finite element modelling to assess the effect of position ...a one dimensional finite element model...

17
Original Article Latin American Journal of Solids and Structures, 2018, 15ሺ3ሻ, e22 Finite element modelling to assess the effect of position and size of the piezoelectric layer of a hybrid beam Abstract A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer of a hybrid beam. The efficient layerwise ሺzigzagሻ theory is used for making the finite element model. The 1D beam element has eight mechanical and a variable number of electrical degrees of freedom. The codes are developed in Matlab based on the FE formulation. The beams are also modelled in 2D planar modelling space as a deformable shell using FE package ABAQUS for comparison of results. An 8‐noded piezoelectric quadrilateral element is used for piezo layers and an 8‐noded quadrilateral element with reduced integration is used for the elastic layers of hybrid beams for making the finite element mesh in ABAQUS. The accuracy of the used elements are assessed for static re‐ sponse. Cantilever hybrid beams with a piezoelectric layer bonded on top of the elastic substrate are considered for the analysis. The beams are sub‐ jected to electromechanical loading. A detailed study is conducted to high‐ light the influence of positon and size of piezoelectric layer on the deflec‐ tion profiles, tip deflections and through the thickness distribution of dis‐ placements and stresses of hybrid composite/sandwich beams. The shape control using various numbers of piezoelectric patches is also studied. The 1D‐FE results are compared with the 2D‐FE results. Keywords Zigzag Theory, FEM, Hybrid Beam, ABAQUS, Piezoelectric patch, shape con‐ trol. 1 INTRODUCTION Smart multi‐layered hybrid beams with some sensory and actuator piezoelectric layers constitute an im‐ portant element of adaptive structures. These structural systems are generally made of composite and sandwich laminates because of their high stiffness to weight ratio. Considerable attention has been received in literature on behaviour of hybrid smart structures and reviewed by many researchers ሺBenjeddou, 2000; Sunar and Rao, 1999; Saravanos and Heyliger, 1999; Tang et al., 1996ሻ. Saravanos and Heyliger ሺ1995ሻ developed a Unified mechanics with the capability to model both sensory and active composite laminates with embedded piezoelectric layers. Layerwise formulations enable analysis of both global and local electromechanical response. They presented an approximate finite element solutions for the static and free vibration analysis of beams. But the computational effort increases with the number of layers. Many researchers used Equivalent single layer theory approximations ሺCorreia et al., 2000; Mitchell and Reddy, 1995ሻ for the structural analysis. Since the same global variation of dis‐ placement is assumed across the thickness independent of material properties and lay‐up, such analysis fails to report the zigzag nature of in‐plane displacements variations. Few studies on structural analysis of laminates used higher‐order/layer‐wise theories assuming through the thickness variation for the electric field of piezoelectric layers ሺBatra and Vidoli, 2002; Fukunaga et al., 2001; Yang, 1999ሻ. Kapuria et al. ሺ2004ሻ developed a two noded finite element model for static electromechanical anal‐ ysis of hybrid beam based on efficient coupled zigzag theory ሺKapuria et al., 2003ሻ. Ganapathi et al. ሺ2004ሻ devel‐ oped a C 1 finite element for the bending and torsional analysis of piezoelectric composite beams. Their formula‐ tion includes transverse shear, warping due to torsion, and elastic–electric coupling effects. Kapuria and Hage‐ dorn ሺ2007ሻ presented a unified coupled efficient layerwise theory for smart beams and developed a finite ele‐ ment which has two physical nodes and an electric node for the electric potentials of the electroded surfaces. The Najeeb ur Rahman a * M. Naushad Alam a a Department of Mechanical Engineering, Zakir Husain College of Engineering and Technology ‐ Z.H.C.E.T, Aligarh Muslim University ‐ A. M. U, Aligarh, Uttar Pradesh, India. E‐mail: najeeba‐ [email protected], naus‐ [email protected] *Corresponding author http://dx.doi.org/10.1590/1679-78253959 Received: April 25, 2017 In Revised Form: October 06, 2017 Accepted: October 17, 2017 Available online: February 05, 2018

Upload: others

Post on 16-Oct-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

Original Article

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22

Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

AbstractAonedimensionalfiniteelementmodelispresentedtoassesstheeffectofpositionandsizeofthepiezoelectric layerofahybridbeam.Theefficientlayerwise zigzag theoryisusedformakingthefiniteelementmodel.The1Dbeamelementhaseightmechanicalandavariablenumberofelectricaldegrees of freedom. The codes are developed inMatlab based on the FEformulation.Thebeamsarealsomodelledin2DplanarmodellingspaceasadeformableshellusingFEpackageABAQUSforcomparisonofresults.An8‐nodedpiezoelectricquadrilateralelementisusedforpiezolayersandan8‐noded quadrilateral element with reduced integration is used for theelastic layers of hybrid beams for making the finite element mesh inABAQUS. The accuracy of the used elements are assessed for static re‐sponse.Cantileverhybridbeamswithapiezoelectric layerbondedontopoftheelasticsubstrateareconsideredfortheanalysis.Thebeamsaresub‐jectedtoelectromechanicalloading.Adetailedstudyisconductedtohigh‐lighttheinfluenceofpositonandsizeofpiezoelectric layeronthedeflec‐tionprofiles, tipdeflectionsandthroughthethicknessdistributionofdis‐placementsandstressesofhybridcomposite/sandwichbeams.Theshapecontrolusingvariousnumbersofpiezoelectricpatchesisalsostudied.The1D‐FEresultsarecomparedwiththe2D‐FEresults.

KeywordsZigzagTheory,FEM,HybridBeam,ABAQUS,Piezoelectricpatch,shapecon‐trol.

1INTRODUCTION

Smartmulti‐layered hybrid beamswith some sensory and actuator piezoelectric layers constitute an im‐portantelementofadaptivestructures.Thesestructuralsystemsaregenerallymadeofcompositeandsandwichlaminatesbecauseoftheirhighstiffnesstoweightratio.Considerableattentionhasbeenreceivedinliteratureonbehaviourofhybridsmartstructuresandreviewedbymanyresearchers Benjeddou,2000;SunarandRao,1999;SaravanosandHeyliger,1999;Tangetal.,1996 .SaravanosandHeyliger 1995 developedaUnifiedmechanicswith the capability tomodelboth sensoryandactive composite laminateswithembeddedpiezoelectric layers.Layerwiseformulationsenableanalysisofbothglobalandlocalelectromechanicalresponse.Theypresentedanapproximate finiteelement solutions for the staticand freevibrationanalysisofbeams.But thecomputationaleffortincreaseswiththenumberoflayers.ManyresearchersusedEquivalentsinglelayertheoryapproximationsCorreiaetal.,2000;MitchellandReddy,1995 forthestructuralanalysis.Sincethesameglobalvariationofdis‐placementisassumedacrossthethicknessindependentofmaterialpropertiesandlay‐up,suchanalysisfailstoreportthezigzagnatureofin‐planedisplacementsvariations.

Fewstudiesonstructuralanalysisoflaminatesusedhigher‐order/layer‐wisetheoriesassumingthroughthethickness variation for the electric field of piezoelectric layers Batra and Vidoli, 2002; Fukunaga et al., 2001;Yang,1999 .Kapuriaetal. 2004 developedatwonodedfiniteelementmodelforstaticelectromechanicalanal‐ysisofhybridbeambasedonefficientcoupledzigzagtheory Kapuriaetal.,2003 .Ganapathietal. 2004 devel‐opedaC1finiteelementforthebendingandtorsionalanalysisofpiezoelectriccompositebeams.Theirformula‐tion includes transverse shear,warpingdue to torsion, andelastic–electric couplingeffects.Kapuria andHage‐dorn 2007 presentedaunifiedcoupledefficient layerwisetheoryforsmartbeamsanddevelopedafiniteele‐mentwhichhastwophysicalnodesandanelectricnodefortheelectricpotentialsoftheelectrodedsurfaces.The

NajeeburRahmana*M.NaushadAlama

aDepartmentofMechanicalEngineering,ZakirHusainCollegeofEngineeringandTechnology‐Z.H.C.E.T,AligarhMuslimUniversity‐A.M.U,Aligarh,UttarPradesh,India.E‐mail:najeeba‐[email protected],naus‐[email protected]

*Correspondingauthor

http://dx.doi.org/10.1590/1679-78253959

Received:April25,2017InRevisedForm:October06,2017Accepted:October17,2017Availableonline:February05,2018

Page 2: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 2/17

considerationofelectricnodesresultinsignificantreductioninthenumberofelectricdegreesoffreedom.Rah‐manandAlam 2012,2014,2015 usedlayerwise zigzag theoryfor1D‐FEmodellingofsmartlaminatedbeam.KapuriaandKulkarni 2008 proposedanefficient four‐nodequadrilateralelementusingzigzag theory for thedynamic analysis of hybrid plateswith segmented piezoelectric sensors and actuators. The theory considers athird‐orderzigzagapproximationforinplanedisplacements,alayerwisequadraticapproximationfortheelectricpotential and a layerwise variation of the deflection to account for the piezoelectric transverse normal strain.Catapanoetal. 2011 adoptedCarrera’sUnifiedFormulationforlinearstaticanalysisofcompositebeams.Theyused an N‐order polynomial approximation of the displacement unknown variables to impose kinematic fieldabovethecross‐section.Komeilietal. 2011 presentedthestaticbendinganalysisoffunctionallygradedpiezoe‐lectric beams under thermo‐electro‐mechanical load. They derived the governing equations from Hamilton’sprinciple and used the finite element method and Fourier series method as solution technique. Filippi et al.2015 presentedanewclassofrefinedbeamtheoriesforstaticanddynamicanalysisofcompositestructures.They implemented higher‐order expansions of Chebyshev polynomials for the displacement field componentsoverthebeamcross‐section.Sayyadetal. 2015b developedatrigonometricbeamtheoryforthebendinganaly‐sisoflaminatedcompositeandsandwichbeams.Theyconsideredtransversedisplacementasasumoftwopartialdisplacements intheir formulation.Trigonometric functionisusedintermsofthicknesscoordinate intheaxialdisplacementfieldtoincorporatetheeffectoftransversesheardeformation.Inanotherstudytheparabolicfunc‐tionisusedtoincludethiseffect Sayyadetal.,2015a .Giuntaetal. 2016 usedamesh‐freestrong‐formsolutiontoexaminethestaticresponseoffunctionallygradedbeams.Theyderivedalgebraicsystemviacollocationwithmultiquadricradialbasisfunctions.

Afterexhaustiveliteraturesurveyitcanbeconcludedthatlotsofresultsareavailableforcompositebeamsbasedonvarioustheories.Butthemostrecentefficientzigzagtheoryhasstillsomescope.Inthereportedlitera‐turevariousaspectsofzigzagtheoryhasnotbeenstudied.Theshapecontrolofstructureisalsoveryimportantinapplicationssuchasantennasmountedonairplaneorsatellites,whereasmalldistortioninshapeorsurfaceer‐rorsresultindegradedperformancecausingsignificantdifficultieswithrespecttoitsusability.Modernapplica‐tionsrequiresmartbehaviourofstructures.Piezoelectriclayersoftenformanintegralpartofsuchsmartstruc‐tureowingtotheirabilitytotransformelectricalenergytomechanicalenergyandviceversa.The locationandsizeof these layers is significantas it results indifferentstructural responseundervarious loadingconditions.FiniteElementmodeltoassesstheeffectofpositionandsizeofpiezoelectriclayerofahybridbeamunderstaticelectromechanicalloadingispresentedinthiswork.Theefficientlayerwise zigzag theory Kapuriaetal.,2004 isreframedformakingthefiniteelementmodelofhybridbeamwithsegmentedpiezoelectricpatches.ThecodesaredevelopedinMatlabbasedontheFEformulation.Staticresponseareobtainedforthreedifferentloadcasesfordifferentpositionsandsizesofpiezoelectriclayerbondedontopsurfaceofthebeam.Theshapecontrolisalsoobtainedusingvariousnumbersofpiezoelectricpatches.Theresultsarepresentedforthinandmoderatelythickcomposite/sandwichbeams.Toshowtheaccuracyof thepresent formulation, the1D‐FEresultsarecomparedwiththe2D‐FEresultsobtainedusingplanestresselementinABAQUS.

2GOVERNINGEQUATIONSFORHYBRIDPIEZOELECTRICBEAM

Considerahybridbeamwithpiezoelectricpatchesbondedtoitssurfaces.Thebeamisdividedintosegmentsduetothepresenceofthesepatchesofvariablesizepositionedatvariableaxiallocations Figure1 .Thehybridsegmentshavepiezoelectricpatchesbondedtothesurfaceofelasticsubstratehowevertheelasticsegmentsarewithoutthesepatchesandconstituteoftheelasticsubstrateonly.Asaresult,thethicknessofbeam,numberoflayersacrossthethicknessandtopandbottomsurfacesatanysectionmaydiffersegment‐wisealongthelength.Theplanewhichisthemid‐planeformostofthelengthofthebeamisidentifiedasthe xy plane.Atanysection,

0z isthethicknesscoordinateofthebottomsurfaceand Nz isthethicknesscoordinateofthetopsurface.Allthe

layersareconsideredtobeperfectlybonded.Thebeamistransverselyloaded.Theloaddistributionisindepend‐entofthewidthcoordinate.The z axisisthepolingdirectionforpiezoelectriclayers.

Page 3: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 3/17

Figure1:Geometryofhybridbeamdividedintoelasticandhybridsegments

Usingcoupledzigzagtheoryapproximations Kapuriaetal.,2004 forapiezoelectricmedium,theconstitu‐tiveequationsrelatingthestresses x , zx andelectricdisplacements xD , zD withthestrains x , zx and

electricfields xE , zE aregivenby:

11 31

1555

15 11

31 33

ˆ ˆ

0

ˆ ˆ

0 0

00

0 ˆ

ˆ 0

ˆ 0

ˆ

x x x

zx zx z

xx x

zxz z

Q e E

e EQ

eD E

eD E

1

where 11Q and 55Q are the coefficients of reduced stiffnesses; 31e and 15e are stress constants of piezoelectric

materialand 11 and 33 aretheelectricpermittivities.Thepotentialfieldisapproximated Kapuriaetal.,2004 as

, l lx z z x 2

where ,l lx x z , l z arelinearinterpolationfunctionsfor .

Considering only electric contribution in transverse strain, z Kapuria et al., 2004 and integrating it

throughthethickness,thedeflection zu isestimatedas

0

, zl l

zu x z u x z x 3

where 0zu x is the deflection of mid‐plane z 0 defined as

0 0,0z zu ux x and l z is a piecewise linear

functiongivenby 33

0

z ll d z

z d dzdz

.

Theaxialdisplacement xu isapproximated Kapuriaetal.,2004 as

0

0 0,l

z k klx x

uu x z u x z x S z x S z x

x x

4

where , k klS z S z are the cubic functions of z;0xu and 0 are the translation and the rotation variables

respectively for the 0thk layer. The functions , k klS z S z are so chosen that the assumed displacement field

ensures the continuity of xu and zx at the interfaces of layers across the thickness of the laminate and alsosatisfiesthezeroshearstressconditionatthebottomandtopsurfacesofthebeam.

Thedisplacementsfieldmaybeexpressedintermsofgeneralizeddisplacements 1u and 2 u as:

Page 4: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 4/17

1 1x2 1

1x4 2 2

x

z

g z Ou u

O g zu u

5

with

1 2 1 , 1 k kl lg z z S z S z g z z 6

0

0 01 0 2,

Tl Tz lx z

uu u u u

x x

7

where 1x2O is null matrix of order 1x2 and 1x4O is a null matrix of order 1x4, the index 1,2, , l n .

Substituting the assumed displacement field and potential field in partially nonlinear strain‐displacementrelationsandelectricfield‐potentialrelationsrespectively,thestrainsandtheelectricfieldsmaybeobtainedas:

0 1 2 3

0 1 2 3

4 5 6

4 5 6

x x x x xk kl

zx zx zx zx zx

k klx x xl

zx zx zx

z S z S z

S z S zz

z z

8

and

1 2

1 2

lx x xl

z z z

zE E Ez

E zE E

9

wherethevariousstraincomponentsare:

2 20 1 2 00 0 0

20 1 2

23 4 5

23 4 5

0

12 , , ,

000

0, ,

0

x z zx x x

zx zx zx

l

x x x

zx zx zx

u u u

xx x x

x

6

6

0 0

, xl l

zxx x

10

andtheelectricfieldcomponentsare:

1 2

1 2

0,

0

l

x xl

z z

E Ex

E E

11

Thestrainsmayalsobeshownintermsofthegeneralisedbeammechanicalstrains 1 and 5 as:

20

11 1x2

51x4 5

1 / 2

0

zx

zx

ug z Ox

O g z

12

where 1 and 5 aregivenby:

2 20 0 0

1 5 02 2,

T Tl lx zu u

x x xx x

13

Page 5: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 5/17

andthevector 5g z isdefinedas

5

k kllS z S z

g z zz z

14

Thevariationalequationforthebeamisobtainedas:

0 0

20

1 1 5 5

2 4

**

* * * * * * * * * * *0 000 0

0

l TT T l l l

T zT l

a

zx

F F H Gx

dxu u

u q q Nx x

au lz l l l lN u V u M P H V Rx x x z x x xx x

15

wherethesuperscript*meansvaluesattheends. 1 5 ,, xF F V and lV arethebeamstressresultantsgivenby:

1 1

1 51 1

1

, k k

k k

k

z zN Nk k

k x zxkllk kz z

kl

S zz z

F bdz F bdzS z S z

zzS z

16

1 11 1

, k k

k k

z zN Nk kl l

x zx zxk kz z

V bdz V z bdz

17

and lH and lG arethebeamelectricdisplacementresultantsgivenby:

1 11 1

, k k

k k

z z lN Nk kl l l

x zk kz z

zH D z bdz G D bdz

z

18

2 q and 4lq arethemechanicalloadandelectricalloadrespectively.

3FINITEELEMENTMODEL

Aonedimensionalfiniteelementmodel 1D‐FE basedonefficientlayerwise zigzag theoryisusedfortheanalysis.Twonodedelements Kapuriaetal.,2004 areconsideredfortheelectromechanicalvariables Figure2 .The1Dbeamelementhaseightmechanicalandavariablenumberofelectricaldegreesoffreedom.

Figure2:Twonoded1Dbeamelementwithdegreesoffreedom

Page 6: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 6/17

Thehighestorderofthederivativesofthevariables0z

u and l ,inthevariationalEq. 15 whenexpandedin

termsoftheprimaryvariables0 0 0, ,x zu u and l ,is2andthatoftheothertwovariables

0xu and 0 is1.There‐

fore,inordertosatisfytheconvergencerequirementsofthefiniteelementprocedure 0

0 0,,z

x

uu

x

and

l

x

are

requiredtobecontinuousattheboundariesoftheelementconsidered.HencecubicHermiteinterpolation Kapu‐

riaetal.,2004 isusedforexpanding0z

u and l whereas0xu and 0 areexpandedusinglinearLagrangeinterpo‐

lation.

00

0 0

0 0

0 0 0

ˆ0 0 0

0 0 0

0 0 0 ˆ e

exx

ez z

e

l l

uu N

u uN

N

N

19

where N and ˆ N are vectors of linear interpolation functions and cubic Hermite interpolation functions

respectively;0 0 0, ,e e e

x zu u andel arethenodalvaluevectors.

TheintegrandinthevariationalEq. 15 maybeshownas

0 02

z zT Tu x

u uF u g N

x x

20

where F is thegeneralised stressvector, is thegeneralised strainsvector and ug is theelectromechanical

loadvectorofthebeamdefinedas

1 5 1 5 2 4, ,

TlT TT T l l T T l luF F F H G g q q

x

21

Substitutingfor F and xN ,theparticipationin eT ofoneelementtotheintegralfrom0to l inEq. 15 isat‐tainedas

0

0 0 0

2

2

20

1 1 1 11

1

2

1

2

zT Tn u

le

z z zT l l

uD g u g

xT dx

u u uA A

x x x

22

where D isthegeneralisedstiffnessmatrix, ng isthematrixthatrelates F withnonlinearstrainand 1A isthefirstcolumnofbeamstiffnessmatrix A .

Assumingsmalldisplacementsandstrainsandconsidering linearelasticbehavior, thenonlineartermsareignored.ThusEq. 22 maybesimplifiedforlinearanalysisas

2

0

le T T

uT D u g dx 23

Thegeneraliseddisplacementvector, ed fortheelementisdefinedas

0 0 0

TT T T T ee e e e lx zd u u 24

Page 7: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 7/17

Using Eqs. 7 , 13 , 21 and 24 , the generalised displacements 2u and strains can be expressed in

termsof ed as

22 ,e emu B d Bd 25

where2mB and B aredisplacementinterpolationandstraindisplacementmatrices.UsingEq. 25 for 2u and

inEq. 23 , eT maybeshownas

2

0

le eT T e T

m u

eT e e e

T d B DBd B g dx

d K d P

26

with

2

0 0

, l l

e T e Tm uK B DBdx P B g dx 27

Thecontributionsfromalltheelementsaresummeduptoobtainthesystemequationas

Kd P 28

in which K is the assembled stiffnessmatrix and d and P are the assembled displacement and load vectorsrespectively.Theboundaryconditionsforclampedendandfreeendare

0

0 0 0Clamped end: 0, 0, 0, 0,

Free end: 0, 0, 0, 0.

zx z

x x x x

uu u

xN V M P

29

Thebeamismodelledwithseparatesegmentsforelasticpartsandhybridparts.ThehybridpartshavePZT‐5Apatchbondedon the topsurfaceof theelastic substratewhereas theelasticpartsarewithoutpiezoelectricpatch.Theelasticpartshavefournumbersofnodalelectricdegreesoffreedomhoweverhybridpartshave12,asfoursub‐layersareconsideredthroughthethicknessofthepiezoelectriclayer.

Toshow theaccuracyandefficiencyof thepresent formulation, the resultsof1D‐FEmodelare comparedwith the converged2D‐FE ABAQUS results Khanet al., 2016 .Thehybridbeamsaremodelled in2DplanarmodellingspaceasadeformableshellusingFEpackageABAQUS 2010 whereinthelayupwithdifferentmateri‐alpropertiesaredefinedacrossthebeamthicknessandsuitableelementtypesforelasticsubstrateandpiezoe‐lectriclayersareassigned.Thethicknessdirectionisalsodiscretisedfordisplacements.An8‐nodedbiquadraticplanestresspiezoelectricquadrilateralelementisusedforpiezolayersandan8‐nodedbiquadraticplanestressquadrilateralelementwithreducedintegrationisusedfortheelastic layersofhybridbeamsforgeneratingthefiniteelementmeshinABAQUS.Thegeometricorderisconsideredlinearforbothtypeofelements.

4RESULTSANDDISCUSSIONS

4.1Validation

The1D‐FEformulationisfirstvalidatedbyconsideringtheflexuralanalysisproblem Problem2 ofGanapa‐thietal. 2004 forapiezoelectric sandwichbeam.Mechanicalandpotential loadcasesareconsidered for theproblembeamwithcantileverendconditions.Apointloadof1Nisapplied,atthefreeend,fortheformerwhere‐asforlatteranelectricpotential 100V isappliedatthetop/bottomsurfaces.ThegeometricalconfigurationofbeamandthepropertiesofthematerialaretakenfromGanapathietal. 2004 .Theresultsarecompared Table1 forspantothicknessratio / 10S l h .The%ageofdifferenceofthepresent1D‐FEresultswithrespectto

theresultspresentedinGanapathietal. 2004 isinarangeof2.5%‐2.8%forthecaseofmechanicalloadand3.3%‐8.6%forthecaseofpotentialload.

Page 8: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 8/17

Table1:Comparisonof1D‐FEresultsforcantileverpiezoelectricsandwichbeamwithGanapathietal. 2004 .

      Mechanicalloadcase Potentialloadcase

S.No.

Entity Units

1D‐FE

Ganapathietal.2004 *

1D‐FE

Ganapathietal.2004 *

1 710 0.2, 0.05zu m 1.50 1.54 ‐3.17 ‐2.92

2 710 0.2, 0.05xu m 0.72 0.70 ‐1.45 ‐1.50

3 0.2,-0.05x N/m2 23164 23750 ‐5410 ‐6000

*Resultsreadfromgraphs

4.2NumericalExample

Toassesstheeffectofsizeandpositionofpiezoelectricpatchonstaticresponseofasmartbeam,twobeamconfigurations, b and c areconsidered.Thesubstrate b isafourlayerssymmetricgraphiteepoxycompositelaminatewithlayup 0ᴼ,90ᴼ,90ᴼ,0ᴼ .Thethicknessofeachlayerofthecompositelaminateistakenas 0.25h ,where h is the total thicknessofelasticsubstrateatanysection.Thesubstrate c isa three layerssymmetricsandwichwithtopandbottomfacesheetsofthicknesses 0.08h andanin‐betweensoftcoreofthickness 0.84h .Thetotalthicknessofelasticsubstrateatanysectionremainsthesame.Piezoelectricpatches PZT‐5A ofvaria‐blesizearebondedonthetopsurfacesoftheelasticsubstrateatvariedaxial locations.Thethicknessofpiezo‐patches is takenas 0.1h .ThePZT‐5Apatcheshavepolling in zdirection.The topandbottomsurfacesof theelastic substrate are grounded. The properties of thematerials used are listed in Table 2 Rahman andAlam,2015 .

Thefollowingloadcasesareconsidered(1) A uniform pressure 0tq q on the top surface over entire length with open circuit condition.

(2) A uniform pressure 0tq q on the top surface over entire length with closed circuit condition.

(3) A uniform applied potential 0n on the top surface of the piezoelectric patch layer.

Table2:Materialpropertiesforsubstrates b and c .

Material Y1 Y2 Y3 G12 G23 G13 ν12 ν13 ν23 ρGPa kgm‐3

Graphiteepoxy 181 10.3 10.3 7.17 2.87 7.17 0.28 0.28 0.33 1578Face 131.1 6.9 6.9 3.588 2.3322 3.588 0.32 0.32 0.49 1000Core 22.08x10‐5 20.01x10‐5 2.76 0.01656 0.4554 0.5451 0.99 3x10‐5 3x10‐5 70PZT‐5A 61 61 53.2 22.6 21.1 21.1 0.35 0.38 0.38 7600

PZT‐5Ad31 d32 d33 d15 d24 η11 η22 η33

x10‐12mV‐1 x10‐8Fm‐1 ‐171 ‐171 374 584 584 1.53 1.53 1.5

Thenon‐dimensionalisedresultsareobtainedas:

1) 4 3 2 4 2

0 0 0 0 0 0 0 0100 / , 100 / , / , 10 /z z x x x xu u Y hS q u u Y hS q S q Y d hS q

2) 2

0 0 0 0 0 0 0ˆ 10 / , 10 / , 0ˆ 1ˆ /z z x x x xu u S d u u Sd h Y d

where /S l h isthespantothicknessratio, 0Y forbeam b istakenas10.3 GPa andforbeam c 6.9 GPa . 0 d istakenas374x10‐12CN‐1.

4.2.1Staticresponsewithvariationofpiezo‐patchlayerposition

Cantileverbeams b and c ,withapiezoelectricpatchoflength 0.4l ,bondedontopoftheelasticsubstrateatadistance px fromthefixedend Figure3 areconsideredfortheanalysis.Thebeamsaremodelledandana‐

lyzedwithdifferentvaluesof px .

Page 9: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 9/17

Figure3:Cantileverbeamwithpiezoelectricpatchlayeratvariableposition.

ThedeflectionprofileofcentrelinesarecomparedinFigure4underloadcase3.Herethemid‐surfacedeflec‐tionismoreforpiezo‐patchpositionsnearertothefixedend.Therefore,thepiezoelectricpatchactuatorsshouldbeplacednearertothefixedendforcontroloftipdeflectionincantileverbeams.However,thetipdeflectionismoreasthepiezo‐patchpositionismovedfartherfromthefixedendofcantileverbeamforpressureloadcases1and2 Figure5 .Thisisduetoincreasedbendingmomentresultingfromlargerdistanceofpiezo‐patchfromthefixedend.Theaxialdisplacementandnormalstressdistributionacrossthethicknessatmidpositionofpiezoelec‐tricpatcharecomparedinFigure6forbeams b and c .

Figure7showscomparisonofthroughthethicknessdistributionofaxialdisplacementandnormalstressatthe centre of the piezoelectric patch for pressure load case 2 and potential load case 3.Themaximumnormalstressoccurinloadcase3.

Thethroughthethicknessdistributionprofilesofaxialdisplacementandnormalstressesatmidpositionofpiezoelectricpatch forpressure load cases show increasing trend for xu anddecreasing trend for x with in‐creaseindistanceofpiezo‐patchfromthefixedend.Howeverforloadcase3nosignificantvariationisobservedfortheaxialdisplacementatthetopsurfaceofpiezoelectricpatchandnormalstressatthebottomsurfaceofpie‐zoelectricpatchwithvariationinpiezo‐patchpositionsfromthefixedend.TheseobservationsareclearerinFig‐ure8,showingvariationoftheseparameterswithpositionofpiezo‐patchlayer.

Figure4:Deflectionprofileofcentrelinesofcantileverbeamsforvariouspiezopatchpositions.

Figure5:Variationoftipdeflectionofcantileverbeamwithpiezopatchposition.

Page 10: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 10/17

Figure6:Throughthethicknessdistributionofaxialdisplacementandnormalstressatthecentreofpiezoelectricpatch

forvariouspatchpositions.

Figure7:Comparisonofaxialdisplacementandnormalstressacrossthethicknessinbeams b and c .

Page 11: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 11/17

Figure8:Variationofaxialdisplacementandnormalstresswithpositionofpiezo‐patchlayer.

Tables3and4showthemid‐surfacedeflectionatthefreeend,theaxialdisplacementandnormalstressatthecentreofpiezoelectricpatchlayer ( 0.2 )px x l forbeams b and c respectively.Theresultsarepresented

innon‐dimensionalformbutthebarandhatareomitted.Thetworesultsareingoodagreementwitheachother.

 

Page 12: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 12/17

Table3:Comparisonof1D‐FEand2D‐FEresultsforbeam b withvariationofpiezo‐patchposition.

      Loadcase1 Loadcase2 Loadcase3

S px

Entity 1D‐FE

2D‐FE

1D‐FE

2D‐FE 1D‐FE

2D‐FE

10 0 ,0zu l ‐10.191 ‐10.191 ‐10.274 ‐10.268 ‐3.031 ‐3.006

0.2 ,0.6xu l h 3.450 3.520 3.504 3.568 1.635 1.626

0.2 , 0.5x l h ‐1.990 ‐2.010 ‐2.006 ‐2.015 ‐0.416 ‐0.434

0.2 ,0.5ex l h 1.710 1.750 1.771 1.779 1.269 1.301

0.2 ,0.6x l h 0.770 0.760 0.714 0.715 ‐2.221 ‐2.205

0.2l ,0zu l ‐10.730 ‐10.901 ‐10.770 ‐10.963 ‐2.067 ‐2.029

0.4 ,0.6xu l h 5.850 6.110 5.876 6.140 1.399 1.443

0.4 , 0.5x l h ‐1.080 ‐1.090 ‐1.105 ‐1.099 ‐0.418 ‐0.443

0.4 ,0.5ex l h 0.980 0.960 0.984 0.971 1.269 1.289

0.4 ,0.6x l h 0.420 0.410 0.389 0.380 ‐2.221 ‐2.215

0.4l ,0zu l ‐11.071 ‐11.230 ‐11.088 ‐11.242 ‐1.378 ‐1.352

0.6 ,0.6xu l h 7.151 7.340 7.167 7.358 1.399 1.443

0.6 , 0.5x l h ‐0.450 ‐0.460 ‐0.462 ‐0.461 ‐0.417 ‐0.438

0.6 ,0.5ex l h 0.420 0.410 0.423 0.413 1.269 1.287

0.6 ,0.6x l h 0.170 0.160 0.158 0.150 ‐2.221 ‐2.215

Table4:Comparisonof1D‐FEand2D‐FEresultsforbeam c withvariationofpiezo‐patchposition.

      Loadcase1 Loadcase2 Loadcase3

S px

Entity 1D‐FE

2D‐FE 1D‐FE

2D‐FE 1D‐FE

2D‐FE

10 0 ,0zu l ‐20.754 ‐20.66 ‐20.754 ‐20.874 ‐6.265 ‐6.338

0.2 ,0.6xu l h 5.283 5.311 5.434 5.473 3.983 3.475

0.2 , 0.5x l h ‐4.899 ‐4.365 ‐4.410 ‐4.377 ‐0.437 ‐0.443

0.2 ,0.5ex l h 2.219 2.586 2.661 2.681 3.400 3.401

0.2 ,0.6x l h 1.421 1.548 1.481 1.484 ‐2.276 ‐2.254

0.2l ,0zu l ‐23.748 ‐24.093 ‐23.799 ‐24.157 ‐4.211 ‐4.221

0.4 ,0.6xu l h 10.183 11.630 10.565 11.693 3.394 3.474

0.4 , 0.5x l h ‐2.486 ‐2.418 ‐2.454 ‐2.425 ‐0.438 ‐0.445

0.4 ,0.5ex l h 1.408 1.454 1.493 1.506 3.400 3.401

0.4 ,0.6x l h 0.812 0.819 0.785 0.785 ‐2.274 ‐2.269

0.4l ,0zu l ‐24.876 ‐25.142 ‐24.856 ‐25.161 ‐2.828 ‐2.814

0.6 ,0.6xu l h 13.320 14.454 13.686 14.485 3.394 3.463

0.6 , 0.5x l h ‐1.077 ‐1.034 ‐1.055 ‐1.037 ‐0.438 ‐0.442

0.6 ,0.5ex l h 0.617 0.646 0.659 0.668 3.400 3.402

0.6 ,0.6x l h 0.301 0.302 0.291 0.288 ‐2.275 ‐2.261

Page 13: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 13/17

4.2.2Staticresponsewithvariationofsizeofpiezo‐patchlayer

Cantileverbeamswithapiezoelectricpatchoflength pl ,bondedontopoftheelasticsubstrateatthefixed

end Figure9 areconsideredfortheanalysis.Thebeamsaremodelledandanalysedforloadcase3,withdiffer‐entvaluesof pl forgraphiteepoxycompositesubstrate b andsandwichsubstrate c .Thewidthofthebeam

andpiezopatcharemodelledasunity.

Figure9:Cantileverbeamwithapiezoelectricpatchlayerofvariablesize.

Figure10:Deflectionprofileofcentrelinesofcantileverbeamsforvariouspiezopatchlengths.

ThedeflectionprofilesofcentrelinearecomparedinFigure10.Thecentrelinedeflectionismoreasthepie‐zo‐patchsizeisincreased.Figure11showsvariationofmidsurfacedeflectionatthefreeendandaxialdisplace‐mentat the topof theelastic substrateat the freeend,with sizeofpiezoelectric layer.Theabsolutenumericalvalueofboththeseparametersreflectanincreasingtrend.

Figure11:Variationofaxialandtransversedisplacementswithsizeofpiezo‐patchlayer.

Themid‐surfacedeflectionatthefreeend,theaxialdisplacementandthenormalstressatthecenterofpie‐zoelectricpatch ( / 2)px l arepresentedinTable5forbeams b and c .Theresultsareingoodagreementwith

the2D‐FEresultsobtainedusingABAQUSforboththebeams.

 

Page 14: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 14/17

Table5:Comparisonof1D‐FEand2D‐FEresultswithvariationofpiezo‐patchsize.

      Beamb Beamc

S pl

Entity 1D‐FE

2D‐FE

1D‐FE

2D‐FE

10 0.4l ,0zu l ‐3.031 ‐3.006 ‐6.265 ‐6.338

0.2 ,0.6xu l h 1.635 1.626 3.983 3.956

0.2 , 0.5x l h ‐0.417 ‐0.430 ‐0.437 ‐0.441

0.2 ,0.5ex l h 1.268 1.286 3.400 3.402

0.2 ,0.6x l h ‐2.221 ‐2.214 ‐2.276 ‐2.273

0.6l ,0zu l ‐4.028 ‐4.010 ‐8.430 ‐8.462

0.3 ,0.6xu l h 2.453 2.438 5.974 5.947

0.3 , 0.5x l h ‐0.416 ‐0.418 ‐0.437 ‐0.437

0.3 ,0.5ex l h 1.268 1.270 3.400 3.400

0.3 ,0.6x l h ‐2.222 ‐2.220 ‐2.276 ‐2.274

0.8l ,0zu l ‐4.642 ‐4.630 ‐9.788 ‐9.778

0.4 ,0.6xu l h 3.270 3.254 7.966 7.938

0.4 , 0.5x l h ‐0.416 ‐0.416 ‐0.437 ‐0.437

0.4 ,0.5ex l h 1.268 1.268 3.400 3.400

0.4 ,0.6x l h ‐2.222 ‐2.221 ‐2.276 ‐2.274

l ,0zu l ‐5.875 ‐5.864 ‐12.442 ‐12.389

0.5 ,0.6xu l h 4.497 4.479 10.953 10.924

0.5 , 0.5x l h ‐0.457 ‐0.457 ‐0.480 ‐0.480

0.5 ,0.5ex l h 1.395 1.395 3.740 3.740

0.5 ,0.6x l h ‐2.440 ‐2.441 ‐2.503 ‐2.501

4.2.3Shapecontrolusingpiezoelectricpatches

Theproblembeams are further analyzed for electromechanical load case load case4 ,where a pressure

0 tq q isappliedonthetopsurfaceoverentirelengthwithuniformappliedpotential 0n onthetopsurface

of thepiezoelectricpatch layer.Keeping thepressureas same, theappliedpotential is increased to reduce thecentrelinedeflection.Theresultsareobtainedwithlengthsofpiezoelectricpatch, 0.4 ,0.6p l ll .Asthesizeofthe

patchincreases,thevalueoftheappliedpotential,requiredtominimisethetipdeflection,decreases.Butatthesametimethecurvatureofthedeflectedbeamalsoincreasesfortheportionwherepiezoelectricpatchisbondedonthetopsurface Figure12 .Thisshowsthatasinglepiezopatchisnotsuitableforcontrollingthedeflectedshapeofbeam.Theproblemmaybeovercomebyusingmultiplepiezoelectricpatcheswithdifferentappliedvolt‐agesoneach.Figure13showstheshapecontrolforbeam b havingfournumbersofpiezoelectricpatchesbond‐ed on top surface of the beam. Their positions 1 2 3 4( , , , )x x x x , sizes 1 2 3 4( , , , )l l l l and the applied voltages

1 2 3 4, , , arementionedinthefigure.

Page 15: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 15/17

Figure12:Deflectionprofileofcentrelinewithvariationofsizeofpiezo‐patchlayerforloadcase4.

Figure13:Shapecontrolforbeam b withfournumbersofpiezopatchesbondedontopsurfaceofthebeam.

Theexcellentagreementwiththe2D‐FE ABAQUS resultsprovestheaccuracyofthepresent1D‐FEformu‐lationbasedonefficientzigzag theory.Furthermore, theadvantageofusingpresent formulation is the smallerproblemsize in comparison to the2D‐FE ABAQUS model for the same computational accuracy.As thebeamthicknessisalsodiscretisedinthe2D‐FE ABAQUS model,itleadstoquitelargenumbersofdegreesoffreedomincomparisontothepresent1D‐FEmodel.Forexamplebeamb,with 0.2pl l andS 10,hasbeendiscretised

into704elements for2D‐FEanalysisas againstonly40elements in thepresent1D‐FE formulation.Themeshseedsandhencethetotaldegreesoffreedomincreasefurtherwithbeamlengthandnumberoflayersacrossthethicknesstoaccommodatethehigheraspectratioandmaterialheterogeneity.Thecomputationaltimetakenfor2D‐FEstaticanalysisoftheproblembeamisabout10timesthatof1D‐FEanalysis.Thisshowstheefficiencyandaccuracyofthepresent1D‐FEmodel.

5CONCLUSIONS

Insmartbeamstructures,piezoelectriclayersoftenformanintegralpartofthestructureowingtotheirabil‐ity to transformelectrical energy tomechanical energy andvice versa.The location and sizeof these layers issignificantas it results indifferent structural responseundervarious loadingconditions.Theeffectofpositionandsizeofpiezoelectriclayeronstaticresponseofahybridbeamisassessedusinga1DFEmodelbasedoneffi‐cientlayerwise zigzag theory.Theresultsareobtainedforcantilever clamped‐free endconditions.Theaccu‐racy andefficiencyof thepresent1DFEmodelhasbeenestablishedby comparing the resultswith the2DFEmodeldevelopedinABAQUS.Thecentrelinedeflectionismoreasthepiezo‐patchpositionismovedfartherfromthefixedendofcantileverbeamforpressureloadcases.Theinverseistrueforpotentialloadcase.Therefore,thepiezoelectricpatchactuatorsshouldbeplacednearer to the fixedend forcontrolof tipdeflection incantileverbeam.Thecentre linedeflectionismoreasthepiezo‐patchsize is increasedinpotential loadcase.Singlepiezopatchisnotsuitableforcontrollingthedeflectedshapeofbeam.Usingmultiplepiezo‐patches,withdifferentap‐pliedvoltagesoneach,ismorefeasibleforshapecontrolofbeaminanelectromechanicalloadcase.Theseobser‐vationsmaybeusedasabenchmarkforexperimentalinvestigationanddesignforcompositeandsandwichhy‐bridstructures.

Page 16: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 16/17

References

ABAQUS. 2010 .StandardUser'sManual,Version6.10,Vol.1.

BatraR.C.andVidoliS. 2002 Higher‐orderpiezoelectricplate theoryderived froma three‐dimensionalvaria‐tionalprinciple,AIAAJournal40:91–104.

BenjeddouA. 2000 Advancesinpiezoelectricfiniteelementmodelingofadaptivestructuralelements:asurvey,Computers&Structures76:347–363.

CatapanoA.,GiuntaG.,BelouettarS.,CarreraE. 2011 Staticanalysisoflaminatedbeamsviaaunifiedformula‐tion,CompositeStructures94:75–83.

Correia V.M.F., Gomes, M.A.A., Suleman A., Soares C.M.M. 2000 Modelling and design of adaptive compositestructures,ComputationalMethodsinAppliedMechanicsandEngineering185:325–346.

Filippi M., Pagani A., PetroloM., Colonna G., Carrera E. 2015 Static and free vibration analysis of laminatedbeamsbyrefinedtheorybasedonChebyshevpolynomials,CompositeStructures132:1248–1259.

FukunagaH.,HuN.,RenG.X. 2001 FEMmodelingofadaptivecompositestructuresusingareducedhigher‐orderplatetheoryviapenaltyfunctions,InternationalJournalofSolidsandStructures38:8735–8752.

GanapathiM.,PatelB.P.,TouratierM. 2004 AC1finiteelementforflexuralandtorsionalanalysisofrectangularpiezoelectric laminated/sandwichcompositebeams,International JournalofNumericalMethodsinEngineering61:584–610.

GiuntaG.,BelouettarS.,FerreiraA.J.M. 2016 Astaticanalysisofthree‐dimensionalfunctionallygradedbeamsbyhierarchicalmodellingandacollocationmeshlesssolutionmethod,ActaMechanica227:969–991.

Kapuria S. andHagedorn P. 2007 Unified efficient layerwise theory for smart beamswith segmented exten‐sion/shearmode,piezoelectricactuatorsandsensors, JournalofMechanicsofMaterialsandStructures2:1267‐1298.

KapuriaS.,DumirP.C.,AhmedA. 2003 Anefficientcoupledlayerwisetheoryforstaticanalysisofpiezoelectricsandwichbeams,ArchiveofAppliedMechanics73:147‐159.

KapuriaS.,DumirP.C.,AhmedA.,AlamM.N. 2004 Finiteelementmodelofefficientzigzagtheoryforstaticanal‐ysisofhybridpiezoelectricbeams,ComputationalMechanics34:475‐483.

KapuriaS.,KulkarniS.D. 2008 Anefficientquadrilateralelementbasedonimprovedzigzagtheoryfordynamicanalysisofhybridplateswithelectrodedpiezoelectricactuatorsandsensors,J.ofSoundandVibration315:118–145.

KhanA.A.,AlamM.N.,RahmanN.andWajidM. 2016 Finiteelementmodellingforstaticandfreevibrationre‐sponseoffunctionallygradedbeam,LatinAmericanJournalofSolidsandStructures13 4 :690‐714.

KomeiliA.,AkbarzadehA.H.,DoroushiA.andEslamiM.R. 2011 StaticAnalysisofFunctionallyGradedPiezoelec‐tricBeamsunderThermo‐Electro‐MechanicalLoads,AdvancesinMechanicalEngineering,ArticleID153731,10pages.doi:10.1155/2011/153731.

MitchellJ.A.,ReddyJ.N. 1995 Arefinedhybridplatetheoryforcompositelaminateswithpiezoelectriclaminae,InternationalJournalofSolidsandStructures32:2345–2367.

Page 17: Finite element modelling to assess the effect of position ...A one dimensional finite element model is presented to assess the effect of position and size of the piezoelectric layer

NajeeburRahmanetal.Finiteelementmodellingtoassesstheeffectofpositionandsizeofthepiezoelectriclayerofahybridbeam

LatinAmericanJournalofSolidsandStructures,2018,15 3 ,e22 17/17

RahmanN.,AlamM.N. 2012 DynamicAnalysisofLaminatedSmartBeamsusingZigzagTheory, InternationalJournalofMechanicsStructural3:35‐46.

RahmanN.,AlamM.N. 2014 Finiteelementmodelingforbucklinganalysisofhybridpiezoelectricbeamunderelectromechanicalloads,LatinAmericanJournalofSolidsandStructures11:770‐789.

RahmanN.,AlamM.N. 2015 StructuralControlofPiezoelectricLaminatedBeamsunderThermalLoad,JournalofThermalStresses38:69–95.

SaravanosD.A.,HeyligerP.R. 1995 Coupledlayerwiseanalysisofcompositebeamswithembeddedpiezoelectricsensorsandactuators,JournalofIntelligentMaterialSystemsandStructures6:350‐363.

Saravanos D.A., Heyliger P.R. 1999 Mechanics and computationalmodels for laminated piezoelectric beams,platesandshells,ASME,AppliedMechanicsReview52:305–320.

SayyadA.S.,GhugalY.M.andShindeP.N. 2015a Stressanalysisoflaminatedcompositeandsoftcoresandwichbeamsusinga simplehigherorder sheardeformation theory, Journalof theSerbianSociety forComputationalMechanics9:15‐35.

SayyadA.S.,GhugalY.M.,NaikN.S. 2015b Bendinganalysisoflaminatedcompositeandsandwichbeamsaccord‐ingtorefinedtrigonometricbeamtheory,CurvedandLayer.Struct.2:279–289.

SunarM.,RaoSS. 1999 Recentadvancesinsensingandcontrolofflexiblestructuresviapiezoelectricmaterialstechnology,ASME,AppliedMechanicsReview52:1–16.

Tang Y.Y., Noor A.K., Xu K. 1996 Assessment of computationalmodels for thermoelectroelasticmultilayeredplates.ComputersandStructures61:915–933.

Yang J.S. 1999 Equations for thick elastic plateswith partially electroded piezoelectric actuators and higherorderelectricfields,SmartMaterialsandStructures8,83–91.