first principles calculations of nmr chemical shiftsandrienk/journal_club/... · 2017. 10. 12. ·...

36
First Principles Calculations of NMR Chemical Shifts Methods and Applications Daniel Sebastiani Approche th´ eorique et exp´ erimentale des ph´ enom` enes magn´ etiques et des spectroscopies associ´ ees Max Planck Institute for Polymer Research · Mainz · Germany 1

Upload: others

Post on 26-Jan-2021

8 views

Category:

Documents


0 download

TRANSCRIPT

  • First Principles Calculationsof NMR Chemical Shifts

    Methods and Applications

    Daniel Sebastiani

    Approche théorique et expérimentale des phénomènes magnétiques et des

    spectroscopies associées

    Max Planck Institute for Polymer Research · Mainz · Germany

    1

  • Outline Part I

    Introduction and principles of electronic structure calculations

    I. Introduction to NMR chemical shielding tensors

    Phenomenological approach

    II. Overview electronic structure methods

    HF, post-HF, DFT. Basis set types

    III. External fields: perturbation theory

    2

  • Outline Part II

    Magnetic fields in electronic structure calculations

    I. Perturbation Theory for magnetic fields

    in particular: magnetic density functional perturbation theory

    II. Gauge invariance

    Dia- and paramagnetic currents

    Single gauge origin, GIAO, IGLO, CSGT

    III. Condensed phases: position operator problem

    3

  • Outline Part III

    Applications

    I. Current densities

    II. Chemical shifts of hydrogen bonded systems:

    • Water cluster• Liquid water under standard and supercritical conditions• Proton conducting materials: imidazole derivatives• Chromophore: yellow dye

    4

  • Nature of the chemical shielding

    • External magnetic field Bext

    • Electronic reaction: induced current j(r)

    =⇒ inhomogeneous magnetic field Bind(r)

    • Nuclear spin µµµ Up/Downenergy level splitting

    Β=0Β=Β0 h̄ω

    ∆E = 2µµµ ·B = h̄ω

    Bext

    Bind

    jind

    5

  • Chemical shifts – chemical bonding

    • NMR shielding tensor σ:definition through induced field

    Btot(R) = Bext + Bind(R)

    σ(R) = − ∂Bind(R)∂Bext

    � 1

    • Strong effect of chemical bondingHydrogen atoms: H-bonds

    =⇒ NMR spectroscopy:unique characterization

    of local microscopic structure (liquid water)

    6

  • Chemical shielding tensor

    σ(R) = −

    ∂Bindx (R)

    ∂Bextx

    ∂Bindx (R)∂Bexty

    ∂Bindx (R)∂Bextz

    ∂Bindy (R)

    ∂Bextx

    ∂Bindy (R)

    ∂Bexty

    ∂Bindy (R)

    ∂Bextz

    ∂Bindz (R)∂Bextx

    ∂Bindz (R)∂Bexty

    ∂Bindz (R)∂Bextz

    • Tensor is not symmetric

    =⇒ symmetrization =⇒ diagonalization =⇒ Eigenvalues

    • Isotropic shielding: Tr σ(R)

    • Isotropic chemical shift: δ(R) = TrσTMS − Trσ(R)

    7

  • First principles calculations: Electronic structure

    Methods

    • Hartree-Fock

    • Møller-PlessetPerturbation Theory

    • Highly correlated methodsCI, coupled cluster, . . .

    • Density functional theory

    Basis sets

    • Slater-type functions:Y ml exp−r/a0

    • Gaussian-type functions:Y ml exp−(αr)2

    • Plane waves:exp ig · r

    8

  • Kohn-Sham density functional theory (DFT)

    Central quantity: electronic density, total energy functional

    No empirical parameters

    EKS[{ϕi}] = −12

    ∑i

    ∫d3r 〈ϕi|∇2|ϕi〉

    +12

    ∫d3r d3r′

    ρ(r)ρ(r′)|r− r′|

    +∑at

    qat

    ∫d3r

    ρ(r)|r−Rat|

    + Exc[ρ]

    ρ(r) =∑

    i

    |ϕi(r)|2

    9

  • DFT: Variational principle

    • Variational principle: selfconsistent Kohn-Sham equations

    〈ϕi|ϕj〉 = δijδ

    δ ϕi(r)(EKS[ϕ]− Λkj〈ϕj|ϕk〉) = 0

    Ĥ[ρ] |ϕi〉 = εi|ϕi〉

    Iterative total energy minimization

    • DFT: Invariant of orbital rotation

    ψi = Uij ϕj

    E [ϕ] = E [ψ]

    10

  • Perturbation theory

    External perturbation changes the state of the system

    Expansions in powers of the perturbation (λ):

    Ĥ 7→ Ĥ(0) + λĤ(1) + λ2Ĥ(2) + . . .ϕ 7→ ϕ(0) + λϕ(1) + . . .E 7→ E(0) + λE(1) + λ2E(2) + . . .

    11

  • Perturbation theory in DFT

    Perturbation expansion

    E[ϕ] = E(0)[ϕ] + λ E

    λ[ϕ] + . . .

    ϕ = ϕ(0) + λ ϕλ + . . .

    ρλ(r) = 2 <[ϕ

    (0)i (r) ϕ

    λi (r)

    ]Ĥ = Ĥ(0) + λ Ĥλ + ĤC

    [ρλ]+ . . .

    E[ϕ] = E(0)[ϕ] + λ E

    λ[ϕ(0)]

    +12λ2 E(2)[ϕ] . . .

    12

  • Perturbation theory in DFT

    • unperturbed wavefunctions ϕ(0) known:

    min{ϕ}

    E [ϕ] ⇐⇒ min{ϕ(1)}

    E(2)[ϕ(0), ϕ(1)

    ]

    E(2) = ϕ(1) δ2E(0)

    δϕ δϕϕ(1) +

    δEλ

    δϕϕ(1)

    • orthogonality 〈ϕ(0)j |ϕ(1)k 〉 = 0 ∀ j, k

    13

  • Perturbation theory in DFT

    Iterative calculation(Ĥ(0) δij − ε(0)ij

    )ϕλj + ĤC[ρλ] ϕ

    (0)i = −Ĥ

    λ ϕ(0)i

    Formal solution

    ϕλi = Ĝij Ĥλ ϕ(0)j

    14

  • Magnetic field perturbation

    • Magnetic field perturbation: vector potential A

    A = −12

    (r−Rg)×B

    Ĥλ = − em

    p̂ · Â

    = ih̄e

    2mB · (r̂−Rg)× ∇̂

    • Cyclic variable: gauge origin Rg

    • Perturbation Hamiltonian purely imaginary =⇒ ρλ = 0

    15

  • Magnetic field perturbation

    Resulting electronic current density:

    ĵr′ =e

    2m

    [π̂|r′〉〈r′|+ |r′〉〈r′|π̂

    ]ĵr′ =

    e

    2m

    [(p̂− eÂ)|r′〉〈r′|+ |r′〉〈r′|(p̂− eÂ)

    ]j(r′) =

    ∑k

    〈ϕ(0)k | ĵ(2)r′ |ϕ

    (0)k 〉+ 2 〈ϕ

    (0)k | ĵ

    (1)r′ |ϕ

    (1)k 〉

    = jdia(r′) + jpara(r′)

    Dia- and paramagnetic contributions:

    zero and first order wavefunctions

    16

  • The Gauge origin problem

    • Gauge origin Rg theoretically not relevant

    • In practice: very important: jdia(r′) ∝ R2g

    • GIAO: Gauge Including Atomic Orbitals

    • IGLO: Individual Gauges for Localized Orbitals

    • CSGT: Continuous Set of Gauge Transformations: Rg = r′

    • IGAIM: Individual Gauges for Atoms In Molecules

    17

  • Magnetic field under periodic boundary conditions

    • Basis set: plane waves(approach from condensed matter physics)

    • Single unit cell (window)taken as a representative for the full crystal

    • All quantities defined in reciprocal space (periodic operators)

    • Position operator r̂ not periodic

    • non-periodic perturbation Hamiltonian Ĥλ

    18

  • PBC: Individual r̂-operators for localized orbitals

    • Localized Wannier orbitals ϕi via unitary rotation:

    ϕi = Uij ψj

    orbital centers of charge di

    • Idea:

    Individual

    position

    operators

    a(x)

    ^a

    r̂ (x)b

    b(x)

    (x)

    ϕ

    r (x)

    ϕ

    L0 2Ld db a

    19

  • Magnetic fields in electronic structure

    • Variational principle 7→ electronic response orbitals

    • Perturbation Hamiltonian Ĥλ: Â = −12 (r̂−Rg)×B

    • Response orbitals 7→ electronic ring currents

    • Ring currents 7→ NMR chemical shielding

    • Reference to standard 7→ NMR chemical shift

    20

  • Electronic current density

    jk(r′) = 〈ϕ(0)k | ĵr′(|ϕ(α)k 〉 − |ϕ

    (β)k 〉+ |ϕ

    (∆)k 〉

    )ĵr′ =

    e

    2m

    [p̂|r′〉〈r′|+ |r′〉〈r′|p̂

    ]

    modulus of current |j|

    B-field along Oz

    21

  • Current and induced magnetic field in graphite

    Electronic current density |j| Induced magnetic field BzIdentification of atom-centered and aromatic current densities

    Nucleus independent chemical shift maps

    22

  • Isolated molecules

    • Isolated organic molecules, 1H and 13C chemical shifts

    • Comparison with Gaussian 98 calculation,(converged basis set DFT/BLYP)

    23 24 25 26 27 28 29 30 31 32

    σH[ppm] - exp

    23

    24

    25

    26

    27

    28

    29

    30

    31

    32

    σH[p

    pm] -

    cal

    c

    Gaussian (DFT)this workMPL method

    C6H6

    C2H4

    C2H2

    C2H6

    H2O

    CH4

    40 60 80 100 120 140 160 180 200

    σC [ppm] - exp

    40

    60

    80

    100

    120

    140

    160

    180

    200

    σC [p

    pm]

    - c

    alc

    Gaussian (DFT)this workMPL method

    C6H6

    C2H6

    C2H2

    C2H4

    CH4

    23

  • Example system: Water cluster

    • Water cluster: water moleculesurrounded by 6 neighbors

    • Strong hydrogen bonding,nonsymmetric geometry

    24

  • Example system: Water cluster

    • Hydrogen bonding effectsstrongly affect the proton

    chemical shieldings

    • Large range ofindividual shieldings

    25

  • Extended system: liquid water

    • Most important solvent on earth

    • Complex, dynamic hydrogenbonding

    • Configuration: single snapshotfrom molecular dynamics

    • Complex hydrogen bonding,strong electrostatic effects

    • NMR experiment: average overentire phase space

    32 water molecules atρ=1g/cm3, under periodicboundary conditions

    26

  • Supercritical water: hydrogen bond network

    8/2002

    CPCHFT 110 (8) 643 – 724 (2002) · ISSN 1439-4235 · Vol. 3 · No. 8 · August 16, 2002 D55711

    Concept: Conductance Calculations for Real Nanosystems(F. Grossmann)

    Highlight: Terahertz Biosensing Technology(X.-C. Zhang)

    Conference Report: Femtochemistry V(M. Chergui)

    2001 Physics

    NOBEL LECTURE

    in this issue

    • ab-initio MD:3×9ps, 32 moleculesP.L. Silvestrelli et al.,

    Chem.Phys.Lett. 277, 478 (1997)

    M. Boero et al.,

    Phys.Rev.Lett. 85, 3245 (2000)

    • NMR sampling:3×30 configurations3×2000 proton shifts

    • Experimental data:N. Matubayashi et al.,

    Phys.Rev.Lett. 78, 2573 (1997)

    27

  • Supercritical water: chemical shift distributions

    -2-101234567891011121314δH [ppm]

    0

    5

    10

    15

    20

    25

    30

    35

    40

    45

    -2-101234567891011121314δH [ppm]

    05

    101520253035404550556065

    -2-101234567891011121314δH [ppm]

    0

    10

    20

    30

    40

    50

    60

    70

    80

    ρ=1 g/cm3, T=303K ρ=0.73 g/cm3, T=653K ρ=0.32 g/cm3, T=647K

    • Standard conditions: broad Gaussian distribution,continuous presence of hydrogen bonding

    • Supercritical states: narrow distribution,hydrogen bonding “tails”

    28

  • Supercritical water: gas – liquid shift

    • Qualitatively reducedhydrogen bond network in

    supercritical water

    • Excellent agreement withexperiment

    • Slight overestimation ofH-bond strength at T◦−

    BLYP overbinding ?

    Insufficient relaxation ?

    0 0.2 0.4 0.6 0.8 1ρ [g / cm3]

    0

    1

    2

    3

    4

    5

    6

    δH

    [pp

    m]

    calculated δliq (this work)calculated δliq (MPL)experimental δliq

    =⇒ confirmation of simulation

    29

  • Ice Ih: gas – solid shift

    • Ice Ih: hexagonal lattice withstructural disorder

    • 16 molecules unit cell,full relaxation

    • Experimental/computedHNMR shifts [ppm]:

    Exp Exp MPL this work

    7.4 9.7 8.0 6.6

    30

  • Crystalline imidazole

    18 14 10[ppm]

    6 2 0 −2

    (a)

    (b)

    (c)

    experimental

    calculated

    (crystal)

    calculated

    (molecule)

    • Molecular hydrogen-bonded crystal

    • Very good reproductionof experimental spectrum

    • HNMR: π-electron – proton interactions, mobile imidazole

    31

  • Crystalline Imidazole-PEO

    • Imidazole – [Ethyleneoxide]2 – Imidazole• Strongly hydrogen bonded dimers,

    complex packing structure

    • Anisotropic proton conductivity (fuel cell membranes)

    32

  • Crystalline Imidazole-PEO: NMR spectra

    top: experimentalmiddle: calculated (crystal)

    bottom: calculated (molecule)

    • Particular hydrogen bonding:two types of high-field resonances,

    intra-pair / inter-pair

    • Partly amorphous regions (10ppm):mobile Imidazole-PEO molecules

    • Packing effect at 0ppm

    • Quantitative reproductionof experimental spectrum

    33

  • Chromophore crystal: yellow dye

    • Material for photographic films

    • Unusual CH· · ·O bondunusual packing effects

    • 244 atoms / unit cell

    34

  • Chromophore NMR spectrum

    top: experimentalbottom: calculated

    • Full resolution of experimental spectrum,unique assignment of resonances

    • Strong packing effectsfrom aromatic ring currents:

    CH3 · · · Ar, ArH · · · Ar

    • H-bonding too weak (9ppm):insufficient geometry optimization,

    temperature effects

    • Starting point for polycrystalline phase

    35

  • Conclusion

    • NMR chemical shifts from ab-initio calculations

    • Gas-phase, liquid, amorphous and crystalline systems

    • Assignment of experimental shift peaks to specific atoms

    • Verification of conformational possibilities by their NMR patternStrong dependency on geometric parameters (bonds, angles, . . . )

    • Quantification of hydrogen bonding

    36