinimui dažnai naudojamas srovės rėmelis, t.y. laisvai

pakabintas uždaras plokščiasis kontūras, kuriuo teka stiprumo I elektros srovė. Srovės rėmelio orientacija erdvėje nusakoma teigiamos normalės ortu n

r, kuris su kontūro srovės kryptimi susietas dešiniojo sraigto (arba dešiniosios rankos) taisykle (1

pav.). Bandymai rodo, kad magnetinis laukas rėmelį orientuoja, t.y. kad rėmelį veikia jėgų pora. Šių jėgų sukimo momentas Mr

priklauso kaip nuo magnetinio lauko, taip ir rėmelio savybių bei jo orientacijos. Plokščiojo srovės rėmelio magnetinės savybės apibūdinamos vadinamuoju srovės magnetiniu momentu – vektoriumi mp

r:

nISpmrr

= ; (16.1) čia S - rėmelio plotas. Jeigu duotajame magnetinio lauko taške būtų keli rėmeliai su skirtingais magnetiniais momentais, juos veiktų skirtingi sukimo momentai, tačiau santykis Mmax/pm visiems rėmeliams būtų tas pats. Šis santykis charakterizuoja tik patį magnetinį lauką ir vadinamas magnetine indukcija:

.IS

MB max= (16.2)

Taigi, vienalyčio magnetinio lauko indukcija skaitine verte lygi srovės rėmelį, kurio magnetinis momentas vienetinis veikiančiam didžiausiam sukimo momentui. Magnetinės indukcijos SI vienetas yra 1N/(1A.m) - niutonas ampermetrui – tesla (T). Magnetinės indukcijos B

r kryptis gali būti nustatoma dvejopai: 1) nustatoma pagal mažos magnetinės rodyklės

orientaciją magnetiniame lauke: vektoriaus kryptis sutampa su tiesės, jungiančios rodyklėlės pietų polių su šiaurės poliumi, kryptimi; 2) nustatoma pagal srovės rėmelio orientaciją magnetiniame lauke: vektoriaus kryptis sutampa su rėmelio normalės kryptimi.

Br

Br

Jei magnetinius laukus kuria keli šaltiniai, tai jiems, kaip ir elektriniams, galioja superpozicijos principas:

∑= ;BB i

rr (16.3)

S

N

3 pav.

Br

I

Br

nv

I

2 pav. 1 pav.

Apskritai magnetinį lauką patogu vaizduoti magnetinės indukcijos linijomis, t. y. kreivėmis, kurių liestinės kiekviename taške sutampa su B

r kryptimi. 2 ir 3 paveiksluose pavaizduoti paprasčiausių magnetinių laukų plokštieji pjūviai. Taigi

Page 23: Fizikos Egzamino Medziaga Pilna

– 23 –

magnetinės indukcijos linijos visada uždaros ir apjuosia laidus, kuriais teka elektros srovė. Taip vaizduojami laukai yra sūkuriniai. Elektros srovės sukurto magnetinio lauko linijų kryptis nustatoma dešiniojo sraigto taisykle: a) kai srovė teka tiesiu laidu ir sraigtas sminga jos kryptimi, tai sraigto sukimo kryptis rodo B

r linijų kryptį; b) vijos ar ritės atveju atvirkščiai, t. y.

sraigto smigimo kryptis rodo Br

linijų kryptį, o jo galvutės sukimo kryptis sutampa su srovės kryptimi.

2. Srovės elemento sukurtas magnetinis laukas. Bio ir Savaro dėsnis. Magnetinio lauko stipris

Vienas iš pagrindinių elektromagnetizmo uždavinių – elektros srovių sukuriamų magnetinių laukų tyrimas ir jo charakteristikų skaičiavimas. Tai įmanoma remiantis arba Bio ir Savaro, arba visuminės srovės, dėsniu. Šis dėsnis tinka bet kokios formos laidu tekančios elektros srovės sukurto magnetinio lauko magnetinei indukcijai skaičiuoti. Jis teigia, kad srovės elemento lId

r sukurto magnetinio lauko indukcija Bd

r proporcinga šiam elementui ir atvirkščiai proporcinga atstumui iki

nagrinėjamo lauko taško kvadratu (4 pav.):

30

4 rrlIdBd

πµµ

rrr ×= (16.4)

arba skaliariškai

20

4 rsinIdldB

παµµ

= ; (16.5)

čia µ – terpės santykinė magnetinė skvarba; mH70 104 −⋅= πµ – magnetinė konstanta; α –

kampas tarp srovės elemento ir vektoriaus rr

rypčių. (16.4) ir (16.5) lygtys yra diferencialinės Bio ir Savaro dėsnio išraiškos. Integralinė dėsnio išraiška gaunama kiekvienu konkrečiu atveju suintegravus (16.5) lygtį:

k

∫∫×

==ll r

rlIdBdB 30

4πµµ

rrrr

. (16.6)

Nagrinėjant magnetinius laukus ne vakuume, o medžiagoje būtina įvertinti ir pačios įsimagnetinusios medžiagos kuriamą lauką. Šiuo atveju patogiau naudotis ne magnetine indukcija, o kitu vektoriniu dydžiu – magnetinio lauko stipriu H

r. Magnetinio lauko stiprio SI vienetas yra 1 A/m. Kai terpė yra vienalytė ir izotropinė, šis dydis

nusakomas santykiu

4 pav.

.BH0µµ

rr= (16.6)

Tuomet Bio ir Savaro dėsnį srovės elemento sukurtam laukui galime užrašyti ir šitaip:

34 rrlIdHd

π

rrr ×= . (16.7)

Kaip matyti, dydis Hdr

jau nepriklauso nuo medžiagos magnetinių savybių, nusakomų magnetine skvarba µ.

16.3. Magnetinio lauko superpozicijos principas. Tiesiu laidu tekančios srovės magnetinis laukas. Apskritiminės srovės magnetinis laukas

Br

vektoriui, panašiai kaip ir Er

, galioja superpozicijos principas: ∑=i

i .BBrr

Juo galima pasinaudoti norint apskaičiuoti

bet kokios formos laidininku tekančios srovės sukurto magnetinio lauko indukciją. Praktiškai tai atliekama integruojant (16.6). Tiesiu laidu tekančios srovės magnetinis laukas. Apskaičiuosime tiesaus plono laido, kuriuo teka srovė I, sukurto

magnetinio lauko indukciją bet kokiame taške A, esančiame R atstumu nuo to laido (5 pav.). l nuotolyje nuo statmens, nuleisto iš taško A į laidą, išskirkime srovės

elementą ldIr

. Jo sukurto magnetinio lauko indukcijos dB modulis nusakomas (16.5) formule. Šiuo atveju l=Rctgα, taigi

A drB

rr R

I l

α1 α α2

5 pav.

dl

.sin

dRldαα

2−=

Be to, .sin

Rr α

=

Įrašę šias dl ir r išraiškas į (16.6), gauname:

.R

dsinIBdπ

ααµ4

0−=

Pagal sraigto taisyklę nustatome, kad d Br

nukreiptas į mus (tuo atveju brėžinyje jo kryptį žymime ) ir jo kryptis nekinta kintant ld

rpadėčiai laide. Taigi galime integruoti nuo α1 iki α2:

.)cos(cosRIdsin

RIB 12

00

44

2

1

ααπµαα

πµ α

α

−=−= ∫ (16.8)

Jei laidas su srove yra begalinis, tuo atveju α2→π, α1→0, ir pagal (16.8) gauname:

Page 24: Fizikos Egzamino Medziaga Pilna

– 24 –

. (16.9) RIB

πµ2

0=

Apskritiminės srovės magnetinis laukas. Apskaičiuosime apskritos R spindulio vijos, kuria teka srovė I, kuriamo

magnetinio lauko indukciją taške C, esančiame statmenyje, iškeltame iš vijos plokštumos centro O ir nutolusiame nuo jo atstumu h (6 pav.).

Šiuo atveju iš pradžių galime vektoriškai sudėti dviejų vienodų modulių srovės elementų ldIr

, esančių diametraliai priešingose vijos pusėse, kuriamo lauko indukcijas, kurių moduliai pagal (16.5)

dl dl

I

O R

h r r

ϕ

ϕ

π/2 C

dB1 dB1

dB

6 pav.

rldIBd 2

01 4π

µ= ,

nes kampas tarp ldr

ir rr

α=90o, sinα=1. dB yra rombo, kurio kraštinė dB1, įstrižainė, taigi

, r

ldIRrRBdsinBdBd 3

011 2

22π

µϕ =⋅==

2322

20

03

0

22 /

R

)hR(IRld

rIRB

+== ∫

µπµ π

. (16.10)

Vektorius Br

nukreiptas išilgai vijos ašies. Magnetinio lauko indukciją vijos centre esančiame taške O skaičiuojame pagal (16.10), h prilyginę nuliui:

RIB

20µ= . (16.11)

Pastebėsime, kad apskritos vijos atveju patogiau naudotis apgręžta dešiniojo sraigto taisykle: jei sraigtą suktume taip, kad jo galvutės sukimosi kryptis sutaptų su srovės vijoje kryptimi, tada sraigto slenkamasis judesys rodytų vektoriaus B

r kryptį

vijos ašyje.

16.4. Visuminės srovės dėsnis

Iš elektrostatikos žinoma, kad elektrostatinio lauko potencialumo sąlyga arba šio lauko stiprio vektoriaus Er

cirkuliacija uždaru kontūru L lygi nuliui:

0=⋅∫L

ldErr

. (16.12)

Skirtingai nuo elektrostatinio magnetinis laukas yra nepotencialinis, o sūkurinis. Paprasčiausia tai įrodyti tiesaus begalinio laido, kuriuo teka I stiprio elektros srovė, atveju (7 pav.). Tarkime, pasirinktas kontūras L yra bet kuri magnetinės indukcijos linija. Taigi magnetinės indukcijos cirkuliacija šiuo kontūru lygi

I0µµdlrIldB

r

L

2

0

0

2πµµ π

==⋅ ∫∫ ∞

rr, (16.13)

L

7 pav.

t. y. nelygi nuliui. Gauta išraiška tinka bet kokios formos kontūrui, apjuosiančiam tiesų begalinį laidą, kuriuo teka I stiprio srovė. Pati B

r cirkuliacija šiuo kontūru proporcinga srovės stipriui I.

Kai kontūras juosia keletą nuolatinių elektros srovių, jų sukurto suminio magnetinio lauko indukcija šiuo kontūru proporcinga juosiamų srovės stiprių algebrinei sumai:

∑∫=

=n

ii

L

IldB1

0µµrr

B

; (16.14)

čia n – juosiamų srovių skaičius. Ši lygtis yra matematinė visuminės srovės dėsnio laidumo srovėms išraiška.

16.5. Visuminės srovės dėsnio taikymas solenoido magnetinio lauko skaičiavimui

Apskaičiuosime magnetinio lauko indukciją viduje solenoido – cilindrinės ritės, susidedančios iš didelio skaičiaus izoliuotos vielos vijų, tolygiai užvyniotų ant bendro karkaso. Nagrinėsime solenoidą, kurio ilgis l >> d, vijų skaičius N, jomis tekančios srovės stipris I. Bandymais nustatyta, kad solenoido viduje magnetinis laukas praktiškai vienalytis, jo jėgų linijos lygiagrečios solenoido ašiai. Solenoido išorėje laukas nevienalytis ir labai silpnas, praktiškai lygus nuliui.

Pritaikysime visuminės srovės dėsnį solenoido magnetinei indukcijai apskaičiuoti. Apskaičiuokime

r cirkuliaciją laisvai

pasirinktu stačiakampiu kontūru 1-2-3-4-1 (8 pav.):

0

1

4

4

3

3

2

2

1

lBldBldBldBldBldBL

=+++= ∫∫∫∫∫rrrrrrrrrr

, (16.15)

8 pav. nes nelygus nuliui tik antrasis narys, jei atkarpoje 4–1 indukcija B = 0. Taigi gaunama, kad

Page 25: Fizikos Egzamino Medziaga Pilna

– 25 –

NIBl 00 µµ= ; (16.16) čia N – kontūro juosiamų vijų skaičius. Iš čia magnetinė indukcija solenoide lygi

nIB 0µµ= ; (16.17) čia 0lNn = – ilginis vijų tankis (vijų skaičius solenoido ilgio vienete).

16.7. Magnetinio lauko ir srovės sąveika

Ampero jėga. Amperas nustatė, kad magnetinis laukas veikia srovės elementą lIdr

jėga BlIdFd A

rrr×= (16.18)

arba skaliariškai αsinIdlBdFA = ; (16.19)

čia α – kampas tarp ldr

ir Br

krypčių. Kai laidas tiesus, o magnetinis laukas vienalytis, Ampero jėgos modulis αsinIlBFA = . (16.20)

Taigi Ampero jėga didžiausia, kai laidas statmenas Br

linijoms (9 pav.). Remiantis tuo, dažnai magnetinė indukcija apibūdinama taip:

lIF

B max,A= , (16.21)

t. y. magnetinė indukcija skaitine verte lygi maksimaliai jėgai, kuria magnetinis laukas veikia vienetinio ilgio tiesų laidą, kai juo teka I = 1 A stiprio elektros srovė. Atitinkamai nustatomas ir jos matavimo vienetas tesla: ( )m1A1N1T ⋅=1 . Vadinasi, vienos teslos indukcijos magnetinis laukas veikia kiekvieno tiesaus laido, kuriuo teka 1 A stiprio elektros srovė, ilgio vienetą 1 N jėga. Ampero jėgos kryptis nustatoma vektorinės sandaugos arba kairiosios rankos taisyklėmis. Pastaroji dažniausiai formuluojama taip: B

r linijos statmenai veria delną, keturi ištiesti pirštai rodo srovės

kryptį, o delno plokštumoje 90º kampu atlenktas nykštys rodo AFr

kryptį.

9 pav.

Dviejų tiesių lygiagrečių elektros srovių magnetinė sąveika. Šią sąveiką pastebėjo Amperas ir nustatė, kad dvi lygiagrečios elektros srovės viena kitą traukia arba stumia priklausomai nuo jų tekėjimo krypčių (10 pav.). Kadangi abi srovės yra viena kitos sukurtame magnetiniame lauke, tai atsiradusios Ampero jėgos ir veikia kiekvieną iš jų. 11 paveiksle

pavaizduotas dviejų begalinių lygiagrečių srovių magnetinės sąveikos plokščiasis pjūvis.

Srovių magnetinės sąveikos jėgos lygios, bet priešingų krypčių. Jų moduliai yra:

dlIIlBIF , π

µµ2

2101212 == ∞ , (16.22a)

12210

2121 2F

dlIIlBIF , === ∞ π

µµ

0

. (16.22b)

Šiomis lygtimis išreiškiamas Ampero dėsnis: dviejų plonų be galo ilgų lygiagrečių laidų, kuriais teka srovės, magnetinės sąveikos jėga proporcinga srovių stiprių sandaugai, laido ilgiui ir atvirkščiai proporcinga atstumui tarp jų. Remiantis šiuo dėsniu, apibūdinamas srovės stiprio vienetas amperas: amperas – tais nuolatinės elektros srovės, kuriai tekant dviem plonais be galo ilgais lygiagrečiais laidais, esančiais vienas nuo kito 1 m

atstumu, jų kiekvieną ilgio metrą veikia 2⋅10–7 N magnetinė jėga, stipris. Iš čia ir gaunama magnetinės konstantos µ skaitinė vertė:

mH104π

mH

lIIdF 7sąą −

⋅=⋅⋅⋅⋅⋅⋅

==1111102122 7

210

πµπ

µ

16.8. Rėmelis, kuriuo teka srovė, vienalyčiame magnetiniame lauke

Sakysime, indukcijos B

r vienalyčiame magnetiniame lauke yra rėmelis, kuriuo teka I stiprio nuolatinė srovė (12 pav.).

Magnetinis laukas lygiagretus rėmelio plokštumai ( nBrr

⊥ ). Apatinės ir viršutinės rėmelio kraštinių Ampero jėgos neveikia ( Br lId

r), šoninės kraštinės veikiamos jėgomis 1F

r ir 2F

r, kurios verčia rėmelį suktis apie ašį OO* ( OO B*

r⊥ ). Šių jėgų petys

221lll == . Rėmelio sukimo momento modulis

;BpIBSIBlIBllFllFlFM m=====+= 22211 (16.23)

Page 26: Fizikos Egzamino Medziaga Pilna

– 26 –

čia – rėmelio ribojamo paviršiaus plotas, 2lS = ISpm = – srovės rėmelio magnetinio momento modulis. Plotui gali būti

suteiktos vektoriaus savybės: nSSrr

= . Teigiamąja nr normalės vektoriaus kryptimi imama ta, kuri susijusi su srovės kryptimi

dešininio sraigto taisykle. Tada magnetinio momento vektorius .SIpm

rr=

Rėmelio sukimo momento vektorius Mr

statmenas vektorių mpr

ir Br

sudaromai plokštumai, t.y. lygiagretus ašiai OO*:

BpM m

rrr×=

B

12 pav.

mpr

I Br

nv

O*

O

1Fr

. (16.24)

Magnetinio lauko jėgos stengiasi pasukti rėmelį taip, kad jo magnetinis momentas pasidarytų lygiagretus vektoriui

r,nes tik

tuomet sukimo momentas Mr

tampa lygus nuliui: 0=Mr

, kai

mpr

|| Br

. Tuo paremtas elektros variklių ir magnetoelektrinės sistemos matavimo prietaisų veikimo principas.

Bendru atveju, kai kontūro plokštuma nėra lygiagreti vektoriui B

r (kampas tarp

vektorių Br

ir mpr

lygus α (13 pav.), rėmelio sukimo momento modulis M=pmBsinα , o jo vektorius – M .Bpm

rrr×=

I rpm

rB

α

13 pav.

16.9. Krūvininkų judėjimas elektromagnetiniame lauke. Lorenco jėga

Lorenco jėga – tai jėga, kuria elektromagnetinis laukas veikia jame judantį krūvininką:

BvqEqFL

rrrr. (16.25) ×+=

Pirmasis dėmuo rodo jėgą, kuria elektrinis laukas veikia jame esantį krūvininką, antrasis dėmuo – jėgą, kuria magnetinis laukas veikia jame judantį krūvininką. Tai Lorenco jėgos magnetinė dedamoji:

BvqFLm

rrr. (16.26) ×=

Jėgos LmFr

kryptis nustatoma kairiosios rankos taisykle, kai krūvis teigiamas, ir dešiniosios rankos taisykle, kai krūvis

neigiamas. Taigi LmFr

visada statmena krūvininko greičiui vr

, t.y. ji yra įcentrinė jėga ir mechaninio darbo neatlieka, tik keičia krūvininko judėjimo kryptį.

Krūvininko judėjimo trajektorijos forma priklauso nuo kampo α, kuriuo jis įlekia į vienalytį magnetinį lauką Br

linijų atžvilgiu.

1. Kai krūvininkas juda išilgai magnetinio lauko, t. y. kai kampas °°= 1800 arbaα , tai FLm = 0 ir todėl judėjimo trajektorija yra tiesė (14 pav., a).

2. Kai krūvininkas įlekia statmenai į magnetinio lauko sritį ( )Bvrr

⊥ , jo trajektorija – apskritimo lankas (14 pav., b), kurio kreivumo spindulys R nustatomas iš Lorenco jėgos magnetinės dedamosios, kaip įcentrinės jėgos. Taikome antrąjį Niutono dėsnį:

įcLm maF = . Įstatę jėgos ir įcentrinio pagreičio išraiškas, gauname:

RvmBvq 2⊥⊥ = .

Iš čia

constqBvmR == ⊥ . (16.27)

Vadinasi, kuo didesnis krūvininko

impulsas , tuo sunkiau magnetinei jėgai nukreipti krūvininką judėti kreiva trajektorija ir todėl tuo didesnis jos kreivumo spindulys.

⊥vm 14 pav.

Vieno apsisukimo laikas, t. y. sukimosi periodas

qBm

vRT ππ 22==

(16.28)

nepriklauso nei nuo krūvininko greičio, nei nuo trajektorijos spindulio, o priklauso tik nuo magnetinės indukcijos B ir dalelės savitojo krūvio q/m.

Page 27: Fizikos Egzamino Medziaga Pilna

– 27 –

3. Kai krūvininko greitis ir magnetinė indukcija vr

Br

sudaro bet kokį kampą α, šis kampas nekinta judėjimo metu, o judėjimo trajektorija – vienodo žingsnio h sraigtinė linija (14 pav., c). Tai paaiškinama tuo, kad krūvininkas tuo pačiu metu sukasi greičiu ⊥v

r ir slenka greičiu IIv

r (15 pav.):

IIvvvrrr

+= ⊥ ; (16.29) čia αsinvv =⊥ , αcosvvII = . Trajektorijos kreivumo spindulys

qBsinvmR α

= , (16.30)

jos žingsnis

qBcosvmTvh II

απ2== . (16.31)

Sukimosi kryptis priklauso nuo krūvininko ženklo (16 pav.).

16.10. Lorenco jėgos praktinio taikymo pavyzdžiai. Holo reiškinys

Elektringųjų dalelių judėjimu elektriniame ir magnetiniame laukuose pagrįstas masių spektrografo veikimas. Anglų fiziko F. V. Astono sukurto masių spektrografo principinė schema pateikta 17 paveiksle.

Praėjęs pro siaurą pluoštą formuojančias diafragmas D1 ir D2, greitų skirtingų jonų pluoštelis išskleidžiamas vienalyčiame elektriniame lauke ir kreipiamas priešinga kryptimi magnetiniame lauke. Čia Lorenco magnetinės jėgos veikiami jie juda apskritimų lankais. Kaip matyti (16.27) formulėje, jų kreivumo spinduliai tuo didesni, kuo didesni greičiai ir mažesni savitieji krūviai q/m. Todėl viršutinę kiekvieno pluoštelio trajektoriją atitinka

greičiausi savitojo krūvio jonai. Taigi magnetinis laukas fokusuoja vienodo savitojo krūvio jonus fotoplokštelės taškuose 1 ir 2. Taip buvo atrasti stabilūs izotopai, ištirta elementų izotopinė sudėtis ir nustatyta jų atominė masė.

Holo reiškinys. Kai I stiprio elektros srovė teka metalo arba puslaidininkio plokštele, esančia Br

indukcijos magnetiniame lauke, plokštelėje atsiranda skersinis HE

r stiprio elektrinis laukas, statmenas I ir magnetinės indukcijos B

r

kryptims. Šio lauko stiprio vertė αsinIBRE HH = ; (16.32)

čia RH – Holo konstanta; α – kampas tarp srovės tekėjimo ir magnetinės indukcijos krypčių. Skersinio elektrinio lauko susidarymas paaiškinamas kryptingai judančių krūvininkų atskyrimu, veikiant Lorenco jėgos

magnetinei dedamajai BvqFLm

rrr×= . Jos modulis lygus

αsinBvqFLm = ; (16.33)

čia v – krūvininkų kryptingo judėjimo greičio modulis. Tai vyksta tol, kol atsiradusio elektrinio lauko jėga eFr

atsveria mFr

, t.y. αsinBvqqEH = . (16.34)

Metalinės plokštelės atveju judantys

krūvininkai yra laidumo elektronai. Kai kampas α = 90°, jie juda apskritiminėmis trajektorijomis ir kaupiasi prie viršutinės sienelės (18 pav.). Dėl to apatinė sienelė įsielektrina teigiamai. Kai šių jėgų moduliai pasidaro lygūs, nusistovi pusiausvyra ir krūvininkai juda tiesiai. Skersinio elektrinio lauko stipris tuomet nekinta. Kadangi srovės stipris

SevnjSI 0== ; čia j – srovės tankis; n0 – krūvininkų koncentracija; S – plokštelės sk pjūvio plotas, tai iš (16.34) išraiškos elektrinio lauko ersstiprio modulis

SensinIBEH

0

α= (16.35)

Dydis RH = 1 / (en0) vadinamas Holo konstanta. Metaluose laisvųjų krūvininkų koncentracija n0 didelė, todėl jų Holo konstantos skaitinės vertės mažos; puslaidininkių – atvirkščiai, Holo konstantos didelės. Holo konstantos ženklas – toks pat kaip krūvininko. Iš jos ženklo sprendžiama apie priemaišinių puslaidininkių laidumo tipą.

+ + + + + + + + + +

+

+

+

+

+

+

+

+

Iv

BX

e

Fe

Fm

X

17 pav.

18 pav. 19 pav.

16 pav.

15 pav.

Page 28: Fizikos Egzamino Medziaga Pilna

– 28 –

Praktiškai matuojamas skersinis potencialų skirtumas ∆ϕH arba Holo įtampa

bsinIBRbE H

HHαϕ ==∆ ; (16.36)

čia b – plokštelės storis magnetinio ko k(20 pav.). Kai α = 90°, šis skirtumas

lau ryptimi

bIBRH

H =∆ϕ (16.37)

Išmatavus Holo potencialų skirtumą ∆ϕH, plokštele tekančios elektros srovės stiprį I ir žinant

magnetinę indukciją B, gal aičiuoti Holo konstantą RH, o po to ir krūvininkų koncentraciją n0 bei jgalima apskaičiuoti krūvinin į laisvąjį lėkį

plokštelės storį b bei ų tipą. Pagaliau ima apsk

ko vidutin l .

16.6. Magnetinis srautas. Gauso dėsnis magnetiniam laukui

M gnetinės indukcijos vektoriaus elementariuoju srautu pro plotelio dS paviršiaus elementą vadinamas skaliarinis dydis, nusakomas lygybe:

a

dSB)n,Bcos(BdSSdSnBd nB ====Φrrrrr

dBr

; (16.38)

čia B)n,Bcos(BBrrr

−= vektoriaus projekcija paviršiaus normalėje (21 pav.); dSnSdrr

= – n

paviršiaus pseudovektorius. Jeigu vektoriaus Br

srautas siejasrovė, tokiu atveju ės krypti

s dešiniojo sraigto tata

mas su tam tikru kontūru, kuriuo teka teigiamoji kontūro normalės kryptis su tekančios srov mi sieja isykle.

Magnetinės indukcijos vektoriaus srau s pro bet kokio ploto paviršių:

∫=S

B SdBΦrr

. (16.39)

ytis, o paviršius statm nas vektoriui Br

, .BSB =ΦJeigu laukas vienal e Magnetini . 2

Tai toks srautas, kurį sukuria 1T indukcijos vienalytis magnetinis laukas, prdinamas

o srauto vienetas yra vėberis (1Wb = 1T 1m ). aeinantis pro statmeną jam 1m2 ploto paviršių.

N vienodų vijų sistemą veriantis magnetinis srautas va surištuoju. Jis lygus

Φ=Ψ N ; (16.40) čia Φ –

adangi magnetinės indukcijos linijos yra uždaros, tai bet kuri iš jų įėjusi pro uždarąjį paviršių būtinai pro jį ir išeina. Seka, kad magnetinio lauko indukcijos vektoriaus srautas pro bet

vieną viją veriantis magnetinis srautas. K

kokį uždarąjį paviršių lygus nuliui:

∫ ∫ ==S

n .dSBSdB 0rr

(16.41)

Ši form ė išreiškia Gauso dėsnį magnetiniam laukui. Palyginus šią lygybę su Gauso dėsnio elektrostatiniam laukui išraiška ul

∫ ∑=S ε

iqSdErr

, galima padaryti išvadą, kad gamtoje magnetinių krūvių nėra.

20 pav.

21 pav.

Page 29: Fizikos Egzamino Medziaga Pilna

– 29 –

17. Elektromagnetinė indukcija

17.1. Elektromagnetinė indukcija. Faradėjaus dėsnis

Jau žinome, kad elektros srovė sukuria magnetinį lauką. Ar nėra atvirkštinio reiškinio, kada magnetinis laukas sukuria elektros srovę? Pirmasis į šį klausimą teigiamą bandymais pagrįstą atsakymą davė Faradėjus (M. Faraday) 1831 m. Jis pastebėjo, kad kintant uždarą laidų kontūrą kertančiam magnetiniam laukui, tame kontūre atsiranda elektros srovė. Ji buvo pavadinta indukuotąja srove, o šis reiškinys - elektromagnetinės indukcijos reiškiniu.

Bandymais buvo nustatyta, kad indukuotosios srovės stipris proporcingas magnetinio srauto kitimo spartai nepriklausomai nuo to, dėl kokios priežasties kinta srautas:

Iind ∼ dΦ/dt (17.1)

Srautas gali kisti judant kontūrui magneto atžvilgiu, jam pasisukant arba jam deformuojantis. Suprantama, jog vienu metu gali veikti du ar visi trys šie veiksniai.

Bandymai rodo, kad indukuotosios kontūre srovės kryptis priklauso nuo to, silpnėja ar stiprėja kontūrą kertantis magnetinis srautas, taip pat nuo magnetinio lauko indukcijos vektoriaus krypties kontūro atžvilgiu. Apibendrintą taisyklę, pagal kurią galima nustatyti indukuotosios srovės kryptį, 1883 m. suformulavo Lencas (E. Lenz): uždarame kontūre indukuotoji elektros srovė teka tokia kryptimi, kad jos kuriamas magnetinis srautas, kertantis kontūro ribojamą plotą, priešinasi ją sukūrusio srauto kitimui.

S

N dd

rBt

rv

rBind

Iind

rB

a)

S

N dd

rBt

rv

rBind

Iind

rB

b)

S

N

dd

rBt

rvrBind

Iind rB

c)

S

N

dd

rBt

rv

rBind

Iind

rB

d)

1 pav.

Panagrinėkime keletą konkrečių atvejų. Tarkime, tiesusis magnetas šiauriniu poliumi artinamas prie uždaros vijos (1 pav., a). Šiuo atveju viją kertantis magnetinis srautas nukreiptas žemyn ir stiprėja, tad vijoje indukuotoji srovė Iind tekės tokia kryptimi, kad jos kuriamas magnetinis srautas būtų nukreiptas į viršų ir kompensuotų magnetinio srauto stiprėjimą. Kontūro

ribojamas plotas S šiuo atveju nekinta, taigi .tdBdS

tdΦd= Vektoriaus B

r moduliui didėjant, jo išvestinės

tdBdr

kryptis sutampa

su kryptimi, t, y. Br

tdBdr

nukreiptas žemyn. Sutinkamai su Lenco taisykle indukuotoji srovė turi tekėti tokia kryptimi, kad jos

kuriamo magnetinio lauko indukcija būtų nukreipta į viršų. Priminsime, kad vektoriaus indBr

kryptis susijusi su Iind kryptimi dešiniojo sraigto taisykle.

Nesunku įsitikinti, kad tolinant magnetą nuo vijos (1 pav., b) magnetinis srautas, kertantis vijos plotą, silpnėja, tad tdBdr

nukreipta prieš Br

kryptį, t. y. į viršų. indBr

ir šiuo atveju turi būti nukreipta prieš tdBdr

kryptį, t. y. žemyn. Išsiaiškinę indBr

kryptį, pagal dešiniojo sraigto taisyklę nustatome Iind kryptį. Panašiai samprotaujant lengva nustatyti indukuotosios srovės kryptį, kai magnetas pietiniu poliumi artėja prie vijos (1 pav., c) ar tolsta nuo jos (1 pav., d).

Atkreipsime dėmesį, kad indukuotosios srovės kryptis susijusi su tdBdr

vektoriaus kryptimi kairinio sraigto taisykle.

Elektromagnetinės indukcijos reiškinio esmę nusakantis dėsnis (Faradėjaus dėsnis) teigia, kad indukcinė elektrovara lygi magnetinio srauto kitimo spartai su minuso ženklu:

dtd

indΦ

−=ε . (17.2)

Minuso ženklas išreiškia Lenco taisyklę. Jei kelis nuosekliai sujungtus kontūrus kerta tas pats magnetinis srautas, tada indukcinė evj lygi indukcinių evj

kiekviename kontūre sumai. Pavyzdžiui, jei tas pats magnetinis srautas kerta ritę, turinčią N vijų, ritėje indukuojama evj

.tdΦdNind −=ε ` (17.3)

Page 30: Fizikos Egzamino Medziaga Pilna

– 30 –

17.2. Indukcinės elektrovaros kilmė

Indukcinė elektrovara atsiranda tiek nejudančiame laidininke, kurį kerta kintamas magnetinis laukas, tiek ir laidininke, kuris juda vienalyčiame magnetiniame lauke. Pirmuoju atveju elektrovaros atsiradimas paaiškinamas tuo, kad kintamas magnetinis laukas kuria sūkurinį elektrinį lauką, t. y. lauką, kurio jėgų linijos yra uždaros (2 pav.). Sūkurinio elektrinio lauko kryptis priklauso nuo magnetinio lauko kitimo spartos pobūdžio: 2 pav.,a – magnetinis laukas stiprėja; b – magnetinis laukas silpnėja.

Kadangi elektrovara lygi pašalinių jėgų darbui perkeliant teigiamą vienetinį krūvį uždara grandine, t. y. kadangi

∫=l

i ldErr

ε , (17.4)

o pagal Faradėjaus elektromagnetinės indukcijos dėsnį elektrovara

ti ∂Φ∂

−=ε

tai

,

tldE

l ∂Φ∂

−=∫i =rr

ε . 17.5

Vadinasi, sūkurinio elektrinio lauko cirkuliacija kontūru l lygi indukcinei elektrovarai.

kontūras juda vienalyčiame lauke, indukcinės elektrovaros atsiradimo priežas

( )

stiprio

Antruoju atveju, kai laidininkas ar laidustis yra Lorenco jėgos magnetinės dedamosios LmF

r veikimas į laisvuosius elektronus. Tegul l ilgio tiesus laidas pastoviu

greičiu vr

juda plokštumoje XOZ statmenai Br

linijom pav.). Laisvuosius elektronus veikianti jėga s (3( ) BvveFLm

rrrr×′+= ; (17.6)

čia v ′r

– elektronų kryptingo judėjimo išilgai laido greitis, atsirandantis dėl jų judėjimo greičiu vr

kartu su strypu. Būtent jėgos deda oji Bvem

rr× priverčia laisvuosius elektronus kauptis laido gale C tol, kol dėl to atsiradus elektrinio lauko jėga atsvers

Lorenco m nę dedamąją: i

agnetiBveeE = . (17.7)

Nuo šio momento greitis 0=′vr

, t.y. la tikro ido galuose susidaro tamdydžio potencialų skirtumas:

Bvl=∆ϕ . (17.8) Kadangi atka

elektro

Bvli =

rpoje jokių varos šaltinių nėra, tai potencialų

skirtumas lygus indukcinei elektrovarai. Taigi

ε , (17.9) t.y. indukcin kt

proporcinga la

Prie jo galų prijungus apkrovą, grandine tekės indukcinė elektros srovė (4 p ios rankos

3 pav. 4 pav.

2 pav.

ė ele rovara ido ilgiui, jo greičiui ir

magnetinei indukcijai. Šiuo atveju magnetinis laukas kinta dėl kontūro ribojamo ploto kitimo (brūkšniuotas). av.). Srovės kryptis nusakoma dešinios

taisykle: kai Br

linijos statmenos delnui, o atlenktas nykštys rodo laido judėjimo kryptį, tai keturi ištiesti pirštai rodo indukcinės srovės kry tį.

p

17.3. Saviindukcijos reiškinys. Induktyvumas

lektros srovės sukurto magnetinio lauko indukcija pagal Bio ir Savaro dėsnį proporcinga srovės stipriui, t. y. B ~ I. Taigi i

Er šio lauko magnetinis srautas

∫=ΦS

SdBrr

(17.10)

taip pat proporcingas srovės stipriui, t. y. LI=Φ . (17.11)

Dydis L vadinamas srovės kontūro induktyvumu. Jo matavimo vienetas – henris (H): 1H – tai kontūro, kuriuo, tekant 1Astiprio

ežasčių kinta kontūrą veriantis surištasis magnetinis srautas, tai jame atsiranda saviindukcijos elektrovara εs:

elektros srovei, sukuriamas 1 Wb magnetinis srautas, induktyvumas. Jis priklauso nuo kontūro matmenų, formos ir aplinkos magnetinių savybių.

Kai dėl kokių nors pri

Page 31: Fizikos Egzamino Medziaga Pilna

– 31 –

dtdLI

dtdIL

dtd

−−=sΨ

−=ε . (17.12)

Taigi indukcijos elektrovaros atsiradimą galima paaiškinti arba kontūarba abiejų jų kitimu. Jeigu induktyvumas L = const, tai

ro induktyvumo, arba juo tekančios srovės stiprio,

dtdIL−=ε . (17.13) s

Minuso ženklas rodo, kad saviindukcijos srovė priešinasi sVadinasi, kontūro induktyvumas yra jo elektrinio inertiškumo matas

s indukcijos reiškinys

Šio reiškinio esmė – indu iame greta kito kontūro, kuriuo tekanč s kintamosios srovės sukurtas magnetinis laukas veria tą kontūrą (5 pav.).

ančios elektros srovės stipriui:

rovės stiprio kitimui kontūre ir todėl lėtina kitimo spartą. .

17.4. Abipusės elektromagnetinė

kcinės elektrovaros atsiradimas laidžiame kontūre, esanč

ioNustatyta, kad antrąjį kontūrą veriantis surištasis magnetinis srautas

proporcingas pirmuoju kontūru tek12121 IL=Ψ ; (17.14)

čia L21 – proporcingumo koeficientas, dažnai vadinamas abipusiu induktyvumu.

magnetinis srautas Atvirkščiai, kai antruoju kontūru teka I2 stiprio srovė, tai pirmąjį

kontūrą veria surištasis 21212 IL=Ψ ; (17.15)

ktyvumas, apibūdinantis abiejų kontūrų ačia dydis L = taip pat abipusis induinduktyvumas priklauso nuo kontūrų (apvijų) matmenų, formos, tarpusavio padėties ir

o matav

21L – bipusį magnetinį ryšį. Abipusis terpės magnetinės skvarbos. Abipusio

12

induktyvum imo vienetas, kaip ir induktyvumo, yra henris (H). Indukcinė elektrovara antrinėje apvijoje

dtdIL

dtd 21 =Ψ

−=ε i1

212 − . (17.16)

Analogiškai elektrovara pirminėje apvijoje

dtdIL

dtd

i2

1212

1 −=Ψ

−=ε . (17.17)

Abipusis induktyvumas , kai terpė neferomagnetinconstLL == 2112 ė. Kai terpė feromagnetinė, 2112 LL ≠ , nes kiekvienas iš jų dar priklauso nuo I1 ir I2.

ės indukcijos r atorius i keisti.

etinio lauko energija ir jos tankis

Prie tų induktyvumo L ir rezistoriaus R, prijunkime nuolatinės įtampos šalti , kurio elektrovara ε (6 pav.). Grandine ims tekėti srovė

Abipusės elektromagnetin eiškiniu pagrįstas transformatoriaus veikimas. Transform – tai įrenginys įtampai ar elektros srovės stipriu

17.5. Magn

grandinės, susidedančios iš nuosekliai sujungnį

.R

I sεε +=

Įrašę čia εs išraišką (17.13), tą lygybę galime užrašyti šitaip:

.td

LIR +=ε Id

Šios lygybės abi puses padauginę iš Idt, gausime:

čia εIdt = dApaš − šaltinio pašalinių jėgų per laiką dt atli = dQ − per tą patį laiką rezistoriuje R išsiskyręs šilumos kiekis. Matome, kad

iktas darbas yra didesnis už grandinėje išsiskyrusį šilumos kiekį per tą patį laiką. Šio darbo ir šilumos kiekio skirtumas LIdI virto magnetinio lauko e

(17.18)

Jei srovės stipris grandinėje padidėjo nuo

εIdt = I2Rdt+LIdI;

ktas darbas, I2Rdt

dApaš = dQ+LIdI, t. y. šaltinio pašalinių jėgų atl

nergija. Taigi

dW = LIdI = IdΦ.

0 iki I, integruodami (17.18) gauname:

∫ == .LIIdLIW2

I

0

2

(17.19)

Atsižvelgdami į (17.19), kontūro su srove magnetinio lauko energiją galime apskaičiuoti pagal vieną iš šių formulių:

5 pav.

ε

L R

I

6 pav.

Page 32: Fizikos Egzamino Medziaga Pilna

– 32 –

.I

ΦIΦLIW222

22

===

(17.20)

N kontūrų su srovėmis magnetinio lauko energija

∑∑= =

=N N1

i kkiik .IILW

1 12

siskirsčiusi tūryje V, tai jos tūriniu tankiu vadinamas dydis wm=W/V. Jis ska nio lauko, esančio is tankis priklauso nuo magnetinio lauko charakteristikų ir terpės magnetinių savybių:

(17.12)

Jei vienalyčio magnetinio lauko energija W yra paitine verte lygus vienalyčio magneti vienetiniame tūryje, energijai. Energijos tūrin

220

0

HBwmµµ

µµ== . (17.21)

Kai magnetinis laukas nevienalytis, jo magnetinė energija randam

22

a integruojant: ;

čia w – m ką galima laikyti vienalyčiu.

∫=V

wdVW (17.22)

agnetinio lauko energijos tūrinis tankis (17.21). Nykstamai mažame tūryje dV lau

Page 33: Fizikos Egzamino Medziaga Pilna

– 33 –

18. Magnetinis laukas medžiagoje

18.1. Medžiagos įmagnetėjimas, įmagnetėjimo vektorius

Bandymai rodo, kad medžiagoje magnetinis laukas yra kitoks negu vakuume. Tai rodo, kad medžiaga, patekusi į išorinį magnetinį lauką, pati kuria savo magnetinį lauką, kuris vektoriškai sumuojasi su išoriniu lauku. Sakoma, kad medžiagos magnetiniame lauke įmagnetėja. Įmagnetėjančios medžiagos vadinamos magnetikais.

Visos medžiagos pasižymi magnetinėmis savybėmis, pagal kurias jos skirstomos į diamagnetikus, paramagnetikus, feromagnetikus ir kt. Diamagnetikų ir paramagnetikų magnetinės savybės paaiškinamos elektronų orbitiniais magnetiniais momentais (1 pav.):

nISpmorr

= ; (18.1)

čia I = eν – elektrono judėjimo nulemtos mikroelektros srovės stipris; ν – sukimosi dažnis (~1015 s–1), – orbitos plotas. 2rS π=Elektronui būdingas ir savasis magnetinis momentas msp

r, kurį lemia jo sukinys, t. y. tokia neatskiriama elektrono savybė,

kaip jo krūvis ar masė. Skaitine verte jis proporcingas Boro magnetonui e

B me

2h

=µ :

( ) Bms ssp µ1+= ; (18.2)

vr I

mopr

1 pav.

S

čia s = 1 / 2 – sukinio kvantinis skaičius. Todėl atomo ar molekulės magnetinis momentas lygus jų elektronų orbitinių p

r ir savųjų pmo ms

r magnetinių momentų sumai:

∑∑ +=n

ii,ms

n

ii,mom ppp

rrr. (18.3)

Medžiagos įmagnetėjimas apibūdinamas jos tūrio vieneto magnetiniu momentu:

∑=

=n

imp

VJ

1

1 rr. (18.4)

18.2. Diamagnetizmas ir paramagnetizmas

Medžiagos, kurių atomų ar molekulių 0=mp

r, kol išorinio magnetinio lauko nėra, vadinamos diamagnetikais (inertinės

dujos, bismutas, grafitas, talis, cinkas, varis, sidabras, auksas, vanduo, stiklas). Medžiagos, kurių atomų ar molekulių 0≠mpr

, net ir tada, kai nėra išorinio magnetinio lauko, vadinamos paramagnetikais (deguonis, aliuminis, platina, kobaltas, volframas ir kt.). Dėl dalelių šiluminio judėjimo jų magnetiniai momentai orientuoti netvarkingai, medžiaga neįmagnetėjusi. Įnešus diamagnetinį ar paramagnetinį bandinį į vienalytį B0 indukcijos magnetinį lauką (2 pav.), pakinta elektrono judėjimo orbita greitis. Šis reiškinys vadinamas elektrono orbitos precesija. Dėl to pakinta ir jo orbitinis magnetinis momentas dydžiu

emiomim m

Breppp4

022

=−=∆ , (18.5)

nes em

erBvvv2

00 ±=−=∆ .

Galima įrodyti, kad mpr

∆ visada priešingos krypties išoriniam magnetiniam laukui. Todėl ir medžiagos įmagnetėjimas

Hm

BrNeJ

e

rr

rχ=−=

40

22

; (18.6)

vr Lr

ωr

α

I

mpr

0Br

mpr∆

2 pav.

Ω π−α

čia N – orbitų skaičius; r – jų vidutinis spindulys; χ – magnetinis jautris; Hr

– išorinio magnetinio lauko stipris. Magnetinio momento ir įmagnetėjimo atsiradimas vadinamas diamagnetiniu reiškiniu. Taigi diamagnetizmas – savybė, būdinga visoms medžiagoms. Tačiau ne visos medžiagos yra diamagnetikai, nes dažnai šį silpną reiškinį užgožia kitokie reiškiniai. Dažniausiai diamagnetikais esti tos medžiagos, kurių atomų ar molekulių pilnutiniai magnetiniai momentai lygūs nuliui.

mpr

Paramagnetikai yra tokios medžiagos, kurių molekulės turi magnetinį momentą. Kai magnetinio lauko nėra, atomų magnetinių momentų orientacija dėl šiluminio judėjimo yra betvarkė, todėl tų magnetinių momentų vektorinė suma lygi nuliui. Išoriniame magnetiniame lauke esančio paramagnetiko atomo magnetinio momento pm energija mažiausia, kai mp

r׀׀ Br

. Tačiau, veikiant magnetiniam laukui, kampas tarp atomo magnetinio momento ir magnetinės indukcijos krypčių nesikeičia: magnetinis momentas tik precesuoja apie B

r kryptį, nekintant kampui tarp jų. Dėl atomų sąveikos ir susidūrimų šis precesinis

judėjimas trumpam sutrinka. Tuomet magnetinis laukas ir orientuoja atomų magnetinius momentus taip, kad būtų mpr

|| Br

, todėl magnetinis laukas paramagnetike sustiprėja. Šiluminis judėjimas trukdo šiam orientavimui, dėl to paramagnetikų magnetinis jautris mažėja temperatūrai didėjant.

Paramagnetikų įmagnetėjimas vyksta panašiai kaip polinių dielektrikų poliarizacija. Silpnuose magnetiniuose laukuose įmagnetėjimas aprašomas taip:

Page 34: Fizikos Egzamino Medziaga Pilna

– 34 –

.kTNpJ

2m

30µ= (18.7)

18.3. Magnetinis laukas magnetike

Magnetinio lauko indukcija medžiagoje pagal laukų superpozicijos principą

iBBBrrr

+= 0 ; (18.8)

čia HBrr

00 µ= – lauko magnetinė indukcija tuštumoje; iBr

– indukuotojo lauko magnetinė indukcija:

JBi

rr0µ= . (18.9)

Žinoma, kad HJrr

χ= ; (18.10) čia χ – medžiagos magnetinis jautris. Taigi

( )HHHBrrrr

χµχµµ +=+= 1000 ; (18.11)

čia Hr

– įmagnetinančio lauko stipris. Pažymėję µχ =+1 , gauname

HBrr

0µµ= , (18.12) čia µ - medžiagos santykinė magnetinė skvarba. Ji parodo, kiek kartų magnetinio lauko indukcija medžiagoje yra didesnė negu vakuume:

.BB

0

r

r

=µ (18.13)

Diamagnetikų χd < 0, µd < 1 – jie įmagnetėja prieš magnetinį lauką; paramagnetikų χp > 0, µp > 1 – jie įmagnetėja lauko kryptimi, tačiau dalelių šiluminis judėjimas trukdo orientuojančiam magnetinio lauko poveikiui, nes T~p 1χ . Tiek µd, tiek µp nepriklauso nuo magnetinio lauko stiprio H.

18.4. Visuminės srovės dėsnis

16.4 skyrelyje visuminės srovės dėsnis užrašytas makroskopinių laidumo srovių vakuume sukurtam magnetiniam

laukui. Tačiau medžiagoje magnetinį lauką kuria ir molekulinės srovės – mikrosrovės. Todėl visuminės srovės dėsnis magnetikui užrašomas taip:

⎟⎟⎠

⎞⎜⎜⎝

⎛+= ∑∑∫

imol,i

ii

l

IIldB 0µrr

, (18.14)

t. y. magnetinės indukcijos cirkuliacija kontūru l proporcinga kontūro juosiamų laidumo srovių Ii ir molekulinių srovių Ii,mol sumai. Atsižvelgę į (18.8), visuminės srovės dėsnį perrašome taip:

moll

il

IIldBldH 000 µµµ +=+ ∫∫rrrr

(18.15)

Kadangi indukcija Bi susijusi su srove Imol, tai galima teigti, kad

moll

i IldB 0µ=∫rr

. (18.16)

Tuomet gauname IldH

l

=∫rr

; (18.17)

čia I – kontūro juosiamų makroskopinių laidumo srovių algebrinė suma. Tai ir yra visuminės srovės dėsnio magnetikui išraiška. Magnetinio lauko stiprio vektoriaus cirkuliacija kontūru l lygi kontūro juosiamų laidumo srovių algebrinei sumai ir nepriklauso nuo terpės magnetinių savybių.

5. Feromagnetikai

Feromagnetikai – kristalinės medžiagos, kurių atomų priešpaskutiniuose 3d ir 4f elektroniniuose sluoksniuose yra

nesukompensuotų elektronų sukinių. Tokiomis savybėmis pasižymi 9 cheminiai elementai (geležis, kobaltas, nikelis, gadolinis, disprozis, erbis, tulis, holmis, terbis) ir kai kurie jų lydiniai, kol jų temperatūra neviršija Kiuri temperatūros Θ, t. y. temperatūros, kurią viršijus feromagnetikai virsta paramagnetikais. Geležies Θ = 780 °C, nikelio 358 °C, permalojaus 550 °C, kobalto 1122 °C. Feromagnetikai pasižymi labai didele magnetine skvarba bei magnetiniu jautriu (µ>>1, χ>>1).

Feromagnetikų įmagnetėjimas Jr

netiesiškai priklauso nuo išorinio magnetinio lauko stiprio Hr

arba nuo magnetinės indukcijos 0B

r vakuume (3 pav.). Feromagnetiko pirminio įmagnetėjimo kreivėje galima išskirti tokias sritis: 1 – grįžtamųjų

procesų sritis; 2 – negrįžtamųjų procesų sritis, kai šuoliškai persiorientuoja sukiniai; 3 – sukimo sritis; 4 – soties sritis.

Page 35: Fizikos Egzamino Medziaga Pilna

– 35 –

JS

J

H0

1 2 3 4

3 pav.

Tai paaiškinama nedidelių sričių (10–5–10–2 cm) sričių – domènų – matmenų kitimu ir jų magnetinių momentų orientacija stiprėjant magnetiniam laukui (domènas – feromagnetiko savaiminio įmagnetėjimo sritis, kurioje, esant T = 0 K, elektronų savieji magnetiniai momentai orientuoti lygiagrečiai). Dėl to didėja energetiškai palankūs domènai, kurių iJ

r sudaro mažą kampą su H

r

kryptimi, ir mažėja nepalankūs domènai (4 pav.). Domènų dinamika stiprėjančiame magnetiniame lauke yra tokia: a) 0=∑ i,mp

r – ergija minimali; b)

0≠∑ i,mpr ;

ikristalo en

ci

) ∑ pr

=i

i,mS VJr 1 – lengviausio įmagnetėjimo kryptis; d) SJ

r

nukreiptas Hr

kryp mi. ti

s

Įmagnetėjimo kreivės 3 dalis vadinama magnetinio momento sukimo sritimi. Toliau stiprinant magnetinį lauką, bandinio įmagnetėjimas praktiškai nekinta ir lygus soties įmagnetėjimui J

r. Silpninant

magnetinį lauką, pirmiausia įmagnetėjimo vektorius

r vėl pasisuka lengviausio

įmagnetėjimo kryptimi (kryptimi, kuria įmagnetėjimo darbas minimalus), po to atsiranda domenai ir įmagnetėjimas mažėja iki liktinės vertės J

J

l (5 pav.). Įmagnetėjimas išnyksta, kai, pakeitus

magnetinio lauko kryptį, jo vertė lygi Hk – koerciniam lauko stipriui. Ir toliau stiprėjant priešingos krypties laukui, feromagnetikas vėl įmagnetėja iki įsotinimo (–Js). Visas bandinio permagnetinimo ciklas vaizduojamas uždara histerezės kilpa (5 pav.). Histerezė rodo bandinio savybių priklausomybę (tiksliau – jų vėlavimą) nuo prieš tai buvusių sąlygų, t. y. ar bandinys jau buvo magnetiniame lauke, ar ne. Kilpos plotas proporcingas energijai, reikalingai vieną kartą permagnetinti feromagnetinį bandinį ir dėl domenų trienties virstančia jo šiluma.

4 pav.

Minkštamagnečių medžiagų Jl ir Hk maži, o kilpa siaura (geležis, permalojus, supermalojus). Angliniai, volframiniai, chrominiai plienai pasižymi plačia histerėzės kilpa. Iš šių medžiagų gaminami nuolatiniai magnetai.

Feritai. Feritais vadinami sudėtingi geležies ir kitų metalų oksidų kompleksiniai kristaliniai junginiai. Feritų bendra formulė ; čia žymi

ir kitų metalų dvikrūvį joną. Daugumos feritų magnetinės savybės yra panašios į feromagnetikų. Pagal elektrines savybes feritai yra dielektrikai arba puslaidininkiai.

32OMeOFe Me+++++ 22222 Cu,Mg,Mn,Co,Ni

5 pav.

Page 36: Fizikos Egzamino Medziaga Pilna

19. Elektromagnetiniai virpesiai

19.1. Virpesių kontūras. Elektromagnetiniai virpesiai, jų diferencialinė lygtis ir sprendinys

Tarp įvairiausių elektrinių reiškinių ypatingą vietą užima elektromagnetiniai virpesiai, kuriems

vykstant elektriniai dydžiai - krūviai, srovių stipriai ir įtampos, elektriniai ir magnetiniai laukai -

periodiškai kinta. Tokie virpesiai sužadinami ir palaikomi tam tikrose elektrinėse grandinėse, iš kurių

paprasčiausia yra virpesių kontūras - elektrinė grandinė, turinti induktyvumą L, talpą C ir ominę varžą

R (1 pav.). Jeigu šaltinio elektrovara periodiškai kinta,

kontūru teka stiprio I kintamoji srovė - kontūre atsiranda

elektromagnetiniai virpesiai. Omo dėsnis virpesių

kontūrui užrašomas taip:

,21 sIR (19.1)

čia dtLdIs / - saviindukcijos evj. Kondensatoriaus

elektrodų potencialai φ1<φ2, jų skirtumas

,/21 Cq srovės stipris kontūre lygus

kondensatoriaus krūvio išvestinei laiko atžvilgiu:

;dt

dqI (19.2)

Lygybę (1.1) perrašome taip:

Ldt

qdLt

C

qR

dt

dq:;)(

2

2

)(11

2

2

tL

qLCdt

dq

L

R

dt

qd ; (19.3)

Užrašytoji lygtis analogiška mechaninių svyravimų diferencialinei lygčiai

tFsdt

ds

dt

sd cos2 0

2

02

2

,

todėl, užrašydami lygties (19.3) sprendinius, ta analogija ir pasinaudosime.

19.2. Laisvieji virpesiai idealiajame kontūre Panagrinėkime virpesius kontūre, kurio ominė varža nykstamai maža (R~0). Virpesiams sužadinti

kondensatorius vieną kartą įkraunamas krūviu ±q. Tarp plokščių susikuria elektrinis laukas, kurio

energija )2/(2 CqW m (2 pav. a)

1 pav.

2 pav.

Page 37: Fizikos Egzamino Medziaga Pilna

Sujungus grandinę, kondensatorius pradeda išsikrauti, kontūru ima tekėti stiprėjanti elektros srovė,

elektrinio lauko energija mažėja, magnetinio - didėja. Pagal energijos tvermės dėsnį, pilnoji kontūro

energija

constLICU

WWW me 22

22

. (19.4)

Laiko momentu Tt4

1 , kuomet kondensatorius pilnai išsikrovęs, elektrinio lauko energija lygi nuliui,

magnetinio lauko energija, kaip ir srovės stipris, maksimalūs. Nuo šio momento srovė kontūre silpnėja,

silpnėja ir magnetinis laukas, dėl ko ritėje indukuojama saviindukcijos elektrovara. Jos kuriama srovė

teka ta pačia kryptimi kaip ir silpnėjanti kondensatoriaus iškrovos srovė (Lenco taisyklė) ir

kondensatoriaus elektrodus įkrauna priešingų ženklų krūviais negu kad laiko momentu t = 0.

Įsikraunant kondensatoriui, magnetinio lauko energija virsta elektrinio lauko energija. Laiko momentu

Tt2

1 kondensatorius yra pilnai įsikrovęs ir nagrinėtieji procesai vyksta priešinga kryptimi. Energijos

virsmai virpesių kontūre analogiški mechaninės svyruoklės energijos virsmams (2 pav.).

Aprašydami nagrinėtuosius procesus matematiškai, pasinaudosime (19.3) lygybe, įvertinę tai, kad R

= 0 ir ε = 0 (virpesiai laisvieji):

;01

2

2

qLCdt

qd (19.5)

arba .02

02

2

qdt

qd (19.6)

čia )/(12

0 LC . ω0 - krūvio svyravimų ciklinis dažnis (savasis kontūro dažnis). Šios lygties

sprendinys

);cos( 00 tqq m (19.7)

čia qm - kondensatoriaus krūvio svyravimų amplitudė. Kontūro savųjų virpesių periodas

LCT

2

2

0

0 . (19.8)

Formulė (1.8) vadinama Tomsono formule. Srovės stipris kontūre kinta taip:

);2

cos()sin( 00000

tItq

dt

dqi mm (19.9)

čia Im = ω0qm - srovės stiprio amplitudė. Kondensatoriaus elektrodų įtampa kinta taip:

);cos()cos( 000012 tUtC

q

C

qu m

mc (19.10)

čia Um = qm/C - įtampos amplitudė. Iš lygybių (19.9) ir (19.10) matyti, kad srovės ir įtampos virpesių

fazės skiriasi dydžiu π/2 (įtampa atsilieka). Srovės stiprio ir įtampos priklausomybės nuo laiko (kai

pradinė fazė α0 = 0) pateiktos 3 pav.

i

uc

3 pav.

t

Page 38: Fizikos Egzamino Medziaga Pilna

19.3. Slopinamieji elektromagnetiniai virpesiai

Realiame kontūre elektromagnetinių virpesių energija visuomet lėčiau ar sparčiau mažėja, kadangi ji

virsta šiluma ominėje varžoje, be to, dalį energijos kontūras išspinduliuoja į aplinką. Tokie virpesiai

aprašomi lygtimi

;01

2

2

qLCdt

dq

L

R

dt

qd (19.11)

arba ;02 2

02

2

qdt

dq

dt

qd (19.12)

čia L

R

2 - slopinimo koeficientas. Kai δ < ω0, (18.12) sprendinys atrodo taip:

);cos( 010 teqq t

m (19.13)

čia 2

222

014

1

L

R

LC - slopinamųjų virpesių ciklinis dažnis. (19.13) funkcijos grafikas

pateiktas 4 pav.

Kondensatoriaus įtampa

);cos( 01 teUC

qu t

mc (19.14)

Kontūro srovės stipris

.sin()cos( )011010 tteqdt

dqi t

m (19.15)

Dviejų gretimų krūvio, įtampos ar srovės stiprio amplitudžių santykis vadinamas slopinimo

dekrementu, o jo natūrinis logaritmas - logaritminiu slopinimo dekrementu:

.lnlnln)(

0

0

2

1 Teeq

eq

q

q T

Tt

m

t

m

m

m

(19.16)

Jam atvirkštinis dydis 1/Λ lygus skaičiui virpesių, po kurių amplitudė sumažėja e kartų.

Radiotechnikoje virpesių kontūras apibūdinamas ne slopinimo dekrementu, o kontūro kokybe:

.1

C

L

RQ

(19.17)

Kontūro kokybė skaitine verte lygi kontūro sukauptos ir vieno periodo metu išeikvotos energijų

santykiui.

qm2

t

t1

qm0

t1+T

qm0e-t

4 pav.

q

qm1

Page 39: Fizikos Egzamino Medziaga Pilna

19.4. Priverstiniai elektromagnetiniai virpesiai. Įtampų ir srovių rezonansai

Norint realiame kontūre (5 pav.)gauti neslopinamuosius virpesius, reikia

periodiškai kompensuoti kontūro energijos nuostolius dėl šilumos išsiskyrimo

bei energijos išspinduliavimo. Dažniausiai tam panaudojamas periodiškai

kintančios evj išorinis šaltinis, kurio įtampa:

.cos tUu m (19.18)

Tokiu atveju priverstinių virpesių diferencialinė lygtis užrašoma taip:

.cos2 2

02

2

tL

Uq

dt

dq

dt

qd m (19.19)

Šios lygties sprendinys analogiškas mechaninių svyravimų lygties sprendiniui ir užrašomas taip:

).cos( 0 tqq m

Krūvio amplitudė bei įtampos ir krūvio fazių skirtumas, remiantis ta pačia analogija, išreiškiami

formulėmis:

;

)1

(4)(

/

2222222

0

CLR

ULUq mm

m

(19.20)

LC

Rarctgarctg

1

222

0

0 . (19.21)

Kontūro srovės stipris kinta taip:

);cos()2

cos()sin( 00

tItItqdt

dqi mmm (19.22)

čia 2

0

- išorinio šaltinio įtampos ir kontūro srovės fazių skirtumas:

.

1

1)

2(

0

0R

CL

tgtgtg

(19.23)

Srovės stiprio amplitudė

;

)1

( 22 Z

U

CLR

UqI mm

mm

(19.24)

čia 222222 )()

1( XRXXR

CLRZ CL

- kontūro pilnoji elektrinė varža arba

impedansas. Pilnąją varžą sudaro aktyvioji varža R ir reaktyvioji varža X. Tekant elektros srovei

aktyviąja varža, pastaroji elektros energiją suvartoja (paverčia šiluma arba mechaniniu darbu), tekant

reaktyviąja varža, elektros energija nesuvartojama (pakaitomis virsta tai magnetinio, tai elektrinio

lauko energija).

Įtampų rezonansas. Kai kondensatoriaus talpinė ir ritės induktyvioji varža lygios (XL = XC), įtampų

kryčiai ritėje ir kondensatoriuje taip pat lygūs (uL = uC), tik jų fazės priešingos, todėl srovės stiprio

amplitudė yra didžiausia:

.R

UI m

mrez (19.25)

Turime įtampų rezonansą. Iš (19.24) seka, kad rezonansas pasiekiamas tada, kai išorinio šaltinio

įtampos dažnis sutampa su kontūro savųjų virpesių dažniu:

.0 rez (19.26)

R L C

uR uL uC

5 pav.

Page 40: Fizikos Egzamino Medziaga Pilna

Srovės stiprio rezonansinės kreivės pateiktos (6 pav.).

Kondensatoriaus plokščių įtampa nuo laiko priklauso

taip:

);cos()cos(4)(

/0022222

0

tUtC

LU

C

qu mc

mc

(19.27)

Kondensatoriaus įtampos rezonansas vyksta tada, kai

.2 0

22

0 rez Kai slopinimas mažas,

,0 rez o įtampos amplitudė

.2 0

QUCR

LCU

LC

UU m

mmmcrez

(19.28)

Taigi, rezonanso metu įtampa kondensatoriuje Q kartų didesnė už išorinio šaltinio įtampą. Iš čia seka

kitas kontūro kokybės apibrėžimas.

Srovių rezonansas. Trumpai panagrinėkime grandinę, kurioje kondensatorius ir

ritė sujungti lygiagrečiai, o aktyvioji varža nykstamai maža (7 pav.). Sakykime,

išorinio šaltinio evj ir įtampa kinta kosinuso dėsniu:

.cos tUu m (19.30)

Tada apatinės šakos srovės stipris kis taip:

).cos( 1 tIi cmc

Jo amplitudė, įvertinus, kad R = 0 ir ωL = 0,

.)/(1 C

UI m

cm

(19.31)

Jos pradinę fazę surandame iš (19.23):

,)2

32(; 11 mtg (19.32)

čia m = 1, 2, 3,... Analogiškai, viršutinės šakos srovės stipris, jo amplitudė bei fazė:

.)2

12(;;);cos( 222

mtg

L

UItIi m

LmLmL (19.33)

Taigi, šakų srovių fazių skirtumas α1 - α2 = π, t.y. jų fazės priešingos, o srovės įšorinėje grandinėje

amplitudė tokia:

.1

LCUIII mLmcmm

(19.34)

Kai ω = ωrez = (1/LC)1/2

, tai Icm =ILm ir Im = 0. Toks ryškus išorinės grandinės srovės amplitudės

sumažėjimas, kai ω → ωrez, vadinamas srovių rezonansu. Realioje grandinėje R ≠ 0 ir Im ≠ 0, tačiau

vis vien daug kartų mažesnė už Icm ir ILm. Tokio kontūro varža išorinio šaltinio srovei labai padidėja.

Tai panaudojama rezonansiniuose stiprintuvuose išskiriant norimo dažnio virpesius iš sudėtingos

formos elektrinio signalo.

L R

C

iL

iC

i

7 pav.

6 pav.

Page 41: Fizikos Egzamino Medziaga Pilna

20. Maksvelio teorijos pagrindai ir elektromagnetinės bangos

20.1. Bendroji Maksvelio teorijos charakteristika

XIX a. pirmojoje pusėje A.Amperas, Ž.Bio, F.Savaras, M.Faradėjus ir kiti mokslininkai

eksperimentais nustatė, kad elektriniai ir magnetiniai reiškiniai yra susiję. 1855 - 1865 m.

Dž.Maksvelis, pasinaudojęs M.Faradėjaus idėjomis apie elektrinį ir magnetinį laukus ir apibendrinęs

eksperimentais nustatytus dėsningumus, sukūrė fundamentalią elektromagnetinio lauko teoriją.

Sukurtoji teorija yra fenomenologinė, nes nenagrinėja terpėje vykstančių reiškinių, sukuriančių

elektrinius ir magnetinius laukus, vidinio mechanizmo. Be to, ji yra makroskopinė, nes nagrinėja tik

makroskopinių krūvių ir srovių sukurtus elektrinius ir magnetinius laukus erdvės taškuose, nuo lauko

šaltinio nutolusiuose daug didesniais už molekulių matmenis atstumais. Teorijos pagrindą sudaro

Maksvelio lygčių sistema. Maksvelio lygtys susieja elektrinį bei magnetinį laukus charakterizuojančius

dydžius HBDE

,,, su šių laukų šaltinių, t.y. su jų pačių ar su elektros krūvių bei elektros srovių

charakteristikomis. Lygtys, užrašytos kiekvienam lauko taškui, vadinamos diferencialinėmis, lygtys,

kuriuose šie ryšiai išreikšti tam tikrais integraliniais dydžiais, vadinamos integralinėmis. Nagrinėjant

elektromagnetinius reiškinius medžiagose, prie Maksvelio lygčių pridedamos lygtys, siejančios laukų

charakteristikas su medžiagos magnetines bei elektrines savybes apibūdinančiais dydžiais.

20.2. Slinkties srovė, jos tankis. Integralinių Maksvelio lygčių sistema

Faradėjaus dėsnis ( εi = -dΦ/dt ) teigia, kad bet koks laidų kontūrą kertančio magnetinio srauto

pokytis iššaukia indukcinės evj ir indukcinės srovės atsiradimą. Tačiau bet kokioje grandinėje evj

atsiranda tik tada, kai joje esančius laisvuosius krūvininkus veikia neelektrostatinės kilmės pašalinės

jėgos. Bandymai rodo, kad tos pašalinės jėgos nesusiję nei su šiluminiais, nei su cheminiais procesais

kontūre, nei su Lorenco jėga, nes ji nejudančių krūvininkų neveikia. 1861 m. Dž.Maksvelis išsakė

hipotezę: kiekvienas kintamasis magnetinis laukas sužadina aplinkinėje erdvėje elektrinį lauką, kuris ir

yra indukcinės srovės kontūre priežastis. Šis laukas nuo elektrostatinio skiriasi tuo, kad jo cirkuliacija

išilgai bet kokio uždaro kontūro nelygi nuliui. Taigi, šis elektrinis laukas, kaip ir jį sužadinęs

magnetinis, yra sūkurinis.

Pagal Dž.Maksvelį, jeigu bet koks kintamasis magnetinis laukas erdvėje sužadina sūkurinį elektrinį

lauką, tai turėtų būti ir atvirkščiai: bet koks elektrinio lauko pokytis turi sužadinti erdvėje sūkurinį

magnetinį lauką. Kadangi magnetinis laukas visada susijęs su elektros srove (jį sukuria elektros srovė),

kintamąjį elektrinį lauką, sukuriantį magnetinį lauką, Dž.Maksvelis pavadino slinkties srove.

Panagrinėkime kintamosios srovės grandinę, į kurią įjungtas

kondensatorius (1 pav.). Tekant kintamajai srovei ir kondensatoriui

įsikraunant bei išsikraunant, tarp jo plokščių susikuria kintamasis

elektrinis laukas. Pagal Maksvelį, pro kondensatorių, nors jo plokštės

atskirtos dielektriku, teka slinkties srovė, kurianti magnetinį lauką.

Magnetinio lauko stipris toks, lyg jį sukurtų tarp plokščių tekanti laidumo

srovė, kurios stipris toks pat, kaip ir jungiamuosiuose laidininkuose.

Tokiu atveju laidumo ir slinkties srovių tankiai vienodi (jl = js).

Laidumo srovės tankio prie pat kondensatoriaus plokščių modulis:

;1

tS

q

tdt

dq

SS

Ij ll

(20.1)

Toks pats yra ir slinkties srovės tankio modulis:

;t

jj ls

(20.2)

Jeigu elektrinės slinkties kondensatoriuje modulis lygus D, įvertinę, kad D = εε0E, o E = σ/εε0,

gauname:

,t

Djs

(20.3)

čia dalinė išvestinė įvertina elektrinės slinkties priklausomybę tik nuo laiko.

I

I I

I

St

D

1 pav.

Page 42: Fizikos Egzamino Medziaga Pilna

Reikia pastebėti, kad slinkties srovė iš tikrųjų tai nėra srovė, nes ji

nesusijusi su kryptingu krūvininkų judėjimu. Tačiau jai būdinga viena iš

srovės savybių – kurti magnetinį lauką. Kaip ir laidumo srovės atveju

kintamojo elektrinio lauko sukurto magnetinio lauko indukcija su vektoriumi

t

D

d

d

susijusi pagal dešininio sraigto taisyklę (2 pav.).

Laidais teka su elektronų judėjimu susijusi laidumo srovė I, o tarp

kondensatoriaus plokštelių – jai lygi slinkties srovė, kuri tartum uždaro

grandinę. Taigi, atsižvelgiant į slinkties srovę, srovės tankio linijos visada yra

uždaros.

Bendruoju atveju laidumo ir slinkties srovės egzistuoja viena greta kitos, todėl Maksvelis įvedė

pilnutinės srovės sąvoką: pilnutinė srovė lygi laidumo, konvekcinės ir slinkties srovių sumai, o jos

tankis ir stipris užrašomi taip:

S S

lj Sdt

DSdjI

t

Djj

; . (20.4)

Maksveliui įvedus slinkties ir pilnutinės srovės sąvokas, kitaip imtas traktuoti kintamosios srovės

grandinių uždarumas. Pilnutinei srovei kintamosios srovės grandinė visada uždara: laidininko galuose

nutrūksta tik laidumo srovė, o tarp jo galų vakuume ar dielektrike egzistuoja slinkties srovė, kuri ir

"uždaro" elektros srovės grandinę.

Žinome, kad kiekviena laidumo srovė kuria sūkurinį magnetinį lauką, o jo stiprio vektoriaus

cirkuliacija juosiančiu laidininką uždaru kontūru lygi laidumo srovės stipriui ( IldHl

).

Dž.Maksvelis šią teoremą pritaikė pilnutinei srovei:

Sdt

DjldH

S

l

l

; (20.5)

čia H

- pilnutinės srovės kuriamo magnetinio lauko stipris, S - kontūro l juosiamas plotas. Ši lygtis ir

vadinama pirmąją Maksvelio lygtimi, užrašyta integraliniu pavidalu. Idealiajam dielektrikui (juo

laidumo srovė neteka) pirmoji Maksvelio lygtis atrodo taip:

Sdt

DldH

Sl

. (20.6)

Aiškindamas indukcinės evj susikūrimą nejudančiame laidininke Maksvelis rėmėsi prielaida, kad

kintamasis magnetinis laukas erdvėje sukuria sūkurinį elektrinį lauką. Jo stiprio vektoriaus cirkuliacija

uždaru kontūru l išreiškiama taip:

Sdt

BSdB

ttldE

S S

i

l

. (20.7)

Čia mes galėjome sukeisti integravimo ir diferencijavimo operacijas, kadangi nei l, nei S nuo laiko

nepriklauso. (20.7) lygtis, išreiškianti Faradėjaus elektromagnetinės indukcijos dėsnį, vadinama

antrąja Maksvelio lygtimi, užrašyta integraliniu pavidalu. Iš pirmosios Maksvelio lygties seka, kad

magnetinį lauką gali sukurti arba elektros srovė (kryptingai judantys krūvininkai), arba kintamasis

elektrinis laukas. Iš antrosios seka, kad elektrinio lauko šaltiniu gali būti ne tik elektros krūvis, bet ir

kintamasis magnetinis laukas. Taigi, kintamieji magnetinis ir elektrinis laukai egzistuoja tik kartu, o

pirmoji ir antroji Maksvelio lygtys dar vadinamos elektromagnetinio lauko lygtimis.

Elektrostatikos kurse nagrinėtoji Gauso teorema elektrinei slinkčiai vadinama trečiąja Maksvelio

lygtimi:

S V

dVSdD

, (20.8)

o Gauso teorema magnetiniam laukui - ketvirtąją Maksvelio lygtimi:

B

t

D

d

d

2 pav.

Page 43: Fizikos Egzamino Medziaga Pilna

0 S

SdB

. (20.9)

Pilnąją Maksvelio lygčių sistemą sudaro minėtosios keturios lygtys ir trys lygybės, išreiškiančios į

Maksvelio lygtis įeinančių dydžių tarpusavio priklausomybes ).(),(),( EfjHfBEfD

Daugumai izotropinių medžiagų tos priklausomybės yra tiesinės: .,, 00 EjHBED

20.2. Elektromagnetinės bangos ir jų sklidimo ypatumai

Žinome, kad kintamasis magnetinis laukas kuria kintamąjį elektrinį lauką (žr. Faradėjaus

elektromagnetinės indukcijos dėsnį). Maksvelis 1864 m. iškėlė hipotezę, kad turi egzistuoti ir

atvirkštinis reiškinys: kintamasis elektrinis laukas kuria kintamąjį magnetinį lauką. Taigi kintamieji

elektriniai ir magnetiniai laukai yra tarpusavy susiję, nes vienas laukas gali virsti kitu ir atvirkščiai.

Apibūdinęs šiuos laukų virsmus diferencialinėmis lygtimis, Maksvelis priėjo išvadą, kad turi egzistuoti

ypatingos bangos, kurios gali sklisti ne tik medžiaga, bet ir vakuumu. Šias bangas Maksvelis pavadino

elektromagnetinėmis bangomis. Elektromagnetinė banga - tai kintamojo elektrinio ir magnetinio

laukų sklidimas terpe. Eksperimentiškai elektromagnetines bangas praėjus daugiau kaip 20 metų po teorinio jų buvimo

numatymo 1887 m. pirmą kartą aptiko Hercas (H. Hertz). Nelaidžiose elektrai terpėse, kuriose nėra

laisvųjų elektros krūvininkų, srovė tekėti negali, tačiau magnetinį lauką gali kurti slinkties srovė.

Būdinga tai, kad kartą prasidėjęs elektrinio ir magnetinio laukų tarpusavio kitimo procesas tęsiasi,

apimdamas vis naujas erdvės sritis, t. y. erdve sklinda elektromagnetinė banga.

Iš Maksvelio elektromagnetizmo teorijos lygčių išplaukia, kad elektromagnetinių bangų sklidimo

greitis susijęs su aplinkos dielektrine ir magnetine skvarbomis taip:

v 1

0 0 . (20.10)

Vakuume 1, 1, ir

v c 1

3 100 0

8

m/s. (20.11)

Neferomagnetinėse aplinkose 1, >1 (feromagnetikai dažniausiai yra laidūs elektros srovei ir

jais neslopstančios elektromagnetinės bangos sklisti negali), taigi

vc

. (20.12)

Elektromagnetinės bangos sklidimo vakuume greičio santykis su jos greičiu medžiagoje

vadinamas medžiagos absoliutiniu lūžio rodikliu:

nc

v . (20.13)

Esant dideliems dažniams medžiagų dielektrinė skvarba priklauso nuo dažnio. Tai lemia lūžio

rodiklio n ir elektromagnetinės bangos sklidimo greičio v priklausomybę nuo dažnio.

Elektromagnetinės bangos sklidimo greičio priklausomybė nuo dažnio vadinama dispersija.

Dispersiją sąlygoja priklausomybė nuo dažnio.

Kaip ir bet kokios bangos, elektromagnetinės bangos sklidimo greitis v susijęs su bangos ilgiu ,

periodu T, dažniu bei kampiniu dažniu taip:

vT

2. (20.14)

Jei sklisdama elektromagnetinė banga pereina iš vienos terpės į kitą, jos greitis pakinta sutinkamai

su (20.12). Pakinta ir bangos ilgis, o jos dažnis lieka nepakitęs ir lygus bangą sukėlusio virpiklio

virpesių dažniui.

20.3. Elektromagnetinės bangos diferencialinės lygtys ir jų sprendiniai

Elektromagnetinės bangos diferencialinės lygtys gaunama iš Maksvelio lygčių. Jeigu

nagrinėjamoji terpė yra vienalytė, elektriškai neutrali (ρ=0) ir nelaidi (jl=0), iš pirmųjų Maksvelio

lygčių Dekarto koordinačių sistemoje gaunama tokia sistema:

Page 44: Fizikos Egzamino Medziaga Pilna

.

;

2

2

2

2

2

2

2

2

00

2

2

2

2

2

2

2

2

00

z

H

y

H

x

H

t

H

z

E

y

E

x

E

t

E

(20.15)

Elektromagnetinės bangos elektrinio lauko stiprio vektorius E yra statmenas magnetinio lauko

indukcijos vektoriui B . Savo ruožtu šie du vektoriai yra statmeni bangos sklidimo greičio vektoriui

v (

E

B v

) (3 pav.). Kai plokščioji elektromagnetinė banga sklinda išilgai Ox ašies, tai vektoriai

E

ir B nuo y ir z nepriklauso. Šiuo atveju (20.15) lygčių sistema supaprastėja:

.1

;1

2

2

2

2

2

2

2

2

t

H

v

x

E

t

E

v

(20.16)

Tas diferencialines lygtis tenkina sprendiniai

E Emcos(t - kx + α0), (20.17)

B Bmcos(t - kx + α0).

Sąryšis tarp šių vektorių virpesių plokštumų ir bangos sklidimo greičio pavaizduotas grafiškai

3 pav. Šie sprendiniai dažnai vadinami plokščiosios elektromagnetinės bangos lygtimis.

20.4. Elektromagnetinės bangos energija, energijos srauto tankis. Pointingo vektorius

Sklisdama elektromagnetinė banga neša su savimi energiją. Ji sutelkta bangos elektriniame ir

magnetiniame laukuose. Kadangi bangoje elektrinis laukas virsta magnetiniu ir atvirkščiai, šių laukų

energijos turi būti vienodos. Galima sulyginti energijas, esančias erdvės, kur sklinda banga, tūrio

vienete, t. y. elektrinės ir magnetinės energijos tūrinius tankius we ir wm:

,2

2

0e

Ew

.2

2

0m

Hw

Taigi

.22

2

0

2

0 HE (20.18)

Pilnasis elektromagnetinės bangos energijos tūrinis tankis išreiškiamas taip:

.1

2 00

2

0 EHv

EHEww e (20.19)

3 pav.

Page 45: Fizikos Egzamino Medziaga Pilna

Apskaičiuosime, kiek energijos perneša elektromagnetinė banga per

laiko vienetą pro vienetinį plotą, statmeną bangos sklidimo krypčiai, t. y.

energijos srauto tankį.

Bangos kelyje įsivaizduokime cilindrą, kurio ašis nukreipta bangos

greičio vektoriaus v kryptimi, o skerspjūvio plotas S (4 pav.). Per

laikotarpį t pro plotą S praeis energija, esanti šio cilindro vt ilgyje:

W(we+wm)V(we+mm)vSt.

Kadangi wewm, šią formulę galima perrašyti taip:

.2 2

0m tEHStvSHtvSwW

Energijos srauto tankis

.EHtS

W

(20.20)

Patogumo dėlei įvedamas elektromagnetinės bangos energijos srauto tankio vektorius :

.HE

(20.21)

Vektorius vadinamas Pointingo (J. H. Poynting) vektoriumi. Jis nukreiptas energijos sklidimo

kryptimi, kuri sutampa su v kryptimi, o jo modulis savo skaitine verte lygus per laiko vienetą pro

vienetinį plotą, statmeną bangos sklidimo krypčiai pernešamai energijai.

Sklindančios elektromagnetinės bangos, sutikusios kliūtį, gali atsispindėti, pereidamos iš vienos

aplinkos į kitą - lūžta, joms, kaip ir visoms bangoms, būdingi difrakcijos, interferencijos ir

poliarizacijos reiškiniai (plačiau apie šiuos reiškinius bus kalbama optikos skyriuje).

v

S

vt

4 pav.

Page 46: Fizikos Egzamino Medziaga Pilna

1

Fizika 1 egzamino klausimai

1. Elektros krūviai ir jų sąveika:

elektros krūvio sąvoka, dviejų rūšių krūviai, elementarusis krūvis, krūvio diskretiškumas;

krūvio tvermės dėsnis, krūvio tankis (ilginis, paviršinis, tūrinis);

Kulono dėsnis, užrašykite ir paaiškinkite jo skaliarinę ir vektorinę išraiškas;

Kulono jėgų kryptys ir priklausomybė nuo atstumo tarp krūvių.

2. Elektrostatinis laukas:

elektrostatinio lauko sąvoka;

lauko stipris, jo vienetas;

taškinio krūvio lauko stipris;

laukų grafinis vaizdavimas, jėgų linijos (pateikite pavyzdžių);

krūvių sistemos laukas, laukų superpozicijos principas;

3. Gauso dėsnis elektrostatiniam laukui:

elektrinio lauko stiprio vektoriaus srautas;

srautas per uždarąjį paviršių;

suformuluokite ir paaiškinkite Gauso dėsnį;

Gauso dėsnio taikymo pavyzdys (begalinės, tolygiai įelektrintos plokštumos elektrostatinio lauko stiprio skaičiavimas).

4. Elektrostatinio lauko potencialas:

elektrostatinio lauko taško potencialo apibrėžimas ir vienetas;

taškinio krūvio lauko potencialas;

ekvipotencialiniai paviršiai;

potencialų skirtumas;

lauko stiprio ir potencialo sąryšis.

5. Dielektrikų poliarizacija elektriniame lauke:

laisvieji ir surištieji krūvininkai;

kas yra dielektrikai, jų rūšys;

dielektriko molekulių dipolių momentai;

dielektrikų poliarizacijos vektorius;

paaiškinkite elektroninę ir orientacinę dielektrikų poliarizaciją.

6. Elektrostatinis laukas dielektrike:

lauko stipris dielektrike;

santykinė dielektrinė skvarba;

elektrinė slinktis;

elektrinio lauko stiprio ir slinkties sąryšis.

7. Laidininkai elektrostatiniame lauke:

elektrostatinis laukas ir potencialas įelektrintame laidininke;

elektrostatinio lauko stipris prie įelektrinto laidininko paviršiaus;

elektrostatinis laukas neįelektrintame laidininke esančiame elektriniame lauke;

elektrostatinė apsauga.

8. Laidininko elektrinė talpa:

kaip susijęs įelektrinto laidininko krūvis ir potencialas;

atskiro laidininko elektrinė talpa;

kondensatoriai, plokščiojo kondensatoriaus talpa;

įelektrinto kondensatoriaus energija;

elektrinio lauko energijos tūrinis tankis.

9. Nuolatinė laidumo srovė:

elektros srovės sąvoka ir atsiradimo sąlygos;

srovės stipris ir jos tankis, jų vienetai;

srovės tankio ir krūvininkų judrio bei koncentracijos ryšys;

Omo dėsnio diferencialinė išraiška.

Page 47: Fizikos Egzamino Medziaga Pilna

2

10. Omo dėsnis:

pašalinės jėgos ir elektrovara;

Omo dėsnis nevienalytei grandinės daliai;

įtampos sąvoka.

11. Elektrinė varža, elektros srovės darbas ir galia:

elektrinės varžos sąvoka;

savitoji varža;

elektros srovės galia ir galios matavimo vienetai;

srovės darbas ir jo vienetai.

12. Elektros srovė dujose:

elektros srovės egzistavimo dujose sąlygos;

dujų jonizacija;

jonizacijos būdai;

krūvininkų rekombinacija.

13. Nesavaiminis išlydis dujose:

ką vadiname dujų jonizacija ir kaip ją galime sukelti;

jonizacijos darbas;

kokie pagrindinai fizikiniai procesai vyksta nesavaiminio išlydžio metu;

nubraižykite ir paaiškinkite išlydžio voltamperinę charakteristiką.

14. Savaiminis išlydis dujose:

savaiminio išlydžio egzistavimo sąlygos;

savaiminio išlydžio tipai;

dujų plazmos sąvoka;

pagrindinės plazmos savybės.

15. Termoelektriniai reiškiniai:

termoelektroninė emisija;

kokiu bandymu galima stebėti termoelektroninę emisiją?

elektronų išlaisvinimo darbas;

soties srovė.

16. Magnetinis laukas, svarbiausios magnetinio lauko charakteristikos:

magnetinio lauko prigimtis (kas kuria magnetinį lauką);

magnetinės indukcijos vektoriaus fizikinė prasmė, vienetas;

kaip nustatoma magnetinės indukcijos vektoriaus kryptis;

magnetinės indukcijos linijos.

17. Bio ir Savaro dėsnis:

Bio ir Savaro dėsnis ir jo prasmė;

užrašykite ir paaiškinkite jo vektorinę ir skaliarinę išraiškas;

magnetinio lauko stipris, jo vienetas;

magnetinių laukų superpozicijos principas (pvz.: magnetinė indukcija apskrito kontūro centre).

18. Visuminės srovės dėsnis laidumo srovėms:

magnetinio lauko indukcijos vektoriaus cirkuliacija uždaru kontūru;

visuminės srovės dėsnio išraiška ir formuluotė;

magnetinio lauko sūkuriškumas;

visuminės srovės dėsnio taikymas solenoido magnetiniam laukui skaičiuoti.

19. Magnetinis srautas:

magnetinis srautas, jo vienetas;

ką teigia Gauso dėsnis magnetiniam laukui vakuume? Jo fizikinė prasmė;

kokio tipo yra magnetinis laukas? Pagrįskite remdamiesi Gauso dėsniu.

20. Magnetinio lauko ir elektros srovės sąveika:

kokiomis sąlygomis pasireiškia Ampero jėga;

kaip nustatoma Ampero jėgos kryptis;

užrašykite ir paaiškinkite Ampero jėgos vektorinę ir skaliarinę išraiškas.

Page 48: Fizikos Egzamino Medziaga Pilna

3

21. Srovės rėmelis magnetiniame lauke:

kaip apskaičiuojamas srovės rėmelio magnetinis momentas;

rėmelį veikiančios jėgos;

kaip nustatoma jėgų kryptis?

magnetinių jėgų sukimo momentas.

22. Krūvininkų judėjimas elektromagnetiniame lauke:

Lorenco jėga, jos matematinė išraišką;

kaip nustatoma Lorenco jėgos kryptis;

krūvininkų judėjimas elektromagnetiniame lauke.

23. Magnetinis laukas medžiagoje:

atomų magnetiniai momentai;

medžiagų įmagnetėjimas, santykinė magnetinė skvarba;

diamagnetikai, paramagnetikai, feromagnetikai;

feromagnetikai magnetiniame lauke, histerezės reiškinys, Kiuri taškas.

24. Elektromagnetinės indukcijos reiškinys:

paaiškinkite elektromagnetinės indukcijos reiškinį;

užrašykite ir paaiškinkite Faradėjaus dėsnį;

nusakykite Lenco taisyklę indukuotosios srovės krypčiai;

indukcinės elektrovaros judančiame laidininke kilmė.

25. Elektromagnetiniai virpesiai kontūre:

virpesių kontūras;

laisvųjų virpesių idealiajame kontūre diferencialinė lygtis ir jos sprendinys;

savųjų virpesių dažnis ir periodas.

26. Maksvelio teorijos pagrindai:

slinkties srovės sąvoka, jos tankis;

pilnutinė srovė;

užrašykite ir paaiškinkite integralines Maksvelio lygtis.

27. Elektromagnetinės bangos:

elektromagnetinių bangų savybės;

elektromagnetinės bangos diferencialinė lygtis ir jos sprendinys;

elektromagnetinių bangų energija;

elektromagnetinių bangų energijos srauto tankis (Pointingo vektorius).

Page 49: Fizikos Egzamino Medziaga Pilna

1

Fizika 1 egzamino klausimai ir atsakymai

1. Elektros krūviai ir jų sąveika:

elektros krūvio sąvoka, dviejų rūšių krūviai, elementarusis krūvis, krūvio diskretiškumas;

Elektros krūvis – dalelių ar kūnų abipusės elektromagnetinės sąveikos intensyvumo matas.

Krūviai yra dviejų rūšių: neigiami-elektronai ir teigiami-protonai.

Elektros krūviams galioja adiktyvumo principas: sudėtingų medžiagos elektringųjų

dalelių(atomų, molekulių) ar kūno elektros krūvis yra lygus jį sudarančių elekringųjų dalelių

krūvių algebrinei sumai.

Krūvis matuojamas: Kulonais (C).

Diskretiškumas/Kvantavimas – fizikai įrodė, kad kiekvieno makroskopinio kūno elektros

krūvis yra taip vadinamo elementariojo krūvio e (e=1.6*10-19C) kartotinis.

Elementariuosius krūvius gali turėti kitos elementariosios dalelės. Vėliau fizikai įrodė, kad yra

dalelės kurių krūvis lygus 1/3 ir 2/3 elementariojo krūvio, jos buvo pavadintos Kvarkais.

Įelektrinto kūno krūvis lygus: q=Ne (N – elektronų perteklius).

krūvio tvermės dėsnis, krūvio tankis (ilginis, paviršinis, tūrinis);

Kad ir kokie procesai vyktų elektriškai izoliuotoje sistemoje, jos krūvių algebrinė suma,

laikui bėgant, nekinta.

Elektros krūvio didumas ir ženklas nepriklauso nuo jų judėjimo, t.y. nuo atskaitos sistemos.

Elektros krūvis yra inariantinis dydis. Tolydinis krūvių pasiskirstymas apibūdinamas krūvio tankiu.

Ilginis tankis dldq / (dl – nykstamai mažas linijos elementas, išilgai kurio pasiskirstęs

krūvis dq).

Paviršinis tankis dSdq / (paviršiuje dS yra pasiskirstęs krūvis dq).

Tūrinis tankis dVdq / (tūryje dV yra pasiskirstęs krūvis dq).

Kai krūviai pasiskirstę tolygiai: lq / , Sq / , Vq / .

Krūvinio tankio vienetai: ilginio KULONAS METRUI (C/m), paviršinio KULONAS

KVADRATINIAM METRUI (C/m2), tūrinio KULONAS KUBINIAM METRUI (C/m

3).

Kulono dėsnis, užrašykite ir paaiškinkite jo skaliarinę ir vektorinę išraiškas;

Elektrostatinės arba Kulono jėgos – elektromagnetinės jėgos, kuriomis veikia vienas kitą

įelektrinti nejudantys kūnai.

Dviejų taškinių elektros krūvių elektrostatinės sąveikos jėga yra tiesiogiai proporcinga tų krūvių

q1 ir q2 sandaugai ir atvirkščiai proporcinga atstumo tarp tų krūvių r kvadratui.

Kulono jėga: 2

21

r

qqkF (

04

1

k proporcingumo koeficientas >0, 0 =8.85*10

-12 C

2/(N*m

2)

– elektrinė konstanta).

Kulono jėgų kryptys ir priklausomybė nuo atstumo tarp krūvių.

Kulono dėsnis teigia, jog dviejų taškinių elektros krūvių elektrostatinės sąveikos jėga (jėga, kuria

vienas krūvis veikia kitą) yra tiesiogiai proporcinga tų krūvių sandaugai ir atvirkščiai

proporcinga atstumo tarp jų kvadratui.

Norint apskaičiuoti Kulono jėgos dydį ir taip pat kryptį, reikalinga vektorinė forma:

Kulono jėgos kryptis: ji yra tiesėje, einančioje per krūvius q1 ir q2, t.y. kuloninės sąveikos

jėgos yra centrinės.

Teigiamai ir neigiamai įelektrintas daleles vienas su kitomis sieja elektrinės jėgos. Tokios dalelės

sudaro neutralias sistemas. Taigi jeigu dalelės veikia viena kitą jėga, kuri didėjant atstumui iš

lėto silpnėja ir yra daug kartų didesnė už visuotinės traukos jėgą, tai sakoma, kad tos dalelės turi

elektros krūvį. Jėgą, kuria krūvis q veikia kita krūvį q1 nejudanti jo atžvilgiu, nusako Kulono

dėsnis.

Page 50: Fizikos Egzamino Medziaga Pilna

2

2. Elektrostatinis laukas:

elektrostatinio lauko sąvoka;

Elektrostatinis laukas – vieno įelektrinto kūno poveikis kitam perduodamas per tarpiniką

baigtiniu greičiu, nedidesniu už šviesos greitį vakuume.

Jis sukuriamas nejudančių elektros krūvių, todėl jį apibūdinantys dydžiai nekinta laike –

elektrostatinis laukas yra stacionarusis elektrinis laukas.

Jėgų laukai – visi laukai, veikiantys materialiuosius objektus jėga.

lauko stipris, jo vienetas;

Kiekvienas elektrostatinis laukas bet kuriame jo taške esantį krūvį q’ veikia jėga F.

Elektrinio lauko stiprumas: F/q’=E.

taškinio krūvio lauko stipris;

Kai elektrinį lauką vakuume sukuria nejudantis taškinis krūvis q’ tai elektrinio lauko stiprumas

lygus: rr

qE

3

04

1

,(e0=elektrinė konstanta).

Modulis lygus:2

0

*4

1

r

qE

.

laukų grafinis vaizdavimas, jėgų linijos (pateikite pavyzdžių);

linijų kryptis:

krūvių sistemos laukas, laukų superpozicijos principas;

Laukų superpozicijos principas teigia, kad kiekvieną krūviu q’ įelektrintą dalelę veikiančių

elektrostatinių jėgų atstojamoji F yra lygi jį veikiančių atskirų jėgų Fi sumai: F=Fi.

Elektrostatinio lauko stiprumas yra lygus kiekvieno krūvio atskirai sukurtų tame taške laukų

stiprumų sumai: E=Ei

3. Gauso dėsnis elektrostatiniam laukui:

elektrinio lauko stiprio vektoriaus srautas;

Elektrinio lauko stiprio vektoriaus srautas - suminis lauko stipris per tam tikrą paviršių.

srautas per uždarąjį paviršių;

Srautas per uždarąjį paviršių – vektoriaus E

srautas per paviršių S skaitine verte yra lygus

paviršių veriančių jėgų linijų skaičiui.

suformuluokite ir paaiškinkite Gauso dėsnį;

Elektrostatinio lauko stiprumo vektoriaus srautas per bet kokį uždarą paviršių yra

tiesiogiai proporcingas to paviršiaus gaubiamų elektros krūvių sumai.

S

i

qi

dSnE0

E E

Page 51: Fizikos Egzamino Medziaga Pilna

3

Gauso dėsnio taikymo pavyzdys (begalinės, tolygiai įelektrintos plokštumos

elektrostatinio lauko stiprio skaičiavimas).

02

E Begalinė tolygiai įelektrinta plokštuma kuria vienalytį elektrostatinį lauką, kurio

stiprumas nepriklauso nuo atstumo iki plokštumos.

4. Elektrostatinio lauko potencialas:

elektrostatinio lauko taško potencialo apibrėžimas ir vienetas;

Lauko taško potencialas skaitine verte lygus tame taške esančio vienetinio

taškinio krūvio potencinei energijai. q

WP

ir vienetas - voltas (V). 1V=1J/C

taškinio krūvio lauko potencialas;

Taškinio krūvio q' potencinės energijos santykį su krūvio didumu pažymėkime q

WP

.

Dydį vadiname elektrostatinio lauko taško potencialu. Taškinio krūvio q sukurto lauko

kiekvieno taško potencialas priklauso nuo lauką kuriančio krūvio didumo ir to taško atstumo iki

lauko šaltinio.

Potencialas yra algebrinis dydis: jo ženklas priklauso nuo lauką kuriančio elektros krūvio ženklo.

Potencialui, kaip ir lauko stiprumui, galioja superpozicijos principas: elektros krūvių sistemos

sukurto lauko bet kurio taško potencialas lygus laukų, kuriuos sukuria tame taške atskiri

krūviai, potencialų algebrinei sumai, t. y. = i.

ekvipotencialiniai paviršiai;

Įsivaizduojamas paviršius kurio visų taškų potencialas vienodas: φ(x, y, z) = const

Taškinio krūvio potencialas:r

qk

potencialų skirtumas;

Pasinaudoję potencialo išraiška, darbą, kurį atlieka elektrostatinio lauko jėgos, perkeldamos

taškinį krūvį q' iš lauko taško 1 į tašką 2, užrašome šitaip:

Dydį 1—2 vadiname potencialų skirtumu, o =2—1 —potencialo pokyčiu.

Ši darbo formulė teisinga ir netaškinio elektros krūvio sukurtam elektrostatiniam laukui.

lauko stiprio ir potencialo sąryšis.

Lauko stiprio ir potencialo sąryšis: gradE

5. Dielektrikų poliarizacija elektriniame lauke:

laisvieji ir surištieji krūvininkai;

Surištieji krūvininkai – krūvininkai kurie įeina į dielektrikų molekulių sudėtį.

Laisvieji krūvininkai – tie elektronai ir jonai, kurie veikiami elektrinio lauko, juda kryptingai ir

sudaro elektros srovę.

Laisvieji taip pat kaip ir surištieji krūvininkai patys kuria elektrinį lauką.

kas yra dielektrikai, jų rūšys;

Dielektrikai – nelaidžios srovės medžiagos, kuriuose laisvųjų krūvininkų koncentracija, labai

maža.

Page 52: Fizikos Egzamino Medziaga Pilna

4

dielektriko molekulių dipolių momentai;

Poliniai ir nepoliniai.

Bet kurią molekulę mes galime pakeisti teigiamais ar neigiamais krūviais patalpintais atitinkamų

krūvių centruose.

Polinės – jei elektringos dalelės molekulėje išsidėsčiusios nesimetriškai, tai neig. ir teig. krūvio

centrai nesutampa.

Nepolinės – jei molekulės simetriškos, teig. ir neig. krūvių centrai sutampa.

Dielektrikai sudaryti iš polinių molekulių vadinamų, poliniais, iš nepolinių- nepoliniais.

dielektrikų poliarizacijos vektorius;

Vienalyčiame dielektrike išskirkime makroskopinį dydį DV, kuriame molekulių skaičius N>>1.

Išskirtosios medžiagos elektrinis dipolinis momentas lygus visų jos molekulių elektrinių

dipolinių momentų algebrinei sumai i

ip .

Jos tūrio vieneto dipolinis momentas V

p

P i

i

.

Dielektrikas vadinamas poliarizuotu, kai P 0. taigi šis dydis yra poliarizacijos matas ir

vadinamas dielektriko poliarizuotumu, arba poliarizacijos vektoriumi.

Poliarizuotumo vienetas: KULONAS KVADRATINIAM METRUI (C/m2).

paaiškinkite elektroninę ir orientacinę dielektrikų poliarizaciją.

Elektroninė poliarizacija - EEnnpP 00 , dielektrinis jautris - n .

Elektroninė arba deformacinė poliarizacija - kai elektronai pasislenka molekulėje.

Orientacinė poliarizacija - dielektriko poliarizacija, kuri atsiranda laukui orientuojant dipolių

elektrinius momentus.

EP 0 , nagrinėjamu atveju dielektrinio jautrio išraiška yra tokia-kT

np

0

2

3 .

6. Elektrostatinis laukas dielektrike:

lauko stipris dielektrike;

0

0 E

E , visų dielektrikų c>0, todėl jų e>0. Tik vakuumo e=1.

Poliarizuotame vienalyčiame izotropiniame dielektrike elektrostatinio lauko stiprumas yra e

kartų mažesnis negu vakuume.

santykinė dielektrinė skvarba;

e=1+c – santykinė dielektrinė skvarba.

elektrinė slinktis;

Elektrinė slinktis apibūdina elektrinį lauką, kurį medžiagoje sukuria tik laisvieji krūviai.

Grafiškai elektrinė slinktis vaizduojama slinkties linijomis. Jos brėžiamos laikantis tos pačios

metodikos, kaip ir lauko jėgų linijos. Jos skiriasi iš esmės tuo, kad elektrostatinio lauko jėgų gali

prasidėti ir baigtis tiek laisvuosiuose, tiek surištuosiuose elektros krūviuose arba begalybėje, o

slinkties linijos prasideda ir baigiasi tik laisvuosiuose krūviuose arba begalybėje.

elektrinio lauko stiprio ir slinkties sąryšis.

Elektrinė slinktis apibūdina elektrinį lauką, kurį medžiagoje sukuria tik laisvieji krūviai. Tačiau

jų pasiskirstymas gali priklausyti nuo atsiradusių surištųjų krūvių. Tuomet vektorius D jau

savotiškai priklausys nuo aplinkos savybių. Tos priklausomybės nėra tuomet, kai poliarizuotas

dielektrikas nekeičia laisvųjų krūvių pasiskirstymo.

Dydį D toliau vadinsime elektrinės slinkties vektoriumi, arba tiesiog elektrine slinktimi.

Page 53: Fizikos Egzamino Medziaga Pilna

5

Elektrinės slinkties srautas pro uždarąjį paviršių yra lygus to paviršiaus gaubiamų laisvųjų

krūvių algebrinei sumai. Tai ir yra Gauso teorema dielektrikui. Iš čia elektrinės slinkties SI

vienetas yra kulonas kvadratiniam metrui (C/m2).

Elektrinės slinkties vektoriaus išraišką perrašome šitaip:

7. Laidininkai elektrostatiniame lauke:

elektrostatinis laukas ir potencialas įelektrintame laidininke;

Kiekvienas krūvis erdvėje aplink save sudaro elektrinį lauką. Visos elektrinių jėgų sąveikos yra

perduodamos elektriniu lauku. Nekintantis laike elektrinis laukas yra vadinamas elektrostatiniu

lauku.

Laidininke visų taškų potencialas tampa vienodas, t.y. visas jo tūris yra ekvipotencialinis.

Perteklinis statinis elektros krūvis laidininko viduje elektrinio lauko nesukuria.

Laidininkai – medžiagos, kurių laisvųjų krūvininkų koncentracija, lyginant su dielektrikais yra

labai didelė.

Normaliomis sąlygomis laidininko teigiami ir neigiami krūviai kompensuoja vienas kitą,

todėl jis yra elektriškai neutralus.

Suteikus laidininkui papildomą perteklinį arba nekompensuotą krūvį, jis greitaipasiskirsto

taip, kad laidininke nusistovėtų perteklinių krūvininkų makroskopinė pusiausvyra.

Pusiausvyra galima tik tuo atveju, kai elektrostatinio lauko stipris lygus nuliui.Iš elektrostatinio

lauko stiprio ir potencialo sąryšio, gauname: arba

elektrostatinio lauko stipris prie įelektrinto laidininko paviršiaus;

Elektrostatinio lauko stiprumas ties įelektrinto laidininko paviršiumi yra tiesiogiai proporcingas

krūvio paviršiniam tankiui.

Krūvių pasiskirstymas išoriniame laidininko paviršiuje priklauso tik nuo jo formos. Kuo didesnis

paviršiaus iškilos kreivis, tuo didesnis krūvio paviršinis tankis.

elektrostatinis laukas neįelektrintame laidininke esančiame elektriniame lauke;

Patalpinkime metalinį rutulį į elektrinį lauką E0. Elektrinio lauko jėgos perskirsto krūvininkus

taip, kad atsiradusių indukuotųjų krūvininkų sukurto elektrinio lauko stipris E’ atsvers išorinio

lauko stiprį ir todėl lauko stipris laidininke taps lygus nuliui:

Elektrine indukcija – krūvių perskirstymas, juos paslenkant.

*Tiek rutulio, tiek cilindro viduje elektrinio lauko nėra.

*Laidus apvalkalas ekranuoja vidų nuo išorinio elektrinio lauko ir todėl vadinamas ekranu.

*Elektrinį lauką, nors ir silpniau ekranuoja ir metalinis tinklelis.

elektrostatinė apsauga.

Geriausi laidininkai yra metalai. Prie laidininkų taip pat priskiriami elektrolitų tirpalai, drėgnas

oras, plazma, žmogaus kūnas, žemė ir kt. Metaluose teigiamuosius jonus supa laisvieji

elektronai. Kai išorinis elektrinis laukas lygus nuliui, laisvieji elektronai juda metalu

netvarkingai, t. y. įvairiomis kryptimis. Elektronų šiluminio judėjimo intensyvumas priklauso

nuo temperatūros. Laidininko viduje elektrinio lauko nėra, nes elektronų ir jonų sukuriami

elektriniai laukai kompensuoja vieni kitus.

Šiuo reiškiniu pagrįsta elektrostatinė apsauga - elektriniam laukui jautrių prietaisų saugojimas

metalinėse dėžėse.

0VE

0ld

dE .const

00 EEEvid

Page 54: Fizikos Egzamino Medziaga Pilna

6

8. Laidininko elektrinė talpa:

kaip susijęs įelektrinto laidininko krūvis ir potencialas;

Laidininko potencialas tiesiogiai proporcingas jam suteiktam krūviui q:

qC .

atskiro laidininko elektrinė talpa;

qC . Vienetas Faradas (F).

kondensatoriai, plokščiojo kondensatoriaus talpa;

Kondensatorių sudaro du laidininkai (elektrodai) , atskirti plonu dielektriko sluoksniu.

Įkrauto kondensatoriaus elektrodų krūvių moduliai visuomet lygūs, o jų ženklai priešingi.

|| 21

qC

Plokščiojo kondensatoriaus talpa – priklauso nuo dielektriko sluoksnio storio, jo dielektrinės

skvarbos ir elektrodo matmenų: d

SC

0 .

įelektrinto kondensatoriaus energija;

Kai vienalytį elektrinį lauką kuria plokščiasis kondensatorius: Sd

CWe

2

21 )(

2

1

elektrinio lauko energijos tūrinis tankis.

Lauko energijos tūrinis tankis skaitine verte yra lygus vienalyčio lauko tūrio vieneto

energijai.

9. Nuolatinė laidumo srovė:

elektros srovės sąvoka ir atsiradimo sąlygos;

Elektros srovė – kryptingas elektringųjų dalelių ar įelektrintų kūnų judėjimas.

srovės stipris ir jos tankis, jų vienetai;

Srovės stipris - skaitinė vertė lygi per laiko vienetą laidininko skerspjūviu perneštam elektros

krūviui. dt

dqI .

Tankis – skaitine verte lygus stiprumui srovės, kuri prateka pro laidininko skerspjūvio, statmeno

srovės krypčiai, ploto vienetą.

dS

dIj .

Vienetai – srovės stipris – A (amperas), srovės tankis – A/m2

srovės tankio ir krūvininkų judrio bei koncentracijos ryšys;

Srovės tankis tiesiogiai proporcingas krūvininkų koncentracijai. nuqj 0 .

Omo dėsnio diferencialinė išraiška.

Sakykime, metale yra E stiprumo stacionarusis elektrinis laukas. Metaluose yra tik vienokių

krūvininkų — elektronų, todėl jiems tinka jau nagrinėta srovės tankio išraiška (q0 = e):

Raskime elektronų dreifo vidutinį greitį <u>. Taigi masės m elektronas lauko jėgos F=eE

veikiamas juda tolygiai greitėdamas su pagreičiu a=eE/m iki susiduria.

Elektronas greitėja per vidutinę laisvojo lėkio trukmę , todėl didžiausias dreifo greitis

Kadangi pradinis dreifo greitis lygus nuliui, tai vidutinis dreifo greitis

Page 55: Fizikos Egzamino Medziaga Pilna

7

Vidutinę laisvojo lėkio trukmę <> galima išreikšti vidutiniu elektronų laisvojo kelio ilgiu <l> ir

jų judėjimo laidininko kristalinės gardelės atžvilgiu vidutiniu greičiu. Pastarasis yra lygus jų

chaotiškojo judėjimo vidutinio greičio <v> ir dreifo vidutinio greičio <u> sumai. Taigi

Kadangi <u>«<v>, tai <> = <l>/<v>. Šią išraišką įrašę, gauname :

Tai įstatę į srovės tankio formulę gauname:

Dabar srovės tankio formulę perrašome šitaip: arba vektoriškai

Šiose formulėse matyti, kad metaluose elektros srovės tankis yra tiesiogiai proporcingas

elektrinio lauko stiprumui. Kadangi šios lygtys tinka lauko taškui, tai jos vadinamos Omo

dėsnio diferencialinėmis išraiškomis.

10. Omo dėsnis:

pašalinės jėgos ir elektrovara;

Kad nenutrūktų srovė reikia sudaryti uždarą grandinę

(pažymėta brūkšnine linija). Tada grandine tekes nuolatinė

srovė, tačiau brūkšnine linija pavaizduota grandinės dalimi

krūvininkai juda prieš juos veikiančias elektrostatines

jėgas. Taip juos verčia judėti vadinamosios pašalinės

jėgos. Pašalinės jėgos negali būti elektrostatinės — jas turi

sukelti toje grandinės dalyje vykstantys cheminiai virsmai, nevienalytėje terpėje krūvininkų

difuzija, sūkuriniai elektriniai laukai ir kt. Jų veikimo intensyvumas apibūdinamas darbu, kurį jos

atlieka perkeldamos teigiamą vienetinį krūvį.

Visoje grandineje veikianti elektrovaros jega -

El.jega matuojama voltais.

Uždaroje grandinėje:

Omo dėsnis nevienalytei grandinės daliai;

Vienalytė grandinės dalis – kurioje krūvininką veikia tik elektrostatinės jėgos.

Sakykime, nevienalytėje grandinės dalyje yra krūvio q0 dalelė. Pažymėkime ją veikiančią

elektrostatinę jėgą F= q0E ir pašalinę jėgą F*= q0E*. Krūvininko dreifo vidutinis greitis yra

tiesiogiai proporcingas šių jėgų geometrinei sumai, todėl srovės tankis j yra tiesiogiai

proporcingas abiejų laukų stiprumų geometrinei sumai:

Iš jo vienalytei grandinės daliai (E*=0) gauname anksčiau aptartą Omo dėsnio lygybę. Atlike

pertvarkymusgauname:

Tai ir yra Omo dėsnis, užrašytas nevienalytei grandinės daliai. Ši jo išraiška vadinama

integraline.

įtampos sąvoka.

Dydis U=IR vadinamas grandinės dalies įtampa, ji lygi darbui, kurį atlieka elektrostatinės ir

pašalinės jėgos, perkeldamos toje grandinės dalyje vienetinį teigiamą krūvį.

Vienetas VOLTAS (V).

Page 56: Fizikos Egzamino Medziaga Pilna

8

S

ldlSR

l

/

11. Elektrinė varža, elektros srovės darbas ir galia:

elektrinės varžos sąvoka;

Elektrinė varža – laidininko savybė priešintis elektros srovei.

Ominė varža – vadinama varža nuolatinei srovei.

Vienetas OMAS (Ω): grandinės dalies varža lygi 1Ω, jeigu tekant 1A srovei įtampa tarp tos

dalies galų lygi 1V.

savitoji varža;

Vienalyčio (ρ=const), vienodo skerspjūvio, ploto S laidininko ominė varža

arba .

Iš čia išplaukia kad specifinė (savitoji) varža lygi varžai medžiagos kubo, kurio kraštinė 1m.

Specifinės varžos vienetas: OMMETRAS (Ω*m).

elektros srovės galia ir galios matavimo vienetai;

Pagal galios P apibrėžtį PA/t. Taigi elektros srovės galia:

Tuo atveju, kai visas srovės darbas virsta šiluma, galią galima išreikšti ir taip:

srovės darbas ir jo vienetai.

Panagrinėkime grandinės dalį. Tarkime, kad tos dalies įtampa U, o ta grandine tekančios

nuolatinės srovės stipris I. Jei per laiką t prateka krūvis q, elektrinis laukas atlieka darbą:

Kadangi tekant nuolatinei pastoviai srovei . Elektros srovės darbas grandinės dalyje lygus

įtampos, srovės stiprio ir laiko, per kurį atliekamas darbas, sandaugai.

12. Elektros srovė dujose:

elektros srovės egzistavimo dujose sąlygos;

Jei jonizuojant atomai gauna palyginti nedaug energijos, tai galima manyti, kad susidarę teigiami

jonai yra vienakrūviai.

Jei dujų tankis normalus, atplėštieji elektronai gana greitai prisijungia prie neutralių atomų ar

molekulių — susidaro neigiami jonai.

Tokiomis sąlygomis apytiksliai galima laikyti, kad n+n_n. Toliau dydį n vadinsime jonų porų

koncentracija.

dujų jonizacija;

Iš neutralaus atomo (molekulės) atplėšus vieną ar kelis elektronus, susidaro laisvieji krūvininkai:

tam tikro krūvio teigiamas jonas ir laisvieji elektronai.

jonizacijos būdai;

Smūginė jonizacija – kaip atomas yra bomborduojamas elektronų ir išmuša elektronus nuo

branduolio.

Švytinimas – kaip apšvytintas branduolys prarandą elektroną.

Temperatūros keitimas – kaitinant pasidaro chaotiškas judėjimas ir nuo atomo atitrunka

elektronas.

krūvininkų rekombinacija.

Rekombinacija – procesas kai susidūrę įvaireženkliai laisvieji krūvininkai išnyksta.

Šis procesas yra atvirkščias jonizacijai ir vyksta kartu su ja.

Rekombinacijos sparta apibūdinama išnykstančių tūrio vienete per laiko vienetą jonų porų

skaičiumi, t. y. dydžiu (dn/dt)r.

Kuo didesnė priešingų ženklų jonu koncentracija, tuo didesnė tikimybė jiems susidurti ir

rekombinuoti. Todėl rekombinacijos sparta tiesiogiai proporcinga sandaugai n+n_. Pasirėmę

prielaida n+n_n, rekombinacijos spartą užrašome šitaip:

l

SR

.UIP

.2

2

R

URIP

.qUA

.UItA

Page 57: Fizikos Egzamino Medziaga Pilna

9

13. Nesavaiminis išlydis dujose:

ką vadiname dujų jonizacija ir kaip ją galime sukelti;

Dujų jonizacija – procesas, kai iš neutralaus atomo (molekulės) atplėšus vieną ar kelis

elektronus, susidaro laisvieji krūvininkai.

Dujų jonizaciją galime sukelti – kaitinant dujas.

jonizacijos darbas;

Tam tikras darbas atliekamas jonizuojant.

kokie pagrindinai fizikiniai procesai vyksta nesavaiminio išlydžio metu;

Elektros išlydis – elektros srovės tekėjimas dujomis.

Nesavaiminis išlydis – išlydis kuris vyksta išorinio jonizatoriaus (pvz., šilumos ar trumpabangių

spindulių) jonizuotose dujose.(Tai toks dujų laidumas, kurį sukuria pašalinis jonizatorius ir kurį

galima pastebėti tik tol, kol veikia jonizatorius.)

Nustojus veikti jonizatoriui, nesavaiminis išlydis nutrūksta.

Soties srovė(nusistovėjusi srovė) – kai yra nuolatinis jonizatorius, didinant įtampą tarp

elektrodų, iš pradžių kartu proporcingai didėja srovė, paskui srovė stiprėja lėčiau ir galiausiai

visai nebestiprėja.(Soties srovė sunaudoja visus išorinės jonizacijos sukurtus jonus ir elektronus.)

nubraižykite ir paaiškinkite išlydžio voltamperinę charakteristiką.

a - kai elektrinis laukas silpnas, nesavaiminiam išlydžiui galioja

Omo dėsnis.

b - elektros srovės stiprumas nuo elektrinio lauko stiprumo

nepriklauso.

14. Savaiminis išlydis dujose:

savaiminio išlydžio egzistavimo sąlygos;

Kad jis vyktų dujose dėl paties išlydžio turi nuolatos susidaryti laisvieji krūviai.

Jų susidarymo šaltinis yra smūginė dujų molekulių jonizacija.

Stiprus elektrinis laukas elektronus pagreitina iki energijos, pakankamos molekulėms jonizuotis.

savaiminio išlydžio tipai;

Rusenantysis – vyksta dėl rekombinacijos.

Vainikinis – vyksta normalaus slėgio dujose esant stipriam vienalyčiam elektriniam laukui.

Kibirkštinis – vyksta normalaus slėgio dujose.

Lankinis.

Žėrintis.

dujų plazmos sąvoka;

Dujų plazma – iš dalies arba visiškai jonizuotos dujos, kurių teigiamųjų ir neigiamųjų krūvių

tankis praktiškai vienodas.

pagrindinės plazmos savybės.

*Plazmos elektringosios dalelės lengvai juda, veikiamos elektrinio ir magnetinio lauko.

*Kiekviena dalelė sąveikauja iš karto su didelių kiekiu aplinkos dalelių.

*Plazmoje lengvai sužadinami įvairios kilmės svyravimai ir bangos.

*Plazmos laidumas didėja, didėjant jonizacijos laipsniui.

Page 58: Fizikos Egzamino Medziaga Pilna

10

15. Termoelektriniai reiškiniai:

termoelektroninė emisija;

Termoelektroninė emisija – elektronų spinduliavimas iš įkaitusių kūnų.

kokiu bandymu galima stebėti termoelektroninę emisiją?

Švitinant trumpabangiais elektromagnetiniais spinduliais, kaitinant.

elektronų išlaisvinimo darbas;

Energijos kiekis, kurio reikia elektronui, kad išlėktų iš kietojo ar skystojo kūno į vakuumą,

neturėdamas kinetinės energijos.

soties srovė.

Soties srovės stipris priklauso – nuo emiterio temperatūros ir elektronų išlaisvinimo darbo.

16. Magnetinis laukas, svarbiausios magnetinio lauko charakteristikos:

magnetinio lauko prigimtis (kas kuria magnetinį lauką);

Kiekvienas laike kintantis elektrinis laukas kuria magnetinį lauką.

magnetinės indukcijos vektoriaus fizikinė prasmė, vienetas;

Magnetinė indukcija apibrėžiama kaip didžiausia jėga, veikianti vienalyčiame lauke esančio

tiesaus laidininko ilgio vienetu tekančią vienetinę srovę. Vienetas – 1T (tesla).

kaip nustatoma magnetinės indukcijos vektoriaus kryptis;

Magnetinės indukcijos linijų sukimosi kryptis sutampa su laikrodžio rodyklės kryptimi, jei

žiūrėtume į laidą iš galo, o srovė tekėtų nuo mūsų.

magnetinės indukcijos linijos.

*Magnetinį lauką grafiškai vaizduojame magnetinės indukcijos linijomis t.y. kreivėmis , kurių

liestinės kiekviename taške sutampa su vektoriaus B kryptimi.

*Magnetinės indukcijos linijų tankis proporcingas vektoriaus B moduliui.

*Šioms linijoms būdinga tai, kad jos skirtingai nuo elektrostatinio lauko jėgų linijų jokiame taške

nenutrūksta kitaip tariant jos yra uždaros. Tokiomis linijomis apibūdinami jėgų laukai vadinami

sūkuriniais.

Visi magnetiniai laukai yra sūkuriniai.

17. Bio ir Savaro dėsnis:

Bio ir Savaro dėsnis ir jo prasmė;

Bio-Savaro –Laplaso dėsnis:2r

Idlsinkd B

Bio ir Savaras nustatė, kad magn. indukcija yra proporcinga lauką kuriančios srovės stiprumui

ir priklauso nuo laidininko formos bei teigiamojo taško padėties laidininko atžvilgiu.

Dėsnis skirtas magnetinio lauko srauto tankiui apskaičiuoti.

užrašykite ir paaiškinkite jo vektorinę ir skaliarinę išraiškas;

Vektorinė: 3

0

4

)(

r

rldIBd

. Skaliarinė:

2

0

4

sin

r

dlIdB

.

magnetinio lauko stipris, jo vienetas;

H - 0

BH

.

Page 59: Fizikos Egzamino Medziaga Pilna

11

magnetinių laukų superpozicijos principas (pvz.: magnetinė indukcija apskrito kontūro

centre).

Magn. indukcijos linijos – koncentriniai apskritimai juosiantys laidininką. Šios linijos uždaros.

Kryptis nustatoma pagal dešiniojo sraigto taisyklę.

R

I

R

IdBB

l2

2

4

00

18. Visuminės srovės dėsnis laidumo srovėms:

magnetinio lauko indukcijos vektoriaus cirkuliacija uždaru kontūru;

Apskaičiuokime magnetinio lauko indukciją apskritiminės srovės centre. Kaip matyti 5.5

paveiksle, apskritiminės vijos centre kiekvieno srovės elemento kuriamo magnetinio lauko

elementarioji indukcija dB yra tos pačios krypties, todėl vektorinę integralinę sumą pakeičiame

jų modulių suma. Be to, tokios srovės visi elementai Idl yra statmeni spinduliui vektoriui

r(=/2), kurio modulis r lygus vijos spinduliui R. Į tai atsižvelgę, gauname:

Tokios elektros srovės sukurto magnetinio lauko

indukcijos linijos parodytos 5.2 paveiksle, c.

visuminės srovės dėsnio išraiška ir formuluotė;

Jei magnetinį lauką kuria tuo pačiu metu tekančios kelios elektros srovės, pagal magnetinių

laukų superpozicijos principą, atstojamojo magnetinio lauko indukcija:

Jos cirkuliacija bet kokiu juosiančiu tas sroves kontūru l išreiškiama šitaip:

Ši lygtis matematiškai išreiškia visuminės srovės dėsnį laidumo srovėms: nuolatinių elektros

srovių kuriamo magnetinio lauko indukcijos vektoriaus cirkuliacija uždaru kontūru yra

lygi to kontūro juosiamų srovių algebrinei sumai.

Page 60: Fizikos Egzamino Medziaga Pilna

12

BlldBl

magnetinio lauko sūkuriškumas;

Magnetinės indukcijos vektoriaus B cirkuliacija sroves juosiančiu kontūru nelygi nuliui. Tai

rodo, jog magnetinis laukas nepotencialinis — jo indukcijos linijos yra uždaros. Tokiomis

savybėmis pasižymintys jėgų laukai, kaip jau minėjome, vadinami sūkuriniais.

visuminės srovės dėsnio taikymas solenoido magnetiniam laukui skaičiuoti.

Solenoidas – cilindrinė ritė, susidedanti iš daugelio plonos vielos vijų, sudarančių sraigtinę

liniją.

Paskaičiuokime vektoriaus B cirkuliaciją kontūru 12341. Laikykime, kad 4-1 yra toli, tai B=0

2-1 ir 3-4 – taip pat B=0.

Todėl B nelygi nuliui tik 2-3 atkarpoje gauname:

Pagal visuminės srovės dėsnį vektoriaus cirkuliacija išilgai kontūro 12341:

sulyginę ir išreiškę B gauname solenoido viduje kuriamą magnetinės indukcijos dydį:

19. Magnetinis srautas:

magnetinis srautas, jo vienetas;

Magnetinis srautas - veriantis plotelį dS, fizikinis dydis dΦ, lygus magnetinės indukcijos B ir to

plotelio skaliarinei sandaugai: BdSd .

Jo vienetas - vėberis (Wb) 1 Wb = 1T*1m2

ką teigia Gauso dėsnis magnetiniam laukui vakuume? Jo fizikinė prasmė;

Kiekvieno magnetinio lauko indukcijos vektoriaus srautas per bet kokį ploto S uždarąjį paviršių

visuomet lygus nuliui. S

SdB 0

.

kokio tipo yra magnetinis laukas? Pagrįskite remdamiesi Gauso dėsniu.

Visi magnetiniai laukai yra sūkuriniai.

Magnetinis laukas skiriasi nuo elektrinio lauko tuo, kad jis yra ne potencinis, o sūkurinis, jo

indukcijos linijos yra uždaros. Tai suponuoja mintį, kad nėra magnetinių krūvių, t.y. negalima

pastovaus magneto taip padalinti, kad viena jo dalis būtų „šiaurės“ polius, o kita – „pietų“.

1

4

4

3

3

2

2

1

ldBldBldBldBldBl

NIIldBi

i

l

00

nIIl

NB 00

Page 61: Fizikos Egzamino Medziaga Pilna

13

Šiuos magnetinių ir elektrinių laukų skirtumus (vienas jų – sūkurinis, kitas – potencinis)

kiekybiškai išreiškia Gauso teoremos elektriniam ir magnetiniam laukams. Magnetinės

indukcijos linijos yra uždaros, todėl indukcijos srautas per uždarą paviršių yra lygus 0:

.SdBS

0

Šiame paveikslėlyje punktyrinėmis linijomis pažymėti Gauso paviršių kontūrai. Matome, kad

uždarą Gauso paviršių magnetiniame lauke kertančių linijų skaičius lygus 0, t.y., kiekviena į

uždarą paviršių įėjusi linija, pasiekdama kitą savo galą turi iš to paviršiaus ir išeiti. Tai reiškia,

jog gamtoje magnetinių krūvių nėra: .SdBS

0

lygtis yra matematinė Gauso teoremos

magnetiniam laukui išraiška. Kad magnetinis laukas medžiagoje yra aptartos krypties buvo

įrodyta stebint greitų įelektrintų dalelių nuokrypius įmagnetintoje geležyje, o taip pat stebint

vidinio magnetinio lauko poveikį lėtiesiems neutronams, kurie lengviau nei elektrintos dalelės

prasiskverbia į medžiagą.

20. Magnetinio lauko ir elektros srovės sąveika:

kokiomis sąlygomis pasireiškia Ampero jėga;

Patalpinus laidininką į magnetinį lauką.

kaip nustatoma Ampero jėgos kryptis;

Ampero jėgos kryptis nustatoma kairiosios rankos taisyklėmis: linijos statmenai veria delną,

keturi ištiesti pirštai rodo srovės kryptį, o delno plokštumoje 90º kampu atlenktas nykštys rodo

Ampero jėgos kryptį.

užrašykite ir paaiškinkite Ampero jėgos vektorinę ir skaliarinę išraiškas.

Vektorinė: BlIdFd

. Skaliarinė: sinIdlBF .

21. Srovės rėmelis magnetiniame lauke:

kaip apskaičiuojamas srovės rėmelio magnetinis momentas;

Srovės rėmelio magnetinės savybės apibūdinamos vadinamuoju srovės magnetiniu momentu

— vektoriumi:

čia S — rėmelio ribojamo paviršiaus plotas. Šio vektoriaus kryptis sutampa su rėmelio normalės

n kryptimi.

rėmelį veikiančios jėgos;

Kai rėmeliu teka stiprumo I nuolat. srovė, indukcijos B vienalytis magnetinis laukas veikia

kiekvieną jo kraštinę jėga F (magnetinės jėgos). Rėmelio priešingomis kraštinėmis elektros

srovės teka priešingomis kryptimis. Iš čia išplaukia, kad rėmelį veikiančių jėgų geometrinė suma

lygi nuliui: F1+ F2+F3+F4=0. Taigi vienalytis magnetinis laukas srovės rėmeliui slenkamojo

judesio nesuteikia.

kaip nustatoma jėgų kryptis?

Horizontalias rėmelio kraštines veikiančios jėgos F2 ir F4 nukreiptos išilgai sukimosi ašies į

priešingas puses. Jas atsveria rėmelio standumo jėgos, ir rėmelio judėjimui jos neturi įtakos.

Vertikaliomis kraštinėmis tekančios elektros srovės tankio j vektorius nukreiptas statmenai

magnetinės indukcijos vektoriui B, todėl, jėgų F1 ir F3 moduliai yra lygūs: F =Il1B. Taigi

vienalyčiame magnetiniame lauke srovės rėmelį veikia jėgų dvejetas, kuris jį suka apie vertikalią

ašį AA'. Kaip matyti 5.14 paveiksle, b

Page 62: Fizikos Egzamino Medziaga Pilna

14

magnetinių jėgų sukimo momentas.

Rėmelį veikiančių magnetinių jėgų sukimo momentas:

Matome, kad rėmelis bus sukamas tol, kol vektorius pm pasidarys lygiagretus vektoriui B —

tuomet M= 0. Iš formulės taip pat išplaukia, kad sukamojo momento didžiausia vertė Mmax=pmB

būna tada, kai pm B. Kadangi pasirinktame lauko taške Mmax yra tiesiogiai proporcingas

dydžiui pm=IS, tai jų santykis: nuo rėmelio magnetinio momento nepriklauso.

Šis dydis, vadinamas magnetine indukcija, yra magnetinio lauko taško charakteristika.

22. Krūvininkų judėjimas elektromagnetiniame lauke:

Lorenco jėga, jos matematinė išraišką;

Kiekvieną nejudančią, turinčią krūvį q dalelę, esančią elektriniame lauke, veikia jėga:

BvqEqFL

.

kaip nustatoma Lorenco jėgos kryptis;

Jėga veikia statmenai dalelės judėjimo krypčiai ir B vektoriui.

krūvininkų judėjimas elektromagnetiniame lauke.

Keičiasi jų kryptis, bet nesikeičia jų energija.

23. Magnetinis laukas medžiagoje:

atomų magnetiniai momentai;

Kiekvienas judantis krūvis kuria aplink save sūkurinį magnetinį lauką, kurio stiprumas priklauso

nuo judėjimo greičio ir krūvio dydžio:

Atomai turi orbitinius ir sukininius magnetinius momentus.

Elektrono, judančio apskritimine atomo orbita, būseną patogu nusakyti orbitiniu impulso

momentu:

Tokios sistemos, turinčios krūvį ir impulso momentą, magnetinės savybės aprašomos dydžiu,

vadinamu elektrono orbitiniu magnetiniu momentu:

Sukininis judesio kiekio momentas, yra elementariosios dalelės(t.y elektrono) savasis judesio

kiekio momentas.

3

0

4 r

rvqB

vmrLl

lm Lm

ep

2

Page 63: Fizikos Egzamino Medziaga Pilna

15

Kiekvienam elektronui, be orbitinio impulso momento Ll būdingas ir savasis judesio kiekio

momentas arba spinas - Ls, su kuriuo susijęs savasis magnetinis momentas:

Sukininiai ir orbitiniai momentai stengiasi orientuotis priešingomis kryptimis, kad kuo labiau

vieni kitus kompensuotų. Dėl to atomo magnetinį momentą daugiausia lemia išorinių elektronų

nekompensuoti sukiniai.

Priklausomai nuo orbitinių momentų išsidėstymo, atomo magnetinis momentas gali būti lygus

arba nelygus nuliui.

medžiagų įmagnetėjimas, santykinė magnetinė skvarba;

Makroskopinio kūno magnetinis momentas – lygus visų jį sudarančių atomų magnetinių

momentų geometrinei sumai:

Šio kūno tūrio vieneto magnetinis momentas yra vadinamas medžiagos įmagnetėjimu:

Magnetinis laukas veikia medžiagoje esančius magnetinius momentus atitinkamai juos

orientuodamas, todėl pakeičia jos įmagnetėjimą ir magnetinio lauko indukcijos viduje dydį.

Įmagnetėjimas priklauso nuo išorinio magnetinio lauko stiprio H ir medžiagos tipo:

Koeficientas - vadinamas santykine magnetine skvarba ir yra lygus vidinės ir išorinės

magnetinės indukcijos medžiagoje santykiui:

Jis priklauso nuo medžiagos, išorinio magnetinio lauko stiprio, temperatūros ir dažnio.

Išreiškę HB 0 , gauname magnetinės indukcijos medžiagoje priklausomybę nuo išorinio

magnetinio lauko stiprio, kurios dydis, kryptis ir kitimo pobūdis priklauso nuo įmagnetėjimo

mechanizmų vykstančių įvairiose medžiagose.

diamagnetikai, paramagnetikai, feromagnetikai;

Diamagnetikai – magnetikai, kuriuose magnetinis laukas šiek tiek susilpnėja.

Diamagnetikai – Sb, C, Te, Au, Ag, Hg, Zn, Bi, daugelis mineralų, organinės medžiagos,

vanduo.

Šias medžiagas sudarančių struktūrinių dalelių atstojamasis magnetinis momentas nesant

išorinio magnetinio lauko lygus nuliui. Veikiamos išorinio magnetinio lauko, diamagnetikų

dalelės dėl Larmoro precesijos sukuria apskritiminę srovę, kurios papildoma magnetinė indukcija

nukreipta prieš išorinio magnetinio lauko kryptį. Dėl to diamagnetikai silpnina magnetinį

lauką.

Paramagnetikai – magnetikai, kuriuose magnetinis laukas šiek tiek sustiprėja.

Paramagnetikai – medžiagos, sudarytos iš magnetinius momentus turinčių atomų, tačiau

nedaug įsimagnetinančios išoriniame lauke.

Tačiau jų magnetiniai momentai orientuoti atsitiktinai ir bendras atstojamasis laukas jų kuriamas

magnetinis laukas lygus nuliui.

Paramagnetikai – dujos, skysčiai, visi magnetiniame lauke silpnai įsimagnetinantys metalai Pt,

Al, Ti, Cu, Co, Ni, Mn, V, Cr.

Feromagnetikai – magnetikai, kuriuose magnetinis laukas daug kartų sustiprėja.

Feromagnetikai – medžiagos, pasižyminčios savaiminiu įmagnetėjimu (panaikinus išorinį

magnetinį lauką, medžiagos įmagnetėjimas nėra lygus nuliui).

Feromagnetikų savybės:

*Didelė santykinė magnetinė skvarba.

*Magnetinės skvarbos priklausomybė nuo išorinio magnetinio lauko.

*Feromagnetinės histerezės reiškinys.

*Magnetinės skvarbos priklausomybė nuo temperatūros.

sms Lm

ep

i

am pP

V

p

V

PM i

a

m

HM

00 B

B

H

B

Page 64: Fizikos Egzamino Medziaga Pilna

16

Feromagnetizmo reiškinio ir feromagnetikų savybių ypatumai aiškinami savaime

įsimagnetinusių sritelių, vadinamų feromagnetiniais domenais, susidarymu. Ši teorija pagrįsta

kelių tipų energijų konkuravimo procesu, kurio metu vyksta kristalo domeninis susiskaldymas.

Feromagnetikais gali būti tik tokios medžiagos, kurių paskutiniai sluoksniai yra nepilnai

užpildyti elektronais, t.y. jų .

feromagnetikai magnetiniame lauke, histerezės reiškinys, Kiuri taškas.

Magnetinį lauką didinant priešinga kryptimi, domenų tvarkinga orientacija ardoma. Pasiekus

išmagnetinimo vertę, vadinamą koerciniu lauko stipriu, feromagnetiko įmagnetėjimas yra

panaikinamas.

Medžiagos įmagnetėjimo priklausomybė nuo išorinio magnetinio lauko vadinama magnetinė

histerezė.(reiškinys)

Magnetinė skvarba taip pat priklauso nuo temperatūros ir yra didžiausia ties Kiuri tašku,virš

kurio feromagnetiniai domenai dėl intensyvaus šiluminio judėjimo yra suardomi.

Kiuri temperatūroje įvyksta fazinis virsmas.

24. Elektromagnetinės indukcijos reiškinys:

paaiškinkite elektromagnetinės indukcijos reiškinį;

Elekt.magn. indukcijos reiškinys – kai elektros srovė ima tekėti laidininku, esančiu

kintamajame magnetiniame lauke arba judančiu pastoviame magnetiniame lauke.

užrašykite ir paaiškinkite Faradėjaus dėsnį;

dt

d indukuotoji elektrovaros jėga priklauso tiktai nuo magnetinio srauto kitimo spartos

ir visiškai nepriklauso nuo šio kitimo priežasties.

nusakykite Lenco taisyklę indukuotosios srovės krypčiai;

Indukuotoji srovė sukuria tokios krypties magnetinį lauką, kad jis priešintųsi indukciją

iššaukusiam magnetinio srauto kitimui.

indukcinės elektrovaros judančiame laidininke kilmė.

Judant laidininkui keičiasi jį veriantis magnetinis srautas.

25. Elektromagnetiniai virpesiai kontūre:

virpesių kontūras;

Virpesių kontūras – bet kokia elektrinė grandinė, turinti induktyvumą L ir talpą C.

Paprasčiausias virpesių kontūras – sudarytas iš nuosekliai sujungtų kondensatoriaus,

induktyvumo ritės ir varžos .

laisvųjų virpesių idealiajame kontūre diferencialinė lygtis ir jos sprendinys;

Lygtis:

.0d

d

d

d2

2

C

q

t

qR

t

qL

.cose4

1cose 02

2

20 tqt

L

R

LCqq t

tL

R

0ap

Page 65: Fizikos Egzamino Medziaga Pilna

17

Sprendinys:

Čia R

L2 - slopinimo koeficientas,

1

4

2

2 0

2 2

LC

R

L - vadinamas ,kontūro kampiniu laisvųjų virpesių dažniu. Šis

dažnis yra mažesnis už savąjį dažnį 0 .

savųjų virpesių dažnis ir periodas.

Elektromagnetiniai virpesiai atsiranda virpesių kontūre, kurį sudaro C elektrinės talpos

kondensatorius ir L induktyvumo rite. Kontūro savųjų virpesių periodas priklauso nuo jo

paramterų L ir C.

Periodas:

Dažnis:

26. Maksvelio teorijos pagrindai:

slinkties srovės sąvoka, jos tankis;

Kiekvienas kintamasis magnetinis laukas erdvėje kuria sūkurinį elektrinį lauką ir kiekvienas

kintamasis elektrinis laukas kuria sūkurinį magnetinį lauką.

Slinkties srovė – kintamasis elektrinis laukas magnetinio lauko kūrimo aspektu yra ekvivalentus

elektros srovei, todėl Maksvelis jį taip pavadino.

Į kintamos srovės grandinę įjungtas kondenastorius su idealiai nelaidžiu dielektriku. Tekant

kintamai srovei, kondensatorius periodiškai įsikrauna ir išsikrauna. Dėl to tarp jo elektrodų

elektrinis laukas kinta laike ir pro kondensatorių teka magnetinį lauką kurianti slinkties srovė.

Srovės tankis – jlIl /S0, jei kondensatoriaus krūvis q ir vieno elektrodo paviršiaus plotas S0.

Srovės tankis yra elektrinio lauko kryptimi nukreiptas vektorius. Kondensatorių įkraunant

slinktis D didėja, todėl jos išvestinė yra tos pačios krypties kaip ir D. šiuo atveju laidumo srovės

tankio ir slinkties išvestinės kryptys sutampa. Kondensatoriui išsikraunant, slinktis D mažėja,

todėl jos išvestinė <0 ir yra priešingos krypties negu D. taigi, kondensatoriui išsikraunant, srovės

tankio vektorius ir slinkties išvestinės vektorius vėl yra vienos krypties. Iš to matome, laidumo

srovės tankis yra tos pačios krypties, kaip ir slinkties srovės tankis. Kintant elektriniam laukui,

tiek vakuume, tiek dielektrike “teka” slinkties srovė, kurianti magnetinį lauką visai taip pat ir

laidumo srovė.

pilnutinė srovė;

Slinkties srovė “teka” visur, kur kinta elektrinis laukas: vakuume, dielektrike, laiduose. Todėl

laidumo, konvekcinės ir slinkties srovės nebūna atsiskyrusios erdvėje: visos jos gali egzistuoti

kartu tame pačiame tūryje ir galime vadinti pilnutine srove. Laiduose slinkties srovės tankis,

palyginti su laidumo srovės tankiu, yra nykstamai mažas, ir dažnaiusiai jo nepaisoma. Kaip ir

nuolatinės srovės, kintamosios srovės grandinės yra uždaros ir bet kuriame jų skerspjūvyje

kvazistacionariosios pilnutinės srovės stiprumas tuo pačiu laiko momentu yra vienodas. Tokias

grandines “uždaro” slinkties srovės, “tekančios” tomis grandinės dalimis, kur nėra laidininkų,

pvz., tarp kondensatoriaus elektrodų.

);( '

0 IIldB l

l

Il-Visų kontūro l juosiamų laidumo srovių algebrinė suma. I’- molėkulinių srovių algebrinė suma.

Tokiu būdu B> cirkuliacija uždaru kontūru tiesiog proporcinga laidumo ir molėkulinių srovių

juosiamų konturo algebrinei sumai. )()( '

00 IIldJH l

l

Pilnutinės srovės dėsnio diferencialinė išraiška: rot H

>=j

>l; j

>- srovės tankis.

Page 66: Fizikos Egzamino Medziaga Pilna

18

užrašykite ir paaiškinkite integralines Maksvelio lygtis.

Pirmoji Maksvelio lygtis.

Pagal Bio ir Savaro dėsnį kiekviena laidumo srovė kuria sūkurinį magnetinį lauką. Jo stiprumo

vektoriaus H cirkuliacija uždaru kontūru l, juosiančiu laidą, kuriuo teka srovė, išreiškiama taip:

;IdlHl

Maksvelis šią lygybę perašė taip: ;

sd

t

DjldH

s

l

l

(

Hpilnutnė srovė kuriamo lauko

stiprumas, s-uždaro kontūro l juosiamas plotas). Ši lygtis vadinamas pirmąją Maksvelio lygtimi.

1 lygties difer. išraiška: t

DjrotH l

I-osios lygties seka, kad magn. lauką gali sukurti

arba el. srovė arba kint. el. Laukas.

Antroji Maksvelio lygtis.

Aiškindamas indukcinį EVJ susikūrimą nejud. laidininku Maksvelis rėmėsi prielaida,kad kint.

magn. laukas erdvėje sukuria sūkurinį el. lauką. Jo stiprumo vektoriaus cirkuliacija uždaru

kontūru:

e s s

sdt

BsBd

ttldE

Ši lygybė išreiškianti Faradėjaus elektromagn.

indukcijos dėsnį vad .II-Maksvelio lygtimi. Jos dif. Išraiška: ;t

BrotE

Iš II-osios lygties

seka, kad el. lauko šaltiniu gali būti ne tik elektros krūvis, bet ir kint. magn. laukas. Taigi kint.

magn. ir el. laukai egzistuoja tik kartu.

Trečioji Maksvelio lygtis.

Gauso teorema elektrinei slinkčiai vad. III-iąja Maksvelo lygtimi:

vs

dVsdD

(tūrinis

krūvio tankis). Maks. Lygtis – tai Gauso teor.elektrinei slinkčiai. Ji apibendrina Kulono dėsnį ir

rodo, kad elektrinį lauką kuria elektros ktrūviai.

Ketvirtoji Maksvelio lygtis.

Gauso teorema magn. laukui vad. IV-ąja Maksvelo lygtimi:

s

sBd 0

. Ketvirtoji reiškia, kad

gamtoje nėra laisvųjų magnetinių krūvių – visi magnetiniai laukai yra sūkuriniai.

27. Elektromagnetinės bangos:

elektromagnetinių bangų savybės;

*Gali sklisti ne tik medžiaga, bet ir vakuumu.

*Kintamasis elektrinis laukas kuria kintamąjį magnetinį lauką.

*Kintamieji elektriniai ir magnetiniai laukai yra tarpusavy susiję, nes vienas laukas gali virsti

kitu ir atvirkščiai.

*Elektromagnetinę bangą sukuria kintantis laike E arba H laukas.

*Elektromagnetinės bangos – sklidimo greitis vakuume:

*Elektromagnetinės bangos – dažnis nuo 104 iki 10

20 Hz.

*Elektromagnetinės bangos – bangos ilgis intervale 30 km – 3 pm (3*104-3*10

-12) m.

*Sklidimo greitis medžiagose visada yra mažesnis negu vakuume:

*Sklidimo greitis medžiagose priklauso nuo e ir m.

*Elektromagnetinės bangos yra skersinės.

*Elektromagnetinėje bangoje E, H ir v vektoriai visada statmeni vienas kitam.

cv

smc /10*3 8

Page 67: Fizikos Egzamino Medziaga Pilna

19

*Elektromagnetinės bangos patiria lūžio, difrakcijos, interferencijos, atspindžio ir kitus

reiškinius, būdingus visų tipų bangoms.

*Elektromagnetinės bangos sklinda vakuumu ir dielektrikais, tačiau visiškai atsispindi nuo

metalų paviršių.

*Kadangi elektromagnetinės bangos skersinės, jos gali poliarizuotis.

*Elektromagnetinės bangos dažnis priklauso tik nuo šaltinio.

*Elektromagnetinės bangos ilgis priklauso nuo šaltinio dažnio ir aplinkos:

*Elektromagnetinės bangos amplitudė priklauso nuo šaltinio galios.

*Elektromagnetinės bangos silpsta medžiagose, perduodamos energiją medžiagai.

*Elektromagnetinės bangos gali patirti rezonansą uždarose metalinėse erdvėse.

*Elektromagnetinės bangos gali būti harmoninės ir sudėtinės.

*Elektromagnetinėm bangom galioja Doplerio efektas.

elektromagnetinės bangos diferencialinė lygtis ir jos sprendinys;

Lygtis: Elektriškai neutralioje ir nelaidžioje aplinkoje diferencialinių Maksvelio lygčių sistema

labai supaprastėja:

Kintantis elektrinis ar magnetinis laukas kuria sūkurinius laukus, kurių liestinės kiekviename

erdvės taške statmenos, juos sukūrusiam laukui. Iš to seka, kad elektromagnetinės bangos yra

skersinės.

Kai nagrinėjama elektromagnetinė banga sklinda x ašimi, vektoriai E ir H nuo y ir z

nepriklauso. Todėl diferencialinės lygtys užrašomos paprasčiau:

Sprendinys:

Sie sprendiniai apraso elektrinio ir magnetinio laukų periodinius svyravimus erdvėje .

elektromagnetinių bangų energija;

Sklisdama elektromagnetinė banga neša su savimi energiją. Ji sutelkta bangos elektriniame ir

magnetiniame laukuose.

Kadangi bangoje elektrinis laukas virsta magnetiniu ir atvirkščiai, šių laukų energijos turi būti

vienodos. Galima sulyginti energijas, esančias erdvės, kur sklinda banga, tūrio vienete, t. y.

elektrinės ir magnetinės energijos tūrinius tankius.

elektromagnetinių bangų energijos srauto tankis (Pointingo vektorius).

Energijos srauto tankio vektorius :

Vektorius vadinamas Pointingo (J. H. Poynting) vektoriumi. Jis nukreiptas energijos sklidimo

kryptimi, kuri sutampa su v arba

E B, kryptimi. Per bet kokį paviršių S elektromagnetinės

bangos pernešamą galią tada galima išreikšti taip:

V

2

2

00t

EErotrot

E

B

Z

54 pav.

X

Y

v

0

22

0

22

HEwww me

.

,

0

BE

.d,)(

S

SP