five drugs or clinical candidates derived from natural ... · why pursue total synthesis of natural...

132
O O O O O O O O Me O H 2 N OH OMe H H H O O O NH O H 2 N Me Me C 8 H 17 H N HCl OH HO OH O OMe N Me H H N Me Me O NH 2 OH O OH OH O OH F N O Five Drugs or Clinical Candidates Derived From Natural Products That Are Produced on Scale by Total Synthesis Jeff Garber MacMillan Group Meeting April 27, 2012

Upload: ngotu

Post on 01-May-2018

216 views

Category:

Documents


1 download

TRANSCRIPT

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H H

O

OO

NH

O

H2NMeMe

C8H17

HN

•HCl

OH

HO

OH

O

OMe

NMeH HN

Me Me

O

NH2

OH

OOH

OHOOH

F

N

O

Five Drugs or Clinical Candidates Derived From Natural Products!

That Are Produced on Scale by Total Synthesis!

Jeff Garber!MacMillan Group Meeting!

April 27, 2012!

Why Pursue Total Synthesis of Natural Products?

Test New Methodology

Develop New Methodology

Train Organic Chemists

Academic and Pegagogical

Produce Bioactive Molecules

Develop Analogs for Testing

Produce On-Scale for Society

Pragmatic

Why Pursue Total Synthesis of Natural Products?

Test New Methodology

Develop New Methodology

Train Organic Chemists

Academic and Pegagogical

Produce Bioactive Molecules

Develop Analogs for Testing

Produce On-Scale for Society

Pragmatic

Why Pursue Total Synthesis of Natural Products?

Test New Methodology

Develop New Methodology

Train Organic Chemists

Academic and Pegagogical

Produce Bioactive Molecules

Develop Analogs for Testing

Produce On-Scale for Society

Pragmatic

Why Use Total Synthesis?

Most Economical Only Available Option

Needs to be practical

"taxol problem"

Why Pursue Total Synthesis of Natural Products?

Produce Bioactive Molecules

Develop Analogs for Testing

Produce On-Scale for Society

Pragmatic

Why Use Total Synthesis?

Most Economical Only Available Option

Needs to be practical

"taxol problem"

Why Pursue Total Synthesis of Natural Products?

Produce Bioactive Molecules

Develop Analogs for Testing

Produce On-Scale for Society

Pragmatic

Why Use Total Synthesis?

Most Economical Only Available Option

Needs to be practical

"taxol problem"

Why Pursue Total Synthesis of Natural Products?

Produce Bioactive Molecules

Develop Analogs for Testing

Produce On-Scale for Society

Pragmatic

17%!5%!

28%!

50%!

S* = NP mimic produced by synthesis!

N = NP as isolated!

ND = NP derivative, semi-synthetic!

S = completely synthetic entity!

Natural products are clearly a useful source of new drugs!

All 1135 new drugs approved from 1981-2010!

Adapted from Newman and Clark, J. Nat. Prod. 2012 311.!

What Makes a Total Synthesis Interesting or Valuable?

Academic Synthesis Commercial Synthesis

Elegant

atom efficiencyconcise route

Creative

Novel Architecture

disconnections methodology

Among many other factors

complex structure first synthesis

Bioactive

produce for testing analog synthesis

Proven Bioactivity

producing for testing or sale

Practicality of Length

Reagent Selection

yield vs. steps reactor time

safety cost

Purification Methods

limit chrom. rextl. improv. ee

availability

What Makes a Total Synthesis Interesting or Valuable?

Academic Synthesis Commercial Synthesis

Elegant

atom efficiencyconcise route

Creative

Novel Architecture

disconnections methodology

Among many other factors

complex structure first synthesis

Bioactive

produce for testing analog synthesis

Proven Bioactivity

producing for testing or sale

Practicality of Length

Reagent Selection

yield vs. steps reactor time

safety cost

Purification Methods

limit chrom. rextl. improv. ee

availability

What Makes a Total Synthesis Interesting or Valuable?

Academic Synthesis Commercial Synthesis

Elegant

atom efficiencyconcise route

Creative

Novel Architecture

disconnections methodology

Among many other factors

complex structure first synthesis

Bioactive

produce for testing analog synthesis

Proven Bioactivity

producing for testing or sale

Practicality of Length

Reagent Selection

yield vs. steps reactor time

safety cost

Purification Methods

limit chrom. rextl. improv. ee

availability

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry

■ FDA approved in 2001 for treatment of Alzheimer's

■ First studied in USSR in 1950's

■ Used to treat mild to moderate cases

(−)-galanthamine

N

O

OH

Me

MeO

OH

O

OMe

NMe■ Inhibits acetylcholine esterase

■ USSR used for varous CNS disorders

■ Natural source (daffodils) not considered economical on scale

■ Sanochemia patented (1996) and later improved synthetic route (2008)

(−)-galanthamine: Overview!

■ FDA approved in 2001 for treatment of Alzheimer's

■ First studied in USSR in 1950's

■ Used to treat mild to moderate cases

(−)-galanthamine

N

O

OH

Me

MeO

OH

O

OMe

NMe■ Inhibits acetylcholine esterase

■ USSR used for varous CNS disorders

■ Natural source (daffodils) not considered economical on scale

■ Sanochemia patented (1996) and later improved synthetic route (2008)

(−)-galanthamine: Overview!

■ FDA approved in 2001 for treatment of Alzheimer's

■ First studied in USSR in 1950's

■ Used to treat mild to moderate cases

(−)-galanthamine

N

O

OH

Me

MeO

OH

O

OMe

NMe■ Inhibits acetylcholine esterase

■ USSR used for varous CNS disorders

■ Natural source (daffodils) not considered economical on scale

■ Sanochemia patented (1996) and later improved synthetic route (2008)

(−)-galanthamine: Overview!

■ Rapid synthesis from readily available materiats

■ Uses spontaneous chiral resolution/crystallization

■ Features oxidative phenolic coupling to form key bonds

(−)-galanthamine

OMe

OMeO

H

Br

N

O

OH

Me

MeONMe

OH

OH

BrOMe

H2N

OH

OH

O

OMe

NMe

(−)-galanthamine: Retrosynthetic Analysis!

■ Rapid synthesis from readily available materiats

■ Uses spontaneous chiral resolution/crystallization

■ Features oxidative phenolic coupling to form key bonds

(−)-galanthamine

OMe

OMeO

H

Br

N

O

OH

Me

MeONMe

OH

OH

BrOMe

H2N

OH

OH

O

OMe

NMe

(−)-galanthamine: Retrosynthetic Analysis!

■ Rapid synthesis from readily available materiats

■ Uses spontaneous chiral resolution/crystallization

■ Features oxidative phenolic coupling to form key bonds

(−)-galanthamine

OMe

OMeO

H

Br

N

O

OH

Me

MeONMe

OH

OH

BrOMe

H2N

OH

OH

O

OMe

NMe

(−)-galanthamine: Retrosynthetic Analysis!

2) Br2, AcOH

3) H2SO4

60-65%, three steps

HCOOEt, HCO2H

DMF, reflux

89%

OMe

O

HOH

OMe

O

HOH

Br

1) MeI, K2CO3 <$10/g NH2

HO

then NaBH4

toluene, reflux

<$4/g

HN

OH

OH

BrOMe

81%

N

OH

OH

BrOMe

OHCK3[Fe(CN)6]

K2CO3

N

OH

O

BrOMe

OHC

O

NOHC OH

Br OMe

−1 e-

O

NOHC O

Br OMe

49%

racemic

(−)-galanthamine: Dynamic Resolution!

2) Br2, AcOH

3) H2SO4

60-65%, three steps

HCOOEt, HCO2H

DMF, reflux

89%

OMe

O

HOH

OMe

O

HOH

Br

1) MeI, K2CO3 <$10/g NH2

HO

then NaBH4

toluene, reflux

<$4/g

HN

OH

OH

BrOMe

81%

N

OH

OH

BrOMe

OHCK3[Fe(CN)6]

K2CO3

N

OH

O

BrOMe

OHC

O

NOHC OH

Br OMe

−1 e-

O

NOHC O

Br OMe

49%

racemic

(−)-galanthamine: Dynamic Resolution!

2) Br2, AcOH

3) H2SO4

60-65%, three steps

HCOOEt, HCO2H

DMF, reflux

89%

OMe

O

HOH

OMe

O

HOH

Br

1) MeI, K2CO3 <$10/g NH2

HO

then NaBH4

toluene, reflux

<$4/g

HN

OH

OH

BrOMe

81%

N

OH

OH

BrOMe

OHCK3[Fe(CN)6]

K2CO3

N

OH

O

BrOMe

OHC

O

NOHC OH

Br OMe

−1 e-

O

NOHC O

Br OMe

49%

racemic

(−)-galanthamine: Dynamic Resolution!

2) Br2, AcOH

3) H2SO4

60-65%, three steps

HCOOEt, HCO2H

DMF, reflux

89%

OMe

O

HOH

OMe

O

HOH

Br

1) MeI, K2CO3 <$10/g NH2

HO

then NaBH4

toluene, reflux

<$4/g

HN

OH

OH

BrOMe

81%

N

OH

OH

BrOMe

OHCK3[Fe(CN)6]

K2CO3

N

OH

O

BrOMe

OHC

O

NOHC OH

Br OMe

−1 e-

O

NOHC O

Br OMe

49%

racemic

(−)-galanthamine: Dynamic Resolution!

2) Br2, AcOH

3) H2SO4

60-65%, three steps

HCOOEt, HCO2H

DMF, reflux

89%

OMe

O

HOH

OMe

O

HOH

Br

1) MeI, K2CO3 <$10/g NH2

HO

then NaBH4

toluene, reflux

<$4/g

HN

OH

OH

BrOMe

81%

N

OH

OH

BrOMe

OHCK3[Fe(CN)6]

K2CO3

N

OH

O

BrOMe

OHC

O

NOHC OH

Br OMe

−1 e-

O

NOHC O

Br OMe

49%

racemic

(−)-galanthamine: Dynamic Resolution!

2) Br2, AcOH

3) H2SO4

60-65%, three steps

HCOOEt, HCO2H

DMF, reflux

89%

OMe

O

HOH

OMe

O

HOH

Br

1) MeI, K2CO3 <$10/g NH2

HO

then NaBH4

toluene, reflux

<$4/g

HN

OH

OH

BrOMe

81%

N

OH

OH

BrOMe

OHCK3[Fe(CN)6]

K2CO3

N

OH

O

BrOMe

OHC

O

NOHC OH

Br OMe

−1 e-

O

NOHC O

Br OMe

49%

racemic

(−)-galanthamine: Dynamic Resolution!

(−)-galanthamine: Dynamic Resolution!

NMe OH

OMe

O

H2SO4, toluene

>99%

9:1 EtOH/Et3N;

reflux

then HCl

87%O

NOHC O

Br OMe

HO OH

Me

NOHC O

Br OMe

O O

Me

NMe O

OMe

O

LiAlH4, THF, reflux

crystalize and seed

with (−)-narwedine

(±)-narwedine

(−)-galanthamine: Dynamic Resolution!

NMe OH

OMe

O

H2SO4, toluene

>99%

9:1 EtOH/Et3N;

reflux

then HCl

87%O

NOHC O

Br OMe

HO OH

Me

NOHC O

Br OMe

O O

Me

NMe O

OMe

O

LiAlH4, THF, reflux

crystalize and seed

with (−)-narwedine

(±)-narwedine

(−)-galanthamine: Dynamic Resolution!

NMe OH

OMe

O

H2SO4, toluene

>99%

9:1 EtOH/Et3N;

reflux

then HCl

87%O

NOHC O

Br OMe

HO OH

Me

NOHC O

Br OMe

O O

Me

NMe O

OMe

O

LiAlH4, THF, reflux

crystalize and seed

with (−)-narwedine

(±)-narwedine

NMe O

OMe

O

87%

H2SO4, toluene

>99%

9:1 EtOH/Et3N;

reflux

then HCl

87%O

NOHC O

Br OMe

HO OH

Me

NOHC O

Br OMe

O O

Me

NMe O

OMe

O

LiAlH4, THF, reflux

crystalize and seed

with (−)-narwedine

(±)-narwedine

>99% ee

(−)-narwedine

(−)-galanthamine: Dynamic Resolution!

L-Selektride

95%O

NMe O

OMe

(−)-narwedine

OH

NMe O

OMe

(−)-galanthamine•HBr

then HBr, crystallization

•HBr

O

HO

NMe

BH

MeMe

MeMe

MeMe

O

HN

Me

HO

H

HBr

(−)-galanthamine: Completion of Synthesis!

L-Selektride

95%O

NMe O

OMe

(−)-narwedine

OH

NMe O

OMe

(−)-galanthamine•HBr

then HBr, crystallization

•HBr

O

HO

NMe

BH

MeMe

MeMe

MeMe

O

HN

Me

HO

H

HBr

(−)-galanthamine: Completion of Synthesis!

L-Selektride

95%O

NMe O

OMe

(−)-narwedine

OH

NMe O

OMe

(−)-galanthamine•HBr

then HBr, crystallization

•HBr

O

HO

NMe

BH

MeMe

MeMe

MeMe

O

HN

Me

HO

H

HBr

(−)-galanthamine: Completion of Synthesis!

L-Selektride

95%O

NMe O

OMe

(−)-narwedine

OH

NMe O

OMe

(−)-galanthamine•HBr

then HBr, crystallization

•HBr

■ From isovanillin: 16% overall yield, 9 steps (10 including dynamic resolution)

■ From commercial bromide: 27% overall yield, 6 or 7 steps

■ Resolution establishes stereochemistry, no enantioselective reactions

(−)-galanthamine: Completion of Synthesis!

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry

Eribuline: Overview!

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H H

highly conserved right hand portion

O

O

OO

OO O

O

O

Me

H

H HO

O

O

O

OO

HO

HO

HO

left half found to be unnecssary

eribuline

halichondrin B

■ Halichondrin B isolated from sponges in 1986

■ Activity further demonstrated by Nat. Cancer Inst.

■ Total synthesis complete by Kishi in 1992

Halichondrin B

Eribuline: Overview!

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H H

highly conserved right hand portion

O

O

OO

OO O

O

O

Me

H

H HO

O

O

O

OO

HO

HO

HO

left half found to be unnecssary

eribuline

halichondrin B

■ Halichondrin B isolated from sponges in 1986

■ Activity further demonstrated by Nat. Cancer Inst.

■ Total synthesis complete by Kishi in 1992

Halichondrin B

Eribuline: Overview!

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H H

highly conserved right hand portion

O

O

OO

OO O

O

O

Me

H

H HO

O

O

O

OO

HO

HO

HO

left half found to be unnecssary

eribuline

halichondrin B

■ Halichondrin B isolated from sponges in 1986

■ Activity further demonstrated by Nat. Cancer Inst.

■ Total synthesis complete by Kishi in 1992

Halichondrin B

Eribuline: Overview!

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H H

highly conserved right hand portion

O

O

OO

OO O

O

O

Me

H

H HO

O

O

O

OO

HO

HO

HO

left half found to be unnecssary

eribuline

halichondrin B

■ Approved to treat metastatic breast cancer in 2010

■ Class has mechanistically unique inhibition pathway

■ Marketed by Eisai with global partnerships

Eribuline

Eribuline: Retrosynthetic Analysis!

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H

O OO

OTBSTBSO

O

O

Me

O

TBSO OTBSOMe

H

H

SO2Ph

OH

H

H

I

OTBSH

+

O

TBSO OTBS OMe SO2Ph

O H

O

Me

OPiv

OMs

■ Highly convergent

■ Late stage coupling

■ Utilizes chiral pool

Bioorg. Med. Chem. 2012 1155

Eribuline: Retrosynthetic Analysis!

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H

O OO

OTBSTBSO

O

O

Me

O

TBSO OTBSOMe

H

H

SO2Ph

OH

H

H

I

OTBSH

+

O

TBSO OTBS OMe SO2Ph

O H

O

Me

OPiv

OMs

■ Highly convergent

■ Late stage coupling

■ Utilizes chiral pool

Bioorg. Med. Chem. 2012 1155

Eribuline: Retrosynthetic Analysis!

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H

O OO

OTBSTBSO

O

O

Me

O

TBSO OTBSOMe

H

H

SO2Ph

OH

H

H

I

OTBSH

+

O

TBSO OTBS OMe SO2Ph

O H

O

Me

OPiv

OMs

■ Highly convergent

■ Late stage coupling

■ Utilizes chiral pool

Bioorg. Med. Chem. 2012 1155

OOH

OHOH 1) c-hexanone, pTSA

PhCH3, reflux

2) DIBAL-H, -15 °CPhCH3, THF

OHHO

OHOH O

O

O O

ClPh3PCH2OMe

KOtBu, THF

84%, two steps

81%

1) OsO4, NMOacetone, H2O

2) Ac2O, AcOHZnCl2, 40 °C

44%, two steps

O

OOAcO

HOAc

AcO OAc

BF3•OEt, MeCN

TMSMeO2C

O

OOAcO

HOAc

OAcMeO2C Triton B(OH)

THF, MeOAc

38%, two steps

O

O

OO

OH

H

HOH

H

MeO2C

MeO

OO

OO

HO

L-mannonic acid γ-lactone$50/g (Aldrich)

Eribuline: Eastern Fragment!

OOH

OHOH 1) c-hexanone, pTSA

PhCH3, reflux

2) DIBAL-H, -15 °CPhCH3, THF

OHHO

OHOH O

O

O O

ClPh3PCH2OMe

KOtBu, THF

84%, two steps

81%

1) OsO4, NMOacetone, H2O

2) Ac2O, AcOHZnCl2, 40 °C

44%, two steps

O

OOAcO

HOAc

AcO OAc

BF3•OEt, MeCN

TMSMeO2C

O

OOAcO

HOAc

OAcMeO2C Triton B(OH)

THF, MeOAc

38%, two steps

O

O

OO

OH

H

HOH

H

MeO2C

MeO

OO

OO

HO

L-mannonic acid γ-lactone$50/g (Aldrich)

Eribuline: Eastern Fragment!

OOH

OHOH 1) c-hexanone, pTSA

PhCH3, reflux

2) DIBAL-H, -15 °CPhCH3, THF

OHHO

OHOH O

O

O O

ClPh3PCH2OMe

KOtBu, THF

84%, two steps

81%

1) OsO4, NMOacetone, H2O

2) Ac2O, AcOHZnCl2, 40 °C

44%, two steps

O

OOAcO

HOAc

AcO OAc

BF3•OEt, MeCN

TMSMeO2C

O

OOAcO

HOAc

OAcMeO2C Triton B(OH)

THF, MeOAc

38%, two steps

O

O

OO

OH

H

HOH

H

MeO2C

MeO

OO

OO

HO

L-mannonic acid γ-lactone$50/g (Aldrich)

Eribuline: Eastern Fragment!

OOH

OHOH 1) c-hexanone, pTSA

PhCH3, reflux

2) DIBAL-H, -15 °CPhCH3, THF

OHHO

OHOH O

O

O O

ClPh3PCH2OMe

KOtBu, THF

84%, two steps

81%

1) OsO4, NMOacetone, H2O

2) Ac2O, AcOHZnCl2, 40 °C

44%, two steps

O

OOAcO

HOAc

AcO OAc

BF3•OEt, MeCN

TMSMeO2C

O

OOAcO

HOAc

OAcMeO2C Triton B(OH)

THF, MeOAc

38%, two steps

O

O

OO

OH

H

HOH

H

MeO2C

MeO

OO

OO

HO

L-mannonic acid γ-lactone$50/g (Aldrich)

Eribuline: Eastern Fragment!

OOH

OHOH 1) c-hexanone, pTSA

PhCH3, reflux

2) DIBAL-H, -15 °CPhCH3, THF

OHHO

OHOH O

O

O O

ClPh3PCH2OMe

KOtBu, THF

84%, two steps

81%

1) OsO4, NMOacetone, H2O

2) Ac2O, AcOHZnCl2, 40 °C

44%, two steps

O

OOAcO

HOAc

AcO OAc

BF3•OEt, MeCN

TMSMeO2C

O

OOAcO

HOAc

OAcMeO2C Triton B(OH)

THF, MeOAc

38%, two steps

O

O

OO

OH

H

HOH

H

MeO2C

MeO

OO

OO

HO

L-mannonic acid γ-lactone$50/g (Aldrich)

Eribuline: Eastern Fragment!

Eribuline: Completion of Eastern Fragment!

NaIO4, EtOAc/H2O

84%, two stepsO

O

OOH

HOH

H

MeO2C

OH

O

O

OO

H

H

HO

H

MeO2C

NiCl2, CrCl2PhCH3, reflux

65%, two steps

Br

TMS

O

O

OOH

HOH

H

MeO2C

*TMS

8.3:1 dr

53%, two steps

O

O

OTBSOTBS

H

HOTBS

H

MeO2CTMS

1) AcOH, H2O90 °C; rextl.

2) TBSOTf, 2,6-lut.MTBE

O

O

OTBSH

HOTBS

H

MeO2CI

OTBS

NIS, cat. TBSCl

MeCN, PhCH3

90%

DIBALH

O

O

OTBSH

HOTBS

HI

OTBSH

O

-75 °C

93%

2.8%, 15 steps

Eribuline: Completion of Eastern Fragment!

NaIO4, EtOAc/H2O

84%, two stepsO

O

OOH

HOH

H

MeO2C

OH

O

O

OO

H

H

HO

H

MeO2C

NiCl2, CrCl2PhCH3, reflux

65%, two steps

Br

TMS

O

O

OOH

HOH

H

MeO2C

*TMS

8.3:1 dr

53%, two steps

O

O

OTBSOTBS

H

HOTBS

H

MeO2CTMS

1) AcOH, H2O90 °C; rextl.

2) TBSOTf, 2,6-lut.MTBE

O

O

OTBSH

HOTBS

H

MeO2CI

OTBS

NIS, cat. TBSCl

MeCN, PhCH3

90%

DIBALH

O

O

OTBSH

HOTBS

HI

OTBSH

O

-75 °C

93%

2.8%, 15 steps

Eribuline: Completion of Eastern Fragment!

NaIO4, EtOAc/H2O

84%, two stepsO

O

OOH

HOH

H

MeO2C

OH

O

O

OO

H

H

HO

H

MeO2C

NiCl2, CrCl2PhCH3, reflux

65%, two steps

Br

TMS

O

O

OOH

HOH

H

MeO2C

*TMS

8.3:1 dr

53%, two steps

O

O

OTBSOTBS

H

HOTBS

H

MeO2CTMS

1) AcOH, H2O90 °C; rextl.

2) TBSOTf, 2,6-lut.MTBE

O

O

OTBSH

HOTBS

H

MeO2CI

OTBS

NIS, cat. TBSCl

MeCN, PhCH3

90%

DIBALH

O

O

OTBSH

HOTBS

HI

OTBSH

O

-75 °C

93%

2.8%, 15 steps

Eribuline: Completion of Eastern Fragment!

NaIO4, EtOAc/H2O

84%, two stepsO

O

OOH

HOH

H

MeO2C

OH

O

O

OO

H

H

HO

H

MeO2C

NiCl2, CrCl2PhCH3, reflux

65%, two steps

Br

TMS

O

O

OOH

HOH

H

MeO2C

*TMS

8.3:1 dr

53%, two steps

O

O

OTBSOTBS

H

HOTBS

H

MeO2CTMS

1) AcOH, H2O90 °C; rextl.

2) TBSOTf, 2,6-lut.MTBE

O

O

OTBSH

HOTBS

H

MeO2CI

OTBS

NIS, cat. TBSCl

MeCN, PhCH3

90%

DIBALH

O

O

OTBSH

HOTBS

HI

OTBSH

O

-75 °C

93%

2.8%, 15 steps

Eribuline: Completion of Eastern Fragment!

NaIO4, EtOAc/H2O

84%, two stepsO

O

OOH

HOH

H

MeO2C

OH

O

O

OO

H

H

HO

H

MeO2C

NiCl2, CrCl2PhCH3, reflux

65%, two steps

Br

TMS

O

O

OOH

HOH

H

MeO2C

*TMS

8.3:1 dr

53%, two steps

O

O

OTBSOTBS

H

HOTBS

H

MeO2CTMS

1) AcOH, H2O90 °C; rextl.

2) TBSOTf, 2,6-lut.MTBE

O

O

OTBSH

HOTBS

H

MeO2CI

OTBS

NIS, cat. TBSCl

MeCN, PhCH3

90%

DIBALH

O

O

OTBSH

HOTBS

HI

OTBSH

O

-75 °C

93%

2.8%, 15 steps

Eribuline: Northern Fragment Synthesis!

O

O

OH

O

HO

OH

H59%, three steps

1) acetone, H2SO4

2) SO2Cl2, pyr., MeCN

3) H2, Pd/C, THF O

OO

HO

O MeMe

72%, two steps

1) DIBALH, PhCH3, -40 °C

2) TMSCH2MgCl, THF

O

HO

O

O MeMe

TMSOH

89%, two steps

1) KHMDS, THF

2) BnBr, KOtBuO

BnO

O

O MeMe

95%, 3:1 dr

tBuOH, H2O

(DHQ)2AQNK2OsO4, K3Fe(CN)6

O

BnO

O

O MeMeOH

OH56%, >99.5% de

1) BzCl, NMM, DMAP

2) AllylTMS, TiCl3OiPr

recrystalizeO

OHBnO

BzO

OBz

D-glucorono-6,3 lactone

<$1/g (TCI)

Eribuline: Northern Fragment Synthesis!

O

O

OH

O

HO

OH

H59%, three steps

1) acetone, H2SO4

2) SO2Cl2, pyr., MeCN

3) H2, Pd/C, THF O

OO

HO

O MeMe

72%, two steps

1) DIBALH, PhCH3, -40 °C

2) TMSCH2MgCl, THF

O

HO

O

O MeMe

TMSOH

89%, two steps

1) KHMDS, THF

2) BnBr, KOtBuO

BnO

O

O MeMe

95%, 3:1 dr

tBuOH, H2O

(DHQ)2AQNK2OsO4, K3Fe(CN)6

O

BnO

O

O MeMeOH

OH56%, >99.5% de

1) BzCl, NMM, DMAP

2) AllylTMS, TiCl3OiPr

recrystalizeO

OHBnO

BzO

OBz

D-glucorono-6,3 lactone

<$1/g (TCI)

Eribuline: Northern Fragment Synthesis!

O

O

OH

O

HO

OH

H59%, three steps

1) acetone, H2SO4

2) SO2Cl2, pyr., MeCN

3) H2, Pd/C, THF O

OO

HO

O MeMe

72%, two steps

1) DIBALH, PhCH3, -40 °C

2) TMSCH2MgCl, THF

O

HO

O

O MeMe

TMSOH

89%, two steps

1) KHMDS, THF

2) BnBr, KOtBuO

BnO

O

O MeMe

95%, 3:1 dr

tBuOH, H2O

(DHQ)2AQNK2OsO4, K3Fe(CN)6

O

BnO

O

O MeMeOH

OH56%, >99.5% de

1) BzCl, NMM, DMAP

2) AllylTMS, TiCl3OiPr

recrystalizeO

OHBnO

BzO

OBz

D-glucorono-6,3 lactone

<$1/g (TCI)

Eribuline: Northern Fragment Synthesis!

O

O

OH

O

HO

OH

H59%, three steps

1) acetone, H2SO4

2) SO2Cl2, pyr., MeCN

3) H2, Pd/C, THF O

OO

HO

O MeMe

72%, two steps

1) DIBALH, PhCH3, -40 °C

2) TMSCH2MgCl, THF

O

HO

O

O MeMe

TMSOH

89%, two steps

1) KHMDS, THF

2) BnBr, KOtBuO

BnO

O

O MeMe

95%, 3:1 dr

tBuOH, H2O

(DHQ)2AQNK2OsO4, K3Fe(CN)6

O

BnO

O

O MeMeOH

OH56%, >99.5% de

1) BzCl, NMM, DMAP

2) AllylTMS, TiCl3OiPr

recrystalizeO

OHBnO

BzO

OBz

D-glucorono-6,3 lactone

<$1/g (TCI)

Eribuline: Northern Fragment Synthesis!

O

O

OH

O

HO

OH

H59%, three steps

1) acetone, H2SO4

2) SO2Cl2, pyr., MeCN

3) H2, Pd/C, THF O

OO

HO

O MeMe

72%, two steps

1) DIBALH, PhCH3, -40 °C

2) TMSCH2MgCl, THF

O

HO

O

O MeMe

TMSOH

89%, two steps

1) KHMDS, THF

2) BnBr, KOtBuO

BnO

O

O MeMe

95%, 3:1 dr

tBuOH, H2O

(DHQ)2AQNK2OsO4, K3Fe(CN)6

O

BnO

O

O MeMeOH

OH56%, >99.5% de

1) BzCl, NMM, DMAP

2) AllylTMS, TiCl3OiPr

recrystalizeO

OHBnO

BzO

OBz

D-glucorono-6,3 lactone

<$1/g (TCI)

Eribuline: Northern Fragment Synthesis!1) DMSO, TCAA, Et3N

PhCH3, -10 °C

2) LHMDS, PHSO2Me

H2SO4, acetone

2) NaOtBu, MeI

68%, five steps

O3, heptane;

then LIndlar's, H2

recrystalize

O

OH

OBzOBz

BnO

O

OBzOBz

BnO SO2Ph 1) TMSI, 60 °C

2) Bu4NCl, NaBH(OAc)3

3) K2CO3, MeOH

recrystalize

O

OHOH

HO SO2Ph

57%, five steps

Me

MeO

Me

OMe1)

O

MeO SO2Ph

OO

MeMe

1) 2 M HCl, MeOH

2) TBSCl, imidaz.

O

MeO SO2Ph

OTBSOTBS

O

MeO SO2Ph

OTBSOTBS

CHO

7.8%, 19 steps

Eribuline: Northern Fragment Synthesis!1) DMSO, TCAA, Et3N

PhCH3, -10 °C

2) LHMDS, PHSO2Me

H2SO4, acetone

2) NaOtBu, MeI

68%, five steps

O3, heptane;

then LIndlar's, H2

recrystalize

O

OH

OBzOBz

BnO

O

OBzOBz

BnO SO2Ph 1) TMSI, 60 °C

2) Bu4NCl, NaBH(OAc)3

3) K2CO3, MeOH

recrystalize

O

OHOH

HO SO2Ph

57%, five steps

Me

MeO

Me

OMe1)

O

MeO SO2Ph

OO

MeMe

1) 2 M HCl, MeOH

2) TBSCl, imidaz.

O

MeO SO2Ph

OTBSOTBS

O

MeO SO2Ph

OTBSOTBS

CHO

7.8%, 19 steps

Eribuline: Northern Fragment Synthesis!1) DMSO, TCAA, Et3N

PhCH3, -10 °C

2) LHMDS, PHSO2Me

H2SO4, acetone

2) NaOtBu, MeI

68%, five steps

O3, heptane;

then LIndlar's, H2

recrystalize

O

OH

OBzOBz

BnO

O

OBzOBz

BnO SO2Ph 1) TMSI, 60 °C

2) Bu4NCl, NaBH(OAc)3

3) K2CO3, MeOH

recrystalize

O

OHOH

HO SO2Ph

57%, five steps

Me

MeO

Me

OMe1)

O

MeO SO2Ph

OO

MeMe

1) 2 M HCl, MeOH

2) TBSCl, imidaz.

O

MeO SO2Ph

OTBSOTBS

O

MeO SO2Ph

OTBSOTBS

CHO

7.8%, 19 steps

Eribuline: Northern Fragment Synthesis!1) DMSO, TCAA, Et3N

PhCH3, -10 °C

2) LHMDS, PHSO2Me

H2SO4, acetone

2) NaOtBu, MeI

68%, five steps

O3, heptane;

then LIndlar's, H2

recrystalize

O

OH

OBzOBz

BnO

O

OBzOBz

BnO SO2Ph 1) TMSI, 60 °C

2) Bu4NCl, NaBH(OAc)3

3) K2CO3, MeOH

recrystalize

O

OHOH

HO SO2Ph

57%, five steps

Me

MeO

Me

OMe1)

O

MeO SO2Ph

OO

MeMe

1) 2 M HCl, MeOH

2) TBSCl, imidaz.

O

MeO SO2Ph

OTBSOTBS

O

MeO SO2Ph

OTBSOTBS

CHO

7.8%, 19 steps

Eribuline: Northern Fragment Synthesis!1) DMSO, TCAA, Et3N

PhCH3, -10 °C

2) LHMDS, PHSO2Me

H2SO4, acetone

2) NaOtBu, MeI

68%, five steps

O3, heptane;

then LIndlar's, H2

recrystalize

O

OH

OBzOBz

BnO

O

OBzOBz

BnO SO2Ph 1) TMSI, 60 °C

2) Bu4NCl, NaBH(OAc)3

3) K2CO3, MeOH

recrystalize

O

OHOH

HO SO2Ph

57%, five steps

Me

MeO

Me

OMe1)

O

MeO SO2Ph

OO

MeMe

1) 2 M HCl, MeOH

2) TBSCl, imidaz.

O

MeO SO2Ph

OTBSOTBS

O

MeO SO2Ph

OTBSOTBS

CHO

7.8%, 19 steps

Eribuline: Southern Fragment Synthesis!

1) c-hexanone

H2SO4, 160 °C

2) TMSCl, imidaz.

1) MsCl, Et3N

2) KCN, EtOH/H2O

1) DIBALH, -78 °C

2) AcOH, H2O

3) Et3N, DMAP, Ac2O

recrystalize

65%, three steps

62%

OH

D-quinic acid

OHOH

HO

HO2C

73%, two steps

O

O

OO

TMSO

H

O

O

OAcO

AcO

H

BF3•OEt, MeCN, TCAA

TMSMeO2C

O

O

O

AcO

HMeO2C

OO

O H

O1) NaOMe, MeOH

2) LiAlH4, THF OO

O H

O

HO NC

H H

$2/g (Aldrich)

Eribuline: Southern Fragment Synthesis!

1) c-hexanone

H2SO4, 160 °C

2) TMSCl, imidaz.

1) MsCl, Et3N

2) KCN, EtOH/H2O

1) DIBALH, -78 °C

2) AcOH, H2O

3) Et3N, DMAP, Ac2O

recrystalize

65%, three steps

62%

OH

D-quinic acid

OHOH

HO

HO2C

73%, two steps

O

O

OO

TMSO

H

O

O

OAcO

AcO

H

BF3•OEt, MeCN, TCAA

TMSMeO2C

O

O

O

AcO

HMeO2C

OO

O H

O1) NaOMe, MeOH

2) LiAlH4, THF OO

O H

O

HO NC

H H

$2/g (Aldrich)

Eribuline: Southern Fragment Synthesis!

1) c-hexanone

H2SO4, 160 °C

2) TMSCl, imidaz.

1) MsCl, Et3N

2) KCN, EtOH/H2O

1) DIBALH, -78 °C

2) AcOH, H2O

3) Et3N, DMAP, Ac2O

recrystalize

65%, three steps

62%

OH

D-quinic acid

OHOH

HO

HO2C

73%, two steps

O

O

OO

TMSO

H

O

O

OAcO

AcO

H

BF3•OEt, MeCN, TCAA

TMSMeO2C

O

O

O

AcO

HMeO2C

OO

O H

O1) NaOMe, MeOH

2) LiAlH4, THF OO

O H

O

HO NC

H H

$2/g (Aldrich)

Eribuline: Southern Fragment Synthesis!

1) c-hexanone

H2SO4, 160 °C

2) TMSCl, imidaz.

1) MsCl, Et3N

2) KCN, EtOH/H2O

1) DIBALH, -78 °C

2) AcOH, H2O

3) Et3N, DMAP, Ac2O

recrystalize

65%, three steps

62%

OH

D-quinic acid

OHOH

HO

HO2C

73%, two steps

O

O

OO

TMSO

H

O

O

OAcO

AcO

H

BF3•OEt, MeCN, TCAA

TMSMeO2C

O

O

O

AcO

HMeO2C

OO

O H

O1) NaOMe, MeOH

2) LiAlH4, THF OO

O H

O

HO NC

H H

$2/g (Aldrich)

Eribuline: Southern Fragment Synthesis!

1) c-hexanone

H2SO4, 160 °C

2) TMSCl, imidaz.

1) MsCl, Et3N

2) KCN, EtOH/H2O

1) DIBALH, -78 °C

2) AcOH, H2O

3) Et3N, DMAP, Ac2O

recrystalize

65%, three steps

62%

OH

D-quinic acid

OHOH

HO

HO2C

73%, two steps

O

O

OO

TMSO

H

O

O

OAcO

AcO

H

BF3•OEt, MeCN, TCAA

TMSMeO2C

O

O

O

AcO

HMeO2C

OO

O H

O1) NaOMe, MeOH

2) LiAlH4, THF OO

O H

O

HO NC

H H

$2/g (Aldrich)

KHMDS, MeIPhCH3/THF, -78 °C

recrystalize

LiCl, iPr2NEt

1) 1M HCl, AcOH

2)

62%, three steps

65%, five steps

OO

O H

O

NC

34:1 dr

OO

O H

O

NC Me O

BrMe

OAcMe

OAc

Br

O H

O

NC Me

DBU, 100 °CO H

O

NC Me

1) O3 2) NaBH4

3) K2CO3, H2O

4) NaIO4

OHO

O H

O

NC Me

(MeO)2PO

CO2Me

75%, four steps

OH

O

O

NC Me

CO2Me

H H

H

HH

Eribuline: Southern Fragment Synthesis!

KHMDS, MeIPhCH3/THF, -78 °C

recrystalize

LiCl, iPr2NEt

1) 1M HCl, AcOH

2)

62%, three steps

65%, five steps

OO

O H

O

NC

34:1 dr

OO

O H

O

NC Me O

BrMe

OAcMe

OAc

Br

O H

O

NC Me

DBU, 100 °CO H

O

NC Me

1) O3 2) NaBH4

3) K2CO3, H2O

4) NaIO4

OHO

O H

O

NC Me

(MeO)2PO

CO2Me

75%, four steps

OH

O

O

NC Me

CO2Me

H H

H

HH

Eribuline: Southern Fragment Synthesis!

KHMDS, MeIPhCH3/THF, -78 °C

recrystalize

LiCl, iPr2NEt

1) 1M HCl, AcOH

2)

62%, three steps

65%, five steps

OO

O H

O

NC

34:1 dr

OO

O H

O

NC Me O

BrMe

OAcMe

OAc

Br

O H

O

NC Me

DBU, 100 °CO H

O

NC Me

1) O3 2) NaBH4

3) K2CO3, H2O

4) NaIO4

OHO

O H

O

NC Me

(MeO)2PO

CO2Me

75%, four steps

OH

O

O

NC Me

CO2Me

H H

H

HH

Eribuline: Southern Fragment Synthesis!

KHMDS, MeIPhCH3/THF, -78 °C

recrystalize

LiCl, iPr2NEt

1) 1M HCl, AcOH

2)

62%, three steps

65%, five steps

OO

O H

O

NC

34:1 dr

OO

O H

O

NC Me O

BrMe

OAcMe

OAc

Br

O H

O

NC Me

DBU, 100 °CO H

O

NC Me

1) O3 2) NaBH4

3) K2CO3, H2O

4) NaIO4

OHO

O H

O

NC Me

(MeO)2PO

CO2Me

75%, four steps

OH

O

O

NC Me

CO2Me

H H

H

HH

Eribuline: Southern Fragment Synthesis!

KHMDS, MeIPhCH3/THF, -78 °C

recrystalize

LiCl, iPr2NEt

1) 1M HCl, AcOH

2)

62%, three steps

65%, five steps

OO

O H

O

NC

34:1 dr

OO

O H

O

NC Me O

BrMe

OAcMe

OAc

Br

O H

O

NC Me

DBU, 100 °CO H

O

NC Me

1) O3 2) NaBH4

3) K2CO3, H2O

4) NaIO4

OHO

O H

O

NC Me

(MeO)2PO

CO2Me

75%, four steps

OH

O

O

NC Me

CO2Me

H H

H

HH

Eribuline: Southern Fragment Synthesis!

75%, four steps

OH

O

O

NC Me

CO2Me

1) H2, PtO2, MeOH

2) Tf2O, Et3N, -78 °C

3) NaI, DMF I

O

O

NC Me

CO2Me

1) LiBH4, THF, PhCH3

2) Zn, AcOH, MeOH

81%, two steps

H H

OMe

CNOH1) HCl, iPrOH

then PhCH3, H2O

2) TBDPSCl, imidaz.O

OO

Me

1) (OMe)NHMe•HCl

AlMe3, DCM

2) TBSCl, imidaz, DMF

99%, four steps

OMe

TBSONO

Me

OMe

OHOTBDPS

OTBDPS

1) MeMgCl, THF

2) KHMDS, Tf2NPhO

Me

TBSOOTf

OTBDPS

Eribuline: Southern Fragment Synthesis!

75%, four steps

OH

O

O

NC Me

CO2Me

1) H2, PtO2, MeOH

2) Tf2O, Et3N, -78 °C

3) NaI, DMF I

O

O

NC Me

CO2Me

1) LiBH4, THF, PhCH3

2) Zn, AcOH, MeOH

81%, two steps

H H

OMe

CNOH1) HCl, iPrOH

then PhCH3, H2O

2) TBDPSCl, imidaz.O

OO

Me

1) (OMe)NHMe•HCl

AlMe3, DCM

2) TBSCl, imidaz, DMF

99%, four steps

OMe

TBSONO

Me

OMe

OHOTBDPS

OTBDPS

1) MeMgCl, THF

2) KHMDS, Tf2NPhO

Me

TBSOOTf

OTBDPS

Eribuline: Southern Fragment Synthesis!

75%, four steps

OH

O

O

NC Me

CO2Me

1) H2, PtO2, MeOH

2) Tf2O, Et3N, -78 °C

3) NaI, DMF I

O

O

NC Me

CO2Me

1) LiBH4, THF, PhCH3

2) Zn, AcOH, MeOH

81%, two steps

H H

OMe

CNOH1) HCl, iPrOH

then PhCH3, H2O

2) TBDPSCl, imidaz.O

OO

Me

1) (OMe)NHMe•HCl

AlMe3, DCM

2) TBSCl, imidaz, DMF

99%, four steps

OMe

TBSONO

Me

OMe

OHOTBDPS

OTBDPS

1) MeMgCl, THF

2) KHMDS, Tf2NPhO

Me

TBSOOTf

OTBDPS

Eribuline: Southern Fragment Synthesis!

75%, four steps

OH

O

O

NC Me

CO2Me

1) H2, PtO2, MeOH

2) Tf2O, Et3N, -78 °C

3) NaI, DMF I

O

O

NC Me

CO2Me

1) LiBH4, THF, PhCH3

2) Zn, AcOH, MeOH

81%, two steps

H H

OMe

CNOH1) HCl, iPrOH

then PhCH3, H2O

2) TBDPSCl, imidaz.O

OO

Me

1) (OMe)NHMe•HCl

AlMe3, DCM

2) TBSCl, imidaz, DMF

99%, four steps

OMe

TBSONO

Me

OMe

OHOTBDPS

OTBDPS

1) MeMgCl, THF

2) KHMDS, Tf2NPhO

Me

TBSOOTf

OTBDPS

Eribuline: Southern Fragment Synthesis!

75%, four steps

OH

O

O

NC Me

CO2Me

1) H2, PtO2, MeOH

2) Tf2O, Et3N, -78 °C

3) NaI, DMF I

O

O

NC Me

CO2Me

1) LiBH4, THF, PhCH3

2) Zn, AcOH, MeOH

81%, two steps

H H

OMe

CNOH1) HCl, iPrOH

then PhCH3, H2O

2) TBDPSCl, imidaz.O

OO

Me

1) (OMe)NHMe•HCl

AlMe3, DCM

2) TBSCl, imidaz, DMF

99%, four steps

OMe

TBSONO

Me

OMe

OHOTBDPS

OTBDPS

1) MeMgCl, THF

2) KHMDS, Tf2NPhO

Me

TBSOOTf

OTBDPS

Eribuline: Southern Fragment Synthesis!

62%, five steps

1) HCl, iPrOH, MeOH

2) PivCl, collidine, DMAP

3) MsCl, Et3N, THFOMe

TBSOOTf

OTBDPS

OMe

MsOOTf

OPiv

3.3% overall

33 steps

NH2

Me

OH

O(Cl3CO)2CO

THF97%

1)

2) LiOH, H2O, 60 °C65%, two steps

NH

Me

O

O

O

NH2

Me

NH

O

Me

OH

Me

H2NMe

OH

Me

NHMsMe

MsCl, pyr., DMAPLigand for N-H-K

54% overall

four steps85%

N

O

Me

Me

Eribuline: Southern Fragment and Ligand Synthesis!

62%, five steps

1) HCl, iPrOH, MeOH

2) PivCl, collidine, DMAP

3) MsCl, Et3N, THFOMe

TBSOOTf

OTBDPS

OMe

MsOOTf

OPiv

3.3% overall

33 steps

NH2

Me

OH

O(Cl3CO)2CO

THF97%

1)

2) LiOH, H2O, 60 °C65%, two steps

NH

Me

O

O

O

NH2

Me

NH

O

Me

OH

Me

H2NMe

OH

Me

NHMsMe

MsCl, pyr., DMAPLigand for N-H-K

54% overall

four steps85%

N

O

Me

Me

Eribuline: Southern Fragment and Ligand Synthesis!

62%, five steps

1) HCl, iPrOH, MeOH

2) PivCl, collidine, DMAP

3) MsCl, Et3N, THFOMe

TBSOOTf

OTBDPS

OMe

MsOOTf

OPiv

3.3% overall

33 steps

NH2

Me

OH

O(Cl3CO)2CO

THF97%

1)

2) LiOH, H2O, 60 °C65%, two steps

NH

Me

O

O

O

NH2

Me

NH

O

Me

OH

Me

H2NMe

OH

Me

NHMsMe

MsCl, pyr., DMAPLigand for N-H-K

54% overall

four steps85%

N

O

Me

Me

Eribuline: Southern Fragment and Ligand Synthesis!

62%, five steps

1) HCl, iPrOH, MeOH

2) PivCl, collidine, DMAP

3) MsCl, Et3N, THFOMe

TBSOOTf

OTBDPS

OMe

MsOOTf

OPiv

3.3% overall

33 steps

NH2

Me

OH

O(Cl3CO)2CO

THF97%

1)

2) LiOH, H2O, 60 °C65%, two steps

NH

Me

O

O

O

NH2

Me

NH

O

Me

OH

Me

H2NMe

OH

Me

NHMsMe

MsCl, pyr., DMAPLigand for N-H-K

54% overall

four steps85%

N

O

Me

Me

Eribuline: Southern Fragment and Ligand Synthesis!

62%, five steps

1) HCl, iPrOH, MeOH

2) PivCl, collidine, DMAP

3) MsCl, Et3N, THFOMe

TBSOOTf

OTBDPS

OMe

MsOOTf

OPiv

3.3% overall

33 steps

NH2

Me

OH

O(Cl3CO)2CO

THF97%

1)

2) LiOH, H2O, 60 °C65%, two steps

NH

Me

O

O

O

NH2

Me

NH

O

Me

OH

Me

H2NMe

OH

Me

NHMsMe

MsCl, pyr., DMAPLigand for N-H-K

54% overall

four steps85%

N

O

Me

Me

Eribuline: Southern Fragment and Ligand Synthesis!

OMe

MsOOTf

OPiv

NHMsMe

N

O

Me

Me

O

MeO SO2Ph

OH

3.55 eq CrCl2 and NiCl2,

OMe

MsO

OPiv

TBSOTBSO

O

MeO SO2Ph

HO

TBSOTBSO

1) KHMDS, THF -14 °Cchromatography

2) DIBALH, DCM

68%, three stepsO

Me

O

OH

O

MeO SO2PhTBSO

TBSO

3.55 eq

Et3N, THF1.0 eq

1.1 eq

(20:1 dr before chrom.)

Eribuline: Coupling Western Fragments!

OMe

MsOOTf

OPiv

NHMsMe

N

O

Me

Me

O

MeO SO2Ph

OH

3.55 eq CrCl2 and NiCl2,

OMe

MsO

OPiv

TBSOTBSO

O

MeO SO2Ph

HO

TBSOTBSO

1) KHMDS, THF -14 °Cchromatography

2) DIBALH, DCM

68%, three stepsO

Me

O

OH

O

MeO SO2PhTBSO

TBSO

3.55 eq

Et3N, THF1.0 eq

1.1 eq

(20:1 dr before chrom.)

Eribuline: Coupling Western Fragments!

64%, three steps

OMe

O

OH

O

MeO SO2PhTBSO

TBSO

-75 °C then ald.

OO

OTBS

H HOTBS

H

I

TBSO

H O

nBuLi, THF, 0 °C;

OO

OTBS

H HOTBS

H

I

TBSO

OH

O

O

Me

O

TBSO TBSO OMe SO2Ph

OH

OO

OTBS

H HOTBS

H

I

TBSO

O

O

O

Me

O

OMe

O

1) DMP, DCM

2) SmI2, -78 °C

TBSO

TBSO

H

Eribuline: Completion of Synthesis!

64%, three steps

OMe

O

OH

O

MeO SO2PhTBSO

TBSO

-75 °C then ald.

OO

OTBS

H HOTBS

H

I

TBSO

H O

nBuLi, THF, 0 °C;

OO

OTBS

H HOTBS

H

I

TBSO

OH

O

O

Me

O

TBSO TBSO OMe SO2Ph

OH

OO

OTBS

H HOTBS

H

I

TBSO

O

O

O

Me

O

OMe

O

1) DMP, DCM

2) SmI2, -78 °C

TBSO

TBSO

H

Eribuline: Completion of Synthesis!

Eribuline: Completion of Synthesis!

O OO

OOH

O

O

Me

O

HO OH OMe

H

HOH

H

O

O OO

OO O

O

O

Me

O

HO OH OMe

H

H HPPTS, DCM

72%, two steps

1) Ts2O, collidine, pyrid. (cat.)2) NH4OH, iPrOH

3) MeSO3H, NH4OH, H2O

84%, three steps

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H H

MeSO3H•

26% for coupling steps

11 final manipulations

Eribuline: Completion of Synthesis!

O OO

OOH

O

O

Me

O

HO OH OMe

H

HOH

H

O

O OO

OO O

O

O

Me

O

HO OH OMe

H

H HPPTS, DCM

72%, two steps

1) Ts2O, collidine, pyrid. (cat.)2) NH4OH, iPrOH

3) MeSO3H, NH4OH, H2O

84%, three steps

O OO

OO O

O

O

Me

O

H2N OH OMe

H

H H

MeSO3H•

26% for coupling steps

11 final manipulations

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry

Arterolane: Complete synthesis!

O

OO

NH

O

H2N MeMe

Vennerstrom et al. Nature 2004 900

arterolaneOO

O

O

O

HMe

Me

Me

H

artemesinin

■ First discovered by Chinese army project, Project 523, in 1960's

Artemesinin

■ Use of source plant, Artemsia annua, dates back 2,000 years in China

■ Isolated material approved for worldwide treatment of malaria

■ First synthesized and identified by broad collaboration of chemists in 2001

Arterolane

■ Phase III trials began in India in 2009 by Indian company Ranbaxy

■ Ozonide bridge retains the active radical reactivity found in artemesin, improved PK

Arterolane: Complete synthesis!

O

OO

NH

O

H2N MeMe

Vennerstrom et al. Nature 2004 900

arterolaneOO

O

O

O

HMe

Me

Me

H

artemesinin

■ First discovered by Chinese army project, Project 523, in 1960's

Artemesinin

■ Use of source plant, Artemsia annua, dates back 2,000 years in China

■ Isolated material approved for worldwide treatment of malaria

■ First synthesized and identified by broad collaboration of chemists in 2001

Arterolane

■ Phase III trials began in India in 2009 by Indian company Ranbaxy

■ Ozonide bridge retains the active radical reactivity found in artemesin, improved PK

Arterolane: Complete synthesis!

O

OO

NH

O

H2N MeMe

Vennerstrom et al. Nature 2004 900

arterolaneOO

O

O

O

HMe

Me

Me

H

artemesinin

■ First discovered by Chinese army project, Project 523, in 1960's

Artemesinin

■ Use of source plant, Artemsia annua, dates back 2,000 years in China

■ Isolated material approved for worldwide treatment of malaria

■ First synthesized and identified by broad collaboration of chemists in 2001

Arterolane

■ Phase III trials began in India in 2009 by Indian company Ranbaxy

■ Ozonide bridge retains the active radical reactivity found in artemesin, improved PK

Arterolane: Complete synthesis!

O N

<$1/g

NH2OMe

OMeMeOH, H2O O3, c-hex., DCM, -78 °C

O

OO

O

OO

NH

O

H2N

O OO

OO

O

1) NaOH, H2O

2) 1 M HCl, 0 °C

78%

98%

96%

COOMe

COOMe

HOO

rxtl'd

MeMe

H2NNH2

MeMe

O

ClMe

Me

then

rxtl'd, 87%

64% overall

4 steps

Ranbaxy Labs 2011 patent

Arterolane: Complete synthesis!

O N

<$1/g

NH2OMe

OMeMeOH, H2O O3, c-hex., DCM, -78 °C

O

OO

O

OO

NH

O

H2N

O OO

OO

O

1) NaOH, H2O

2) 1 M HCl, 0 °C

78%

98%

96%

COOMe

COOMe

HOO

rxtl'd

MeMe

H2NNH2

MeMe

O

ClMe

Me

then

rxtl'd, 87%

64% overall

4 steps

Ranbaxy Labs 2011 patent

Arterolane: Complete synthesis!

O N

<$1/g

NH2OMe

OMeMeOH, H2O O3, c-hex., DCM, -78 °C

O

OO

O

OO

NH

O

H2N

O OO

OO

O

1) NaOH, H2O

2) 1 M HCl, 0 °C

78%

98%

96%

COOMe

COOMe

HOO

rxtl'd

MeMe

H2NNH2

MeMe

O

ClMe

Me

then

rxtl'd, 87%

64% overall

4 steps

Ranbaxy Labs 2011 patent

Arterolane: Complete synthesis!

O N

<$1/g

NH2OMe

OMeMeOH, H2O O3, c-hex., DCM, -78 °C

O

OO

O

OO

NH

O

H2N

O OO

OO

O

1) NaOH, H2O

2) 1 M HCl, 0 °C

78%

98%

96%

COOMe

COOMe

HOO

rxtl'd

MeMe

H2NNH2

MeMe

O

ClMe

Me

then

rxtl'd, 87%

64% overall

4 steps

Ranbaxy Labs 2011 patent

Arterolane: Complete synthesis!

O N

<$1/g

NH2OMe

OMeMeOH, H2O O3, c-hex., DCM, -78 °C

O

OO

O

OO

NH

O

H2N

O OO

OO

O

1) NaOH, H2O

2) 1 M HCl, 0 °C

78%

98%

96%

COOMe

COOMe

HOO

rxtl'd

MeMe

H2NNH2

MeMe

O

ClMe

Me

then

rxtl'd, 87%

64% overall

4 steps

Ranbaxy Labs 2011 patent

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry

■ Broad spectrum antiobiotics, though resistance is increasing

H HN

Me Me

O

NH2

OH

OOH

OHOOH

F

N

O

■ Produced by Meyers Lab and Tetraphase

■ TP-434 currently in Phase II trials for treatment of resistant infections

TP-434

O

O

O

Me

OHOHOH

OH NMe Me

Cl

OH

NH2

HH

■ First identified 1945 from soil bacteria

chlorotetracycline

■ Most recent tetracycline derivative (tigecycline) approved in 2005, 1st in 20 years

■ All but those produced by Tetraphase are semi-synthetic variants

TP-434 Synthesis: Overview!

■ Broad spectrum antiobiotics, though resistance is increasing

H HN

Me Me

O

NH2

OH

OOH

OHOOH

F

N

O

■ Produced by Meyers Lab and Tetraphase

■ TP-434 currently in Phase II trials for treatment of resistant infections

TP-434

O

O

O

Me

OHOHOH

OH NMe Me

Cl

OH

NH2

HH

■ First identified 1945 from soil bacteria

chlorotetracycline

■ Most recent tetracycline derivative (tigecycline) approved in 2005, 1st in 20 years

■ All but those produced by Tetraphase are semi-synthetic variants

TP-434 Synthesis: Overview!

■ Broad spectrum antiobiotics, though resistance is increasing

H HN

Me Me

O

NH2

OH

OOH

OHOOH

F

N

O

■ Produced by Meyers Lab and Tetraphase

■ TP-434 currently in Phase II trials for treatment of resistant infections

TP-434

O

O

O

Me

OHOHOH

OH NMe Me

Cl

OH

NH2

HH

■ First identified 1945 from soil bacteria

chlorotetracycline

■ Most recent tetracycline derivative (tigecycline) approved in 2005, 1st in 20 years

■ All but those produced by Tetraphase are semi-synthetic variants

TP-434 Synthesis: Overview!

■ Broad spectrum antiobiotics, though resistance is increasing

H HN

Me Me

O

NH2

OH

OOH

OHOOH

F

N

O

■ Produced by Meyers Lab and Tetraphase

■ TP-434 currently in Phase II trials for treatment of resistant infections

TP-434

O

O

O

Me

OHOHOH

OH NMe Me

Cl

OH

NH2

HH

■ First identified 1945 from soil bacteria

chlorotetracycline

■ Most recent tetracycline derivative (tigecycline) approved in 2005, 1st in 20 years

■ All but those produced by Tetraphase are semi-synthetic variants

TP-434 Synthesis: Overview!

■ Highly convergent, easily modified

H HN

Me Me

O

NH2

OH

OOH

OHOOH

F

N

O

HN

Me Me

OOR

O

CO2R

Me

OH

F

NO

OR

NO

OH

O

H3CO

O

H

H

■ Multiple generations of dienone synthesis

■ Similar route used to produce mulitple analogs

TP-434

TP-434 Synthesis: Retrosynthetic Analysis!

■ Highly convergent, easily modified

H HN

Me Me

O

NH2

OH

OOH

OHOOH

F

N

O

HN

Me Me

OOR

O

CO2R

Me

OH

F

NO

OR

NO

OH

O

H3CO

O

H

H

■ Multiple generations of dienone synthesis

■ Similar route used to produce mulitple analogs

TP-434

TP-434 Synthesis: Retrosynthetic Analysis!

■ Highly convergent, easily modified

H HN

Me Me

O

NH2

OH

OOH

OHOOH

F

N

O

HN

Me Me

OOR

O

CO2R

Me

OH

F

NO

OR

NO

OH

O

H3CO

O

H

H

■ Multiple generations of dienone synthesis

■ Similar route used to produce mulitple analogs

TP-434

TP-434 Synthesis: Retrosynthetic Analysis!

TP-434 Synthesis: C/D Ring Precursor Synthesis!

NO

OH

O

H3CO

COOMe

COOMeH2N

O

NH

OHDBU

MeOH

1) BnBr, Cs2CO3

2) NaBH4, MeOH

83%, two steps

NO

OBn

HO

1) MsCl, Et3N

2) NHMe2, DMF

98%, two steps

NO

OBn

1) n-BuLi, CO2 (g)

2) H2SO4, MeOH

72%

NO

OBn

NMeMeN

MeMe

MeO

O63%, two steps

nBuLi

SiMe2PhCl

p-benzoquinone;

then CeCl3, NaBH4

67%72%

SiMe2Ph

OH

OHH

H

PhMe2Si

meso

TP-434 Synthesis: C/D Ring Precursor Synthesis!

NO

OH

O

H3CO

COOMe

COOMeH2N

O

NH

OHDBU

MeOH

1) BnBr, Cs2CO3

2) NaBH4, MeOH

83%, two steps

NO

OBn

HO

1) MsCl, Et3N

2) NHMe2, DMF

98%, two steps

NO

OBn

1) n-BuLi, CO2 (g)

2) H2SO4, MeOH

72%

NO

OBn

NMeMeN

MeMe

MeO

O63%, two steps

nBuLi

SiMe2PhCl

p-benzoquinone;

then CeCl3, NaBH4

67%72%

SiMe2Ph

OH

OHH

H

PhMe2Si

meso

TP-434 Synthesis: C/D Ring Precursor Synthesis!

NO

OH

O

H3CO

COOMe

COOMeH2N

O

NH

OHDBU

MeOH

1) BnBr, Cs2CO3

2) NaBH4, MeOH

83%, two steps

NO

OBn

HO

1) MsCl, Et3N

2) NHMe2, DMF

98%, two steps

NO

OBn

1) n-BuLi, CO2 (g)

2) H2SO4, MeOH

72%

NO

OBn

NMeMeN

MeMe

MeO

O63%, two steps

nBuLi

SiMe2PhCl

p-benzoquinone;

then CeCl3, NaBH4

67%72%

SiMe2Ph

OH

OHH

H

PhMe2Si

meso

TP-434 Synthesis: C/D Ring Precursor Synthesis!

NO

OH

O

H3CO

COOMe

COOMeH2N

O

NH

OHDBU

MeOH

1) BnBr, Cs2CO3

2) NaBH4, MeOH

83%, two steps

NO

OBn

HO

1) MsCl, Et3N

2) NHMe2, DMF

98%, two steps

NO

OBn

1) n-BuLi, CO2 (g)

2) H2SO4, MeOH

72%

NO

OBn

NMeMeN

MeMe

MeO

O63%, two steps

nBuLi

SiMe2PhCl

p-benzoquinone;

then CeCl3, NaBH4

67%72%

SiMe2Ph

OH

OHH

H

PhMe2Si

meso

TP-434 Synthesis: C/D Ring Precursor Synthesis!

NO

OH

O

H3CO

COOMe

COOMeH2N

O

NH

OHDBU

MeOH

1) BnBr, Cs2CO3

2) NaBH4, MeOH

83%, two steps

NO

OBn

HO

1) MsCl, Et3N

2) NHMe2, DMF

98%, two steps

NO

OBn

1) n-BuLi, CO2 (g)

2) H2SO4, MeOH

72%

NO

OBn

NMeMeN

MeMe

MeO

O63%, two steps

nBuLi

SiMe2PhCl

p-benzoquinone;

then CeCl3, NaBH4

67%72%

SiMe2Ph

OH

OHH

H

PhMe2Si

meso

Amano lipase-PSNEt3, 23 °C

4 mol % Pd(dppf)Cl2

HCO2NH4, DMF

82%

NaHMDS, THF, -50 °C

95%

62%, one step

OH

OHH

H

PhMe2Si

meso

O

O MeMe

OAc

OHH

H

PhMe2Si

OH

H

PhMe2Si

NO

OBn

NMeMe

MeO

O

ONaH

H

PhMe2Si

NMeMe

NO

MeOOC

H

HN

Me Me

OOH

NO

OBn

PhMe2Si

H

H

then

KHMDS, -10 °C120 °C

PhCH3, 10 h

87%

OBn

HN

Me Me

OOH

NO

OBn

TP-434 Synthesis: C/D Ring Precursor Synthesis!

Amano lipase-PSNEt3, 23 °C

4 mol % Pd(dppf)Cl2

HCO2NH4, DMF

82%

NaHMDS, THF, -50 °C

95%

62%, one step

OH

OHH

H

PhMe2Si

meso

O

O MeMe

OAc

OHH

H

PhMe2Si

OH

H

PhMe2Si

NO

OBn

NMeMe

MeO

O

ONaH

H

PhMe2Si

NMeMe

NO

MeOOC

H

HN

Me Me

OOH

NO

OBn

PhMe2Si

H

H

then

KHMDS, -10 °C120 °C

PhCH3, 10 h

87%

OBn

HN

Me Me

OOH

NO

OBn

TP-434 Synthesis: C/D Ring Precursor Synthesis!

Amano lipase-PSNEt3, 23 °C

4 mol % Pd(dppf)Cl2

HCO2NH4, DMF

82%

NaHMDS, THF, -50 °C

95%

62%, one step

OH

OHH

H

PhMe2Si

meso

O

O MeMe

OAc

OHH

H

PhMe2Si

OH

H

PhMe2Si

NO

OBn

NMeMe

MeO

O

ONaH

H

PhMe2Si

NMeMe

NO

MeOOC

H

HN

Me Me

OOH

NO

OBn

PhMe2Si

H

H

then

KHMDS, -10 °C120 °C

PhCH3, 10 h

87%

OBn

HN

Me Me

OOH

NO

OBn

TP-434 Synthesis: C/D Ring Precursor Synthesis!

Amano lipase-PSNEt3, 23 °C

4 mol % Pd(dppf)Cl2

HCO2NH4, DMF

82%

NaHMDS, THF, -50 °C

95%

62%, one step

OH

OHH

H

PhMe2Si

meso

O

O MeMe

OAc

OHH

H

PhMe2Si

OH

H

PhMe2Si

NO

OBn

NMeMe

MeO

O

ONaH

H

PhMe2Si

NMeMe

NO

MeOOC

H

HN

Me Me

OOH

NO

OBn

PhMe2Si

H

H

then

KHMDS, -10 °C120 °C

PhCH3, 10 h

87%

OBn

HN

Me Me

OOH

NO

OBn

TP-434 Synthesis: C/D Ring Precursor Synthesis!

Amano lipase-PSNEt3, 23 °C

4 mol % Pd(dppf)Cl2

HCO2NH4, DMF

82%

NaHMDS, THF, -50 °C

95%

62%, one step

OH

OHH

H

PhMe2Si

meso

O

O MeMe

OAc

OHH

H

PhMe2Si

OH

H

PhMe2Si

NO

OBn

NMeMe

MeO

O

ONaH

H

PhMe2Si

NMeMe

NO

MeOOC

H

HN

Me Me

OOH

NO

OBn

PhMe2Si

H

H

then

KHMDS, -10 °C120 °C

PhCH3, 10 h

87%

OBn

HN

Me Me

OOH

NO

OBn

TP-434 Synthesis: C/D Ring Precursor Synthesis!

20 mol% LiOtBu-45 to -20 °C

equil. ratio

DCM, 0 °C

64%, three steps

HN

Me Me

OOH

NO

OBn

PhS

O O

NO NO2 H

NMe Me

OO

NO

OBnOH

12.8:1

4 M NaH2PO4

THF, MeOH60 °C

HN

OO

NO

OBnOH

TBSOTf, 2,6-lutid.HN

Me Me

OO

NO

OBnOTBS

■ From Michael-Claisen: 5 steps, 35 %, no chromatographic purificiation

■ Overall: 13% yield from alkyne, 14 steps including all starting materials

MeMe

TP-434 Synthesis: A/B Ring Precursor Synthesis!

20 mol% LiOtBu-45 to -20 °C

equil. ratio

DCM, 0 °C

64%, three steps

HN

Me Me

OOH

NO

OBn

PhS

O O

NO NO2 H

NMe Me

OO

NO

OBnOH

12.8:1

4 M NaH2PO4

THF, MeOH60 °C

HN

OO

NO

OBnOH

TBSOTf, 2,6-lutid.HN

Me Me

OO

NO

OBnOTBS

■ From Michael-Claisen: 5 steps, 35 %, no chromatographic purificiation

■ Overall: 13% yield from alkyne, 14 steps including all starting materials

MeMe

TP-434 Synthesis: A/B Ring Precursor Synthesis!

20 mol% LiOtBu-45 to -20 °C

equil. ratio

DCM, 0 °C

64%, three steps

HN

Me Me

OOH

NO

OBn

PhS

O O

NO NO2 H

NMe Me

OO

NO

OBnOH

12.8:1

4 M NaH2PO4

THF, MeOH60 °C

HN

OO

NO

OBnOH

TBSOTf, 2,6-lutid.HN

Me Me

OO

NO

OBnOTBS

■ From Michael-Claisen: 5 steps, 35 %, no chromatographic purificiation

■ Overall: 13% yield from alkyne, 14 steps including all starting materials

MeMe

TP-434 Synthesis: A/B Ring Precursor Synthesis!

20 mol% LiOtBu-45 to -20 °C

equil. ratio

DCM, 0 °C

64%, three steps

HN

Me Me

OOH

NO

OBn

PhS

O O

NO NO2 H

NMe Me

OO

NO

OBnOH

12.8:1

4 M NaH2PO4

THF, MeOH60 °C

HN

OO

NO

OBnOH

TBSOTf, 2,6-lutid.HN

Me Me

OO

NO

OBnOTBS

■ From Michael-Claisen: 5 steps, 35 %, no chromatographic purificiation

■ Overall: 13% yield from alkyne, 14 steps including all starting materials

MeMe

TP-434 Synthesis: A/B Ring Precursor Synthesis!

1) sBuLi, TMEDA;

2) (COCl)2; then PhOH

F

OMeCO2H

F

OMeCOOPh

Me

F

OBocCOOPh

Methen MeI

52%, two steps

2) Boc2O, DMAP

1) BBr3, DMF

94%, two steps

TP-434 Synthesis: C/D Ring Precursor Synthesis!

LDA, TMEDA, THF 2) H2, Pd/C

41%, 2 steps

1) aq. HF

35 %

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

1) HNO3, H2SO4

2) H2, Pd/C

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

HN

Me Me

OO

NO

OBnOTBS

F

OBocCOOPh

Me

HN

Me Me

OHO

NO

OBnOTBS

OOBoc

FH

H2N

82%, 2 steps

HN

Me Me

OHO

OH

OHOOH

FH

NH2

ONH

ON

1)

2) pyrrolidine

O

BrBr

11 additional steps

25 total steps

<1.6% overall

1 dose ≈ 1.4 g alkyne

TP-434 Synthesis: Cyclization and Final Steps!

LDA, TMEDA, THF 2) H2, Pd/C

41%, 2 steps

1) aq. HF

35 %

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

1) HNO3, H2SO4

2) H2, Pd/C

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

HN

Me Me

OO

NO

OBnOTBS

F

OBocCOOPh

Me

HN

Me Me

OHO

NO

OBnOTBS

OOBoc

FH

H2N

82%, 2 steps

HN

Me Me

OHO

OH

OHOOH

FH

NH2

ONH

ON

1)

2) pyrrolidine

O

BrBr

11 additional steps

25 total steps

<1.6% overall

1 dose ≈ 1.4 g alkyne

TP-434 Synthesis: Cyclization and Final Steps!

LDA, TMEDA, THF 2) H2, Pd/C

41%, 2 steps

1) aq. HF

35 %

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

1) HNO3, H2SO4

2) H2, Pd/C

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

HN

Me Me

OO

NO

OBnOTBS

F

OBocCOOPh

Me

HN

Me Me

OHO

NO

OBnOTBS

OOBoc

FH

H2N

82%, 2 steps

HN

Me Me

OHO

OH

OHOOH

FH

NH2

ONH

ON

1)

2) pyrrolidine

O

BrBr

11 additional steps

25 total steps

<1.6% overall

1 dose ≈ 1.4 g alkyne

TP-434 Synthesis: Cyclization and Final Steps!

LDA, TMEDA, THF 2) H2, Pd/C

41%, 2 steps

1) aq. HF

35 %

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

1) HNO3, H2SO4

2) H2, Pd/C

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

HN

Me Me

OO

NO

OBnOTBS

F

OBocCOOPh

Me

HN

Me Me

OHO

NO

OBnOTBS

OOBoc

FH

H2N

82%, 2 steps

HN

Me Me

OHO

OH

OHOOH

FH

NH2

ONH

ON

1)

2) pyrrolidine

O

BrBr

11 additional steps

25 total steps

<1.6% overall

1 dose ≈ 1.4 g alkyne

TP-434 Synthesis: Cyclization and Final Steps!

LDA, TMEDA, THF 2) H2, Pd/C

41%, 2 steps

1) aq. HF

35 %

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

1) HNO3, H2SO4

2) H2, Pd/C

HN

Me Me

OHO

OH

OHOOH

FH

NH2

O

HN

Me Me

OO

NO

OBnOTBS

F

OBocCOOPh

Me

HN

Me Me

OHO

NO

OBnOTBS

OOBoc

FH

H2N

82%, 2 steps

HN

Me Me

OHO

OH

OHOOH

FH

NH2

ONH

ON

1)

2) pyrrolidine

O

BrBr

11 additional steps

25 total steps

<1.6% overall

1 dose ≈ 1.4 g alkyne

TP-434 Synthesis: Cyclization and Final Steps!

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry

HN

•HCl

OH

HO

O OH

OH

NH2

CO2HOH

fingolimod

myriocin

■ From thermophilic fungii species

■ Isolated in 1994, studied for bioactivity

■ Approved in 2010 for treatment of MS

■ Immunosuppressant agent

■ Developped by Novartis

Structure distilled to necessary parts

■ Inhibits sphingosine phosphate receptor

Reduced toxicity, improved PK profile

Persp. Med. Chem. 2007, 11.

■ Limits lymphocyte release into blood

Fingolimod: Introduction!

HN

•HCl

OH

HO

O OH

OH

NH2

CO2HOH

fingolimod

myriocin

■ From thermophilic fungii species

■ Isolated in 1994, studied for bioactivity

■ Approved in 2010 for treatment of MS

■ Immunosuppressant agent

■ Developped by Novartis

Structure distilled to necessary parts

■ Inhibits sphingosine phosphate receptor

Reduced toxicity, improved PK profile

Persp. Med. Chem. 2007, 11.

■ Limits lymphocyte release into blood

Fingolimod: Introduction!

HN

•HCl

OH

HO

O OH

OH

NH2

CO2HOH

fingolimod

myriocin

■ From thermophilic fungii species

■ Isolated in 1994, studied for bioactivity

■ Approved in 2010 for treatment of MS

■ Immunosuppressant agent

■ Developped by Novartis

Structure distilled to necessary parts

■ Inhibits sphingosine phosphate receptor

Reduced toxicity, improved PK profile

Persp. Med. Chem. 2007, 11.

■ Limits lymphocyte release into blood

Fingolimod: Introduction!

AlCl3, DCM Na(0), EtOH

76%

C8H17 C8H17

O

Br

NHAc

CO2EtEtO2CO

ClBr

C8H17

ONAc

CO2Et

CO2EtC8H17

NAc

2) LiAlH4, THF

1) Et3SiH, TiCl4, DCMOH

HO

6 M HCl, EtOH

C8H17

HN

•HCl

OH

HO

95%

70%, two steps

76%

38% overall yield

5 steps

Fingolimod: Complete synthesis!

Recrystallization, Resolution

Improve Activity or Properties

Retain Only Necessary Parts

Shorten Production Route

Production Considerations: Analogues and Natural Products

Target Considerations: Development of Analogues and Derviatives

Utilize Very Robust Chemistry