final report for texas aqrp project 12-006aqrp.ceer.utexas.edu/projectinfofy12_13/12-006/12... ·...

328
Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and CMAQ Modeling to Improve Mechanisms to Model Ozone Formation from HRVOCs Submitted to: Dr. Elena McDonald-Buller, Project Manager Texas Air Quality Research Program The University of Texas at Austin Submitted by: Gookyoung Heo, UC Riverside William P. L. Carter, UC Riverside Qi Ying, Texas A&M University Center for Environmental Research and Technology College of Engineering University of California Riverside, California 92521 Zachry Department of Civil Engineering Texas A&M University College Station, TX 77843-3136 Revised February 26, 2014

Upload: others

Post on 11-Aug-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

Final Report for Texas AQRP Project 12-006

Environmental Chamber Experiments and CMAQ Modeling to Improve Mechanisms to

Model Ozone Formation from HRVOCs

Submitted to:

Dr. Elena McDonald-Buller, Project Manager

Texas Air Quality Research Program

The University of Texas at Austin

Submitted by:

Gookyoung Heo, UC Riverside

William P. L. Carter, UC Riverside

Qi Ying, Texas A&M University

Center for Environmental Research and Technology

College of Engineering

University of California

Riverside, California 92521

Zachry Department of Civil Engineering

Texas A&M University

College Station, TX 77843-3136

Revised February 26, 2014

Page 2: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

ii

Acknowledgements

The preparation of this report is based on work (AQRP Project 12-006) supported by the State of

Texas through the Air Quality Research Program (AQRP) administered by The University of

Texas at Austin by means of a grant from the Texas Commission on Environmental Quality

(TCEQ).

The authors thank two project officers, Dr. Elena McDonald-Buller (AQRP project manager) and

Mr. Ron Thomas (TCEQ project liaison), for their helpful comments and reviews. The authors

also thank Dr. Ajith Kaduwela (California Air Resources Board), Ms. Deborah Luecken (U.S.

EPA), and TCEQ staff members including Dr. Jim Smith and Mr. Ron Thomas for providing

emissions inventory data for volatile organic compounds (VOCs).

The contents of this report reflect only the opinions and conclusions of the authors, and not any

of the individuals or institutions mentioned in this report. Mention of trade names and

commercial products does not constitute endorsement or recommendation for use.

Page 3: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

iii

Table of Contents

Acknowledgements ......................................................................................................................... ii

Table of Contents ........................................................................................................................... iii

List of Tables ................................................................................................................................. vi

List of Figures .............................................................................................................................. viii

Executive Summary ....................................................................................................................... xi

1. Introduction ................................................................................................................................. 1

2. Experiments Performed at UCR's EPA chamber ........................................................................ 3

2.1. Design of chamber experiments ........................................................................................... 3

2.1.1. Introduction ................................................................................................................... 3

2.1.2. Methods for designing chamber experiments ............................................................... 3

2.1.3. Designed chamber experiments .................................................................................... 5

2.2. Experimental methods ......................................................................................................... 5

2.2.1. Environmental chamber: UCR EPA chamber .............................................................. 5

2.2.2. Analytical instrumentation ............................................................................................ 7

2.2.3. Quality control methods .............................................................................................. 11

2.2.4. Sampling methods ....................................................................................................... 14

2.2.5. Chamber characterization methods ............................................................................. 15

2.2.6. Experimental procedures ............................................................................................ 16

2.2.7. Materials ..................................................................................................................... 17

2.2.8. Data processing ........................................................................................................... 17

2.3. Experiments carried out ..................................................................................................... 18

2.3.1. Experimental results for 5 HRVOCs .......................................................................... 20

2.3.2. Experimental results for 5 non-HRVOCs ................................................................... 25

2.3.2. Experimental results for chamber characterization ..................................................... 30

2.3.3. Summary ..................................................................................................................... 32

3. Mechanism Development and Evaluation ................................................................................ 34

3.1. Introduction ........................................................................................................................ 34

3.2. Methods.............................................................................................................................. 35

3.2.1. Existing mechanisms evaluated for this project.......................................................... 35

3.2.2. Preliminary updated mechanism for 1,3-butadiene .................................................... 37

3.2.3. Evaluation of mechanisms by simulations of chamber experiments .......................... 45

3.2.3. Methods for comparing model results with measurements ........................................ 46

Page 4: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

iv

3.3. Results and discussion: Mechanism evaluation and development .................................... 46

3.3.1. Propene ....................................................................................................................... 50

3.3.2. 1-Butene ...................................................................................................................... 51

3.3.3. Isobutene ..................................................................................................................... 52

3.3.4. trans-2-Butene ............................................................................................................. 54

3.3.5. cis-2-Butene ................................................................................................................ 55

3.3.6. 1,3-Butadiene .............................................................................................................. 57

3.3.7. 1-Pentene..................................................................................................................... 62

3.3.8. 1-Hexene ..................................................................................................................... 63

3.3.9. trans- and cis-2-Pentene .............................................................................................. 68

3.3.10. 2-Methyl-2-butene .................................................................................................... 69

3.4. Summary and discussion.................................................................................................... 70

4. Mechanism Implementation into CMAQ ................................................................................. 74

4.1. Introduction ........................................................................................................................ 74

4.2. Mechanism implementation in CMAQ .............................................................................. 74

4.2.1. General procedures in implementing a new mechanism in CMAQ 5.0.1 .................. 74

4.2.2. Model species and process .......................................................................................... 76

4.2.3. Photolysis rate data ..................................................................................................... 85

4.2.4. Modifications to the CMAQ model code.................................................................... 85

4.3. Emission processing........................................................................................................... 85

4.3.1. National Emission Inventory (NEI) ............................................................................ 85

4.3.2. Point source emissions data from Texas Commission of Environmental Quality...... 87

4.4. Summary ............................................................................................................................ 88

5. Comparison of Mechanisms by Carrying out CMAQ Simulations .......................................... 89

5.1. Introduction ........................................................................................................................ 89

5.2. Model application .............................................................................................................. 90

5.2.1. Model domains............................................................................................................ 90

5.2.2. Chemical mechanisms ................................................................................................ 91

5.2.3. Emissions .................................................................................................................... 91

5.2.4. Meteorology ................................................................................................................ 94

5.3. Results and discussion: CMAQ simulation results ............................................................ 94

5.3.1. Model performance ..................................................................................................... 94

5.3.2. Regional differences ................................................................................................... 98

5.3.3. Changes of ozone due to updated gasoline exhaust emission profiles ....................... 99

Page 5: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

v

5.3.4 Computation time comparison ..................................................................................... 99

5.4. Summary .......................................................................................................................... 100

6. Conclusions and Recommendations ....................................................................................... 102

7. References ............................................................................................................................... 104

Appendices .................................................................................................................................. 111

Appendix A. Chamber Experiments Designed and Carried Out for this Project ................... 112

Appendix B. Additional Information on Mechanisms Used for Chamber Simulations ......... 118

Appendix C. Additional Information on Implementing Mechanisms for CMAQ Simulations

................................................................................................................................................. 223

C-1. List of SAPRC-11L mechanism definition file .......................................................... 223

C-2. List of SAPRC-11D mechanism definition file .......................................................... 233

C-3. Build scipt used to generate the SAPRC-11D source code from CMAQ source code

repository (options set for this study are marked in bold fonts) ......................................... 277

C-4. Run script for SAPRC-11D (4-km domain) ............................................................... 285

Appendix D. Additional Information on Implementing Mechanisms for CMAQ Simulations

................................................................................................................................................. 293

D-1. Ozone and alkene time series using different SAPRC mechanisms ........................... 293

D-2. Detailed ozone performance data ............................................................................... 297

D-3. Ozone time series for SAPRC-07L and SAPRC-07T. ............................................... 299

D-4. Detailed ozone performance data for SAPRC-07L and SAPRC-07T ........................ 303

Appendix E. Chamber Simulation Results for the Carbon Bond Chemical Mechanism ....... 305

Page 6: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

vi

List of Tables

Table 1. List of target analytes for this project. .............................................................................. 5 Table 2. Summary of measured species, instrumentation used, and associated measurement

objectives. ................................................................................................................... 10

Table 3. Support equipment used for this project. ........................................................................ 12 Table 4. List of 25 experiments (50 reactor runs) for each of the 5 HRVOCs and 5 non-

HRVOCs. .................................................................................................................... 19 Table 5. List of characterization experiments carried out for this project. ................................... 31 Table 6. List of lumping methods used for SAPRC-07T, SAPRC-11L and SAPRC-11D for the

10 tested alkenes for this project. ................................................................................ 36 Table 7. Compounds and weighting factors used to derive the mechanisms for the OLE1 and

OLE2 lumped model species in the SAPRC-11L and SAPRC-07T mechanisms. ..... 37 Table 8. List of model species that were added or changed relative to SAPRC-11 for the

preliminary SAPRC-13A mechanism used in this work. Species that were not

changed relative to SAPRC-11 or are not relevant to the 1,3-butadiene calculations

discussed in this work are not included in the listing. ................................................ 39 Table 9. List of reactions that were added or changed relative to SAPRC-11 for the preliminary

SAPRC-13A mechanism used in this work. Reactions that were not changed relative

to SAPRC-11 or are not relevant to the 1,3-butadiene calculations discussed in this

work are not included in the listing............................................................................. 40

Table 10. List of initial concentrations and selected experimental and model simulation results

for the mechanism evaluation experiments carried out for this project. ..................... 48

Table 11. List of SAPRC mechanisms implemented in this study. .............................................. 74 Table 12. Chemical mechanism files needed to compile and run CMAQ. ................................... 75

Table 13. List of SAPRC-11L model species and processes.* ..................................................... 76 Table 14. List of SAPRC-11D model species and processes

* ...................................................... 78

Table 15. Emission species/compounds (including 14 monoterpenes and 1 sesquiterpene) from

BEIS v3.14 and mappings to SAPRC-11D and SAPRC-11L. ................................... 86 Table 16. TCEQ emission inventory for Texas emissions and their corresponding VOC

speciation and cross reference files. ............................................................................ 87 Table 17. Comparison of Mean Normalized Bias (MNB), Mean Normalized Error (MNE) and

Accuracy of Unpaired Peak (AUP) for four SAPRC-11 simulations. ........................ 96

Table A-1. Summary of 24 reactor runs designed for the 5 HRVOCs and 5 non-HRVOCs.* ... 112

Table A-2. Summary of 12 experiments designed for the 24 reactor runs listed in Table A-1.* 113

Table A-3. Summary of 5 chamber characterization experiments designed for this project.* ... 113

Table A-4. List of 44 experiments (84 reactor runs) carried out for this project. ....................... 114 Table A-5. Summary of the chamber experiments used to evaluate mechanisms: 4 propene - NOx

and 36 test alkene - NOx experiments carried out for this project and 22 experiments

carried out for previous studies. ................................................................................ 116

Table D-1. Ozone model performance based on 4-km S11D. .................................................... 297 Table D-2. Ozone model performance based on 2-km S11D. .................................................... 297 Table D-3. Ozone model performance based on 4-km S11L. .................................................... 298

Page 7: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

vii

Table D-4. Ozone model performance based on 2-km S11L. .................................................... 298

Table D-5. Comparison of Mean Normalized Bias (MNB), Mean Normalized Error (MNE) and

Accuracy of Unpaired Peak (AUP) for four SAPRC-07 simulations. ...................... 303 Table D-6. Ozone model performance based on 4-km S07T. .................................................... 303

Table D-7. Ozone model performance based on 2-km S07T. .................................................... 303 Table D-8. Ozone model performance based on 4-km S07L. .................................................... 304 Table D-9. Ozone model performance based on 2-km S07L. .................................................... 304

Table E-1. List of lumping methods used for the Carbon Bond chemical mechanism (CB6r1v1b)

for propene and the 10 tested alkenes for this project. ............................................. 305

Page 8: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

viii

List of Figures

Figure 1. Schematic of the UCR EPA environmental chamber reactors and enclosure (Carter et

al, 2005, 2012). ............................................................................................................. 6 Figure 2. Concentrations of CO, NO, NOx and O3 during CO/NO span, Gas-Phase Titration and

O3 span. ....................................................................................................................... 13 Figure 3. Correction factors assigned for NO (top) and NOx (bottom) measurements of the

experiments carried out for this project.* ................................................................... 14 Figure 4. Time series of ozone for 4 experiments with 1-butene. ................................................ 21 Figure 5. Time series of ozone for 5 experiments with isobutene.* ............................................. 22

Figure 6. Time series of ozone for 4 experiments with trans-2-butene.* ..................................... 23 Figure 7. Time series of ozone for 6 experiments with cis-2-butene.* ......................................... 24

Figure 8. Time series of ozone for 4 experiments with 1,3-butadiene. ........................................ 25 Figure 9. Time series of ozone for 4 experiments with 1-pentene. ............................................... 26 Figure 10. Time series of ozone for 5 experiments with 1-hexene. .............................................. 27 Figure 11. Time series of ozone for 4 experiments with trans-2-pentene.* ................................. 28

Figure 12. Time series of ozone for 4 experiments with cis-2-pentene.* ..................................... 29 Figure 13. Time series of ozone for 10 experiments with 2-methyl-2-butene.* ........................... 30

Figure 14. Plots of measured NO2 photolysis rates since September 28, 2009.* ......................... 32 Figure 15. Comparison of modeled and measured concentrations for propene.* ........................ 51 Figure 16. Comparison of modeled and measured concentrations for 1-butene. ......................... 52

Figure 17. Comparison of modeled and measured concentrations for evaluating mechanisms for

isobutene. .................................................................................................................... 53

Figure 18. Comparison of modeled and measured concentrations for evaluating mechanisms for

trans-2-butene. ............................................................................................................ 55

Figure 19. Comparison of modeled and measured concentrations for evaluating mechanisms for

cis-2-butene. ................................................................................................................ 56 Figure 20. Comparison of modeled and measured concentrations for evaluating mechanisms for

1,3-butadiene.* ............................................................................................................ 59

Figure 21. Comparison of modeled and measured concentrations for evaluating mechanisms for

1,3-butadiene using SAPRC-11D and two versions of the SAPRC-13A mechanism.60 Figure 22. Comparison of modeled and measured concentrations for evaluating mechanisms for

acrolein. ....................................................................................................................... 61

Figure 23. Comparison of modeled and measured concentrations for evaluating mechanisms for

1-pentene. .................................................................................................................... 63 Figure 24. Comparison of modeled and measured concentrations for evaluating mechanisms for

1-hexene (part 1 of 2). ................................................................................................. 64

Figure 25. Comparison of modeled and measured concentrations for evaluating mechanisms for

1-hexene (part 2 of 2). ................................................................................................. 65 Figure 26. Results of selected mechanism variation sensitivity calculations for ozone formation

from selected 1-hexene experiments. .......................................................................... 66 Figure 27. Comparison of modeled and measured concentrations for evaluating mechanisms for

the 2-pentenes. ............................................................................................................ 69 Figure 28. Comparison of modeled and measured concentrations for evaluating mechanisms for

2-methyl-2-butene. ...................................................................................................... 70

Page 9: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

ix

Figure 29. Average model biases in SAPRC, SAPRC-11T, and SAPRC-11L model simulations

of Rate D(O3-NO) and Maximum O3 for the experiments with the alkenes studied for

this project.* ................................................................................................................ 72 Figure 30. 4-km (entire plot) and 2-km (marked by the box with red borders) nested domains

used in this study. The Continuous Ambient Monitoring Stations (CAMS) shown on

the map are (a) HALC, (b) HNWA, (c) HWAA, (d) HLAA, (e) HCQA, (f) BAYP, (g)

HSWA, (h) SHWH, (i) HROC, (j) HOEA, (k) C35C, and (l) DRPK. See

http://www.tceq.texas.gov/airquality/airmod/data/hgb8h/hgb2_site.html for more

information about the sites. ......................................................................................... 90

Figure 31. Fractional contributions of selected alkene species or groups to the emissions of

lumped species OLE1 in SAPRC-11L. Results are based on daily average emissions

of August 30 (Wednesday), 2006. Note the scales are different for each panel to better

illustrate spatial distribution. ....................................................................................... 93

Figure 32. Fractional contributions of selected alkene species or groups to the emissions of

lumped species OLE2 in SAPRC-11L. Results are based on daily average emissions

of August 30 (Wednesday), 2006. .............................................................................. 93 Figure 33. Predicted (based on 2-km resolution SAPRC-11D) and observed ozone concentrations

(in units of ppb) at 12 CAMS monitoring sites within the HGB area. ....................... 95 Figure 34. Predicted (based on 2-km resolution SAPRC-11D) and observed concentrations of

ethene, propene, 1-butene, cis-2-butene, trans-2-butene, 1-pentene, cis-2-pentene, and

trans-2-pentene (in units of ppbC) at 12 CAMS monitoring sites within the HGB area.

..................................................................................................................................... 97

Figure 35. Predicted episode-averaged (August 31-September 15, 2006) O3, OH, HO2 and PAN

concentrations (in units of parts per million (ppm)) at 1300-1400 CDT using S11D

and the relative differences ((S11L-S11D)/S11L; in 0-1 scale) between S11D and

S11L. ........................................................................................................................... 98

Figure 36. Predicted episode-averaged (August 31-September 15, 2006) daily O3, OH, HO2 and

PAN concentrations (in units of parts per million (ppm)) using S11D and the relative

differences ((S11L-S11D)/S11L; in 0-1 scale) between S11D and S11L. ................. 98

Figure 37. Comparison of average time needed (hour) to complete one simulated day. ........... 100

Figure D-1. Predicted (based on 4-km resolution SAPRC-11D) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

................................................................................................................................... 293 Figure D-2. Predicted (based on 4-km resolution SAPRC-11L) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

................................................................................................................................... 294 Figure D-3. Predicted (based on 2-km resolution SAPRC-11L) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

................................................................................................................................... 295

Figure D-4. Predicted (based on 4-km resolution SAPRC-11D) and observed concentrations of

ethene, propene, 1-butene, cis-2-butene, trans-2-butene, 1-pentene, cis-2-pentene, and

trans-2-pentene (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

................................................................................................................................... 296

Page 10: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

x

Figure D-5. Predicted (based on 2-km resolution SAPRC-07T) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

................................................................................................................................... 299 Figure D-6. Predicted (based on 2-km resolution SAPRC-07L) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

................................................................................................................................... 300 Figure D-7. Predicted (based on 4-km resolution SAPRC-07T) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

................................................................................................................................... 301

Figure D-8. Predicted (based on 4-km resolution SAPRC-07L) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

................................................................................................................................... 302

Figure E-1. Comparison of modeled and measured concentrations for propene with CB6r1v1b

and SAPRC-11D.* .................................................................................................... 306

Figure E-2. Comparison of modeled and measured concentrations for 1-butene with CB6r1v1b

and SAPRC-11D.* .................................................................................................... 307

Figure E-3. Comparison of modeled and measured concentrations for 1-pentene with CB6r1v1b

and SAPRC-11D.* .................................................................................................... 308 Figure E-4. Comparison of modeled and measured concentrations for 1-hexene with CB6r1v1b

and SAPRC-11D.* .................................................................................................... 309 Figure E-5. Comparison of modeled and measured concentrations for trans-2-butene with

CB6r1v1b and SAPRC-11D.* .................................................................................. 310 Figure E-6. Comparison of modeled and measured concentrations for cis-2-butene with

CB6r1v1b and SAPRC-11D.* .................................................................................. 311

Figure E-7. Comparison of modeled and measured concentrations for trans-2-pentene with

CB6r1v1b and SAPRC-11D.* .................................................................................. 312 Figure E-8. Comparison of modeled and measured concentrations for cis-2-pentene with

CB6r1v1b and SAPRC-11D.* .................................................................................. 313

Figure E-9. Comparison of modeled and measured concentrations for isobutene with CB6r1v1b

and SAPRC-11D.* .................................................................................................... 314

Figure E-10. Comparison of modeled and measured concentrations for 1,3-butadiene with

CB6r1v1b and SAPRC-11D.* .................................................................................. 315

Figure E-11. Comparison of modeled and measured concentrations for 2-methyl-2-butene with

CB6r1v1b and SAPRC-11D.* .................................................................................. 316

Page 11: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

xi

Executive Summary

Using reliable atmospheric chemical mechanisms in regulatory modeling is necessary to

formulate effective and efficient emission controls for managing ozone (O3) pollution. It is well

known that alkenes contribute to O3 formation in Southeast Texas. Particularly, in Harris

County, Texas, seven alkenes (ethene, propene, 1,3-butadiene, 1-butene, isobutene, trans-2-

butene, and cis-2-butene) are classified as Highly Reactive Volatile Organic Compounds

(HRVOCs), and HRVOC emissions have been regulated. However, condensed chemical

mechanisms commonly used for air quality modeling in the U.S. are not optimized to model O3

formation under atmospheric conditions significantly influenced by highly variable industrial

HRVOC emissions that are dominated by a small number of reactive alkenes. Therefore, a

chemical mechanism that can be used to simulate O3 formation from both urban emissions and

industrial HRVOC emissions could be developed to more explicitly assess the impact of

industrial HRVOC emissions on O3 formation in Southeast Texas. However, lack of

experimental data useful for mechanism evaluation is a critical obstacle to developing reliable

mechanisms for the HRVOCs except ethene and propene. In this study, experimental data for

mechanism evaluation were generated by using a large indoor environmental chamber at the

University of California at Riverside. The new experimental data were used to test the

mechanisms, and multiple versions of the SAPRC chemical mechanism were prepared using

different methods to represent mechanisms for volatile organic compounds (VOCs). These

mechanisms were implemented into the Community Multiscale Air Quality modeling system

(CMAQ) and further tested under simulated ambient conditions to examine the effects of using

these different mechanisms on O3 predictions in Southeast Texas.

Environmental chamber experiments were designed and carried out to evaluate and improve the

existing mechanisms (i.e., SAPRC’s alkene chemistry) for simulating O3 formation from both

urban emissions and industrial HRVOC emissions. The mechanisms for the 5 HRVOCs (1-

butene, isobutene, trans-2-butene, cis-2-butene and 1,3-butadiene) and the 5 non-HRVOCs (1-

pentene, 1-hexene, trans-2-pentene, cis-2-pentene, 2-methyl-2-butene) were evaluated by using

the newly generated experimental data of the 36 reactor runs selected from the 50 environmental

chamber reactor runs performed for these 10 alkenes. The model performance was quantified by

using two metrics: (1) the maximum ozone, and (2) the NO oxidation and O3 formation rate that

are defined in section 3.2.3. The detailed SAPRC-11 (SAPRC-11D) mechanism reasonably

simulated O3 formation from 7 of the 10 alkenes. The mechanism evaluation results for SAPRC-

11D increase our confidence in the mechanisms for 1-butene, 1-pentene, isobutene and cis/trans

2-butene and 2-pentene. On the other hand, the evaluation results also highlight mechanism

issues for 1,3-butadiene, 1-hexene and 2-methyl-2-butene. Mechanism improvements were made

for 1,3-butadiene and 1-hexene. However, those modifications were not complete enough to

implement into CMAQ. Chamber simulations with the Carbon Bond chemical mechanism were

also carried out, and the results are included in Appendix E to provide additional data to evaluate

and update the mechanisms currently used by the TCEQ.

Four SAPRC mechanisms with varying levels of VOC lumping were implemented into CMAQ

to simulate a summer ozone episode during the 2006 Texas Air Quality Study (TexAQS II):

Page 12: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

xii

SAPRC-11D: the most detailed SAPRC mechanism ever applied in regional air quality

simulations that uses approximately 300 explicit VOC species.

SAPRC-11L: a condensed and fixed-parameter version of SAPRC-11D.

SAPRC-07L: SAPRC-07 with standard lumping, similar to SAPRC-11L, but with outdated

mechanisms for aromatics.

SAPRC-07T: a “toxics” version of SAPRC-07L with additional explicit VOC species.

Chemically detailed emissions data were generated for SAPRC-11D to inspect consistency

between the compositions of the lumped alkene species (i.e., OLE1 and OLE2) used in deriving

the SAPRC-11L mechanism and the emissions inventory data that air quality simulations heavily

rely on. For example, the contributions of alkenes such as propene, 1-butene, 1-pentene, 1-

hexene, 1,3-butadiene, and 3-methyl-1-butene assumed during the development of SAPRC-11L

were compared with those based on the emission inventories.

While the O3 time series predicted by the four mechanisms using 2-km and 4-km horizontal grid

resolutions appeared similar and agreed with observations, statistical analysis of the hourly

average and peak hour O3 concentrations showed that SAPRC-11D yields overall somewhat

better (but not greatly better) O3 performance than SAPRC-11L. The predicted O3, OH, HO2 and

PAN were significantly different between SAPRC-11D and SAPRC-11L; SAPRC-11D predicted

higher O3 and PAN throughout the domain, higher OH and HO2 in urban Houston areas and

lower OH and HO2 in areas with less anthropogenic emissions than SAPRC-11L.

Based on the results of this study, we recommend further studies as follows:

The mechanism for 1,3-butadiene has many similar features to that for isoprene, and

knowledge gained during updating the isoprene chemistry should be used to update the 1,3-

butadiene chemistry, and vise-versa.

In regard to lumping methods, the results for propene, 1-butene, 1-pentene and 1-hexene

indicate that unbranched C3+ terminal alkenes share similar O3 formation mechanisms but

also have non-negligible differences among those 1-alkenes. The results for cis/trans 2-

butene and 2-pentene indicate that unbranched internal alkenes share similar ozone formation

chemistries. The results for isobutene and 2-methyl-2-butene indicate that lumping branched

terminal alkenes (e.g., isobutene) and branched internal alkenes (e.g., 2-methyl-2-butene)

with unbranched internal alkenes (e.g., 2-butene and 2-pentene) introduces significant

inaccuracies. In re-deriving lumping methods for the tested 10 alkenes, reliable emissions

data as well as these mechanism evaluation results should be considered.

More detailed analyses of the model results, possibly with process analysis, are needed to

clearly explain the differences between SAPRC-11D (detailed version) and SAPRC-11L

(lumped version).

Developing a version of SAPRC with an intermediate level of explicitness between SAPRC-

11D and SAPRC-11L is needed to reduce the computational cost and better

predict/reproduce ozone concentrations in the Houston area.

Explicitly modeling propene and 1,3-butadiene is potentially useful to improve the accuracy

of ozone predictions based on the spatial variability of propene and 1,3-butadiene emissions

in the Houston area. Additional testing under ambient conditions is needed.

Further work is needed on testing and improving mechanisms under Houston ambient

conditions while limiting the impact of uncertainties in emissions.

Page 13: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

1

1. Introduction

Using reliable atmospheric chemical mechanisms in regulatory models is necessary to formulate

effective air quality policies for controls of secondary air pollutants such as ozone (O3). The

major objective of this project is the development of more robust chemical reaction mechanisms

that can be used to simulate O3 formation from both urban emissions and industrial emissions of

Highly Reactive Volatile Organic Compounds (HRVOCs; ethene, propene, 1,3-butadiene, 1-

butene, isobutene, trans-2-butene, and cis-2-butene; Texas Administrative Code, Title 30, Part 1,

Chapter 115; Texas Commission on Environmental Quality (TCEQ), 2012) under conditions

relevant to Southeast Texas (Ryerson et al, 2003; Daum et al, 2003, 2004; Wert et al, 2004;

Murphy and Allen, 2005; Webster et al, 2007; Thomas et al, 2008).

HRVOC emissions in Southeast Texas influence the atmospheric composition in Houston to

become markedly different from the typical composition (e.g., see Seila et al, 1989) in most

urban areas in the U.S. and lead to rapid O3 formation (Jobson et al, 2004; Gilman et al, 2009;

Ryerson et al, 2003; Daum et al, 2003, 2004; Wert et al, 2004). Furthermore, HRVOC emissions

in Southeast Texas tend to be highly variable in emission strength and timing (Webster et al,

2007). Condensed chemical mechanisms commonly used for air quality modeling in the U.S.,

such as Carbon Bond 2005 (CB05) (Yarwood et al, 2005), CB05-TU (Whitten et al., 2010), CB6

(Yarwood et al, 2010), Statewide Air Pollution Research Center 1999 (SAPRC-99) (Carter,

2000), and SAPRC-07 (Carter, 2010) are designed to model O3 formation from typical urban

ambient volatile organic compound (VOC) mixtures. However, these chemical mechanisms are

not optimized to model O3 formation under atmospheric conditions significantly influenced by

highly variable HRVOC emissions that are dominated by a small number of VOC species (Heo

et al., 2010, 2012a,b). Therefore, a chemical mechanism that can be used to simulate O3

formation from both urban emissions and industrial HRVOC emissions could be developed to

accurately assess the impact on O3 formation of regular and episodic HRVOC emissions from

industrial sources in Southeast Texas.

However, the mechanisms for modeling O3 formation from several of the HRVOC compounds

are not well evaluated against experimental data, and lack of environmental chamber data useful

for mechanism evaluation is a critical obstacle to developing reliable mechanisms for the

HRVOCs. Among the 7 alkenes regulated as HRVOCs in Southeast Texas, robust chamber data

for mechanism evaluation are available only for ethene and propene. Chamber data for the higher

molecular weight non-HRVOC alkenes are even scarcer, though the limited data indicate that

they have lower O3 reactivities than similarly structured HRVOCs that have been studied (Carter,

2010).

Environmental chamber data generated under atmospherically-relevant (e.g., reasonably low

initial concentrations of nitrogen oxides, NOx (i.e., nitrogen dioxide (NO2) and nitric oxide

(NO))) and well-controlled experimental conditions (e.g., without involving uncertainties in

emissions and meteorology and while minimizing the impact of chamber artifacts such as

chamber-dependent radical formation and NOx offgasing) are useful in evaluating “chemical

processes” that contribute to formation of the target secondary air pollutant, for this project,

which is O3 (Jeffries et al, 1992; Carter et al, 2005). Mechanism evaluation using such chamber

experimental data can generate evidence of credibility of the mechanism developed for use in air

Page 14: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

2

quality modeling by providing comparison of experimentally measured and model-simulated

concentrations of key species (e.g., O3).

In response to this need for chamber data, Task 1 (design chamber experiments) and Task 2

(carry out chamber experiments) were carried out to generate experimental data suitable for

testing major relevant chemical processes leading to ozone formation from alkenes under

Houston-relevant conditions. Under typical Southeast Texas atmospheric conditions, NOx is

relatively abundant and peroxy radicals (RO2) formed from the HRVOCs dominantly react with

NO and contribute to O3 formation. Task 3 (develop mechanisms) was carried out to evaluate

and improve the existing mechanisms by using chamber experimental data generated in Task 2.

Task 4 (implement mechanisms into CMAQ) was carried out to implement the mechanisms into

the Community Multiscale Air Quality modeling system (CMAQ) (Byun and Schere, 2006), and

Task 5 (perform CMAQ modeling) was carried out to investigate the impact on O3 predictions of

using different mechanisms under atmospheric conditions relevant to Southeast Texas.

In the following sections, we will describe the tasks carried out for this project and present major

results that can be useful to develop more robust chemical mechanisms for the HRVOCs and

non-HRVOC alkenes that are better suited for use under atmospheric conditions influenced by

HRVOC emissions.

Page 15: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

3

2. Experiments Performed at UCR's EPA chamber

2.1. Design of chamber experiments

2.1.1. Introduction

For Task 1 of this project, 24 reactor runs in total were designed for 5 HRVOCs (1,3-butadiene,

1-butene, isobutene, trans-2-butene, and cis-2-butene; 3 reactor runs for each except trans-2-

butene) and 5 non-HRVOC alkenes (1-pentene, 1-hexene, trans-2-pentene, cis-2-pentene, and 2-

methyl-2-butene; 2 reactor runs for each) to generate experimental data useful for mechanism

development and evaluation. (For Task2, however, we actually carried out 50 reactor runs to

compensate for failed experiments and produce additional data for test compounds such as 1,3-

butadiene that showed unexpected mechanism issues.) For trans-2-butene, there are available

experimental data from six previous experiments (Carter, 2010; Heo et al, 2010). However,

chamber data with relatively low initial NOx levels (e.g., lower than 0.1 parts per million (ppm))

under well-controlled experimental conditions are lacking. Thus, two reactor runs were designed

for trans-2-butene. For the 5 non-HRVOC alkenes, two reactor runs for each are used to generate

experimental data to reconstruct reactions for non-HRVOC alkenes after separately representing

the reactions for the HRVOCs. 1-Pentene and 1-hexene were selected because they are major

non-HRVOC terminal alkenes in urban mixtures; similarly, trans-2-pentene, cis-2-pentene, and

2-methyl-2-butene were selected because they are major contributors to internal alkenes in urban

mixtures (Seila et al, 1989; Table 19 of Carter (2010)). 2-Methyl-2-butene, an internal alkene

with a branch, is known to react with O3 relatively fast (i.e., ~40 times faster than propene) and

generate OH in a high yield of ~0.9 (Calvert et al, 2000; Atkinson et al, 2006). Note that Czader

et al (2008) showed that 2-methyl-2-butene has a relatively high incremental reactivity in

conditions relevant to Houston; Jobson et al (2004) and Gilman et al (2009) reported 2-methyl-2-

butene as a relatively abundant internal alkene measured during the Texas Air Quality Studies

(TexAQS) of 2000 and 2006, respectively.

Simultaneously using two reactors in one experiment is useful to use similar experimental

conditions for two reactor runs and also contributes to reducing the cost for generating

experimental data for mechanism development and evaluation. Two reactor runs can be

simultaneously carried out by using the University of California at Riverside (UCR) EPA

chamber which is a dual chamber with reactors side A and side B. Chamber conditions need to

be well characterized to minimize the impact of chamber artifacts on mechanism evaluation with

chamber data (e.g., refer to Carter et al, 2005). For chamber characterization, three

characterization experiments (carbon monoxide (CO) – air, CO – NOx, and NO2 actinometry)

need to be carried out to characterize chamber-dependent NOx offgasing, radical generation and

light conditions, respectively (Carter et al, 2005). Pure-air and H2O2 – air experiments are also

useful to characterize the chamber conditions of the UCR EPA chamber.

2.1.2. Methods for designing chamber experiments

The strategy used for designing experiments is as follows:

Page 16: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

4

(1) Design experiments atmospherically relevant and not dominated by chamber conditions

that are uncertain or variable such as chamber-dependent NOx offgasing.

(2) Focus on measureable entities such as O3, NO, NO2 (at least in the early stage) and the

test volatile organic compound (VOC; e.g., 1-butene).

(3) Allow comparison between measurements and simulations in terms of metrics (e.g.,

maximum O3) for evaluating mechanisms.

(4) Pair compounds expected to behave similarly so that two reactor runs with two such

compounds can be run simultaneously.

To generate atmospherically relevant chamber data, initial NO concentrations were restricted to

below or equal to approximately 0.050 ppm except for 2-methyl-2-butene, in which case, NO

higher than 0.050 ppm was selected to modulate the rate of ozone formation. Initial test alkene

concentrations were restricted to below or equal to 0.100 ppm in most cases. However, for non-

branched terminal alkenes (1-butene, 1-pentene and 1-hexene; hereafter, also referred to as 1-

alkenes collectively), 1,3-butadiene and isobutene, initial concentrations above 0.100 ppm were

also used to make the ozone formation rate reasonably rapid and make the ozone formation from

the chemical system limited by NOx availability and reach an ozone peak before the end of the

experiment. The lowest initial NO concentration was set at approximately 0.010 ppm to avoid

dominant impact of NOx offgasing on NO and NO2 concentrations inside the reactor, and the

lowest initial test alkene concentration was set at approximately 0.040 ppm to obtain multiple

data points of relatively reliable VOC concentrations measured by the Gas Chromatography

(GC) system. Note that using NO concentrations that are too high (e.g., 0.500 ppm) will lead to

relatively high NO3 and oxygen atom (O3P) concentrations and using alkene concentrations that

are too high (e.g., 2.0 ppm) will lead to relatively low OH concentrations.

Measurements of O3, NO, NO2 (at least in the early stage) and the test VOC are relatively

reliable. Therefore, comparing the time series of measured and simulated O3, NO, NO2 (at least

in the early stage) and the test VOC should be useful for qualitative mechanism evaluation.

1-Alkenes (i.e., 1-butene, 1-pentene and 1-hexene) are expected to behave similarly to each other.

Therefore, two sets of initial test VOC and NO concentrations were used for each of the 3

alkenes while one additional reactor run is designed for 1-butene, one of the 5 HRVOCs. Two

more sets of initial test VOC and NO concentrations were used for 2-alkenes (cis-2-butene,

trans-2-butene, cis-2-pentene and trans-2-pentene) while one more reactor run was designed for

cis-2-butene.

Simulations of virtual chamber experiments were used to find initial concentrations that lead to

generating experimental data useful for mechanism evaluation. Chamber simulations were

performed with the most recent reliable version of SAPRC (Carter and Heo, 2012), the SAPRC

software, and recent chamber characterization data (Carter, 2000, 2010; Carter et al, 2005;

Yarwood et al, 2012; Heo et al, 2010, 2012a). Note that SAPRC-07 (Carter, 2010) and the

version of SAPRC used for designing experiments give nearly identical ozone concentrations for

the virtual chamber experiments used.

The simulation results were evaluated by using the strategy described above and analyzing the

time series of modeled O3, NO, NO2, the test VOC, NO3, O3P and CH3C(=O)OONO2 (PAN) to

Page 17: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

5

find useful initial concentrations of the test VOC and NO. Preliminary simulations with added

CO (to suppress OH and/or accelerate ozone formation and make reactions with O3 become more

important) or H2O2 (to boost OH) or both CO and H2O2 were tried but did not result in useful

initial conditions with added CO and/or H2O2. For example, adding CO suppressed OH and

increased NO3 and O3P, which is a side effect of adding CO.

2.1.3. Designed chamber experiments

To efficiently generate environmental chamber data useful for evaluating mechanisms for the 5

HROVCs (1,3-butadiene, 1-butene, isobutene, trans-2-butene, and cis-2-butene) and 5 non-

HRVOCs (1-pentene, 1-hexene, trans-2-pentene, cis-2-pentene, and 2-methyl-2-butene) selected

for this project, 24 reactor runs in total were designed and assigned to 12 chamber experiments

by pairing two reactor runs as one chamber experiment. Table A-1 in Appendix A lists the 24

reactor runs designed for the 5 HRVOCs and 5 non-HRVOCs selected for this project, and Table

A-2 shows how two reactor runs are paired as one experiment by using two reactors (side A and

side B) simultaneously. Table A-3 lists 5 experiments designed to characterize chamber

conditions. Note that actual initial concentrations, pairing two specific reactor runs, and the

sequence of chamber experiments were all subject to change depending on the early results of

chamber experiments for this project.

2.2. Experimental methods

In section 2.2, experimental methods for carrying out chamber experiments for the 10 alkenes

and chamber characterization experiments are described. The species measured for this project

are summarized in Table 1.

Table 1. List of target analytes for this project.

Species Instrument HRVOCs alkenes HP 6890 Series II Gas Chromatographs Non-HRVOC alkenes HP 6890 Series II Gas Chromatographs NO TEI Model 42C NO/NOx Analyzer NO2

a TEI Model 42C NO/NOx Analyzer O3 Dasibi Model 1003-AH O3 Analyzer CO TEI Model 48C CO Analyzer aNO2 is indirectly measured by measuring NO and NOx and subtracting NO from NOx.

2.2.1. Environmental chamber: UCR EPA chamber

The environmental chamber experiments for this project were carried out using a large indoor

chamber at the Center for Environmental Research and Technology, the University of California

at Riverside (UCR) (hereafter, referred to as UCR EPA chamber or EPA chamber). The UCR

EPA chamber was constructed under EPA funding to address the needs for an improved

environmental chamber database for mechanism evaluation (Carter et al, 1999; Carter, 2002,

2004a; Carter et al, 2005). A brief description of the chamber is provided next.

Page 18: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

6

The UCR EPA chamber consists of dual reactors, i.e., two ~85,000-liter fluorinated ethylene

propylene (FEP) Teflon®

reactors located inside a 16,000 ft3 temperature-controlled "clean

room" (hereafter, also referred to as enclosure) that is continuously flushed with purified air. The

clean room was designed to minimize infiltration of background contaminants into the reactor

due to permeation or leaks. Two alternative light sources can be used at the UCR EPA chamber.

The first consists of a 200 KW argon arc lamp with specially designed UV filters that give a UV

and visible spectrum similar to sunlight. Banks of blacklights are also present to serve as a

backup light source for experiments where blacklight irradiation is sufficient to satisfy the

project objectives. The recently upgraded blacklight system (Carter, 2011), which gives a good

representation of the intensity and spectrum of sunlight in the near UV region that is most

important in affecting reactions of alkenes, was used for this project. Although this chamber also

has an arc light system that gives a somewhat better representation of sunlight in the longer

wavelength region that affects aromatic and NO3 reactions, that system requires major repairs

that are not covered in the budget for this project because the significant additional cost is not

justified in a study focusing on the reactions of alkenes, whose major photoreactive products are

simple aldehydes such as formaldehyde and acetaldehyde that photolyze in the near UV region

and whose action spectra are well known (Calvert et al, 2000; Atkinson et al, 2006). The interior

of the enclosure is covered with reflective aluminum panels in order to maximize the available

light intensity and to attain sufficient light uniformity, which is estimated to be ±10% or better in

the portion of the enclosure where the reactors are located (Carter, 2002). A diagram of the

enclosure and reactors is shown in Figure 1. The spectrum of the blacklight light source is given

by Carter et al (1995) and Fig. 2 of Carter et al (2005).

Figure 1. Schematic of the UCR EPA environmental chamber reactors and enclosure (Carter et

al, 2005, 2012).

The dual reactors are constructed of flexible 2 mil (0.05 mm) Teflon® film, which is the same

material used in the other UCR Teflon® chambers used for mechanism evaluation (e.g., Carter,

2000, 2010, and references therein). A semi-flexible framework design was developed to

Page 19: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

7

minimize leakage and simplify the management of large volume reactors. The Teflon® film is

heat-sealed into separate sheets for the top, bottom, and sides (the latter sealed into a cylindrical

shape) that are held together and in place using bottom frames attached to the floor and moveable

top frames. The moveable top frame is held to the ceiling by cables that are controlled by motors

that raise the top to allow the reactors to expand when filled or lower the top to allow the volume

to contract when the reactors are being emptied or flushed. These motors in turn are controlled

by pressure sensors that raise or lower the reactors as needed to maintain slight positive pressure

which contributes to preventing background contaminants from infiltrating into the chamber

reactors. During experiments, the top frames are slowly lowered to maintain a constant positive

pressure of approximately 0.03 inch of water (7.5 Pa) as the reactor volumes decrease due to

sampling or leaks. The experiment for the reactor is terminated by cessation of lowering the

movable top frame of the reactor when the volume of the reactor reaches ~30% of the full reactor

volume; the time this took varied depending on the amount of leaks in the reactor, but was

greater than the duration of most of the experiments discussed in this report. Since leaks are

generally unavoidable in any large Teflon® film reactor, the constant positive pressure is

necessary to minimize the introduction of enclosure air into the reactor.

As shown in Figure 1, the floor of the reactors has openings for a high volume mixing system for

mixing reactants within a reactor and also for exchanging reactants between the two reactors to

achieve equal concentrations in each reactor. This system uses four 10" Teflon® pipes with

Teflon®

-coated blowers and flanges to either blow air from one side of a reactor to the other, or

to move air between each of the two reactors. Teflon®-coated air-driven metal valves are used to

close off the openings to the mixing system when not in use, and during the irradiation

experiments.

An air purification system (AADCO, Cleves, OH) that provides dry purified air at flow rates up

to 1500 liters min-1

is used to supply the air to flush the enclosure and to flush and fill the

reactors between experiments. The air is further purified by passing it through cartridges filled

with Purafil® and heated Carulite 300

® (a Hopcalite

® type catalyst), then through a filter to

remove particulate matter. The measured NOx, CO, and non-methane organic concentrations in

the purified air were found to be less than the detection limits of the instrumentation employed

(see Analytical Instrumentation, below).

The chamber enclosure is located on the second floor of a two-floor laboratory building that was

designed and constructed specifically to house this UCR EPA chamber facility (Carter, 2002).

Most of the analytical instrumentation is located on the ground floor beneath the chamber, with

sampling lines leading down as shown in Figure 1.

2.2.2. Analytical instrumentation

Table 2 gives a listing of the analytical and characterization instrumentation used for this project.

Other instrumentation was available and used for some of these experiments, as discussed by

Carter (2002), Carter et al (2005), and Carter et al (2012), but the data obtained were either not

characterized for use in mechanism evaluation or required additional analysis that was beyond

the scope of this project, and were not used in the mechanism evaluations for this project. Table

Page 20: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

8

2 includes a brief description of the equipment, species monitored, and their approximate

sensitivities, where applicable. These are discussed further in the following sections.

Ozone (O3), CO, NO, and NOy (i.e., NO, NO2 and other nitrogen-containing species that are

converted to NO using a heated catalytic converter) were monitored using commercially

available instruments as indicated in Table 2. The instruments were spanned for NO, NO2, and

CO and zeroed prior to most experiments using the gas calibration system listed in Table 2, and a

prepared calibration gas cylinder with known concentrations of NO and CO. O3 and NO2 spans

were conducted by gas phase titration (GPT) using the calibrator during this period. NO2

concentrations established during sampling from the zero air (purified air) and during GPT using

reaction between NO and O3 to generate a specified concentration of NO2 were used as reference

NO2 concentrations (for GPT, refer to Singh et al (1968), Fried and Hodgeson (1982), Bertram et

al (2005) or Hargrove and Zhang (2008)). Span and zero corrections were made to the NO, NO2,

and CO data as appropriate based on the results of these span measurements, and the O3 spans

indicated that the UV absorption instrument was performing within its specifications.

The alkenes were analyzed by gas chromatography (GC) with flame ionization detector (FID) as

described elsewhere (Carter et al, 1995; see also Table 2). Five HRVOCs (1,3-butadiene, 1-

butene, isobutene, trans-2-butene, and cis-2-butene), 5 non-HRVOC alkenes (1-pentene, 1-

hexene, trans-2-pentene, cis-2-pentene, and 2-methyl-2-butene), propene (used for quality

assurance experiments), n-perfluorohexane (n-C6F14; used as a dilution tracer) and

perfluorobenzene (C6F6; used as an alternative dilution semi-tracer to avoid overlapping GC

peaks) were monitored by using 30-meter megabore GS-Alumina column and the loop sampling

system. The second signal of the same GC outfitted with FID, loop sampling system and 30-

meter megabore DB-5 column was used to analyze liquid-state compounds: cis-2-pentene, trans-

2-pentene, 2-methyl-2-butene, 1-pentene and 1-hexene. For quality control (QC), n-hexane,

ethene, n-butane, and aromatics (benzene, toluene, ethylbenzene and m-xylene) were also

measured by this GC system.

The GC instrument was controlled and its data were analyzed using HPChem software installed

on a dedicated PC. The GC was spanned using a calibration cylinder with a known concentration

of n-hexane (Scott-Marrin, Riverside, CA) on a daily basis. This GC system was previously

calibrated by using an 8-component calibration cylinder (Scott-Marrin) with ethylene, propane,

propene, n-butane, n-hexane, toluene, n-octane and m-xylene in ultrapure nitrogen, and was also

inspected with a 9-component calibration cylinder (Scott-Marrin) with methane, propane, 1,3-

butadiene, benzene, ethylbenzene, m-xylene, o-xylene, and n-decane during this project.

Analyses of the span data were conducted approximately every experimental day, and the results

were tracked for consistency.

GC response factors that are required for quantitative detection were obtained as follows: GC

response factors for ethene, propene, toluene and m-xylene were determined using the 8-

component calibration cylinder and GC span analyses, and verified by injecting and sampling

known amounts of the compound in a calibration chamber of known volume. The GC response

factors of the two GC-FID channels for trans-2-butene and 1,3-butadiene were obtained by using

the 8-component calibration cylinder (for trans-2-butene) and the 9-component calibration

cylinder (for 1,3-butadiene) and GC span analyses. The GC response factors for n-hexane were

Page 21: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

9

obtained by the 8-component calibration cylinder and GC span analyses. GC response factors

for 3 HRVOCs (1-butene, isobutene, and cis-2-butene), 5 non-HRVOC alkenes (1-pentene, 1-

hexene, trans-2-pentene, cis-2-pentene, and 2-methyl-2-butene), n-C6F14 , C6F6, and other

compounds used for quality control experiments were determined based on the injected amounts

and GC peak areas obtained during representative runs, GC span analyses and the effective

carbon number concept (Scanlon and Willis, 1985; Jang et al, 2013).

The amounts of gaseous compounds injected, such as NO, propene and 1-butene, were

determined by using a custom-built vacuum rack, an MKS Baratron® precision pressure gauge,

and bulbs of known volume, determined by weighing when filled with water. The amounts of

injection for liquid compounds such as 1-pentene, 1-hexene and 2-methyl-2-butene were

determined by measuring amounts injected using microliter syringes. The volumes of the

calibration chambers were determined by injecting and analyzing compounds whose analyses

have been calibrated previously. CO was also used for this project. CO was directly injected

from the cylinder of CO using a flow controller.

Page 22: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

10

Table 2. Summary of measured species, instrumentation used, and associated measurement

objectives.

Species Instrumentation Measurement Objectives

Make and Model Principle Comments Det’n Lim. Accuracy Precisio

n

O3 Dasibi Model

1003-AH

UV absorption Standard ambient

monitoring instrument for

O3 measurements.

2 ppb 10% 5%

NO

NOx and

NO2 [a]

TEI Model 42C Chemilumines-

cence

Standard ambient

monitoring instrument for

NO/NOx/NO2

measurements.

50 ppt

50 ppt

±10%

±15%

10%

±15%

CO TEI Model 48C Gas correlation

IR

Standard ambient

monitoring instrument for

CO measurements.

50 ppb 10% 10%

VOCs HP 6890 Series II

GCs with dual

columns, loop

injectors

GC Separation

with FID

detection

30 m x 0.53 mm GS-

Alumina column used for

the analysis of light

hydrocarbons such as

ethene, propene, n-butane,

trans-2-butene and n-C6F14

and 30 m x 0.53 mm DB-5

column used for the

analysis of C5+ alkanes and

aromatics. Loop injection is

suitable for low to medium

volatility VOCs that are not

too "sticky" to pass through

valves.

10 ppbC 10% 10%

Temp-

erature

Various type J

thermocouples,

radiation shielded

housings

Thermocouples Covers expected

operational range of

chambers

Change

of 0.1oC

0.2oC 0.1

oC

Relative

Humidity

LI-840 CO2/H2O

Analyzer

Dew Point Dew point range: -40 to

50C

5% of

reading

5% of

reading

Light

Spectrum

LiCor LI-1800

Spectroradiomete

r

Spectrum in 300-850 nm

region covers spectral

region of interest.

Calibrated at factory.

Cosine response.

10%

[b]

10%

15%

Light

Intensity

Biospherical

QSL-2100 PAR

Irradiance Sensor

Measures integrated

radiation in UV-visible

region over ~85% of a

sphere.

15% 2% [c]

[a]Also used for measuring NO2 during the initial stage of the experiment when NOx oxidation products such as

CH3C(O)OONO2 are minor and NO and NO2 are dominant N-containing compounds. NO2 is calculated by

subtracting the measured NO concentration from the measured NOx concentration. [b]

Measurement useful only for determining relative differences. [c]

Its precision has not yet been fully determined, but this sensor was used to monitor the light intensity.

Page 23: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

11

2.2.3. Quality control methods

Table 2 presents the gaseous measurement methods and Table 3 presents the equipment

necessary to support the measurements. Brief descriptions of how quality controls were carried

out for the instruments to measure CO, NO, NOx, O3 and the 10 test alkenes and other organic

compounds used for this project (e.g., propene) are briefly provided in this section.

For correcting measured CO, NO, NOx, and O3 concentrations, the CO/NO cylinder used for

CO/NO span and Gas-Phase Titration (GPT) were used as schematically shown in Figure 2. The

conditions of the CO and NOx analyzers have been monitored by using a CO/NO calibration gas

cylinder (Scott-Marrin) with known concentrations of NO (51.7 ppm before 4/22/2013, 49.6 ppm

since 4/22/2013) and CO (5230 ppm before 4/22/2013, 5100 ppm since 4/22/2013) with a flow

controller. However, the flow control became relatively unstable, and assuming a constant flow

rate was not acceptable for the purpose of this project. This unstable flow needed to be

addressed because measured CO, NO, NOx and O3, concentrations during CO/NO span, GPT

and O3 span (see Figure 2) depend on the flow rate of diluted CO and NO from the CO/NO

cylinder as well as the conditions of the instruments measuring CO, NO, NOx and O3.

The CO analyzer has been extremely stable in its response factor for over 5 years, and the flow

rate during calibration simultaneously influences both the measured CO and NO concentrations.

Therefore, the NOx analyzer can be calibrated by using an overall calibration factor,

[NO]ref/{[NO]measured*([CO]ref/[CO]measured)} where [CO]ref/[CO]measured is used to reflect the

actual flow rate, [NO]ref and [CO]ref are the reference diluted NO and CO concentrations, and

[NO]measured and [CO]measured are the measured NO and CO concentrations with zero-correction.

Because the total NOx is equal to the total NO during the calibration, NOx concentrations can be

corrected by using the same method. The correction factors to correct NO and NOx were

assigned as shown in Figure 3.

In many cases, the alkene concentrations measured by the Gas Chromatography – Flame

Ionization Detection (GC-FID) systems were consistently higher than the expected

concentrations, although daily GC calibration data for n-hexane showed that the GC-FID

systems were stable. A series of GC quality assurance tests were carried out, and analysis results

indicated that previously measured GC-FID data needed correction. Therefore, accumulated GC

calibration data with a previous 8-component standard gas cylinder, a previous n-hexane

standard gas cylinder, and the current n-hexane standard gas cylinder were analyzed. It turned

out that modifications to the GC system (e.g., changing the 6-port valve and gas flow settings) in

early March, 2013 resulted in more sensitive detection of n-hexane (i.e., larger GC peak areas for

the same n-hexane concentration in units of area/ppm) for both GC-FID channels (FID-2903 and

FID-2904), which explains those positive biases. GC response factors were revised to reflect the

increased sensitivity of the GC-FID systems by using previous response factors, the effective

carbon number concept (Scanlon and Willis, 1985; Jang et al, 2013), and test results including

results with a 9-component standard gas cylinder (see the footnote of Table 3).

Page 24: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

12

Table 3. Support equipment used for this project.

Measurement or

Device(s)

Make, Model, or Description Comments

Dilution

Calibrator

TEI Model 146C or CSI 1700 Dynamic Gas

Calibrator. 2% accuracy for measurement

of dilution flow rates.

Used to dilute standard gas cylinders for

calibration of instruments

O3 Primary

Standard

Dasibi Model 1003-AH Set up as a primary standard to calibrate O3

monitoring instruments

Calibration Gas

Cylinders

Scott-Marrin (Riverside, CA) for NO, NO2,

CO, and hydrocarbon calibration gases;

Puritan-Bennett for fuel and carrier gases

for GCs[a]

All calibration gases are EPA Protocol

Data Acquisition

System

Windows PC with LabView software. 16

analog input, 32 I/O, 16 thermocouple, and

10 RS-232 channels

Collects data from most monitoring

instruments, controls sample modes, initiates

calibrations, and carry out initial data

processing. [a]

Eight component standard gas cylinder was used for obtaining a previous set of GC response factors. The

hydrocarbon composition of this 8-component GC standard gas cylinder is as follows: 0.515 (5%) ppm ethene

(note that 0.489 (5%) ppm ethene was wrongly used in the QAPP (Part II) submitted for this project), 0, 0.361

(5%) ppm propane, 0.364 (5%) ppm propene, 0.252 (5%) ppm n-butane, 0.187 (5%) ppm n-hexane, 0.148

(5%) ppm n-octane, 0.167 (5%) ppm toluene, 0.148 (5%) ppm m-xylene. A single component (n-hexane)

standard gas cylinder has been used to produce daily calibration data since August, 2012. The hydrocarbon

composition in ultra-pure nitrogen of this gas cylinder is 0.2233 ppm (5%) n-hexane (note that 0.2486 (5%) ppm

n-hexane was stated in the QAPP (Part II) submitted for this project). Another multi-component standard gas

cylinder was also used to evaluate GC response factors. The hydrocarbon composition of this 8-component GC

standard gas cylinder is as follows: 0.885 (2%) ppm methane, 0.2873 (2%) ppm propane, 0.2608 (5%) ppm 1,3-

butadiene, 0.1755 (5%) ppm benzene, 0.1521 (5%) ppm toluene, 0.1238 (5%) ppm ethylbenzene, 0.1261 (5%)

ppm m-xylene, 0.1241 (5%) ppm o-xylene, 0.0996 (10%) ppm n-decane.

Page 25: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

13

Figure 2. Concentrations of CO, NO, NOx and O3 during CO/NO span, Gas-Phase Titration and

O3 span.

Time

Co

nc

en

tra

tio

ns

CO

NO

NOx

O3

Change in NO due to NO-to-NO2 conversion by an O3 generator during Gas-Phase Titration (GPT).

Increases in CO, NO and NOx due to a gas flow of diluted CO and NO from the CO/NO cylinder.

The O3 generator is turned off, and O3 goes down to the background level.

Decreases in CO, NO and NOx due to turning off the flow of diluted CO and NO. At this point, ozone is not titrated by NO, and ozone starts to increase by the amount of NO removed during the GPT.

Page 26: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

14

Figure 3. Correction factors assigned for NO (top) and NOx (bottom) measurements of the

experiments carried out for this project.*

*Data for Experiment EPA1686 were not quantitatively used for mechanism evaluation due to uncertainties in

experimental data.

2.2.4. Sampling methods

Samples for analysis by the continuous monitoring instruments to measure NO, NOx, O3 and CO,

and chamber temperature, pressure and relative humidity were withdrawn alternately from the

two reactors and zero air (i.e., dry purified air provided by an air purification system (AADCO,

Cleves, OH)), under the control of solenoid valves that were in turn controlled by the data

acquisition system discussed above. For most experiments, the sampling cycle was 5 minutes for

each of the two reactors, the zero air, or (for control purposes) the chamber enclosure. The

program controlling the sampling sent data to the data acquisition program to indicate which of

the two reactors was being sampled so that the data can be appropriately apportioned when being

processed. Data taken less than 3-4 minutes after the sampling was switched were not used for

subsequent data processing. The sampling system used is described in more detail by Carter

(2002).

Samples for GC analysis of relatively volatile VOCs (e.g., most low-molecular-weight alkenes,

the primary compounds that were monitored by GC for this project) were taken at approximately

every 20 minutes directly from each of the reactors through the separate sample lines attached to

the bottom of the reactors, as shown in Figure 1. The GC sample loop was flushed for a desired

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

EP

A167

1

EP

A167

2

EP

A167

3

EP

A167

4

EP

A167

9

EP

A168

0

EP

A168

2

EP

A168

3

EP

A168

5

EP

A168

6

EP

A168

7

EP

A169

1

EP

A169

2

EP

A169

3

EP

A169

4

EP

A169

5

EP

A169

7

EP

A169

8

EP

A169

9

EP

A170

0

EP

A170

1

EP

A170

2

EP

A170

3

EP

A170

4

EP

A170

5

EP

A170

6

EP

A170

7

EP

A170

8

EP

A170

9

EP

A171

0

EP

A171

1

EP

A171

2

EP

A171

3

EP

A171

4

EP

A171

5

EP

A171

6

EP

A171

7

EP

A172

1

EP

A172

2

EP

A172

3

EP

A172

4

NO

corr

ection f

acto

r (u

nitle

ss)

1.0 (ideal case)

From CO/NO Span

Assigned

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

EP

A167

1

EP

A167

2

EP

A167

3

EP

A167

4

EP

A167

9

EP

A168

0

EP

A168

2

EP

A168

3

EP

A168

5

EP

A168

6

EP

A168

7

EP

A169

1

EP

A169

2

EP

A169

3

EP

A169

4

EP

A169

5

EP

A169

7

EP

A169

8

EP

A169

9

EP

A170

0

EP

A170

1

EP

A170

2

EP

A170

3

EP

A170

4

EP

A170

5

EP

A170

6

EP

A170

7

EP

A170

8

EP

A170

9

EP

A171

0

EP

A171

1

EP

A171

2

EP

A171

3

EP

A171

4

EP

A171

5

EP

A171

6

EP

A171

7

EP

A172

1

EP

A172

2

EP

A172

3

EP

A172

4

NO

x c

orr

ection f

acto

r (u

nitle

ss)

Page 27: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

15

time with the air from reactors using a pump. The sampling and subsequent quantification using

the GC system used 20 minutes per one full cycle, and 20 minutes were used for one reactor, and

then another 20 minutes were used for the other reactor. After changing the side, the system was

flushed for around 2 minutes by the air to be sampled (either side A or side B but not zero air),

and the actual injection time for sampling 5 cm3 (cc) was much shorter than 2 minutes. The GC

system did not change the side in some cases, for example, during calibration-purpose

experiments with the GC calibration gas cylinder.

2.2.5. Chamber characterization methods

Use of chamber data for mechanism evaluation requires that the conditions of the experiments be

adequately characterized. This includes measurements of temperature, humidity, and light

intensity and spectral distribution, and wall effects characterization. Wall effects characterization

for gas-phase mechanism evaluation is discussed in detail by Carter (2004a) and Carter et al

(2005) and updated by Carter and Malkina (2005) and Carter (2010); most of that discussion is

applicable to the experiments for this project. The instrumentation used for the characterization

measurements is briefly summarized in Table 2, and these measurements are discussed further

below.

Temperature. Air temperature was monitored during chamber experiments using calibrated

thermocouples attached to thermocouple boards on our computer data acquisition system. The

temperature in each of the reactors was continuously measured using relatively fine gauge

thermocouples that were located a few inches above the floor of the reactors. These

thermocouples were not shielded from the light, though it was expected that irradiative heating

would be minimized because of their small size. Experiments where the thermocouple for one of

the reactors was relocated to inside the sample line indicated that radiative heating is probably

non-negligible, and that a correction needs to be made for this by subtracting ~2.5oC from the

readings of the thermocouples in the reactors. This is discussed by Carter (2004a). The

temperature was not varied for the experiments carried out for this project. The average

temperature for the UCR-EPA chamber experiments used for mechanism evaluation was in the

range of 297.8-300.7oK, with the average being 298.60.5

oK. Note that using the temperatures

close at about 300 oK simplifies target ambient conditions (i.e., Houston conditions). However,

this is acceptable for this project because large temperature effects are not expected for the

mechanisms of the tested alkenes.

Humidity. All experiments were carried out under dry conditions. Measured humidity data

indicate that relative humidity levels during the experiments were far lower than 1%. Using these

dry conditions is useful to minimize the uncertainty caused by chamber artifacts (Carter et al,

2005). Under these dry conditions, OH radical formation from O3 photolysis and subsequent

reaction of O3P with water is suppressed, and the chemical system becomes more sensitive to

OH radical sources in the tested chemical system. As a result, using the dry conditions makes

the mechanism evaluation for this project more senstivie to radical sources than under typical

ambient conditions.

Light Spectrum and Intensity. The spectrum of the light source in the 300-850 nm region has

been measured using a LiCor LI-1800 spectroradiometer, which is periodically calibrated at the

Page 28: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

16

factory (e.g., see Carter et al, 1995). Based on previous extensive measurements the spectrum of

the blacklight light was assumed to be constant, and was not measured during the time period of

this project. The method used to derive the light intensity using the blacklight light source was

based on that discussed by Carter et al (1995), updated as described by Carter and Malkina

(2007). Briefly, the absolute light intensity is measured by carrying out NO2 actinometry

experiments periodically using the quartz tube method of Zafonte et al (1977) modified as

discussed by Carter et al (1995). In most cases, the quartz tube was located in front of the

reactors. Since this location is closer to the light source than the centers of the reactors, the

measurement at this location is expected to be biased high, so the primary utility of these data are

to assess potential variation of intensity over time. However, several special actinometry

experiments were previously conducted where the quartz tube was located inside the reactors, to

provide a direct measurement of the NO2 photolysis rates inside the reactors.

Additional blacklights were added to the chamber in 2010 as part of a previous CARB-funded

project (Carter, 2011). The light intensity was measured once the construction of the new lights

were completed using the quartz tube method discussed above, both inside and outside the

reactors. These measurements are discussed by Carter (2011). Since the same type of blacklight

bulbs (115W Osram Sylvania 350 BL; part no. 25251) was used with the new lights as those

already in the chamber, we assume that the spectral distribution of the light source did not

change. In terms of the NO2 photolysis rate (J(NO2)), the light intensities used for this project

(about 0.4 per minute) are still lower than light intensities expected at around noon in clear-sky

summer days in Houston. However, the light conditions used for this project is acceptable for

mechanism evaluation for the tested alkenes, based on previous projects (Carter et al, 2005;

Carter, 2000, 2010 and 2011; Carter et al, 2012).

2.2.6. Experimental procedures

The reaction bags were collapsed to the minimum volume by lowering the top frames, and then

emptied and refilled at least six times with the lights being turned off after each experiment, and

then were filled with dry purified air on the night before each experiment. Span measurements

for calibration purpose were generally made on the continuously measuring instruments prior to

injecting the reactants (e.g., 1-butene and NO) for the experiments. The reactants were then

injected through Teflon® injection lines (that are separate from the sampling lines) leading from

the laboratory on the first floor to the reactors on the second floor. In many cases, the common

reactants were injected in both reactors simultaneously and were mixed by using the reactor-to-

reactor exchange blowers and pipes for about 10 minutes. The valves to the exchange system

were then closed and the other reactants were injected to their respective sides and mixed using

the in-reactor mixing blowers and pipes for 1 minute. Alternatively, even the common reactants

(e.g., 10 ppm CO for both reactors) were separately injected rather than simultaneously injected

as other reactants (e.g., 90 ppb trans-2-pentene into reactor A and 40 ppb cis-2-pentene into

reactor B) were separately injected. The contents of the chamber were then monitored prior to

irradiation, and samples were taken from each reactor for GC analysis to get stabilized initial

concentrations and air temperatures inside the reactors.

Once the initial reactants were injected, stabilized, and sampled, the blacklights were turned on

to begin the irradiation. During the irradiation, the contents of the reactors were kept at a

Page 29: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

17

constant positive pressure by lowering the top frames as needed, under positive pressure control,

to minimize infiltration of background contaminants into the reactors. The reactor volumes

therefore decreased during the course of the experiments, in part due to sample withdrawal and

in part due to small leaks in the reactors. A typical irradiation experiment ended after about 6-8

hours, by which time the reactors were typically down to about 40-60% of their fully filled

volume. (Note that concentrations in units of ppb or ppm are not influenced by these changes in

the reactor volume.) Larger leaks were manifested by more rapid decline of reactor volumes,

and the run was aborted early when the volume declined to about 30% of the full reactor volume.

After the irradiation, the reactors were emptied and filled six times as discussed above.

2.2.7. Materials

The 5 HRVOCs (1,3-butadiene, isobutene, cis-2-butene, trans-2-butene, 1-butene), 5 non-

HRVOCs (1-pentene, 1-hexene, cis-2-pentene, trans-2-pentene, 2-methyl-2-butene) and n-

perfluorohexane (n-C6F14) were purchased from Sigma-Aldrich as follows: 1,3-butadiene

(Aldrich, ≥99%, 295035-100G), isobutene (Aldrich, 99%, 295469-400G), cis-2-butene (Aldrich,

≥99%, 400890-25G), trans-2-butene (Aldrich, ≥99%, 295086-50G), 1-butene (Aldrich, ≥99%,

295051-100G), 1-pentene (Aldrich, ≥98.5% (GC), 76971-25ML), 1-hexene (Aldrich, ≥99%,

240761-50ML), cis-2-pentene (Aldrich, 98%, 143766-1G), trans-2-pentene (Aldrich, 111260-

1G, 99%), 2-methyl-2-butene (Sigma-Aldrich, M32704-100ML), and n-C6F14 (Aldrich, 99%,

281042-25ML). The amount of the CO/NO gas in the cylinder used for calibrating instruments

to measure CO and NO was low in the middle of this project, and a new cylinder was purchased

from Scott-Marrin (Riverside, CA) and used since April 22, 2013, which resulted in changes in

the concentrations of CO (from 5230 ppm to 5100 ppm) and NO (from 51.7 ppm to 49.6 ppm).

The sources of the CO, H2O2, NO, and the other reagents (e.g., propene) used in this project

except those described above came from various commercial vendors as employed in previous

projects at our laboratory. CO (Praxair, CP grade) was scrubbed by passing through activated

carbon charcoal before injection into the reactors to remove carbonyl-containing compounds

produced by reaction of CO and the cylinder surface. H2O2 was purchased for a previous project

(Carter et al, 2012) from Sigma-Aldrich as H2O2 solution in water (Sigma-Aldrich, 50 wt. % in

H2O, stabilized, 516813) to use as a radical source. The concentration of H2O2 in the solution

was measured so that the amounts of H2O2 injected into the chamber could be determined from

the volume of solution used. NO (Matheson, UHP grade), propene (Matheson) and n-hexane

(Sigma-Aldrich, 99%) were in stock at the laboratory, and were not purchased during this

project.

2.2.8. Data processing

Most of the instruments, other than the GC instrument, were interfaced to a PC-based computer

data acquisition system under the control of a LabView program written for this purpose. These

data, and the GC-FID data from the HP ChemStation computer, were collected over the College

of Engineering, Center for Environmental Research and Technology (CE-CERT) computer

network. These data were then loaded into Excel spreadsheets for each experiment (called "run

files") using various macros, the applicable span and zero corrections were applied, and the

Page 30: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

18

various measurements were associated to the individual reactors or calibration or zero states

based on information provided by the data acquisition computers or the operators.

The data in the run files were then examined, plotted, and compared to preliminary model

predictions for quality control of experimental data, assigning initial values for modeling, and

determining which measurements are valid for model evaluations. Excel macros were then used

to output model input (.INP) files containing the run-specific inputs needed for modeling these

experiments, and measurement data (.GDT) files containing the measurement data of potential

utility for mechanism evaluation.

2.3. Experiments carried out

Environmental chamber experiments for testing mechanisms for the 5 HRVOCs (1-buene,

isobutene, trans-2-butene, cis-2-butene, 1,3-butadiene) and 5 non-HRVOCs (1-pentene, 1-hexene,

trans-2-pentene, cis-2-pentene, 2-methyl-2-butene), chamber characterization and quality

assurance carried out for Task 2 of this project are listed in Table A-4 in the Appendices section.

The 25 experiments (50 reactor runs) for the 10 test alkenes are listed in Table 4, the chamber

characterization experiments are listed in Table 5 in section 2.3.2, and measured ozone

concentrations are presented in 10 figures for each of the 10 test alkenes in section 2.3.1.

The number of experiments actually carried out (Table A-4, Table 4, and Table 5) is larger than

the number of experiments planned and stated in the work plan for this project (see Table A-1,

Table A-2 and Table A-3) because additional experiments were carried out to compensate for

failed experiments and produce additional data for test compounds (e.g., 1,3-butadiene) that

showed unexpected mechanism issues. For this project, 25 experiments (50 reactor runs) for the

10 test alkenes, 11 experiments (22 reactor runs) for chamber characterization or quality

assurance (QA), 2 in-reactor measurements of NO2 photolysis frequency (k1) and 12 in-front-of-

reactor k1 measurements, and 6 dark experiments (10 reactor runs) for GC QA (see Table A-4)

were carried out at the UCR EPA chamber facility. Various curve patterns of the ozone time

series and final ozone concentrations measured in the experiments for the 10 alkenes clearly

indicate that these chamber experimental data are useful for evaluating mechanisms for the 5

HRVOCs and 5 non-HRVOCs.

Table 4 lists 25 experiments (50 reactor runs) in total for the 5 HRVOCs (1-buene, isobutene,

trans-2-butene, cis-2-butene, 1,3-butadiene) and 5 non-HRVOCs (1-pentene, 1-hexene, trans-2-

pentene, cis-2-pentene, 2-methyl-2-butene) carried out for this project. As discussed later and

listed in Table A-5, 36 reactor runs of the 50 reactor runs are useful to quantitatively evaluate

mechanisms for the 5 HRVOCs and 5 non-HRVOCs, and the experimental data of these 36

reactor runs were used for evaluating mechanisms.

Page 31: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

19

Table 4. List of 25 experiments (50 reactor runs) for each of the 5 HRVOCs and 5 non-HRVOCs. Test compound Number of experiments c ≥ a?

2 RunID

3 Date

Planned (a) Carried out (b) Useful1 (c)

HRVOCs

1-butene 3 4 4 of 4 Yes EPA1703B 5/1/13

EPA1704A 5/2/13

EPA1705B 5/3/13

EPA1708B 5/10/13

isobutene 3 5 4 of 5 Yes EPA1695B 4/19/13

EPA1699B 4/25/13

EPA1700B 4/26/13

EPA1701A 4/29/13

EPA1701B 4/29/13

trans-2-butene 2 4 3 of 4 Yes EPA1691B 4/12/13

EPA1692A 4/15/13

EPA1712B 5/16/13

EPA1722A 6/10/13

cis-2-butene 3 6 4 of 6 Yes EPA1691A 4/12/13

EPA1692B 4/15/13

EPA1695A 4/19/13

EPA1699A 4/25/13

EPA1700A 4/26/13

EPA1722B 6/10/13

1,3-butadiene 3 4 4 of 4 Yes EPA1702A 4/30/13

EPA1702B 4/30/13

EPA1703A 5/1/13

EPA1712A 5/16/13

Non-HRVOCs

1-pentene 2 4 4 of 4 Yes EPA1704B 5/2/13

EPA1707A 5/9/13

EPA1710A 5/14/13

EPA1711B 5/15/13

1-hexene 2 5 5 of 5 Yes EPA1705A 5/3/13

EPA1707B 5/9/13

EPA1708A 5/10/13

EPA1710B 5/14/13

EPA1711A 5/15/13

cis-2-pentene 2 4 2 of 4 Yes EPA1685A 4/2/13

EPA1686B 4/3/13

EPA1687B 4/5/13 EPA1724B 6/12/13 trans-2-pentene 2 4 2 of 4 Yes EPA1685B 4/2/13

EPA1686A 4/3/13

EPA1687A 4/5/13

Page 32: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

20

Test compound Number of experiments c ≥ a?2 RunID

3 Date

Planned (a) Carried out (b) Useful1 (c)

EPA1724A 6/12/13

2-methyl-2-butene 2 10 4 of 10 Yes EPA1693A 4/16/13

EPA1693B 4/16/13

EPA1694A 4/18/13

EPA1694B 4/18/13

EPA1697A 4/23/13

EPA1697B 4/23/13

EPA1698A 4/24/13

EPA1698B 4/24/13

EPA1717A 5/31/13

EPA1717B 5/31/13 1Number of useful experiments based on analysis as of June 25, 2013.

2Is the number of useful experiments equal to

or larger than the number of experiments planned for the test alkene? 3RunID’s in a gray color may have limited

usefulness for mechanism evaluation due to incompleteness and uncertainties in experimental data. Therefore, those

experiments were not used in evaluating mechanisms by running chamber simulations.

2.3.1. Experimental results for 5 HRVOCs

1-Butene: Ozone data shown in Figure 4 are consistent with injected NO and 1-butene

concentrations. All four experiments are useful to evaluate mechanisms for ozone formation

from 1-butene. EPA1708B (carried out on 5/10/2013) is a repeat of EPA1705B (carried out on

5/3/2013), and its ozone time series closely follows the ozone time profile for EPA1705B. The

initial NO concentration of EPA1708B was slightly higher than that for EPA1705B, which

resulted in slightly higher ozone concentrations for EPA1708B compared to EPA1750B except

during the early stage of experiment. For EPA1704A, ~400 ppb 1-butene was injected to obtain

a maximum ozone concentration in 3-4 hours since the start of irradiation. The ozone time series

of EPA1704A in Figure 4 shows that this was experimentally realized. The initial conditions for

EPA1703B were designed to obtain the ozone formation rate slower than for EPA1705B and

EPA1708A. The obtained experimental data that show significantly different ozone formation

rates (Figure 4) should be useful for testing the mechanisms in simulating ozone formation for 1-

butene.

Page 33: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

21

Figure 4. Time series of ozone for 4 experiments with 1-butene.

Isobutene: Ozone data shown in Figure 5 are consistent with injected NO, CO and isobutene

concentrations. Four experiments (not including EPA1695B whose experimental data may not

be quantitatively useful for mechanism evaluation due to incompleteness and uncertainties in

experimental data) are useful to evaluate mechanisms for ozone formation from isobutene. All

experiments except EPA1701A have similar initial NOx concentrations (i.e., around 25-30 ppb),

and EPA1701A has a much higher initial NOx concentration (around 40 ppb). EPA1701A and

EPA1701B have higher initial isobutene concentrations than the other three experiments, which

resulted in faster ozone formation for these two experiments (Figure 5). Note that ~10 ppb CO

was also injected for EPA1700B, EPA1701A and EPA1701B. Addition of CO also resulted in

higher final ozone concentrations (e.g., EPA1699B vs. EPA1700B).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1703B

EPA1704A

EPA1705B

EPA1708B

1-Butene

Page 34: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

22

Figure 5. Time series of ozone for 5 experiments with isobutene.*

*The usefulness of experimental data of EPA1695B may be limited for mechanism evaluation

due to incompleteness and uncertainties in experimental data.

trans-2-Butene: Ozone data shown in Figure 6 are consistent with injected NO and trans-2-

butene concentrations. Three experiments (not including EPA1692A whose GC data were

mistakenly not obtained) are useful to evaluate mechanisms for ozone formation from trans-2-

butene. EPA1722A (carried out on 6/10/2013) is a repeat of EPA1692A (carried out on

4/15/2013), and its ozone time series closely follows the ozone time profile for EPA1692A

during the early stage (i.e., around first one hour). However, the initial NO and trans-2-butene

concentrations of EPA1722A were somewhat higher than those for EPA1692A, which resulted

in a higher final ozone for EPA1722A compared to EPA1692A. Comparison of Figure 6 and

Figure 7 (e.g., compare EPA1691B in Figure 6 and EPA1691A in Figure 7) shows that trans-2-

butene tends to form ozone more rapidly than cis-2-butene but result in final ozone

concentrations similar to those for cis-2-butene.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1695B

EPA1699B

EPA1700B

EPA1701A

EPA1701B

Isobutene

Page 35: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

23

Figure 6. Time series of ozone for 4 experiments with trans-2-butene.*

*The usefulness of experimental data of EPA1692A may be limited for mechanism evaluation

due to incompleteness and uncertainties in experimental data.

cis-2-Butene: Ozone data shown in Figure 7 are consistent with injected NO, CO and cis-2-

butene concentrations. Four experiments (not including EPA1691A and EPA1695A whose

experimental data may not be quantitatively useful for mechanism evaluation due to

incompleteness and uncertainties in experimental data) should be useful to evaluate mechanisms

for ozone formation from cis-2-butene. EPA1722B (carried out on 6/10/2013) is a repeat of

EPA1691A (carried out on 4/12/2013), and its ozone time series closely follows the ozone time

profile for EPA1691A. Note that CO was injected for EPA1700A to accelerate the ozone

formation rate compared to EPA1699A.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1691B

EPA1692A

EPA1712B

EPA1722A

trans-2-Butene

Page 36: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

24

Figure 7. Time series of ozone for 6 experiments with cis-2-butene.*

*The usefulness of experimental data of EPA1691A and EPA1695A may be limited for

mechanism evaluation due to incompleteness and uncertainties in experimental data.

1,3-Butadiene: Ozone data shown in Figure 8 are consistent with injected NO and 1,3-butadiene

concentrations. After around 2 hours, the ozone formation was controlled mainly by NOx

availability, and the highest ozone concentrations by the end of experiment were also determined

by the amount of NOx injected. For EPA1703A and EPA1712A, the initial NOx concentrations

were similar. However, the initial 1,3-butadiene was about a factor of two higher for EPA1703A

than for EPA1712A, which resulted in faster removal of NOx by 1,3-butadiene for EPA1703A

than for EPA1712A. These ozone data are useful to evaluate chemical processes relevant to

ozone formation from 1,3-butadiene by comparison of measured and modeled ozone

concentrations.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1691A

EPA1692B

EPA1695A

EPA1699A

EPA1700A

EPA1722B

cis-2-Butene

Page 37: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

25

Figure 8. Time series of ozone for 4 experiments with 1,3-butadiene.

2.3.2. Experimental results for 5 non-HRVOCs

In this section, measured ozone data for the 5 non-HRVOCs (1-pentene, 1-hexene, trans-2-

pentene, cis-2-pentene, 2-methyl-2-butene) are shown and discussed.

1-Pentene: Ozone data shown in Figure 9 are consistent with injected NO and 1-pentene

concentrations. All four experiments are useful to evaluate mechanisms for ozone formation

from 1-pentene. EPA1710A (carried out on 5/14/2013) is a repeat of EPA1707A (carried out on

5/9/2013), and its ozone time series closely follows the ozone time profile for EPA1707A. The

initial NO and 1-pentene concentrations of EPA1710A were somewhat higher than those for

EPA1707A, which resulted in slightly higher ozone concentrations for EPA1710A compared to

EPA1707A except during the early and late stage of experiment. For EPA1707A, 1710A, and

EPA1711B, NO and 1-pentene were injected to obtain a maximum ozone concentration in 3-4

hours since the start of irradiation. The ozone time series of EPA1707A, EPA1710A, and

EPA1711B in Figure 9 show that this was experimentally realized. The initial conditions for

EPA1704B were designed to obtain the maximum ozone lower than those for EPA1707A and

EPA1710A but higher than that for EPA1711B. The obtained experimental data that show

significantly different maximum ozone concentrations (Figure 9) should be useful for testing the

mechanisms in simulating ozone formation for 1-pentene.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1702A

EPA1702B

EPA1703A

EPA1712A

1,3-Butadiene

Page 38: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

26

Figure 9. Time series of ozone for 4 experiments with 1-pentene.

1-Hexene: Ozone data shown in Figure 10 are consistent with injected NO and 1-hexene

concentrations. All five experiments are useful to evaluate mechanisms for ozone formation

from 1-hexene. EPA1708A (carried out on 5/10/2013) is a repeat of EPA1705A (carried out on

5/3/2013), and EPA1710B (carried out on 5/14/2013) is a repeat of EPA1707B (carried out on

5/9/2013). The two overlapping ozone curves in Figure 10 demonstrate that these repetitions

were well carried out. EPA1711A is not one of the designed experiments for Task 1 of this

project, but it was additionally designed in the middle of carrying out Task 2 to generate

additional experimental data to evaluate mechanisms of ozone formation from 1-hexene.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1704B

EPA1707A

EPA1710A

EPA1711B

1-Pentene

Page 39: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

27

Figure 10. Time series of ozone for 5 experiments with 1-hexene.

trans-2-Pentene: Ozone data shown in Figure 11 are consistent with injected NO and trans-2-

pentene concentrations. Two experiments, EPA1685B and EPA1724A, are useful to evaluate

mechanisms for trans-2-pentene. EPA1724A (carried out on 6/12/2013) and EPA1687A (carried

out on 4/5/2013) are repeats of EPA1686A (carried out on 4/3/2013). GC data were mistakenly

not obtained for both EPA1686A and EPA1687A, and NO span data (needed for quality check of

measured NO data) for EPA1686A are not valid. Therefore, the usefulness of experimental data

of EPA1686A and EPA1687A for mechanism evaluation may be limited. The measured initial

NOx concentration for EPA1724A was higher than that for EPA1687A, which explains higher

ozone concentrations (after the first hour since the start of irradiation) for EPA1724A compared

to ozone concentrations for EPA1687A. Comparison of Figure 11 and Figure 12 (e.g., compare

EPA1685B in Figure 11 and EPA1685A in Figure 12) shows that trans-2-pentene tends to form

ozone more rapidly than cis-2-pentene but result in final ozone concentrations similar to those

for trans-2-pentene.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1705A

EPA1707B

EPA1708A

EPA1710B

EPA1711A

1-Hexene

Page 40: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

28

Figure 11. Time series of ozone for 4 experiments with trans-2-pentene.*

*The usefulness of experimental data of EPA1686A and EPA1687A may be limited for

mechanism evaluation due to incompleteness (i.e., no GC data) and uncertainties in experimental

data.

cis-2-Pentene: Ozone data shown in Figure 12 are consistent with injected NO and cis-2-pentene

concentrations. Two experiments, EPA1687B and EPA1724B, are useful to evaluate

mechanisms for cis-2-pentene. EPA1724B (carried out on 6/12/2013) is a repeat of EPA1685A

(carried out on 4/2/2013), and EPA1687B (carried out on 4/5/2013) is a repeat of EPA1686B

(carried out on 4/3/2013). The usefulness of experimental data of EPA1685A and EPA1686B

for mechanism evaluation may be limited because GC data were mistakenly not obtained for

EPA1685A and NO span data (needed for quality check of measured NO data) for EPA1686B

are not valid.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1685B

EPA1686A

EPA1687A

EPA1724A

trans-2-Pentene

Page 41: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

29

Figure 12. Time series of ozone for 4 experiments with cis-2-pentene.*

*The usefulness of experimental data of EPA1685A and EPA1686B may be limited for

mechanism evaluation due to incompleteness and uncertainties in experimental data.

2-Methyl-2-butene: Ozone data shown in Figure 13 are consistent with injected NO and 2-

methyl-2-butene concentrations. Four experiments, EPA1698A, EPA1698B, EPA1717A and

EPA1717B, are useful to evaluate mechanisms for ozone formation from 2-methyl-2-butene. Six

early experiments, EPA1693A, EPA1693B, EPA1694A, EPA1694B, EPA1697A and

EPA1697B, have flaws in experimental data. Measured 2-methyl-2-butene concentrations are

not available for EPA1693A, EPA1694A and EPA1697A, and experimental data for EPA1693B,

EPA1694B and EPA1697B may not be useful due to uncertainties in the experimental data (for

EPA1693B and EPA1694B) or due to early termination of the experiment (EPA1697B).

2-Methyl-2-butene was relatively rapidly oxidized under the chamber conditions. However,

maximum ozone concentrations within six hours since the start of irradiation were not observed

(Figure 13), most probably due to NOx released from peroxyacetyl nitrate (CH3C(=O)OONO2

which is formed from CH3CHO, a major product of 2-methyl-2-butene) .

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1685A

EPA1686B

EPA1687B

EPA1724B

cis-2-Pentene

Page 42: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

30

Figure 13. Time series of ozone for 10 experiments with 2-methyl-2-butene.*

*The usefulness of experimental data of EPA1693A (no GC data), EPA1693B (early termination

of experiment), EPA1694A (no GC data), EPA1694B (uncertainties in experimental data

indicated by measured NO and 2-methyl-2-butene data which deviate from the injection-based

concentrations by over 25%), EPA1697A (no GC data) and EPA1697B (early termination of

experiment) may be limited for mechanism evaluation due to incompleteness and uncertainties in

experimental data.

2.3.2. Experimental results for chamber characterization

Experiments carried out to characterize chamber conditions are summarized in Table 5.

Measured data indicate that light conditions and chamber-dependent radical and NOx sources are

similar to those used for a previous project (Yarwood et al, 2012).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 60 120 180 240 300 360 420 480

Ozo

ne

(p

pm

)

Time (minute)

EPA1693A

EPA1693B

EPA1694A

EPA1694B

EPA1697A

EPA1697B

EPA1698A

EPA1698B

EPA1717A

EPA1717B

2-Methyl-2-butene

Page 43: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

31

Table 5. List of characterization experiments carried out for this project. Experiment Type Number of Experiments Experiment ID Date

Planned Carried out

Pure Air 1 3 EPA1671 3/7/13

EPA1673 3/13/13

EPA1721 6/9/13

CO - Air 1 2 EPA1674 3/14/13

EPA1679 3/21/13

CO - NOx 1 2 EPA1680 3/22/13

EPA1706 5/6/13

H2O2 - Air 1 1 EPA1672 3/12/13

H2O2 - CO - Air 0 1 EPA1709 5/13/13

Propene - NOx 1 2 EPA1683 3/29/13

EPA1713 5/20/13

In-front-of-reactor NO2 actinometry 3 12 EPA1672 3/12/13

EPA1673 3/13/13

EPA1674 3/14/13 EPA1685 4/2/13

EPA1687 4/5/13

EPA1691 4/12/13 EPA1694 4/18/13

EPA1697 4/23/13 EPA1698 4/24/13

EPA1703 5/1/13

EPA1710 5/14/13 EPA1724 6/12/13 In-reactor NO2 actinometry 1 2 EPA1719 6/5/13

EPA1720 6/6/13

Light characterization: The NO2 photolysis rates (min-1

) measured for this project are presented

together with previous data in Figure 14. The data for this project are shown in the range of

blacklight run counts higher than 400. The newly measured NO2 photolysis rates (k1 values)

show a lot of scatter. The two in-reactor experiments are assumed to be non-representative cases

because there is no reason that in-front-of reactor k1 values stay around the previous average

(0.401 min-1

) but in-reactor k1 values suddenly increase by ~25-30%. Using 0.401 min-1

is was

justified by carrying out simulations of the chamber characterization experiments for Task 3 of

this project and comparing modeled and measured concentrations.

Page 44: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

32

Figure 14. Plots of measured NO2 photolysis rates since September 28, 2009.*

*: The blacklight run count is the accumulated number of days when the blacklight system was used for the

experiment since September 28, 2009, and the in-front-of-reactor measurements and in-reactor measurements for

this project are shown in the range of blacklight run counts higher than 400.

Characterization of chamber-dependent radical and NOx sources: Chamber characterization

experiments to reasonably model chamber-dependent radical and NOx sources (3 Pure-Air, 2 CO

- Air, 2 CO - NOx, 1 H2O2 - Air, and 1 H2O2 - CO - Air experiments) are listed in Table 5. These

experiments were simulated to refine the wall model to describe chamber-dependent processes

relevant to ozone formation under chamber conditions.

2.3.3. Summary

Task 2 was carried out to generate experimental data for evaluating and improving mechanisms

of ozone formation from the 5 HRVOCs (1-buene, isobutene, trans-2-butene, cis-2-butene, 1,3-

butadiene) and 5 non-HRVOCs (1-pentene, 1-hexene, trans-2-pentene, cis-2-pentene, 2-methyl-

2-butene) by performing 44 experiments (84 reactor runs) in total at the UCR EPA chamber

facility: 25 experiments (50 reactor runs) for the 10 test alkenes (seeTable 4), 11 experiments (22

reactor runs) for chamber characterization or quality assurance (QA), 2 in-reactor experiments to

measure NO2 photolysis rate (k1) (see Table 5), and 6 dark experiments (10 reactor runs) for GC

QA (not separately listed but included in Table A-4 listing all 84 reactor runs). Note that 12 in-

front-of-reactor k1 measurements were also carried out (see Table 5). The number of

experiments actually carried out is larger than the number of experiments planned and stated in

the Work Plan for this project or Report 1 for Task 1 (see Table A-1, Table A-2 and Table A-3).

As summarized in Table 3, 36 reactor runs (compared to 24 reactor runs designed for Task 1) are

useful to evaluate mechanisms for the 5 HRVOCs and 5 non-HRVOCs.

Various curve patterns and final concentrations of ozone measured in the experiments for the 10

alkenes clearly show that these chamber experimental data are useful for evaluating mechanisms

for the 5 HRVOCs and 5 non-HRVOCs and improving credibility of the mechanisms used in air

quality modeling. The results of the chamber characterization experiments carried out to

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 100 200 300 400 500

NO

2 P

ho

toly

sis

ra

te (

min

-1)

Blacklight run count

Standard Enclosure, corrected by 0.698

In Reactor Measurement

Currently used for modeling (0.401 min-1)

Page 45: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

33

characterize chamber conditions indicate that light conditions and chamber-dependent radical

and NOx sources are similar to those used for a previous project (Yarwood et al, 2012).

The experimental data obtained from the chamber experiments for Task 2 were inspected and

processed to derive experimental data (e.g., the rate of ozone formation for the rapidly ozone-

forming period) useful for quantitatively evaluating mechanisms for ozone formation from the 10

alkenes during comparison of measured and modeled concentrations for Task 3 of this project.

Page 46: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

34

3. Mechanism Development and Evaluation

3.1. Introduction

Task 3 (develop mechanisms) was carried out to evaluate mechanisms by using chamber

experimental data generated in Task 2 and improve the existing mechanisms. The results of this

study will be useful in developing more reliable chemical mechanisms for the HRVOCs and non-

HRVOC alkenes that are better suited for use under atmospheric conditions influenced by

HRVOC emissions.

The version of SAPRC (detailed and lumped mechanisms) that is currently most widely used in

atmospheric models is SAPRC-07T (Carter, 2010; Hutzell et al, 2012), but recently an updated

version of the detailed mechanism with revised reactions for aromatics, designated SAPRC-11,

has been developed (Carter and Heo, 2013). The starting point for developing and evaluating

mechanisms is the detailed SAPRC-11 (SAPRC-11D). SAPRC-11D can be used as a standard

against which effects of condensations can be assessed. Each emitted reactive VOC for which a

mechanism is derived for SAPRC-11 and that has non-negligible emissions is represented

explicitly in this detailed SAPRC-11, including each of the alkenes studied for this project,

though lumping of many of the major oxidation products is still used. Emission inventory data

for the continetnal U.S. (Leucken, 2013), the states of Texas (Ying, 2013) and California

(Kaduwela, 2013) were used in selecting compounds to be explicitly represented in SAPRC-11D.

The work plan for this project called for developing three updated versions of SAPRC-11 as

follows: (1) an updated detailed SAPRC-11, (2) an updated standard-lumped SAPRC-11 which

uses the same lumping methods (e.g., lumping with OLE1 and OLE2 for alkenes) used for the

standard-lumped SAPRC-07 described by Carter (2010), and (3) an updated version SARPC-07T

which can serve the needs for toxics assessments (Hutzell et al, 2012) and the needs for

modeling ozone formation from HRVOCs emissions by more explicitly representing the

HRVOCs (e.g., explicitly representing 1-butene, isobutene and trans- and cis-2-butene).

However, completely updated mechanisms were not developed because the chamber simulations

of the new 36 chamber reactor runs indicated that the current mechanisms for the 10 alkenes in

SAPRC-11D reasonably simulate ozone formation from the alkenes except for 1,3-butadiene and

1-hexene and probably 2-methyl-2-butene, and except for 1,3-butadiene we were unable to

develop significantly better performing mechanisms within the time frame of this project.

However, under separate funding we are developing a complete update to SAPRC-11, which

should give better simulations of compounds such as 1,3-butadiene because of a more detailed

product lumping approach for unsaturated nitrate and peroxynitrate products. Although this

mechanism is still under development, a preliminary version, which we designate SAPRC-13A,

is sufficiently complete so that it can be evaluated against results of experiments with 1,3-

butadiene and its major reaction product, acrolein. Therefore, results of simulations of the 1,3-

butadiene experiments with this mechanism are also shown.

Because a complete update to SAPRC-11 is beyond the scope of this project, and in any case we

were only able to derive an improved mechanism for a single compound (i.e., 1,3-butadiene),

Page 47: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

35

this report focuses on the effects of alternative lumping approaches rather than generating

updated versions of the SAPRC mechanisms. This is done by comparing model performance in

simulating ozone formation for the chamber experiments between SAPRC-07T, the standard-

lumped SAPRC-11 (SAPRC-11L) and the detailed SAPRC-11 (SAPRC-11D). However, since

the results of this project will be important for near-future mechanism updates, we summarize

the problems we have found and include potentially useful mechanism modifications in this

report.

3.2. Methods

In this section, methods for evaluating the mechanisms using experimental data of the 36 reactor

runs for the 10 alkenes and methods for developing mechanisms are described.

3.2.1. Existing mechanisms evaluated for this project

Three versions of the SAPRC mechanism (SAPRC-07T, SAPRC-11D and SAPRC-11L) were

evaluated in regard to their capability to model ozone formation from the 10 alkenes studied for

this project. SAPRC-07T is the version of SAPRC-07 already implemented and available in the

CMAQ (Carter, 2010; Hutzell et al, 2012) and uses OLE1 and OLE2 to represent the tested

alkenes except 1,3-butadiene (Table 6). SAPRC-11D is the detailed SAPRC-11 which uses

updated reactions for aromatic compounds, revised reactions for glyoxal and revised reactions

for acyl radicals with HO2 (for details, see Table S-2 of Carter and Heo, 2013). In SAPRC-11D,

all of the 10 alkenes studied for this project are explicitly represented as shown in Table 6.

SAPRC-11D uses approximately 330 model species to more explicitly represent reactive VOC

emissions. Most (~95%) of the mass of identified anthropogenic reactive VOC emissions based

on relatively recent emission inventories for Texas (Ying, 2013), California (Kaduwela, 2013)

and the U.S (Luecken, 2013) is explicitly represented by approximately 300 explicit model

species in SAPRC-11D, while detailed (although not explicit) model species and highly lumped

species such as OTHn, OLEn, AROn and RCHO are used for most of the remaining ~5%. All

other identified compounds contribute individually less than about 0.01% of the mass and

represent the remaining ~1%. SAPRC-11L is the standard-lumped version of SAPRC-11 which

uses the same lumping methods used for the standard-lumped SAPRC-07 (Carter, 2010) and

model species OLE1 and OLE2 are used for the 10 alkenes studied for this project (Table 6).

SAPRC-07T, SAPRC-11L and SAPRC-11D share nearly the same chemical basis for their

reactions for alkenes. However, the lumping approaches are different as summarized for the 10

alkenes in Table 6. In interpreting chamber simulation results for these chemical mechanisms,

note that differences in modeled concentrations between SAPRC-07T, SAPRC-11L and SAPRC-

11D are showing the effects of lumping (i.e., modeling explicitly or with a lumped species,

OLE1 or OLE2) rather than fundamental differences in their chemical basis.

Page 48: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

36

Table 6. List of lumping methods used for SAPRC-07T, SAPRC-11L and SAPRC-11D for the

10 tested alkenes for this project.

Tested alkenes Lumping method

SAPRC-07T SAPRC-11L SAPRC-11D

1-Butene OLE1 OLE1 BUTENE1a

Isobutene OLE2 OLE2 ISOBUTENa

trans-2-Butene OLE2 OLE2 T2BUTEa

cis-2-Butene OLE2 OLE2 C2BUTEa

1,3-Butadiene 13-BUTDEa OLE2 BUTDE13

a 1-Pentene OLE1 OLE1 PENTEN1

a 1-Hexene OLE1 OLE1 HEXENE1

a trans-2-Pentene OLE2 OLE2 T2PENT

a cis-2-Pentene OLE2 OLE2 C2PENT

a 2-Methyl-2-butene OLE2 OLE2 M2BUT2

a aExplicit model species is used instead of OLE1 or OLE2.

The mechanisms used for the lumped species OLE1 and OLE2 are derived from the weighted

average mechanisms of the alkenes that represent the standard ambient mixture used to derive

the current SAPRC lumped mechanisms (Carter, 2000, 2010 and references therein). Although

the mixture used is the same for both SAPRC-11L and SAPRC-07T, the OLE1 and OLE2

reactions are different between SAPRC-11L and SAPRC-07T because propene and 1,3-

butadiene are represented explicitly in SAPRC-07T and are not used in deriving the OLE1 or

OLE2 reactions of SAPRC-07T. The compounds used for OLE1 and OLE2, and their weighting

factors, are shown in Table 7. Note that the greater difference is in the OLE1 mechanism,

because of the relative importance of propene in the standard mixture compared to 1,3-butadiene.

Page 49: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

37

Table 7. Compounds and weighting factors used to derive the mechanisms for the OLE1 and

OLE2 lumped model species in the SAPRC-11L and SAPRC-07T mechanisms.

Compounds and weight factors for OLE1 Compounds and weight factors for OLE2

Compound SAPRC-11L SAPRC-07T

Compound SAPRC-11L SAPRC-07T

propene 29.4% a

isobutene 10.3% 10.9%

1-butene 11.9% 16.9%

cis-2-butene 8.8% 9.3%

1-pentene 11.5% 16.2%

trans-2-butene 11.0% 11.6%

1-hexene 23.7% 33.5%

cis-2-pentene 14.3% 15.1%

1-heptene 11.0% 15.5%

trans-2-pentene 14.3% 15.1%

1-nonene 4.8% 6.8%

cis-2-hexene 4.5% 4.8%

1-octene 2.2% 3.1%

trans-2-hexene 4.5% 4.8%

1-undecene 1.8% 2.5%

trans-2-heptene 1.7% 1.8%

1-decene 0.9% 1.2%

trans-3-heptene 3.9% 4.2%

3-methyl-1-butene 3.0% 4.2%

trans-4-nonene 2.2% 2.3%

trans-4-octene 1.9% 2.0%

trans-4-decene 0.7% 0.7%

trans-5-undecene 1.7% 1.8%

2-methyl-1-butene 8.2% 8.7%

3,4-diethyl-2-hexene 0.2% 0.2%

2-methyl-2-butene 4.6% 4.9%

cyclohexene 1.6% 1.7%

1,3-butadiene 5.6%

a

aExplicit in SAPRC-07T.

3.2.2. Preliminary updated mechanism for 1,3-butadiene

Under funding from the California Air Resources Board, we are carrying out a complete update

of the SAPRC detailed gas-phase mechanisms. In addition to updating the base mechanism and

the reactions of the individual VOCs to reflect the current literature and evaluation, we are re-

examining the lumping approach used to represent reactive organic products in order to improve

the capabilities of the models to simulate NOx sources and sinks and secondary organic aerosol

and ozone formation rates and yields. For example, Xie et al (2013) found that it was important

to separately represent unsaturated organic nitrate species in order to model NOx recycling

processes in the reactions of isoprene and its products, and this would also be applicable to

reactions of 1,3-butadiene based on structural similarity of isoprene and 1,3-butadiene. This

should also be applicable to separately representing unsaturated acyl peroxynitrates (PAN's),

though this possibility was not considered by Xie et al (2013). Since unsaturated nitrate and

peroxynitrate products are not separately represented in SAPRC-11, this may contribute to

problems with modeling the 1,3-butadiene experiments for this project, as discussed in section

3.3.6.

Because some of the ongoing mechanism updates may result in improved simulations for at least

1,3-butadiene, we conducted model simulations of the 1,3-butadiene experiments with a

Page 50: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

38

preliminary version of the updated mechanism, which we designate SAPRC-13A. The changes

implemented for these calculations reflect primarily reactions relevant to the 1,3-butadiene

system and not the re-evaluation of the base mechanism or the product lumping approach,

though some changes are implemented that would not significantly affect the simulations

discussed here. The model species and reactions that were added or changed relative to SAPRC-

11 for the preliminary SAPRC-13A mechanism used in this work are given in Table 8 and Table

9, respectively. Comments in Table 8 and footnotes to Table 9 discuss the additions or changes

that were made. Species or reactions that are the same as in SAPRC-11D or are not relevant to

the simulations of the 1,3-butadiene are not included in these tables.

The reaction rates of unsaturated acyl peroxynitrates with OH are based on IUPAC (2007a) and

Calvert et al (2011). For example, the unsaturated PAN analogue (CH2=C(CH3)C(O)OONO2)

formed from mathacrolein (CH2=C(CH3)CHO, a product of isoprene) reacts with OH with a rate

constant similar to that for the metharcolein + OH reaction (IUPAC, 2007a). This is somewhat

surprising because the presence of –C(O)OONO2 instead of –CHO blocks the H-abstraction

channel available for methacrolein but still the overall rate constant for CH2=C(CH3)

C(O)OONO2 (which is represented by MAPAN in SAPRC-13A) is nearly the same as that for

methacrolein. An evaluation of this rate constant by comparison with other relevant rate

constants (Calvert et al, 2011) indicated that the rate constant recommended by IUPAC (2007a)

is reasonable. The reaction rate with OH for CH2=CHC(O)OONO2 (which is formed from

acrolein and represented by APAN in SAPRC-13A) was estimated based on Calvert et al

(2011).

Note that the acrolein yield for the 1,3-butadiene + OH reaction used in SAPRC-07T and

SAPRC-11D is 0.48. This was updated in SAPRC-13A to 0.59, based on yields reported by

Tuazon et al (1999), Baker et al (2005) and Berndt and Bӧge (2007).

Table 9 includes two mechanisms for the reactions of O3 with 1,3-butadiene: (1) an initially

estimated mechanmsm that was derived before modeling the experiments carried out for this

project, and (2) a revised mechanism derived to give better simulations of the chamber

experimental data. These are referred to as SAPRC-13A1 and SAPRC-13A, respectively. It is

expected that the final version of the updated mechanism will use the latter formulation with

additional adjustments because of the better fits to the experimental data from this project. The

derivations of the two mechanmisms are decribed in footnotes to Table 9. This is discussed

further in section 3.3.6.

Note that the differences beween SAPRC-13A and SAPRC-11D were found not to significantly

affect model simulations of the other alkene experiments carried out for this project, so most of

the results of SAPRC-13A simulations of these experiments are not shown here. However,

SAPRC-13A was used as the basis for a few sensitivity calculations concerning effects of

mechanism changes for 1-hexene and 2-methyl-2-butene that are discussed in conjunction with

the results for these compounds. Because this mechanism development is not complete, we do

not consider SAPRC-13A ready for use in 3-dimensional (3-D) air quality model simulations, so

it was not used for the CMAQ calculations discussed in this report.

Page 51: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

39

Table 8. List of model species that were added or changed relative to SAPRC-11 for the

preliminary SAPRC-13A mechanism used in this work. Species that were not changed relative to

SAPRC-11 or are not relevant to the 1,3-butadiene calculations discussed in this work are not

included in the listing.

Species Description

Species Added

ACO3

APAN

Peroxyacetyl radicals and PAN analogue formed from acrolein:

CH2=CHC(O)OO· and CH2=CHC(O)OONO2. Mechanism shown in Table 9.

RUNO3 Lumped unsaturated organic nitrates. These are now represented separately from

saturated organic nitrates, which are still represented by RNO3, because of their

much faster reactions with OH and O3.

C2CHO Propionaldehyde, which is now repreented explicitly. It is no longer lumped with

RCHO and the RCHO mechanism is revised to reflect C4+ aldehydes.

PROD1 New lower reactivity ketone and oxygenate model species to represent

compounds previously represented by MEK, which is now reprsented expliclty.

HCHO2

CCHO2

RCHO2

Stabilized Criegee biradicals formed from reactions of O3 with alkenes. These

were previously assumed to react primarily with H2O to form the corresponding

aldehyde, but are represented explicitly in SAPRC-13A in order to provide for

representing their reactions with SO2 and NO2. Their major fate is still reaction

with H2O, so this change does not signficnatly affect model simulations discussed

in this work. (The reaction with NO2 is calculated to occur generally less than 5%

of the time in the 1,3-butadiene experiments.)

Species with signficantly modified mechanisms or lumping

1,3-BUTDE 1,3-Butadiene (explicit). Mechanism modified (see Table 9).

ACRO Acrolein (explicit). Mechanism modified (see Table 9).

MACO3

MAPAN

Acylperoxy radicals (MACO3) and PAN analogues (MAPAN) formed in

reactions of unsaturated aldehydes. Lumping modified since species formed from

acrolein are no longer represented. Mechanism not signficantly modified.

RNO3 Used to represent saturated organic nitrates. Previously also used for unsaturated

nitrates, but these are now represented by RUNO3. Mechanism not significantly

modified.

RCHO Used to represent C4+ aldehydes. Mechanisms based on a C4+ aldehyde mixture as

indicated in Table 9. Propionaldehyde is now represented separately.

MEK Used to represent methyl ethyl ketone explicitly. Previously used to represent all

lower reactivity ketone or oxygenate products. Mechanism not modified.

Page 52: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

Table 9. List of reactions that were added or changed relative to SAPRC-11 for the preliminary

SAPRC-13A mechanism used in this work. Reactions that were not changed relative to SAPRC-

11 or are not relevant to the 1,3-butadiene calculations discussed in this work are not included in

the listing.

Label Reactions and Products [a] Rate Parameters [b] Notes

k(300) A Ea B [c]

Reactions of Acyl Peroxy Radicals, PAN, and PAN analogues

BR51 MACO3 + NO2 = MAPAN Same k as rxn BR28 1

BR52 MAPAN = MACO3 + NO2 4.79E-04 1.60E+16 26.8 1

TX01 MAPAN + OH = #.961 RO2C + #.039 NO2 + #.961 xNO3 +

#.482 xHO2 + #.482 xMECO3 + #.039 RCO3 + #.961 CO2 +

#.482 xHCHO + #.479 xMEK + #.961 yROOH + #-0.439 XC

2.90E-11 2,3

TX02 MAPAN + O3 = #.667 RO2C + #.333 NO3 + #.667 xNO3 +

#.72 OH + #.053 HO2 + #.285 xHO2 + #.333 MECO3 + #.17

CO + #.382 xCO + #1.04 CO2 + #.667 HCHO + #.382 xHCHO

+ #.123 HCHO2 + #.667 yROOH + #.57 XC

1.15E-18 1.30E-15 4.19 2,3

TX03 MAPAN + NO3 = RO2C + xNO3 + #.148 xHO2 + #.148

xRCO3 + CO2 + #.852 xRNO3 + yROOH + #-2.556 XC +

#.148 XN

2.76E-18 2,3

BR53 MAPAN + HV = #.6 {MACO3 + NO2} + #.4 {CO2 + HCHO +

MECO3 + NO3}

Phot Set= PAN 1

TX04 ACO3 + NO2 = APAN Same k as rxn BR28 4

TX05 APAN = ACO3 + NO2 Same k as rxn BR52 4

TX06 APAN + OH = RO2C + #.208 xNO2 + #.792 xNO3 + #.841

xHO2 + #.284 xRCO3 + #.278 xCO + #.792 CO2 + #.278

xHCHO + #.437 xGLCHO + yROOH + #-0.074 XC

1.80E-11 2,3,4

TX07 APAN + O3 = #.5 NO2 + #.5 NO3 + #.08 OH + #1.08 HO2 +

#1.255 CO + #1.06 CO2 + #.5 HCHO + #.185 HCHO

1.32E-18 2,3,4

TX08 APAN + HV = #.6 NO2 + #.4 NO3 + #.4 HO2 + #.6 ACO3 +

#.4 CO + #.4 CO2 + #.4 HCHO

Phot Set= PAN 3,4

TX09 ACO3 + NO = NO2 + HO2 + CO + CO2 + HCHO Same k as rxn BR31 4

TX10 ACO3 + HO2 = #.44 {OH + HO2 + CO + CO2 + HCHO} +

#.41 RCO3H + #.15 {O3 + RCOOH}

Same k as rxn BR22 4

TX11 ACO3 + NO3 = NO2 + HO2 + CO + CO2 + HCHO + O2 Same k as rxn BR09 4

TX12 ACO3 + MEO2 = #2 HCHO + HO2 + CO + CO2 Same k as rxn BR24 4

TX13 ACO3 + RO2C = HO2 + CO + CO2 + HCHO Same k as rxn BR25 4

TX14 ACO3 + RO2XC = HO2 + CO + CO2 + HCHO Same k as rxn BR25 4

TX15 ACO3 + MECO3 = #2 CO2 + MEO2 +HO2 + CO + HCHO +

O2

Same k as rxn BR27 4

TX16 ACO3 + RCO3 = HO2 + CO + HCHO + RO2C + xHO2 +

yROOH + xCCHO + #2 CO2

Same k as rxn BR27 4

TX18 ACO3 + MACO3 = HO2 + CO + #2 HCHO + MECO3 + #2

CO2

Same k as rxn BR27 4

TX19 ACO3 + ACO3 = #2 {HO2 + CO + CO2 + HCHO} Same k as rxn BR27 4

Explicit and Lumped Molecule Organic Products

BP11 C2CHO + OH = #.965 RCO3 + #.035 {RO2C + xHO2 + xCO +

xCCHO + yROOH}

1.97E-11 5.10E-12 -0.8 5

BP12 C2CHO + HV = RO2C + xHO2 + yROOH + xCCHO + CO +

HO2

Phot Set= C2CHO 5

BP13 C2CHO + NO3 = HNO3 + RCO3 6.74E-15 1.40E-12 3.18 5

Page 53: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

Table 9 (continued)

41

Label Reactions and Products [a] Rate Parameters [b] Notes

k(300) A Ea B [c]

BP16 MEK + OH = #.967 RO2C + #.039 {RO2XC + zRNO3} +

#.376 xHO2 + #.51 xMECO3 + #.074 xRCO3 + #.088 xHCHO

+ #.504 xCCHO + #.376 xC2CHO + yROOH + #.3 XC

1.20E-12 1.30E-12 0.05 2 6,7

BP17 MEK + HV = MECO3 + RO2C + xHO2 + xCCHO + yROOH Phot Set= MEK-06, qy= 0.175 6

BP35 MGLY + OH = CO + MECO3 1.29E-11 1.90E-12 -1.14 8

Lumped Parameter Organic Products

H520 RCHO + OH = #.096 RO2C + #.006 RO2XC + #.006 zRNO3 +

#.035 HO2 + #.088 xHO2 + #.872 RCO3 + #.056 xCO + #.021

xHCHO + #.008 xCCHO + #.008 xC2CHO + #.035 RCHO +

#.042 xRCHO + #.037 xACET + #.093 yROOH + #.812 XC

2.52E-11 5,9

N520 RCHO + NO3 = RCO3 + HNO3 + XC 8.81E-15 5,9

V520 RCHO + HV = #1.074 RO2C + #.037 RO2XC + #.037 zRNO3

+ HO2 + #.963 xHO2 + CO + #.058 xHCHO + #.212 xC2CHO

+ #.281 xRCHO + #.416 xACET + #.051 xPROD2 + yROOH +

#-.593 XC

Phot

Set=

C2CHO,

qy=

1.0e+0

5,9

H51E PROD1 + OH = #1.117 RO2C + #.071 RO2XC + #.071 zRNO3

+ #.28 xHO2 + #.356 xMECO3 + #.294 xRCO3 + #.263

xHCHO + #.448 xCCHO + #.05 xC2CHO + #.302 xRCHO +

#.025 ACET + #.006 xACET + #.08 xPROD1 + #.006 xMGLY

+ yR6OOH + #-.048 XC

2.59E-12 6,9

V51E PROD1 + HV = #.975 RO2C + #.025 RO2XC + #.025 zRNO3

+ #.975 xHO2 + #.509 MECO3 + #.491 RCO3 + #.196 xHCHO

+ #.491 xCCHO + #.287 xC2CHO + #.196 xACET + yR6OOH

+ #-.272 XC

Phot

Set=

MEK-06,

qy=

0.079

6,9

H51F PROD2 + OH = #.799 RO2C + #.089 RO2XC + #.089 zRNO3

+ #.014 zRUNO3 + #.321 HO2 + #.43 xHO2 + #.04 xMECO3 +

#.106 xRCO3 + #.001 HCHO + #.217 xHCHO + #.001 CCHO +

#.073 xCCHO + #.015 xC2CHO + #.163 RCHO + #.409

xRCHO + #.001 ACET + #.032 xACET + #.034 PROD1 +

#.036 xPROD1 + #.125 PROD2 + #.04 xPROD2 + #.003 xGLY

+ #.679 yR6OOH + #.854 XC

1.19E-11 9

H521 RNO3 + OH = #.907 RO2C + #.126 RO2XC + #.126 zRNO3 +

#.02 NO2 + #.374 xNO2 + #.227 HO2 + #.253 xHO2 + #.014

xHCHO + #.513 xCCHO + #.003 xC2CHO + #.002 RCHO +

#.04 xRCHO + #.001 xGLCHO + #.005 xACET + #.012 MEK

+ #.151 xMEK + #.053 xPROD1 + #.007 PROD2 + #.036

xPROD2 + #.227 RNO3 + #.194 xRNO3 + #.753 yR6OOH +

#.185 XN + #.309 XC

6.67E-12 10,11

V521 RNO3 + HV = #.705 RO2C + #.074 RO2XC + #.074 zRNO3 +

NO2 + #.413 HO2 + #.513 xHO2 + #.088 HCHO + #.073

xHCHO + #.257 CCHO + #.276 xCCHO + #.088 RCHO +

#.076 xRCHO + #.009 xACET + #.149 MEK + #.099 xMEK +

#.228 PROD2 + #.161 xPROD2 + #.587 yR6OOH + #.321 XC

Phot Set= IC3ONO2 10,11

Page 54: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

Table 9 (continued)

42

Label Reactions and Products [a] Rate Parameters [b] Notes

k(300) A Ea B [c]

H522 RUNO3 + OH = #.845 RO2C + #.055 RO2XC + #.055 zRNO3

+ #.004 zRUNO3 + #.144 xNO2 + #.097 HO2 + #.7 xHO2 +

#.001 xMEO2 + #.368 xHCHO + #.011 xRCHO + #.281

xGLCHO + #.247 xPROD1 + #.001 xPROD2 + #.043 HCOOH

+ #.003 xIPRD + #.04 RNO3 + #.515 xRNO3 + #.903 yR6OOH

+ #.301 XN + #-.954 XC

6.45E-11 10,9

O522 RUNO3 + O3 = #.188 RO2C + #.004 RO2XC + #.004 zRNO3 +

#.124 NO2 + #.501 OH + #.202 HO2 + #.188 xRCO3 + #.155

CO + #.046 CO2 + #.356 HCHO + #.188 xHCHO + #.108

GLCHO + #.069 PROD1 + #.058 HCOOH + #.158 MGLY +

#.086 BACL + #.402 RNO3 + #.093 HCHO2 + #.039 RCHO2 +

#.192 yR6OOH + #.474 XN + #-.392 XC

1.36E-16 10,9

N522 RUNO3 + NO3 = #.913 RO2C + #.063 RO2XC + #.063 zRNO3

+ #.622 xNO2 + #.024 HO2 + #.29 xHO2 + #.187 xHCHO +

#.344 xGLCHO + #.279 xPROD1 + #.024 RNO3 + #.494

xRNO3 + #.976 yR6OOH + #.86 XN + #-.756 XC

3.45E-12 10,9

V522 RUNO3 + HV = #.284 RO2C + #.02 zRUNO3 + NO2 + #.696

HO2 + #.284 xHO2 + #.654 HCHO + #.284 xHCHO + #.212

MACR + #.298 MVK + #.186 IPRD + #.284 xIPRD + #.304

yR6OOH + #-.428 XC

Phot Set= IC3ONO2 10,9

Product compounds explicit in SAPRC-07T

BP72 GLCHO + OH = #.2 HO2 + #.8 MECO3 + #.2 GLY 8.00E-12 12

BP73 GLCHO + HV = CO + #2 HO2 + HCHO Phot Set= HOCCHO 1

BP74 GLCHO + NO3 = HNO3 + MECO3 Same k as rxn BP10 1

BP75 ACRO + OH = #.32 RO2C + #.32 xHO2 + #.68 ACO3 + #.255

xCO + #.065 xHCHO + #.255 xGLCHO + #.065 xGLY + #.32

yROOH

2.15E-11 7.10E-12 -0.66 13,14

BP76 ACRO + O3 = #.33 OH + #.83 HO2 + #1.005 CO + #.31 CO2 +

#.5 HCHO + #.5 GLY + #.185 HCHO2

3.07E-19 1.40E-15 5.02 16

BP77 ACRO + NO3 = #.031 xHO2 + #.967 ACO3 + #.031 RO2C +

#.002 RO2XC + #.002 zRNO3 + #.967 HNO3 + #.031 xCO +

#.031 xRNO3 + #.033 yROOH + #.002 XN + #-.13 XC

1.18E-15 1

BP78 ACRO + O3P = RCHO + #-1 XC 2.37E-12 1

BP79 ACRO+ HV = #.243 OH + #.526 HO2 + #.32 MEO2 + #.15

ACO3 + #1.243 CO + #.14 CO2 + #.15 HCHO +#.25 ETHENE

+ #.068 CCHO2 + #.061 XC

Phot Set= ACRO-09 15

Stabilized Criegee biradical reactions

OL02 HCHO2 + NO2 = HCHO + NO3 7.00E-12 17

OL03 HCHO2 + H2O = HCOOH 2.40E-15 17

OL05 CCHO2 + NO2 = CCHO + NO3 7.00E-12 17

OL06 CCHO2 + H2O = CCOOH 2.40E-15 17

OL08 RCHO2 + NO2 = C2CHO + NO3 7.00E-12 17

OL09 RCHO2 + H2O = RCOOH 2.40E-15 17

Steady-State Peroxy Radical operators (for formation of organic product species)

TX20 xC2CHO = C2CHO k is variable parameter: RO2RO 5

TX21 xC2CHO = #3 XC k is variable parameter: RO2XRO 5

TX22 xPROD1 = PROD1 k is variable parameter: RO2RO 6

TX23 xPROD1 = #5 XC k is variable parameter: RO2XRO 6

Page 55: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

Table 9 (continued)

43

Label Reactions and Products [a] Rate Parameters [b] Notes

k(300) A Ea B [c]

TX24 zRUNO3 = RUNO3 + #-1 XN k is variable parameter: RO2NO 10

TX25 zRUNO3 = IPRD + HO2 k is variable parameter: RO22NN 10

TX26 zRUNO3 = #5 XC k is variable parameter: RO2XRO 10

Reactions of 1,3-Butadiene with OH, NO3, and O3P

H108 13-BUTDE + OH = #1.136 RO2C + #.047 RO2XC + #.047

zRUNO3 + #.953 xHO2 + #.767 xHCHO + #.592 xACRO +

#.362 xIPRD + yROOH + #-.588 XC

6.59E-11 1.48E-11 -0.89 3,18

N108 13-BUTDE + NO3 = #1.055 RO2C + #.065 RO2XC + #.065

zRUNO3 + #.12 xNO2 + #.815 xHO2 + #.115 xHCHO + #.46

xMVK + #.12 xIPRD + #.355 xRNO3 + yROOH + #.525 XN +

#-1.01 XC

1.00E-13 3

P108 13-BUTDE + O3P = #.235 RO2C + #.005 RO2XC + #.005

zRNO3 + #.01 zRUNO3 + #.25 HO2 + #.117 xHO2 + #.118

xMACO3 + #.115 xCO + #.75 PROD2 + #.115 xACRO + #.001

xAFG1 + #.001 xAFG2 + #.25 yROOH + #-1.522 XC

1.98E-11 2.26E-11 0.08 3

Reactions of 1,3-Butadiene with O3 (Initially estimated mechanism: SAPRC-13A1)

O108 13-BUTDE + O3 = #.13 OH + #.05 ACO3 + #.08 HO2 + #.255

CO + #.185 CO2 + #.5 HCHO + #.113 ETHENE + #.5 ACRO +

#.337 MVK + #.185 HCOOH + #-.349 XC

6.64E-18 1.34E-14 4.54 19

Reactions of 1,3-Butadiene with O3 (Revised mechanism to improve simulations of chamber data: SAPRC-13A)

O108 13-BUTDE + O3 = #.19 RO2C + #.01 zRUNO3 + #.18 OH +

#.73 HO2 + #.19 xHO2 + #.505 CO + #.166 xCO + #.26 CO2 +

#.7 HCHO + #.05 GLY + #.166 xGLY + #.023 xMGLY + #.5

ACRO + #.185 HCHO2 + #.2 yROOH + #.133 XC

6.64E-18 1.34E-14 4.54 20

[a] Format of reaction listing: “=“ separates reactants from products; “#number” indicates stoichiometric

coefficient, “#coefficient {product list}” means that the stoichiometric coefficient is applied to all the products

listed.

[b] Except as indicated, the rate constants are given by k(T) = A · (T/300)B · e

-Ea/RT, where the units of k and A are

cm3 molec

-1 s

-1, Ea are kcal mol

-1, T is

oK, and R=0.0019872 kcal mol

-1 deg

-1. The following special rate

constant expressions are used:

Phot Set = name: The absorption cross sections and (if applicable) quantum yields for the photolysis reaction

are given by Carter (2010), where “name” indicates the photolysis set used. If a “qy=number” notation is

given, the number given is the overall quantum yield, which is assumed to be wavelength independent.

Falloff: The rate constant as a function of temperature and pressure is calculated using k(T,M) = {k0(T)·[M]/[1

+ k0(T)·[M]/kinf(T)]}· FZ, where Z = {1 + [log10{k0(T)·[M])/kinf(T)}/N]

2 }

-1, [M] is the total pressure in

molecules cm-3

, F and N are as indicated on the table, and the temperature dependences of k and kinf are as

indicated on the table.

k = k0+k3M(1+k3M/k2): The rate constant as a function of temperature and pressure is calculated using

k(T,M) = k0(T) + k3(T)·[M] ·(1 + k3(T)·[M]/k2(T)), where [M] is the total bath gas (air) concentration in

molecules cm-3, and the temperature dependences for k0, k2 and k3 are as indicated on the table.

k = k1 + k2 [M]: The rate constant as a function of temperature and pressure is calculated using k(T,M) =

k1(T) + k2(T)·[M], where [M] is the total bath gas (air) concentration in molecules cm-3

, and the temperature

dependences for k1, and k2 are as indicated on the table.

Same K as Rxn xx: Uses the same rate constant as the reaction in the base mechanism with the same label.

[c] Documentation notes are as follows:

1 Same as SAPRC-07T, as described by Hutzell et al (2012). For most reactions, these are the same as in

SAPRC-07 (Carter, 2010).

Page 56: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

Table 9 (continued)

44

2 Reactions of unsaturated PAN species with OH radicals and O3 have been added because these may affect

NOx balance in multi-day simulations. The reaction rates with OH are based on IUPAC (2007a) and

Calvert et al (2011).

3 Reactions derived using the current version of SAPRC mechanism generation system. Some estimations

were updated, especially for some unsaturated radicals, and the product lumping was changed to be

consistent with the current version of the lumped product representation in this mechanism. Except as

noted, the mechanisms are very similar to those used in the SAPRC-07 detailed mechanism (Carter, 2010).

4 ACO3 and APAN added to explicitly represent unsaturated acyl peroxy radicals and the corresponding

PAN analogue formed from acrolein.

5 C2CHO is used to represent propionaldehyde, rather than RCHO. The mechanism used for C2CHO is the

same as used in SAPRC-07 for RCHO, while the mechanism for RCHO is changed to represent the higher

aldehydes.

6 Note that the MEK model species now represents MEK explicitly, and not other ketones or oxygenates

products of similar reactivity. The mechanism for MEK is not changed except as noted. The other products

previously lumped with MEK are now represented by the new model species PROD1.

7 The mechanism is the same as in SAPRC-07 and SAPRC-07T except that the C2CHO model species is

used to represent the acetaldehyde product, rather than RCHO.

8 The rate constant is updated to be consistent with current IUPAC recommendation (IUPAC, 2008).

9 Derived from mechanisms of selected compounds represented by these lumped product model species.

Compounds used, their weighting factors, and how they were derived, are indicated inTable A-3.

Weighting factors derived from yields of compounds predicted in the reactions of OH radicals with

compounds in ambient VOC mixtures (for PROD1, PROD2, or RNO3) or isoprene (for RUNO3). Yields of

these products from their parent VOCs and the mechanisms for these products used to derive the lumped

product mechanisms were derived using the current version of the SAPRC mechanism generation system.

The ambient mixtures used for PROD1, PROD2, and RNO3 were based on a total U.S. emissions profile

provided by Luecken (2013) and the recommended ambient mixture for reactivity modeling derived by

Sullivan et al (2013).

10 The model species RNO3 is now used to represent only saturated organic nitrate model species.

Unsaturated organic nitrates are now represented using a separate model species RUNO3.

11 The mechanism for RNO3 is derived from the mechanisms for the compounds used to derive the

mechanism for the lumped RNO3 model species for SAPRC-07 (Carter, 2010). The mechanisms were

derived using the current version of the SAPRC mechanism generaton system, which gave somewhat

different mechanisms for some of these compounds than the version used for SAPRC-07.

12 The rate constant and mechanism is updated to be consistent with current IUPAC recommendation

(IUPAC, 2007).

13 Rate constant updated based on recommendation of Calvert et al (2011)

14 Branching ratios for initial reactions changed to 0.68 for H-abstraction from -CHO), 0.26 for OH-addition

to the outer C of the C=C bond, 0.06 for OH-addition to the inner C of the C=C bond), based on Orlando

and Tyndall (2002). Subsequent reactions derived using the SAPRC mechanism generation system.

15 Initial branching ratios are based on data shown in Figure IX-C-7 of Calvert et al (2011). Subsequent

reactions as derived using the mechanism generation system, except that ethene is represented explicitly.

16 Same as SAPRC-07T except the Criegee biradicals are represented separately rather than as the products of

their reaction with OH.

17 Stabilized Criegee biradicals are represented separately in order to account for effects of their reactions

with SO2 and NO2 as well as H2O. SAPRC-07T and 11 assumed that the reaction with H2O dominated so

they are represented by the corresponding acid that forms in this reaction. See Sarwar et al (2013) for a

discussion of stabilized Criegee biradical reactions and rate constants.

18 The mechanism generation system assignments for the reactions of the OH+1,3-butadiene adduct with O2

were revised to give 59% acrolein yields in the overall reaction, based on the data of Berndt and Bӧge

(2007) and references therein.

19 This is based on the mechanism incorporated in SAPRC-11D and SAPRC-07T except that 10% of the the

excited unsaturated Criegee biradical is assumed to decompose to OH + CH2=CHC(O)· in order for the

Page 57: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

Table 9 (continued)

45

mechanism to predict an overall OH yield of 13%, to be consistent with data given by Calvert et al (2000)

and Kramp and Paulson (2000). The reaminder of the reaction forms non-radical species, as assumed in

SAPRC-07T.

20 This mechanism was derived using mechanism generation system after incorporating the following

assigned reactions for the unsaturated Criegee biradical, in order to maximize the total radical yields and

improve simulations of the 1,3-butadiene experiments carried out for this project:

80% CH2=CHCHOO[excited] *OCH2CH=CHO*[excited] (* indicates joined groups in a ring)

10% CH2=CHCHOO[excited] CH2=CHC(O)· + OH

10% CH2=CHCHOO[excited] HC(O)CH=CH· + OH

50% *OCH2CH=CHO*[excited] + O2 HO2 + HC(O)CH(·)CHO

50% *OCH2CH=CHO*[excited] + O2 HCHO + HC(O)O· + HC(O)·

HCHO + CO + CO2 + 2 HO2

The mechanism is highly uncertain. The OH yields are assumed to be relatively low based on overall OH

yields of 13% from 1,3-butadiene. Chamber data for 1,3-butadiene are best fit by assuming high radical

yields from OH reaction. Non-OH radical yields are assumed to come from reactions of O2 with

"stabilized" biradical, which are assumed to form radicals as indicated in the comments with the reactions

of the stabilized cyclic adduct.

3.2.3. Evaluation of mechanisms by simulations of chamber experiments

Environmental chamber data: For this project, 25 experiments (50 reactor runs) for the 10 test

alkenes were carried out at the EPA chamber of the University of California, Riverside. However,

after analysis of experimental data, only relatively reliable experimental data (36 reactor runs in

total) were selected and used for evaluating and improving mechanisms for 1-butene (4 reactor

runs), isobutene (4), trans-2-butene (3), cis-2-butene (4), 1,3-butadiene (4), 1-pentene (4), 1-

hexene (5), trans-2-pentene (2), cis-2-pentene (2), 2-methyl-2-butene (4). As part of the quality

assurance experiments, 2 experiments (4 reactor runs) for propene were also carried out. Table

10 provides a list of these experiments. Experimental data of previous chamber experiments with

relatively high initial NOx concentrations (Carter et al, 1995; Heo et al, 2010; Sato et al, 2011;

see Table A-5 in the Appendices section) were also used. The initial concentrations used for the

36 reactor runs for the 10 tested alkenes and 4 reactor runs for propene carried out for this project

and 22 runs carried out for previous other studies are summarized in Table A-5.

Chamber simulations: Environmental chamber simulations were carried out by using the SAPRC

software that has been used for evaluating various versions of the SAPRC mechanism (Carter,

2000 and 2010; Heo et al., 2010; Carter and Heo, 2013). SAPRC-07T, SAPRC-11L and SAPRC-

11D were evaluated against experimental data of the 36 new reactor runs carried out for this

project and relevant old experimental data. For the model species and reactions used for

SAPRC-11D and SAPRC-11L, refer to Table B-1and Table B-2 (for SAPRC-11D) and Table B-

3and Table B-3 (for SAPRC-11L) in the Appendices section.

Simulations of chamber experiments with a chemical mechanism requires constructing wall

mechanisms that characterize chamber-dependent effects such as chamber-dependent radical

sources and NOx offgasing from the chamber walls (Jeffries et al., 1992; Carter et al., 2005).

Simulations of the chamber characterization runs listed in Table 5 indicated that the new

experiments carried out for this project can be simulated by using the wall mechanisms used for

a previous project (Yarwood et al, 2012). Note that the alkene-NOx chemical systems studied for

Page 58: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

46

this project have strong internal radical sources (i.e., photolysis of HCHO and direct OH

formation from ozonolysis) and are relatively not sensitive to the chamber-dependent radical

formation.

3.2.3. Methods for comparing model results with measurements

For evaluating model performance in simulating ozone formation from the tested alkenes,

experimentally measured and model-simulated concentrations of ozone (O3), NO, the test

alkenes, and D(O3-NO) (([O3]t - [NO]t) - ([O3]0 - [NO]0) where [O3]0, [NO]0, [O3]t, and [NO]t are

the O3 and NO concentrations at the start of irradiation and time t, respectively) were compared

by showing experimental and calculated results on the same plots. D(O3-NO) reflects the

chemical processes involved in O3 formation and is useful even where O3 is suppressed by the

presence of excess NO (Carter and Atkinson, 1987). Thus, D(O3-NO) was used to represent the

accumulated amount of ozone formation and NO oxidation during the experiment.

Two metrics were used to summarize model performance in simulations of ozone yields and

ozone formation rates. First, the quantity “D(O3-NO) Rate” (hereafter, also referred to as

Rate(D(O3-NO))) is used to measure the rate of ozone formation and NO oxidation caused by the

reactions of the VOC. This is defined as {0.5·Max(D(O3-NO))}/{time to reach 0.5·Max(D(O3-

NO))} where Max(D(O3-NO)) is the highest measured or modeled D(O3-NO) by the end of the

experiment. Since NO oxidation and O3 formation are still occurring at the time when D(O3-NO)

reaches half of Max(D(O3-NO)), Rate(D(O3-NO)) reflects the average rate of change of D(O3-

NO) between the starting time of the irradiation (i.e., t = 0) and the time of 0.5·Max(D(O3-NO))

when O3 formation is still occurring. Second, the quantity “Maximum O3” (hereafter, also

referred to as Max(O3)) is used as a measure of the maximum ozone formation potential

independent of the O3 formation rate. This is defined as the highest hourly O3 concentration by

the end of the experiment if O3 increases by less than or equal to 5% in the last 30 minutes of the

experiment. If O3 increases by more than 5% in the last 30 minutes for either the experiment or

the model simulation, then there is no information on model performance for maximum O3

formation potential. Note that these are the same as the metrics used by Carter and Heo (2013) in

the documention of the SAPRC-11 aromatics mechanism.

3.3. Results and discussion: Mechanism evaluation and development

In this section, the performance of three SAPRC chemical mechanisms, SAPRC-07T, SAPRC-

11L (standard-lumped version) and SAPRC-11D (detailed version), in simulating D(O3-NO), O3,

NO and the test alkene is shown first for propene, an HRVOC that has already been studied

previously but for which experiments were carried out for quality control purposes, the 5 other

HRVOCs (1-butene, isobutene, trans-2-butene, cis-2-butene and 1,3-butadiene) studied for this

project, and then for the 5 non-HRVOCs (1-pentene, 1-hexene, trans-2-pentene, cis-2-pentene, 2-

methyl-2-butene) that were studied. Other results and sensitivity calculations with modified

mechanisms based on SAPRC-13A are also shown and discussed in section 3.3.6 (for 1,3-

butadiene) and section 3.3.8 (for 1-hexene).

Page 59: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

47

A summary of the experiments used for mechanism evaluation and metrics used for mechanism

evaluation from the data from these experiments is given in Table 10. Note that only those

experiments judged to be useful for mechanism evaluation are listed in this table; see Table 4 in

Section 2.3 for a complete list of all the test alkene - NOx experiments carried out for this project.

Summaries of the statistics for varouis measures of model performance (discussed in section

3.2.3) are also given in Table 10; these are discussed for the individual compounds in the

following sections.

Page 60: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

48

Table 10. List of initial concentrations and selected experimental and model simulation results for the mechanism evaluation

experiments carried out for this project.

Run ID Initial conc (ppb) Run

Hours

D(O3-NO) Rate (ppb/hr)a Maximum O3 (ppb)

a,b

NOx Alkene Expt. SAPRC-11D SAPRC-07T SAPRC-11L Expt. SAPRC-11D SAPRC-07T SAPRC-11L

Propene

EPA1683A 20 352 7.0 113 139 (21%)

Same as

SAPRC-11D

50 (-77%) 168 175 (4%)

Same as

SAPRC-11D

142 (-17%)

EPA1683B 20 352 5.1 112 139 (22%) 50 (-77%) 162 175 (8%) 142 (-13%)

EPA1713A 16 335 6.8 92 120 (26%) 42 (-75%) 157 157 (-0%) 124 (-24%)

EPA1713B 16 337 6.8 89 120 (29%) 42 (-72%) 151 157 (4%) 124 (-20%)

Average (25%) (-75%) (4%) (-18%)

1-Butene

EPA1703B 15 87 7.1 31 37 (18%) 15 (-69%) 22 (-35%) 133 140 (4%) 105 (n/a) 124 (-7%)

EPA1704A 50 401 6.1 99 110 (10%) 39 (-87%) 63 (-45%) 258 264 (2%) 233 (-11%) 255 (-1%)

EPA1705B 29 196 7.1 53 66 (22%) 26 (-69%) 38 (-31%) 202 208 (3%) 174 (-14%) 194 (-4%)

EPA1708B 31 195 7.4 57 65 (13%) 25 (-77%) 38 (-40%) 205 209 (2%) 174 (n/a) 197 (-4%)

Average (16%) (-76%) (-38%) (3%) (-13%) (-4%)

Isobutene

EPA1699B 31 88 6.8 41 33 (-22%) 85 (70%) 82 (67%) 195 174 (-12%) 168 (-15%) 168 (-15%)

EPA1700B 32 99 7.3 58 50 (-16%) 121 (70%) 118 (68%) 276 266 (-4%) 205 (-29%) 206 (-29%)

EPA1701A 44 257 7.0 126 87 (-37%) 220 (54%) 206 (48%) 332 279 (-17%) 205 (-47%) 203 (-48%)

EPA1701B 25 128 7.0 68 52 (-26%) 107 (44%) 106 (44%) 253 233 (-9%) 169 (-40%) 169 (-40%)

Average (-25%) (60%) (57%) (-10%) (-33%) (-33%)

trans-2-Butene

EPA1691B 16 41 7.1 63 70 (11%) 38 (-49%) 37 (-51%) 149 132 (-12%) 114 (-26%) 115 (-25%)

EPA1712B 26 58 7.2 95 105 (10%) 55 (-54%) 53 (-57%) 192 176 (-9%) 153 (-23%) 154 (-22%)

EPA1722A 45 96 6.9 166 181 (9%) 93 (-56%) 91 (-59%) 278 241 (-14%) 213 (-27%) 213 (-27%)

Average (10%) (-53%) (-56%) (-12%) (-25%) (-25%)

cis-2-Butene

EPA1692B 40 88 6.6 98 135 (32%) 85 (-15%) 82 (-18%) 225 214 (-5%) 191 (-17%) 191 (-16%)

EPA1699A 29 57 6.8 69 82 (18%) 58 (-18%) 55 (-22%) 195 178 (-9%) 158 (-22%) 159 (-21%)

EPA1700A 29 59 7.3 105 122 (15%) 82 (-25%) 78 (-29%) 265 242 (-9%) 219 (-19%) 221 (-18%)

EPA1722B 16 39 6.9 41 52 (23%) 36 (-15%) 35 (-16%) 149 132 (-12%) 115 (-25%) 117 (-24%)

Average (22%) (-18%) (-21%) (-9%) (-20%) (-20%)

1,3-Butadiene

EPA1702A 14 120 7.7 65 36 (-57%) 36 (-58%) 79 (20%) 180 144 (-22%) 143 (-23%) 102 (-56%)

EPA1702B 18 153 7.7 79 43 (-59%) 43 (-60%) 110 (33%) 208 164 (-23%) 163 (-24%) 116 (-56%)

EPA1703A 27 290 7.1 130 64 (-68%) 64 (-69%) 185 (35%) 252 204 (-21%) 203 (-22%) 106 (n/a)

Page 61: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

49

Run ID Initial conc (ppb) Run

Hours

D(O3-NO) Rate (ppb/hr)a Maximum O3 (ppb)

a,b

NOx Alkene Expt. SAPRC-11D SAPRC-07T SAPRC-11L Expt. SAPRC-11D SAPRC-07T SAPRC-11L

EPA1712A 26 152 7.2 120 47 (-87%) 47 (-88%) 131 (9%) 268 200 (-29%) 199 (-30%) 155 (-54%)

Average (-68%) (-69%) (24%) (-24%) (-25%) (-55%)

1-Pentene

EPA1704B 30 237 5.6 39 43 (11%) 26 (-41%) 42 (8%) 169 181 (7%) 152 (n/a) 191 (12%)

EPA1707A 49 426 8.2 60 64 (6%) 40 (-40%) 65 (7%) 219 234 (7%) 229 (4%) 251 (13%)

EPA1710A 54 467 7.8 72 67 (-7%) 42 (-53%) 67 (-6%) 239 247 (3%) 241 (1%) 265 (11%)

EPA1711B 21 334 6.7 43 47 (9%) 29 (-41%) 47 (8%) 124 141 (13%) 131 (5%) 146 (16%)

Average (5%) (-44%) (4%) (7%) (3%) (13%)

1-Hexene

EPA1705A 52 452 7.1 46 54 (16%) 42 (-9%) 68 (38%) 210 254 (19%) 233 (10%) 258 (20%)

EPA1707B 32 238 8.2 26 35 (32%) 28 (10%) 43 (51%) 166 200 (19%) 184 (11%) 201 (19%)

EPA1708A 53 455 7.4 49 53 (9%) 42 (-16%) 67 (32%) 215 259 (19%) 240 (11%) 264 (20%)

EPA1710B 30 213 7.8 26 30 (16%) 25 (-4%) 36 (34%) 161 194 (18%) 179 (10%) 196 (19%)

EPA1711A 32 290 6.7 33 39 (16%) 31 (-7%) 49 (37%) 163 198 (20%) 182 (11%) 198 (20%)

Average (18%) (-4%) (39%) (19%) (11%) (20%)

trans-2-Pentene

EPA1685B 18 61 7.4 75 67 (-12%) 62 (-19%) 60 (-22%) 139 133 (-5%) 131 (-6%) 132 (-6%)

EPA1724A 42 109 8.0 156 127 (-21%) 115 (-30%) 110 (-35%) 267 222 (-18%) 222 (-18%) 222 (-18%)

Average (-16%) (-24%) (-28%) (-12%) (-12%) (-12%)

cis-2-Pentene

EPA1687B 35 139 4.5 123 132 (7%) 132 (7%) 128 (4%) (161) 156 (n/a) 154 (n/a) 155 (n/a)

EPA1724B 16 51 8.0 46 48 (3%) 50 (8%) 49 (6%) 153 130 (-16%) 130 (-17%) 130 (-16%)

Average (5%) (7%) (5%) (-16%) (-17%) (-16%)

2-Methyl-2-Butene

EPA1698A 62 75 6.8 168 141 (-17%) 47 (-113%) 46 (-114%) 265 205 (-25%) 168 (n/a) 168 (n/a)

EPA1698B 61 61 6.8 136 112 (-20%) 34 (-119%) 33 (-121%) 208 156 (-29%) 121 (n/a) 121 (n/a)

EPA1717A 27 53 7.0 104 105 (1%) 42 (-85%) 41 (-87%) 203 173 (-16%) 149 (-31%) 150 (-30%)

EPA1717B 60 50 7.0 92 95 (2%) 28 (-106%) 28 (-107%) 149 126 (-17%) 102 (n/a) 102 (n/a)

Average (-8%) (-106%) (-107%) (-22%) (-31%) (-30%)

aSee section 3.2.3 for the definitions of the metrics used. Value in parenthese after the model simulation value is the relative bias, defined as

(model-experiment)/average(model, experiment). bParentheses around experimental value indicate that ozone increased by more than 5% in the last half hour of the experiment and the value

given is judged not to be a "true" ozone maximum. "(n/a)" for the percent fit indicates that that either the experiment or the model calculation

did not give a true ozone maximum.

Page 62: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

50

3.3.1. Propene

Although propene was extensively studied in previous projects and its experiments were

generally well simulated by current SAPRC detailed mechanisms (Carter, 2000 and 2010), the

propene control experiments carried out for this project were modeled in order to provide a

baseline for which to compare mechanism performance for the 10 alkenes that were studied for

this project, and also to show lumping effects. The results are shown in Figure 15. The results for

SAPRC-11D and SAPRC-07T are the same because both mechanisms have the same chemical

basis and represent propene explicitly, and both give quite good simulations of the data shown.

This suggests that the conditions of the runs and the measurement data are reasonably well

characterized for modeling, since the propene mechanism is well evaluated and has already been

shown to simulate most chamber data reasonably well (Carter, 2000 and 2010).

On the other hand, Figure 15 shows that SAPRC-11L significantly underpredicts reactivity in the

propene experiments, as measured by the maximum O3 concentrations and rates of NO oxidation,

O3 formation, and propene consumption. This is because (1) the the reractions of propene are

represented by the lumped model species OLE1 in SAPRC-11L, (2) the mechanism for this

lumped model species is derived from mechanisms for higher molecular weight alkenes as well

as propene (see Table 7), and (3) generally these compounds have lower reactivities than

propene due to their relatively lower radical yields (e.g., lower OH yields in their reactions with

O3) (Heo et al, 2010; Calvert et al, 2000) and due to their relatively higher yields of organic

nitrate formation in the reactions of the peroxy radicals with NO (O’Brien et al, 1998; Calvert et

al, 2000), which causes increased radical termination and lower overall reactivity. Heo et al

(2010) reported similar problems in simulating ozone formation by the fixed-parameter standard-

lumped SAPRC-07 (SAPRC-07L).

Page 63: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

51

Figure 15. Comparison of modeled and measured concentrations for propene.*

*Note that results for SAPRC-07T and SAPRC-11D are nearly the same and overlapped in the plots.

3.3.2. 1-Butene

As shown in Figure 16, SAPRC-11D simulated D(O3-NO), O3, NO and 1-butene reasonably and

much better than SAPRC-07T (Hutzell et al, 2012) and SAPRC-11L. Note that this far better

performance of SAPRC-11D is due to explicitly representing 1-butene instead of lumping 1-

butene with other alkenes in lumped reactions (i.e., OLE1 reactions). Note also that the reletively

poor model performance of SAPRC-07T and SAPRC-11L shown in Figure 16 is not due to

fundamental flaws to the chemical basis used for SAPRC-07T and SAPRC-11L because nearly

the same detailed reactions for alkenes used for SAPRC-11D were used in deriving condensed

reactions for SAPRC-07T and SAPRC-11L. Figure 16 shows that 1-butene is more reactive (i.e.,

oxidizes NO, forms O3, and consumes 1-butene faster) than the mixture of compounds used for

EPA1683A EPA1683B EPA1713A EPA1713B

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

Pro

pe

ne

(p

pm

)

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.000

0.005

0.010

0.015

0.020

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240

0.00

0.05

0.10

0.15

0.20

0 120 240

0.000

0.005

0.010

0.015

0.020

0 120 240

0.0

0.1

0.2

0.3

0.4

0 120 240

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.000

0.005

0.010

0.015

0.020

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.000

0.005

0.010

0.015

0.020

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 64: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

52

OLE1 in both SAPRC-07T and SAPRC-11L (see Table 7 for the mixture composition). The

OLE1 mechanism in SAPRC-07T is less reactive than that in SAPRC-11L because the mixuture

used for developing the OLE1 mechanism does not include propene, which is the most reactive

compound among those used to derive the OLE1 reactions in SAPRC-11L. This is the reason

that SAPRC-07T underpredicts even more than does SAPRC-11L. This is despite the fact that

SAPRC-07T is actually less lumped than SAPRC-11L, and gives significantly better results in

simulating results of experiments with propene, (see Figure 15).

Figure 16. Comparison of modeled and measured concentrations for 1-butene.

3.3.3. Isobutene

SAPRC-11D also reasonably simulated D(O3-NO), O3, NO and isobutene as shown in Figure 17.

Figure 17 also demonstrates the impact of lumping (i.e., lumping isobutene with other

compounds into OLE2 (see Table 6) and using OLE2 reactions in SAPRC-07T and SAPRC-

EPA1703B EPA1704A EPA1705B EPA1708B

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

1-B

ute

ne

(p

pm

)

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

0.000

0.004

0.008

0.012

0.016

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0.5

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 65: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

53

11L). The results also indicate that isobutene is considerably less reactive than the mixture of

compounds used to derive the reactions of OLE2 (Table 7) in terms of rates of NO oxidation, O3

formation, and reactant consumption, but is more reactive in terms of the maximum O3 formation

potential in most experiments. The results for SAPRC-07T and SAPRC-11L are very similar

because the mixtures used to derive the OLE2 mechanisms only differ in the inclusion of 1,3-

butadiene for SAPRC-11L, whose relative contribution in the mixture is only 6% (Table 7). For

this reason, the SAPRC-07T and SAPRC-11D results will be very close for the other alkenes

reprpesented by OLE2 in SAPRC-07T.

Figure 17. Comparison of modeled and measured concentrations for evaluating mechanisms for

isobutene.

EPA1699B EPA1700B EPA1701A EPA1701B

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

Iso

bu

ten

e (

pp

m)

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.04

0.08

0.12

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 66: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

54

3.3.4. trans-2-Butene

SAPRC-11D reasonably simulated D(O3-NO), O3, NO and trans-2-butene as shown in Figure 18.

D(O3-NO) and O3 start to deviate from measurements after nearly all trans-2-butene is consumed.

Therefore, the mechanisms for the oxidation products of trans-2-butene may have minor

problems. However, based on the performance for SAPRC-11D shown in Figure 18, ozone

formation from trans-2-butene is reasonably simulated by SAPRC-11D.

As with isobutene, the SAPRC-11L and SAPRC-07T represent trans-2-butene by OLE2, which

has very similar mechanisms in SAPRC-11L and SAPRC-07T. In this case, trans-2-butene is

more reactive than OLE2 in terms of predictions of both reaction rates and maximum O3 levels,

though the difference between the explicit and lumped mechanism is not as great as is the case

for isobutene. This is because the most of the compounds used to derive OLE2 are more like the

2-butenes (i.e., trans-2-butene and cis-2-butene) than isobutene.

Page 67: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

55

Figure 18. Comparison of modeled and measured concentrations for evaluating mechanisms for

trans-2-butene.

3.3.5. cis-2-Butene

SAPRC-11D also reasonably simulated D(O3-NO), O3, NO and cis-2-butene as shown in Figure

19. As with cis-2-butene, the D(O3-NO) and O3 start to deviate from measurements after nearly

all 2-butene is consumed. The ozone formation rate simulated by SAPRC-11D is somewhat

faster than observation in the early stage of the experiment. The performance of SAPRC-11L and

SAPRC-07T for cis-2-butene is similar to that for trans-2-butene, though the effect of lumping

does not appear to be as great as for trans-2-butene.

This overpredicted ozone formation and NO oxidation rate in the early stage of the experiment

can be explained in part by the fact that SAPRC-11D uses 0.54 OH as the OH yield of the

reaction with O3 for both trans-2-butene and cis-2-butene while 0.33 OH for cis-2-butene and

EPA1691B EPA1712B EPA1722A

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

t-2

-Bu

ten

e (

pp

m)

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

0.000

0.005

0.010

0.015

0.020

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.00

0.04

0.08

0.12

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 68: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

56

0.64 OH for trans-2-butene are recommended by IUPAC (2005). However, the impact of using

this higher OH yield (0.54 OH) for cis-2-butene on the model performance in simulating the O3

yield (or the highest ozone by the end of the experiment) was minor based on the similar model

performance by SAPRC-11D for trans-2-butene and cis-2-butene (compare the O3 plots of

Figure 18 for trans-2-butene and the O3 plots of Figure 19 for cis-2-butene; for overall

comparison, see Table 10).

Figure 19. Comparison of modeled and measured concentrations for evaluating mechanisms for

cis-2-butene.

EPA1692B EPA1699A EPA1700A EPA1722B

Irradiation time (minutes)

D(O

3-N

O)

(ppm

)O

3 (

ppm

)N

O (

ppm

)c-2

-Bute

ne (

ppm

)

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.000

0.005

0.010

0.015

0.020

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 69: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

57

3.3.6. 1,3-Butadiene

All three mechanisms, SAPRC-07T, SAPRC-11L and SAPRC-11D showed poor performance

for the four experiments with 1,3-butadiene carried out for this project (Figure 20). At the bottom

of Figure 20, results for two experiments, EPA1072A and EPA1072B, used by Sato et al (2011)

are also shown. For those two experiments hydrogen peroxide (H2O2) was injected to use it as an

OH source. Therefore, the 1,3-butadiene + OH reaction was dominant over the 1,3-butadiene +

O3 reaction in these two experiments. The 1,3-butadiene + O3 reaction was relatively more

important for the four experiments carried out for this project, for example being calculated to

occur about 23% of the time for EPA1702A and 33% of the time in EPA1703A using the

SAPRC-07T mechanism.

Both SAPRC-07T and SAPRC-11D represent 1,3-butadiene explicitly and have the same

chemical basis, so they give the same results in simulating the data and also should give the best

model performande. Although they perform significantly better than the lumped SAPRC-11L

mechanism, they are not entirely satisfactory, underpredicting both the rates of O3 formation, NO

oxidation, and 1,3-butadiene consumption and also the final ozone yields for the experiments

carried out for this project. On the other hand, they perform reasonably well in simulating the

ozone formed and 1,3-butadiene consumption in the added H2O2 experiments, suggesting that the

problem may be in the butadiene + O3 mechanism. This is discussed further below.

The lumped mechanism SAPRC-11L actually performs better than the explicit mechanisms in

simulating the initial NO oxidation, O3 formation, and butadiene consumption rates, though it

tends to somewhat overpredict these rates, and it greatly underpredicts the final O3 yield. This is

appaprent even in the simulations of the added H2O2 experiments, though to a much lesser extent

than for the experiments without added H2O2. This can be attributed to 1,3-butadiene having

fewer NOx sinks involved in its reaction than the other alkenes used to derive the OLE2

mechanism, and this is consistent with the prediction of the detailed mechanism SAPRC-11D,

which predicts lower NOx sinks and therefore higher O3 yields than the lumped model.

Figure 21 shows results of model simulations of the 1,3-butadiene experiments with two versions

of the preliminary updated SAPRC-13A mechanism, where they can be compared with the

simulations using SAPRC-11D discussed above. All mechanisms shown on that figure represent

1,3-butadiene explicitly, so lumping is not an issue. As discussed in Table 9, the two versions of

SAPRC-13A differ only in their treatment of the 1,3-butadiene + O3 reaction, where the SAPRC-

13A1 uses a mechanism similar to that used in SAPRC-11D with the OH yield increased

somewhat to be consistent with data given by Calvert et al (2000) and Kramp and Paulson (2000)

while SAPRC-13A uses a mechanism where the radical yield in that reaction is increased to its

highest chemically justifiable value. Although SAPRC-13A1 and SAPRC-13A differ from

SAPRC-11D in that it has an improved treatment of unsaturated reactive organic products,

Figure 21 shows that the differences between SAPRC-13A1 and SAPRC-11D are relativlely

small, while the greatest improvement results when the 1,3-butadiene + O3 mechanism is

changed in SAPRC-13A.

Although the mechanism with the higher radical yields in the 1,3-butadiene + O3 reaction gives

the best fits to the data of the mechanisms tested, the results are still not entirely satisfactory. The

Page 70: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

58

maximum O3 concentration is still underpredicted, though not to the extent observed with the

other mechanisms. The rate of NO oxidation and O3 formation during most of the experiment is

reasonably well simulated, the rate of consumption of 1,3-butadiene is still underpredicted,

though to a lesser extent than the other mechanisms. The underprediction of O3 could be

contributing to this, but an underprediction of OH radicals may also be a factor. Clearly, the

mechanism for the reactions of 1,3-butadiene with O3, and possibly other reactions of 1,3-

butadiene or its oxidation products, need to be investigated further.

Page 71: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

59

Figure 20. Comparison of modeled and measured concentrations for evaluating mechanisms for

1,3-butadiene.*

*Note that results for SAPRC-07T and SAPRC-11D are nearly the same and overlapped in the plots.

EPA1702A EPA1702B EPA1703A EPA1712A

EPA1072A (Added H2O2) EPA1072B (Added H2O2)

O3 (ppm) 1,3-Butadiene (ppm) O3 (ppm) 1,3-Butadiene (ppm)

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

1,3

-Bu

tad

ien

e (

pp

m)

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.000

0.004

0.008

0.012

0.016

0 120 240 360 480

0.00

0.04

0.08

0.12

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.000

0.005

0.010

0.015

0.020

0 120 240 360 480

0.00

0.04

0.08

0.12

0.16

0 120 240 360 480

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

0.0

0.2

0.4

0.6

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0.5

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0 120 240 360

Page 72: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

60

Figure 21. Comparison of modeled and measured concentrations for evaluating mechanisms for

1,3-butadiene using SAPRC-11D and two versions of the SAPRC-13A mechanism.

The major oxidation product of 1,3-butadiene is acrolein, and although this compound was not

studied for this project, a few experiments with acrolein were carried out previously and used in

the evaluations of SAPRC-07 as well as earlier versions of SAPRC. Acrolein (CH2=CHCHO) is

EPA1702A EPA1702B EPA1703A EPA1712A

EPA1072A (Added H2O2) EPA1072B (Added H2O2)

O3 (ppm) 1,3-Butadiene (ppm) O3 (ppm) 1,3-Butadiene (ppm)

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

1,3

-Bu

tad

ien

e (

pp

m)

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.000

0.004

0.008

0.012

0.016

0 120 240 360 480

0.00

0.04

0.08

0.12

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.000

0.005

0.010

0.015

0.020

0 120 240 360 480

0.00

0.04

0.08

0.12

0.16

0 120 240 360 480

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

Experimental SAPRC-11D SAPRC-13A1 SAPRC-13A

0.0

0.2

0.4

0.6

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

Page 73: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

61

represented by methacrolein (CH2=C(CH3)CHO) in SAPRC-07L but is represented explicitly in

SAPRC-07T, SAPRC-11D, and SAPRC-13A. Figure 22 shows the data from the available

acrolein experiments and model simulations using these mechanisms, where SAPRC-07T is not

shown because the results are nearly the same as SAPRC-11D. As expected, better fits are

obtained with the mechanisms that represent acrolein explicitly than SAPRC-11L, which

represents acrolein using methacrolein. The updates to the acrolein mechanism for SAPRC-13A

also improved the fits to the data compared to the representation used in SAPRC-07T and

SAPRC-11D, indicating that the updates are appropriate. However, the simulations using

SAPRC-11D and SAPRC-07T are not greatly different than those using the updated mechanism,

so existing models using these mechanisms are not unreasonable for this compound.

Figure 22. Comparison of modeled and measured concentrations for evaluating mechanisms for

acrolein.

ITC941 ITC944 ITC946

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

Acro

lein

(p

pm

)

0.0

0.2

0.4

0.6

0 120 240 360

0.00

0.05

0.10

0.15

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.4

0.5

0.6

0.7

0 120 240 360

0.0

0.2

0.4

0.6

0.8

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0.5

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.8

1.0

1.2

1.4

1.6

1.8

0 120 240 360

0.0

0.4

0.8

1.2

0 120 240 360

0.0

0.2

0.4

0.6

0.8

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.2

0.4

0.6

0.8

0 120 240 360

Experimental SAPRC-11L SAPRC-11D SAPRC-13A

Page 74: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

62

3.3.7. 1-Pentene

As shown in Figure 23, SAPRC-11D simulated D(O3-NO), O3, NO and 1-pentene reasonably

well. These are the first chamber data available to evaluate mechanisms for this compound, and

the results give us reasonably good conficence in our ability to estimate its mechanism. It also

gives us reasonable confidence in the prediction of the existing detailed mechanism for this

compound.

As with the other alkenes, the lumped mechanisms, SAPRC-07T and SAPRC-11L, do not

simulate the data as well as the explicit mechanism SAPRC-11D, though the OLE1 mechanim in

SAPRC-11L fortuitously simulates these data almost as well as the explicit mechanism.

Apparently the reactivity charactistics of 1-pentene are near the average for the compounds used

to derive OLE2 for SAPRC-11L (see Table 7). On the other hand, the OLE1 mechanism for

SAPRC-07T, which excludes propene from the average, significantly underpredicts the reactivity

of 1-pentene. This can be explaind in part by the fact that most of the compounds used to derive

the SAPRC-07T OLE1 have higher nitrate yields and thus more radical termination than

predicted for 1-pentene.

Page 75: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

63

Figure 23. Comparison of modeled and measured concentrations for evaluating mechanisms for

1-pentene.

3.3.8. 1-Hexene

Figure 24 and Figure 25 show plots of experimental and model calculations for runs with 1-

hexene. Note that these include not only experiments carried out for this project (in Figure 24

and Figure 25) but also experiments carried out previously at higher reactant concentrations and

used for the evaluation of SAPRC-07 and earlier mechanisms (in Figure 25) (Carter, 2000, 2010).

SAPRC-11D simulated D(O3-NO), O3, NO and 1-hexene reasonably during the rapid ozone

formation peorid. However, it overpredicted the maximum D(O3-NO) and O3 by ~20%. The

mechanism for 1-hexene is more complex than those for 1-butene and 1-pentene due to more

active isomerization (i.e., H-migration in the alkoxy radicals formed from the reactions of OH

radicals with 1-hexene; Atkinson et al, 1995; Kwok et al, 1996). For 1-hexene + O3 reaction,

reducing the OH yield was useful in solving the overprediction problem. However, this conflicts

EPA1704B EPA1707A EPA1710A EPA1711B

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

1-P

en

ten

e (

pp

m)

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240

0.00

0.05

0.10

0.15

0.20

0 120 240

0.00

0.01

0.02

0.03

0 120 240

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240

0.0

0.1

0.2

0.3

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.02

0.04

0.06

0 120 240 360 480

0.0

0.1

0.2

0.3

0.4

0.5

0 120 240 360 480

0.0

0.1

0.2

0.3

0.4

0 120 240 360 480

0.0

0.1

0.2

0.3

0 120 240 360 480

0.00

0.02

0.04

0.06

0 120 240 360 480

0.0

0.1

0.2

0.3

0.4

0.5

0 120 240 360 480

0.00

0.04

0.08

0.12

0.16

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

0.000

0.005

0.010

0.015

0.020

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 76: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

64

with the litrature because SAPRC-11D uses an OH yield lower than the literature reported yields

(i.e., 0.128 OH vs. 0.20~0.30 OH). This is discussed further below.

When we compare the time-concentration profiles simulated by SAPRC-07T, SAPRC-11L and

SAPRC-11D for the 3 termial alkenes (1-butene, 1-pentene and 1-hexene), overall SAPRC-11D

is better in simulating ozone formation than SAPRC-07T and SAPRC-11L (see Figure 16 for 1-

butene, Figure 23 for 1-pentene and Figure 24 and Figure 25 for 1-hexene); SAPRC-11L is better

than SAPRC-07T in simulating ozone formation from 1-butene. In deriving the OLE1 reactions

for SAPRC-11L, propene was also used while propene was not used in deriving the OLE1

reactions for SAPRC-07T (Carter, 2010; Hutzell, 2012). Based on the results for SAPRC-11L

and SAPRC-07T shown in the figures, the ozone chemistry for 1-butene seems closer to the

ozone chemistry for propene than that for 1-hexene.

Figure 24. Comparison of modeled and measured concentrations for evaluating mechanisms for

1-hexene (part 1 of 2).

EPA1705A EPA1707B EPA1708A EPA1710B

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

1-H

exe

ne

(p

pm

)

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0.5

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0.5

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 77: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

65

Figure 25. Comparison of modeled and measured concentrations for evaluating mechanisms for

1-hexene (part 2 of 2).

In order to see which changes to the 1-hexene mechanism may give improved simulations of the

chamber experiments, a number of sensitivity calculations using SAPRC-13A with modified

mechanisms are shown in Figure 26. Note that unmodified SAPRC-13A has essentially the same

1-hexene mechanism as SAPRC-11D and gives essentially the same simulation results. The

figure only shows ozone simulations from two experiments, one (EPA1705A) representative of a

lower NOx experiment from this project and the other (ITC931) representative of a higher NOx

run used in previous SAPRC mechanism evaluations (Carter, 2000, 2010). However, the results

of the simulations of the other experiments (see Figure 24 and Figure 25) are similar to the

simulations of these representative runs.

EPA1711A ITC929 ITC931 ITC934

Irradiation time (minutes)

D(O

3-N

O)

(ppm

)O

3 (

ppm

)N

O (

ppm

)1-H

exene (

ppm

)

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.2

0.4

0.6

0.8

0 120 240 360

0.0

0.2

0.4

0.6

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.2

0.4

0.6

0.8

1.0

0 120 240 360

0.0

0.4

0.8

1.2

0 120 240 360

0.0

0.2

0.4

0.6

0.8

0 120 240 360

0.0

0.1

0.2

0.3

0.4

0 120 240 360

0.0

0.5

1.0

1.5

2.0

0 120 240 360

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0 120 240 360

0.0

0.2

0.4

0.6

0.8

0 120 240 360

0.0

0.2

0.4

0.6

0.8

0 120 240 360

0.0

0.5

1.0

1.5

2.0

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 78: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

66

Figure 26. Results of selected mechanism variation sensitivity calculations for ozone formation from selected 1-hexene experiments.

EPA1705A

* ITC931

* Calc 1 Calc 2 Calc 3

a

SAPRC-11D SAPRC-13A with

Simplified O3 mechanism:

.128 OH + .158 HO2

SAPRC-13A with

Simplified O3 mechanism:

.286 OH

b

Simplified O3 mechanism:

.286 OH

(Same as Calc 3a)

Simplified O3 mechanism:

.24 OH

(Best fit overall)

Simplified O3 mechanism:

.23 {OH + HO2}

OH yield given by Calvert

et al (2000) + radical co-

product

c

Simplified O3 mechanism:

.24 OH

(Same as Calc 2b)

Simplified O3 mechanism:

.0.1 OH + 0.25 RCO3

(PAN2 precursor [NOx

sink] instead of OH)

Simplified O3 mechanism:

.24 OH + 0.2 NRAD;

NRAD + NO2 XN

(Best fits to max O3)

d

SAPRC-13A with

Standard OH mechanism

1.342 RO2C + 0.086

nitrates + …

(Same as Calc 1a)

OH mechanism generated

assuming no isomerization

1.004 RO2C + 0.086

nitrates + …

OH mechanism generated

assuming no isomerization

and nitrate yield increased

to 9.6% to give formation

rates similar to SAPRC-

13A

*The data plotted are concentrations of O3 in ppm vs irradiation time in minutes.

1Experimental Calc 1 Calc 2 Calc 3

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.3

0.6

0.9

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.3

0.6

0.9

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.3

0.6

0.9

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.3

0.6

0.9

0 120 240 360

Page 79: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

67

Figure 26a shows a comparison of model simulations using the SAPRC-11D mechanism (as

shown for all runs on Figure 24 and Figure 25) and simulations using SAPRC-13A using highly

simplified mechanisms for the 1-hexene + O3 reaction, as indicated on the figure. Both simplified

mechanisms have the same mechanisms for the reactions of 1-hexene with OH, NO3, and O3P,

and the same total radical yield in the O3 reaction as used in SAPRC-11D. They indicate that the

use of the different base mechanism and the simplified representatation of the O3 has very little

effect on the model simulations, so the results of the simulations with these simplified

mechanisms with the same radical yields in the O3 reaction as SAPRC-11D are indicative of the

model performance of SAPRC-11D.

Figure 26b shows the effects of changing the radical yields in the O3 reaction on the simulations,

and indicates that the results of the simulations are sensitive to this parameter. Decresing the

radical yield slightly improves the simulations somewhat, but does not address the problem of

the overprediction of the O3 maximum. Calculation 2b shows that the OH yield in the 1-hexene +

O3 reaction that best fits the data (~24%) agrees well with the ~23% yield given by Calvert et al

(2000), but it is not mechansticly reasonable to assume that OH is formed in the absence of an

approximately equal amount of other radical products. Calculation 3b shows that assuming an

equal yield of other radicals along with the ~23% OH yield results in a significant overprediction

of the reactivity in both the new and previous 1-hexene experiments. The results are similar for

the other runs shown on Figure 24 and Figure 25. This indicates an inconsistency between the

chamber data and the literature with regard to radical yields in the reactions of O3 with 1-alkenes,

as noted previously (Carter, 2000 and 2010).

The consistent overprediction of the maximum O3 concentration in the 1-hexene experiments

indicates that the mechanisms underpredict NOx sinks in the reactions of 1-hexene or its reactive

products, since NOx sinks are the primary factor determing final O3 yields in experients where

models reasonably simulate NO oxidation and O3 formation rates. Figure 26c shows results of

simulations where the simplified 1-hexene + O3 mechanism is modified to increase NOx sinks.

Calculation 2c shows the effect of adding a NOx sink by forming the lumped peroxyacyl radical

model species RCO3, which primarily reacts with NO2 to form a PAN analogue. The yield of

RCO3 is adjusted to optimize the simulations of the maximum O3 and the yield of OH is

adjusted to optimize the simulations of NO oxidation and O3 foramtion rates in all the

experiments. Likewise, Calculation 3c shows the effect of representing the NOx sink by the

model species NRAD, which is used in mechanisms for some amines (Carter, 2008), to represent

effects of radicals that consume NOx under all conditions, even when excess NO is present and

PAN species are not formed. If the OH and NRAD yields are adjusted to optimize the

simulations of the data, the results are the same as assuming that the NOx sink is the PAN

precursor RCO3, though the optimized radical and NOx sink yields are different. Therefore, these

data do not unambiguously indicate what the apparent NOx sink is, though it is probably more

chemically reasonable to assume it is a PAN precursor as assumed in Calculation 2c.

Another possible reason for the O3 overprediction in the 1-hexene experiments is the assumption

in the mechanmism that a significant fraction of the preoxy radicals formed in the OH reaction

undergoes isomerization, which causes additional NO to NO2 conversions. Reducing NO to NO2

conversions will also reduce final O3 yields, though to a somewhat less extent than increasing

NOx sinks. This isomerization reaction is estimated to a major pathway in the 1-hexene system

Page 80: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

68

but is not predicted to be important for 1-pentene, for which the model performance in

simulating O3 yields is much better (see Figure 23). If isomerization is assumed to be also not

important in the 1-hexene system, then the number of NO to NO2 conversions estimated by the

SAPRC mechanism generation system (Carter, 2000, 2010) is reduced from 1.34 to ~1. The

effects of assuming no isomerization are shown on Figure 26d. Calculation 2d shows that if only

the isomerization is reduced but no other changes are made to the way the mechanism is

estimated, then the NO formation and O3 formation rates are significantly overpredicted. This is

because decreasing isomerization also decreases the estimated amount of organic nitrate

formation in the system due to the reactions of peroxy radicals with NO, which is an important

process removing radicals and NOx. The isomerization involves formation of additional peroxy

radicals in the more complex reaction scheme. The overall organic nitrate yield in the OH + 1-

hexene reaction predicted by the mechanism generation system is 8.6% in the standard SAPRC-

11D mechanism and is reduced to 6.7% if isomerization is assumed not to occur. It is necessary

to increase the organic nitrate yield in this reaction from 6.7% to 9.6% in order to simulate the

data (see Calculation 3d). This mechanism gives better simulations of the final O3 yield data,

though not quite as good as the mechanism where additional NOx sinks are assumed in the O3

reaction.

However, if no isomerization is assumed in the OH reaction, then the formaldehyde yields are

predicted to increase from 48%, which is in reasonable agreement with the experimental product

data (Atkinson et al, 1995; Calvert et al, 2000) to ~86%, which is not in reasonable agreement.

Formaldehyde data in some of the 1-hexene experiments are also somewhat better fit using the

standard mechanism, but the data and calibration quality are probably too uncertain to serve as a

basis for mechanism evaluation. In any case, it appears more likely that the problem lies with

insufficnet NOx sinks in the 1-hexene + O3 mechanism than oversestimation of isomerization in

the OH reactions.

3.3.9. trans- and cis-2-Pentene

SAPRC-11D reasonably simulated D(O3-NO), O3, NO and 2-pentene in the trans- and cis-2-

ptentene experiments as shown in Figure 27. For EPA1724A and EPA1724B, D(O3-NO) and O3

modeled by SAPRC-11D start to deviate from measurements after nearly all the 2-pentene is

consumed. Therefore, the mechanisms for the oxidation products of trans-2-pentene may have

minor problems. However, the results shown in Figure 27 indicate that SAPRC-11D’s

mechanism for trans-2-pentene is reasonable.

The lumped SAPRC-07T and SAPRC-11L mechanisms give almost exactly the same model

simulations as the more explicit mechanism SAPRC-11D, at least for the data shown in Figure

27. This indicates that the mechanism characteristics of the 2-pentenes are very close to the

average for the mixtures of alkenes used to derive the OLE2 mechanismsfor SAPRC-07T and

SAPRC-11L.

Page 81: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

69

Figure 27. Comparison of modeled and measured concentrations for evaluating mechanisms for

the 2-pentenes.

3.3.10. 2-Methyl-2-butene

SAPRC-11D reasonably simulated D(O3-NO), O3, NO and 2-methyl-2-butene in the rapid ozone

formation period as shown in Figure 28, though the initial NO oxidation and O3 formation rate

may be somewhat underpredicted. However, D(O3-NO) and O3 modeled by SAPRC-11D start to

deviate from measurements after nearly all 2-methyl-2-butene is consumed. Increasing the initial

2-methyl-2-butene concentration was helpful to reduce the underprediction shown in Figure 28.

Somewhat better simulations of this are obtained if the overall nitrate yield in the OH reaction is

reduced, though mechanism adjustements based on this relatively short time period and small

number of data points are uncertain. Based on the results shown in Figure 28, ozone formation

from 2-methyl-2-butene (a branched internal alkene) is poorly described by the OLE2 reactions,

Trans-2-Pentene Cis-2-Pentene

EPA1685B EPA1724A EPA1687B EPA1724B

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

2-P

en

ten

e (

pp

m)

0.00

0.05

0.10

0.15

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

0.000

0.005

0.010

0.015

0.020

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360 480

0.0

0.1

0.2

0.3

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360 480

0.00

0.04

0.08

0.12

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 60 120 180 240

0.00

0.05

0.10

0.15

0.20

0 60 120 180 240

0.00

0.01

0.02

0.03

0.04

0 60 120 180 240

0.00

0.04

0.08

0.12

0.16

0 60 120 180 240

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.000

0.005

0.010

0.015

0.020

0 120 240 360 480

0.00

0.02

0.04

0.06

0 120 240 360 480

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 82: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

70

which are based primarily by mechanisms of alkenes with two substituents around the double

bond (see Table 7).

Figure 28. Comparison of modeled and measured concentrations for evaluating mechanisms for

2-methyl-2-butene.

3.4. Summary and discussion

In order for a model to accurately simulate the effects of emissions of a reactive compound on O3

formation, it must appropriately simulate the effect of the compound on both the rate of NO

oxidation and O3 foramtion and also the effects on the final O3 yield. These reflect different

aspects of the mechanism, and it is possible for a model to overpredict one and underpredict the

other. Predictions of NO oxidation and O3 formation rates are affected primarily by predictions

of the effects of the reactions of the injected compounds and their major reactive oxidation

products on overall radical levels, i.e., on radical sources and sinks in the reactions, and to a

EPA1698A EPA1698B EPA1717A EPA1717B

Irradiation time (minutes)

D(O

3-N

O)

(pp

m)

O3

(p

pm

)N

O (

pp

m)

2-M

eth

yl-

2-b

ute

ne

0.0

0.1

0.2

0.3

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0 120 240 360

0.0

0.1

0.2

0.3

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.04

0.08

0.12

0.16

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

0.00

0.02

0.04

0.06

0 120 240 360

Experimental SAPRC-07T SAPRC-11L SAPRC-11D

Page 83: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

71

lesser extent on the numbers of NO to NO2 conversions involved in these reactions. Predictions

of maximum O3 yields are affected to some extent by these factors. However, effects of NOx

sinks in the mechanisms, which are generally not important in affecting rates of NO oxidation

and O3 formation in the initial stages of the simulations, tend to be the dominant factor for

compounds that have NOx sinks. Although NOx sinks tend to be relatively more important in

aromatic mechanisms, most alkenes form PAN species and organic nitrates when they react, and

these and other NOx sink processes affect predictions of final O3 yields in simulations that are

ultimately NOx-limited, as is the case for most of the experiments carried out for this project.

The data from the experiments carried out for this project can be used to test how well the

mechanisms represent both of these important aspects of ozone formation. As discussed in

section 3.2.3, the ability of the model to simulate the rate of NO oxidation and O3 foramtion is

measured by the quantity “D(O3-NO) Rate”, which is derived from the NO and O3 data during

the stages of the experiment where NO oxidation and O3 formation are occurring. The ability of

the mechanism to simulate final O3 yeilds independeltly of the O3 formation rates is measured by

the quantity "Maximum O3" which is the final O3 yeild in experiments carried out for a

sufficiently long duration that significant new O3 formation is not occurring when the irradiation

ends. Most of the experiments carried out for this project were of sufficiently long duration that

maximum O3 data were obtained, but the few experiments that maximum O3 data were not

obtained were not used to determine this metric of model performance.

Table 10 at the beginning of section 3.3 summarizes model performance in terms of these two

model performance measures for the experiments used for mechanism evaluation for this project.

The averages of the model errors that are defined as “(model - experimenta) /{(model +

experimental)/2}” are also shown in Table 10. Generally consistent model errors were observed

in all the experiments with a given compound, and the averages of the model biases for the

various compounds and mechanmisms are shown graphically in Figure 29.

As shown in Figure 15 through Figure 28 in the previous sections and summarized in Table 10

and Figure 29, the detailed SAPRC-11 (SAPRC-11D) reasonably simulated ozone formation

from most of the alkenes studied for this project while the performance for 1,3-butadiene was

unsatisfactory, and the simulations with 1-hexene and 2-methyl-2-butene also needed

improvement. SAPRC-11D underpreicted the ozone formation and NO oxidation rate (D(O3-

NO) Rate) by ~65-70% and underpredicted the maximum O3 for 1,3-butadiene by ~25%, and

SAPRC-11D overpredicted the maximum O3 for 1-hexene by about 20% and underpredicted the

maximum O3 for 2-methyl-2-butene by ~20%. In the case of 1,3-butadiene, the preliminary

updated SAPRC-13A mechanism with increased radical formation in the O3 reaction improved

the average bias of D(O3-NO) Rate from -62% to -25%, though it still underpredicted the

maximum O3 by about 18% on the average. Increasing NOx sinks in the reactions of 1-hexene

with O3 reduced the average bias in the simulations of the maximum O3 in experiments with 1-

hexene, but we were unable to find reasonable mechanism adjustments that improved

simulations of the maximum O3 in the experiments with 2-methyl-2-butene.

Page 84: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

72

Figure 29. Average model biases in SAPRC, SAPRC-11T, and SAPRC-11L model simulations

of Rate D(O3-NO) and Maximum O3 for the experiments with the alkenes studied for this

project.*

*The model bias is defined as (model-experiment)/average(model, experiment). Results are not shown for SAPRC-

07T simulations of propene and 1,3-butadiene because these compounds are represented explicitly so the results are

essentially the same as for SAPRC-11D. The average model biases of D(O3-NO) Rate by SAPRC-07T for 1-butene

and 2-methyl-2-butene were -76% and -106%, respectively. The average model biases of D(O3-NO) Rate by

SAPRC-11L for propene and 2-methyl-2-butene were -75% and -107%, respectively.

As expected, in most cases the mechanisms that represented the compounds with lumped model

species did not perform as well in simulating the data as mechanisms that represented these

compounds explicitly. The results for propene, 1-butene, 1-pentene and 1-hexene indicate that

C3+ 1-alkenes share similar O3 formation chemistries but also have differences among those 1-

alkenes. The results for cis/trans 2-butene and 2-pentene indicate that unbranched internal

alkenes share similar ozone formation chemistries. In addition, the results of this study indicate

that lumping isoalkenes such as isobutene and branched internal alkenes such as 2-methyl-2-

butene with unbranched internal alkenes such as unbranched 2- or 3-alkenes (e.g., 2-butene and

2-pentene) introduces significant inaccuracies. If these compounds are important in emissions,

they should be represented using separate lumped or explicit model species.

Clearly, models that use mechanisms that explicltly represent the important emitted compounds

will give more reliable predictions of ozone formation over the full variety of scenarios and

chemical environments than mechanisms that lump differently reacting compounds together.

However, there is a cost in terms of computer time and data storage involved with increasing the

number of model species, and inaccuracies and uncertainties in speciation profiles needed for

preparing emissions data means that there is a point of diminishing returns in terms of improved

accuracy resulting from increased chemical detail in models. Increased cost in computer

resources means compromises have to be made in the number of cases studied or the number of

cells used in 3-D air quality models that may have greater adverse impacts in policy-relevant

modeling than uncertainties and inaccuracies due to lumping, especially if the lumping is done

appropriately for the scenarios being modeled. Some scenarios, such as simulations of upset

SAPRC-11D SAPRC-07T * SAPRC-11L

Propene

1-Butene

Isobutene

trans-2-Butene

cis-2-Butene

1,3-Butadiene

1-Pentene

1-Hexene

trans-2-Pentene

cis-2-Pentene

2-Methyl-2-Butene

Average Model Bias

-75% -50% -25% 0% 25% 50% 75%

D(O3-NO) Rate Maximum O3

-75% -50% -25% 0% 25% 50% 75% -75% -50% -25% 0% 25% 50% 75%

Page 85: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

73

emissions (or event emissions) in the Houston industrial areas, require greater chemical detail

than simulations of NOx-limited scenarios that are less sensitive to VOCs, or have less variation

in emitted VOC compositions. However, model simulations using detailed and near-explicit

mechanisms are essential to assess the effects of lumping approximations, and provide important

and necessary data to determine the optimum level of lumping for policy-relevant modeling. In

re-deriving lumping methods for the tested 10 alkenes for the Houston area, reliable emissions

data as well as the mechanism evaluation results of this project should be considered.

In any case, regardless of the lumping approach employed, the mechanisms must appropriately

represent the actual chemistry of the atmospheric reactions of the individual VOCs. This is

important even for highly lumped mechanisms, since the mechanisms for lumped species must

appropriately represent the mechanisms of the compounds they represent. This cannot be

determined unless the mechanisms for those compounds are known, i.e., unless explicit

mechanisms for these compounds are known. Because of the uncertainties and complexities of

mechanisms for most VOCs, well-characterized environmental chamber data, such as

experimental data obtained for this study, are essential to test and establish the capability of the

explicit mechanisms to simulate the effects of the compounds on O3 formation and other

measures of air quality. Until this project was completed, there were no data to appropriately test

mechanisms for 1,3-butadiene, cis-2-butene, 1-pentene, 2-methyl-2-butene, and the 2-pentenes,

and inadequate data for 1-butene, trans-2-butene, and 1-hexene. This project has provided

valuable and necessary data for these compounds that will eventually contribute to increasing the

accuracy of model simulations of O3 formation in Texas, and already has improved our

understanding of the uncertainties and potential inaccurices involved.

The results of this project indicate that the existing explicit mechanisms for most of the

compounds studied are reasonably satisfactory, though there are areas where improvements

could be made. The results also indicate that the existing mechanism for 1,3-butadiene is

unsatisfactory, and that mechanisms for at least 1-hexene (and by extension all higher 1-alkenes)

and 2-methyl-2-butene (and by extension other branched internal alkenes) need to be improved.

While we did develop a somewhat improved mechanism for 1,3-butadiene, the development is

not sufficiently complete for implementation in models for policy applications, and we could not

improve mechanisms for the other compounds within the limited time available to this project.

The mechanism for 1,3-butadiene has many similar features to that for isoprene, and knowledge

gained during updating the isoprene chemistry can be used to update the 1,3-butadiene

chemistry, and vise-versa. In any case, the results of this project will be valuable during the

ongoing update of the explicit mechanisms for these related compounds. The improved explicit

mechanisms will then provide necessary input into developing more chemically accurate

condensed mechanisms for policy modeling applications. Note that we voluntarily included

chamber simulation results for the Cabon Bond mechanism in Appnedix E to provide additional

data potentially useful for the TCEQ to evaluate and update the mechanisms currently used by

the TCEQ.

Page 86: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

74

4. Mechanism Implementation into CMAQ

4.1. Introduction

Four versions of the SAPRC mechanisms with different levels of complexities (Table 11) in

terms of VOC representations were implemented into the most recent version of the Community

Multiscale Air Quality (CMAQ) model, version 5.0.1 (downloaded from

http://cmascenter.org/cmaq/). SAPRC-07L (S07L) is the condensed version of the detailed

SAPRC-07 (S07) mechanism with standard lumping (Carter, 2010). The standard lumping

version of the SAPRC mechanism uses a small number of lumped VOC species to represent

most of the emitted VOCs existed in the emission inventories. SAPRC-07T (S07T) is the so-

called “toxics” version of the S07 mechanism (Hutzell et al, 2012). S07T is also a lumped

version of the S07 mechanism but with some more emission species treated explicitly. Although

S07T is already included in CMAQ 5.0.1, the 2005 National Emission Inventory (NEI) released

by the U.S. EPA and the point source inventories provided by the TCEQ do not include

necessary files to support preparation of CMAQ model-ready emissions for S07T, which were

prepared for this project. SAPRC-11 (S11) is an update to the S07 mechanism. Similar to S07L,

SAPRC-11L (S11L) is the condensed version of the detailed SAPRC-11 with standard lumping.

Table 11. List of SAPRC mechanisms implemented in this study. Mechanism Mechanism in CMAQ # of

species

# of

reactions

Notes

SAPRC-07L

(S07L)

saprc07l_ae5_aq 133 609 SARPC-07 with standard lumping of VOCs

SAPRC-07T

(S07T)

saprc07t_ae5_aq 150 689 Toxic version of SAPRC-07L, with a number

of explicit VOC species (Already exist in

CMAQ coupled to version 6 of the aerosol

mechanism (aero6). Slightly changed to

decouple it from aero6.

SAPRC-11D

(S11D)

saprc11d_ae5_aq 422 1127 SAPRC-11 with many explicit VOC species

SAPRC-11L

(S11L)

saprc11l_ae5_aq 126 354 SAPRC-11 with standard lumping of VOCs

4.2. Mechanism implementation in CMAQ

4.2.1. General procedures in implementing a new mechanism in CMAQ 5.0.1

There are significant changes in terms of implementing a new photochemical mechanism in

CMAQ 5.0.1, comparing to the earlier version of CMAQ 4.7.1. Included in CMAQ 5.0.1 public

distribution is a chemical mechanism preprocessor (chemmech) to process an input mechanism

definition file (mech-<mech>.def) and generate necessary mechanism specific include

FORTRAN files (RXDT.EXT and RXCM.EXT, see Table 12) for use in the CMAQ model.

Detailed list of the reaction mechanisms for S11L and S11D can be found in sections C-1 and C-

2 in Appendix C, respectively. Unlike previous versions of CMAQ which require additional

FORTRAN include files during program compiling time to describe gas and aerosol phase

Page 87: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

75

species and their physical and chemical properties, and the necessary processes they are involved

in the simulations, the new CMAQ 5.0.1 reads this information during run time from three text

files (*.nml files). This reduces the complexity in preparing these input files and provides users

more flexibility in performing model simulations. For example, one can easily match the

emission species with model species or switch on/off dry/wet deposition calculation without

recompiling the CMAQ source code.

Table 12. Chemical mechanism files needed to compile and run CMAQ.

File Run time/Compile time Purpose

RXDT.EXT Compile Time Define chemical parameters

RXCM.EXT Compile Time Define chemical parameters

GC_<mech>.nml[a] Run time

Define source and sink processes that impact the

concentration of every gas-phase speices in the chemical

mechanism

AE_<mech>.nml Run time

Define source and sink processes that impact the

concentration of every aerosol-phase speices in the

chemical mechanism

NR_<mech>.nml Run time

Define source and sink processes that impact the

concentration of every non-reactive speices in the

chemical mechanism

CSQY_DATA_<mech> Run time[b]

Parameters needed for photolysis rate calculations [a]

<mech> represents a specific mechanism implemented in CMAQ. For example, <mech>=saprc11d_ae5_aq for

S11D implemented in this study. [b]

This file is needed during run time if inline photolysis calculation option is selected. Otherwise, this file is needed

to calculate tabulated photolysis rate by the Photolysis Rate Processor (JPROC). The current study uses offline

photolysis rates calculated by JPROC.

Steps of implementing the chemical mechanisms are summarized below using S11D as an

example:

1) Create a directory under $M3HOME/scritps/chemmech/saprc11d.

2) Copy the mechanism definition file to the directoy and rename it to mech-

saprc11d.def.

3) Slightly modify the file to conform to CHEMMECH program requirements if necessary.[a]

4) Modify and run the csh script run.chemmech to generate RXCM.EXT and RXDT.EXT.

Create a sub-directory $M3HOME/models/mechs/release/saprc11d, copy the

RXCM.EXT and RXDT.EXT files into this directory.

5) Generate a GC_saprc11d.csv file. The dry and wet deposition surrogates of explicit

species that are not explicit in S11L are based on the surrogate species for the lumped species

to which they will be lumped in S11L. Run csv2nml.csh to generate the corresponding

nml file (a namelist file), which will be read by CMAQ in run time. The nml and csv files for

AE and NR are copied from saprc07tc_ae5_aq. In regard to photolysis data (cross

sections and quantum yields), CSQY_DATA_saprc11d is also created by copying from saprc07tc_ae5_aq

6) Build a CMAQ source code directory and an executable using sarpc11d. The SMVGEAR

solver available in CMAQ is used to solve both S11L and S11D. The build options (see

section C-3 in Appendix C) (and run options set in the run script, see section C-3 in

Page 88: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

76

Appendix C) were chosen so that they best matches with the options used in CMAQ 4.7.1.

Many online features, such as dust and biogenic emissions and plume rise calculation, were

not used.

7) Make necessary changes to the source code to work with the new mechanism (see section

4.2.4)

[a]Changes include: add a title; remove HV from reactions; fix the problem with negative

stoichiometric coefficients before XC; and add a constant section. Note that S11L does not have

these problems. It is also necessary to make changes so that photolysis reactions can be

processed correctly. See Section 4.2.3 for details.

4.2.2. Model species and process

As described in the previous section, how gas phase species are simulated in the model is

controlled by the GC_<mech>.nml file, which is generated from the GC_<mech>.csv file

using the csv2nml program provided by the CMAQ model. Table 13 and Table 14 list parts of

the csv file that are related with gas phase species and their processes for S11L and S11D. S07T

is provided by CMAQ 5.0.1, so it is not included in this report. S07L is quite similar to S11L and

is not included in the report either.

Table 13. List of SAPRC-11L model species and processes.*

SPC[a] MOLWT EMIS_SUR[b] DEPV_SUR[c] SCAV_SUR[d] TRNS[e] DDEP[f] WDEP[g] CONC[h]

NO2 46 NO2 VD_NO2 NO2 Yes Yes Yes Yes

NO 30 NO VD_NO NO Yes Yes Yes Yes O3P 16

O3 48

VD_O3 O3 Yes Yes Yes Yes

NO3 62

VD_NO3 NO3 Yes Yes Yes Yes

N2O5 108

VD_N2O5 N2O5 Yes Yes Yes Yes

HNO3 63

VD_HNO3 HNO3 Yes Yes Yes Yes

O1D 16 OH 17

OH

Yes Yes

HONO 47 HONO VD_HONO HNO2 Yes Yes Yes Yes

HO2 33

HO2

Yes Yes CO 28 CO VD_CO CO Yes Yes Yes Yes

CO2 44

CO2 Yes

Yes Yes

HNO4 79

HNO4 Yes

Yes Yes HO2H 34

VD_H2O2 H2O2 Yes Yes Yes Yes

SO2 64.1 SO2 VD_SO2 SO2 Yes Yes Yes Yes

SULF 98.1 SULF VD_SULF H2SO4 Yes Yes Yes Yes MEO2 47

Yes

HCHO 30

VD_HCHO FORMALDEHYDE Yes Yes Yes Yes COOH 48

VD_OP METHYLHYDROPEROX Yes Yes Yes Yes

MEOH 32 MEOH VD_METHANOL METHANOL Yes Yes Yes Yes

RO2C 33 RO2XC 1

MECO3 75

Yes

PAN 121.1

VD_PAN PAN Yes Yes Yes Yes CCOOH 60.1 CCOOH VD_ORA ACETIC_ACID Yes Yes Yes Yes

RCO3 89.1

Yes

PAN2 135.1

VD_PAN PPN Yes Yes Yes Yes xHO2 33

yROOH 76.1

xCCHO 44.1 RCOOH 74.1 RCOOH VD_ORA PROPANOIC_ACID Yes Yes Yes Yes

BZCO3 137.1

Yes

Yes

PBZN 183.1

VD_PAN PAN Yes Yes Yes Yes BZO 93

MACO3 101.1

Yes

Page 89: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

77

SPC[a] MOLWT EMIS_SUR[b] DEPV_SUR[c] SCAV_SUR[d] TRNS[e] DDEP[f] WDEP[g] CONC[h]

MAPAN 101.1

VD_PAN MPAN Yes Yes Yes Yes

TBUO 73 RNO3 147.2 RNO3 VD_PAN MPAN Yes Yes Yes Yes

ACET 58.1 ACET

ACETONE Yes

Yes Yes

NPHE 58.1

2-NITROPHENOL Yes

Yes Yes CRES 108.1 CRES

2-CRESOL Yes

Yes Yes

xOH 17

xNO2 46 xMEO2 47

xMECO3 75

xRCO3 89.1 xMACO3 101.1

xTBUO 73 xCO 28

CCHO 41 CCHO VD_ALD ACETALDEHYDE

Yes

RCHO 58.1 RCHO VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes xHCHO 30

Yes

MEK 80 MEK

MEK Yes

Yes Yes

zRNO3 147.2

xRCHO 58.1

HCOOH 58.1 HCOOH VD_ORA FORMIC_ACID Yes Yes Yes Yes

xMGLY 72.1 xBACL 86.1

ROOH 76.1

METHYLHYDROPEROX Yes

Yes Yes

xPROD2 116.2 R6OOH 118.2

VD_OP HEXYL_HYDROPEROX Yes Yes Yes Yes

PROD2 116.2 PROD2

MEK Yes

Yes Yes

yR6OOH 118.2 RAOOH 188.2

VD_OP HEXYL_HYDROPEROX Yes Yes Yes Yes

MGLY 72.1 MGLY

METHYL_GLYOXAL Yes

Yes Yes

IPRD 100.1 IPRD

Yes

Yes xGLY 58

xMEK 72.1

xAFG1 98.1 xAFG2 98.1

GLY 58 GLY

GLYOXAL Yes

Yes Yes

AFG1 98.1

Yes

Yes

AFG2 98.1

Yes

Yes

HCOCO3 89

BACL 86.1 BACL

BIACETYL Yes

Yes Yes PHEN 94.1 PHEN

PHENOL Yes

Yes Yes

CATL 110.1 CATL

BENZALDEHYDE Yes

Yes Yes

AFG3 124.1

Yes

Yes yRAOOH 188.2

yRAOOHp 188.2

xCNDp2p 157.2 XYNL 122.2 XYNL

Yes

CNDp2p 157.2

BALD 106.1 BALD

BENZALDEHYDE Yes

Yes Yes xIPRD 100.1

MACR 70.1 MACR

METHACROLEIN Yes

Yes Yes

MVK 70.1 MVK

MVK Yes

Yes Yes AFG4 112.1

AFG5 124.1

xRNO3 147.2 xACET 58.1

xBALD 112.3

xAFG4 106.1 xMACR 70.1

xMVK 70.1

ETHE 28.1 ETHE

ETHENE Yes

Yes Yes ISOP 68.1 ISOP

ISOPRENE Yes

Yes Yes

ACYL 26 ACYL

ACETYLENE Yes

Yes Yes

CL2 70 CL2

CL2 Yes

Yes Yes CL 35.5

Yes

CLNO 65.5

NITROSYL_CHLORID Yes

Yes Yes CLONO 81.5

Yes

Yes

CLNO2 81.5

NITRYL_CHLORIDE Yes

Yes Yes

Page 90: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

78

SPC[a] MOLWT EMIS_SUR[b] DEPV_SUR[c] SCAV_SUR[d] TRNS[e] DDEP[f] WDEP[g] CONC[h]

HCL 36.5 HCL VD_HCL HCL Yes Yes Yes Yes

CLO 51.5

Yes CLONO2 97.5

Yes

Yes

HOCL 52.5

VD_HOCL HOCL Yes Yes Yes Yes

xCLCCHO 78.5 xCLCCHO xCLACET 92.5

CLCCHO 78.5

VD_ALD CHLOROACETALDEHY Yes Yes Yes Yes

xCL 35.5 CLACET 92.5

CHLOROACETONE Yes

Yes Yes

CLCHO 64.5

VD_FMCL FMCL Yes Yes Yes Yes

BENZ 78.1 BENZ

BENZENE Yes

Yes Yes ALK1 30.1 ALK1

ETHANE Yes

Yes Yes

ALK2 36.7 ALK2

PROPANE Yes

Yes Yes ALK3 58.6 ALK3

BUTANE Yes

Yes Yes

ALK4 77.6 ALK4

BUTANE Yes

Yes Yes

ALK5 118.9 ALK5

DECANE Yes

Yes Yes OLE1 72.3 OLE1

ETHENE Yes

Yes Yes

OLE2 75.8 OLE2

ETHENE Yes

Yes Yes

ARO1 95.2 ARO1

TOLUENE Yes

Yes Yes

ARO2 118.7 ARO2

O-XYLENE Yes

Yes Yes

TERP 136.2 TERP

PINENE Yes

Yes Yes

*This table is a subset of the GC_saprc11l_ae5_aq.csv file. There are two other columns G2AE_SUR and

G2AQ_SUR which are used to designate if a species is included in secondary aerosol and cloud chemistry

calculations. These processes are not simulated in the current study so they are excluded from the current report.

ICBC_SUR and ICBC_FAC columns are also excluded in the report because they were not set for any species.

EMIS_FAC, DEPV_FAC and SCAV_FAC are set to 1 for all corresponding specs. [a]

Species name in CMAQ [b]

Surrogate species name in the emissions file. Only species with an emission surrogate name will be included in

emission processing. [c]

Surrogate species name in dry deposition calculations. Species are not included in dry deposition calculations if

they don’t have a surrogate name. Using surrogates allow dry and wet deposition schemes in CMAQ independent of

gas phase photochemical mechanism. [d]

Surrogate species name in wet deposition calculations. Species are not included in wet depotion calculations if

they don’t have a surrogate name. [e]

Flag to denote if transport (advection and diffusion) needs to be considered for the species. Radical species with

short lifetime do not need to be included in transport calculations. [f]

Flags to denote if dry deposition needs to be considered for the species. This has to be consistent with the

DEPV_SUR column. [g]

Flags to denote if wet deposition needs to be considered for the species. This has to be consistent with the

SCAV_SUR column. [h]

Flag to denote if the concentration of the species needs to be saved in the output files.

Table 14. List of SAPRC-11D model species and processes*

SPC MOLWT EMIS_SUR DEPV_SUR SCAV_SUR TRNS DDEP WDEP CONC

NO2 46 NO2 VD_NO2 NO2 Yes Yes Yes Yes

NO 30 NO VD_NO NO Yes Yes Yes Yes O3P 16

O3 48

VD_O3 O3 Yes Yes Yes Yes

NO3 62

VD_NO3 NO3 Yes Yes Yes Yes N2O5 108

VD_N2O5 N2O5 Yes Yes Yes Yes

HNO3 63

VD_HNO3 HNO3 Yes Yes Yes Yes

O1D 16 OH 17

OH

Yes Yes

HONO 47 HONO VD_HONO HNO2 Yes Yes Yes Yes

HO2 33

HO2

Yes Yes CO 28 CO VD_CO CO Yes Yes Yes Yes

CO2 44

CO2 Yes

Yes Yes

HNO4 79

HNO4 Yes

Yes Yes HO2H 34

VD_H2O2 H2O2 Yes Yes Yes Yes

SO2 64.1 SO2 VD_SO2 SO2 Yes Yes Yes Yes

Page 91: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

79

SPC MOLWT EMIS_SUR DEPV_SUR SCAV_SUR TRNS DDEP WDEP CONC

SULF 98.1 SULF VD_SULF H2SO4 Yes Yes Yes Yes

NO2EX 44

NO2

Yes

HCHO2 46 HCHO 30

VD_HCHO FORMALDEHYDE Yes Yes Yes Yes

HCOOH 58.1 HCOOH VD_HCOOH FORMIC_ACID Yes Yes Yes Yes

CCHO2 76 CCHO 41 CCHO VD_ALD ACETALDEHYDE

Yes

CCOOH 60.1 AACD VD_ORA ACETIC_ACID Yes Yes Yes Yes

RCHO2 RCHO 58.1 RCHO VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes

RCOOH 74.1 PACD VD_ORA PROPANOIC_ACID Yes Yes Yes Yes

MEO2 47

Yes COOH 48

VD_OP METHYLHYDROPEROX Yes Yes Yes Yes

MEOH 32 MEOH VD_METHANOL METHANOL Yes Yes Yes Yes

RO2C 33 RO2XC 1

MECO3 75

Yes

PAN 121.1

VD_PAN PAN Yes Yes Yes Yes CCO3H 76 CCO3H VD_CCOOH PEROXYACETIC_ACID Yes Yes Yes Yes

RCO3 89.1

Yes

PAN2 135.1

VD_PAN PPN Yes Yes Yes Yes xHO2 33

yROOH 76.1

xCCHO 44.1 RCO3H 74.1

VD_PAA PEROXYACETIC_ACID Yes Yes Yes Yes

BZCO3 137.1

Yes

Yes

PBZN 183.1

VD_PAN PAN Yes Yes Yes Yes BZO 93

MACO3 101.1

Yes

MAPAN 101.1

VD_PAN MPAN Yes Yes Yes Yes TBUO 73

RNO3 147.2 RNO3 VD_PAN MPAN Yes Yes Yes Yes

ACET 58.1 ACET

ACETONE Yes

Yes Yes NPHE 58.1

2-NITROPHENOL Yes

Yes Yes

CRES 108.1 CRES

2-CRESOL Yes

Yes Yes

xOH 17 xNO2 46

xMEO2 47

xMECO3 75 xRCO3 89.1

xMACO3 101.1 xTBUO 73

xCO 28

xHCHO 30

Yes PROD1 72.1 PROD1

MEK Yes

Yes Yes

zRNO3 147.2

xRCHO 58.1 xMGLY 72.1

xBACL 86.1

ROOH 76.1

METHYLHYDROPEROX Yes

Yes Yes xPROD2 116.2

R6OOH 118.2

VD_OP HEXYL_HYDROPEROX Yes Yes Yes Yes

PROD2 116.2 PRD2

MEK Yes

Yes Yes yR6OOH 118.2

RAOOH 188.2

VD_OP HEXYL_HYDROPEROX Yes Yes Yes Yes

MGLY 72.1 MGLY

METHYL_GLYOXAL Yes

Yes Yes

IPRD 100.1 IPRD

Yes

Yes

xGLY 58

xPROD1 72.1 xAFG1 98.1

xAFG2 98.1

GLY 58 GLY

GLYOXAL Yes

Yes Yes AFG1 98.1

Yes

Yes

AFG2 98.1

Yes

Yes

HCOCO3 89 BACL 86.1 BACL

BIACETYL Yes

Yes Yes

PHEN 94.1 PHEN

PHENOL Yes

Yes Yes

CATL 110.1 CATL

BENZALDEHYDE Yes

Yes Yes

Page 92: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

80

SPC MOLWT EMIS_SUR DEPV_SUR SCAV_SUR TRNS DDEP WDEP CONC

AFG3 124.1

Yes

Yes

yRAOOH 188.2

XYNL 122.2 XYNL

Yes BALD 106.1 BALD

BENZALDEHYDE Yes

Yes Yes

xIPRD 100.1

MACR 70.1 MACR

METHACROLEIN Yes

Yes Yes MVK 70.1 MVK

MVK Yes

Yes Yes

AFG4 112.1

AFG5 124.1 xGLCHO 60.5

xRNO3 147.2

GLCHO 60.5 xACET 58.1

ACRO 56.1

ACROLEIN Yes

Yes Yes

xBALD 106.1 xAFG4 112.3

xMACR 70.1

xMVK 70.1 xACRO 56.1

ETHE 28.1 ETHE

ETHENE Yes

Yes Yes

ISOP 68.1 ISOP

ISOPRENE Yes

Yes Yes ACYL 26 ACYE

ACETYLENE Yes

Yes Yes

BENZ 78.1 BENZ

BENZENE Yes

Yes Yes

ETHANE 31 ETHANE

ETHANE Yes

Yes Yes PROPANE 45 PROPANE

PROPANE Yes

Yes Yes

NC4 58.1 NC4

BUTANE Yes

Yes Yes

M2C3 58.1 M2C3

BUTANE Yes

Yes Yes NC5 72.1 NC5

BUTANE Yes

Yes Yes

M2C4 72.1 M2C4

BUTANE Yes

Yes Yes

CYCC5 70.1 CYCC5

BUTANE Yes

Yes Yes NC6 86.2 NC6

BUTANE Yes

Yes Yes

M22C4 86.2 M22C4

BUTANE Yes

Yes Yes

M23C4 86.2 M23C4

BUTANE Yes

Yes Yes M2C5 86.2 M2C5

BUTANE Yes

Yes Yes

M3C5 86.2 M3C5

BUTANE Yes

Yes Yes

CYCC6 84.2 CYCC6

DECANE Yes

Yes Yes MECYCC5 84.2 MECYCC5

BUTANE Yes

Yes Yes

NC7 100.2 NC7

BUTANE Yes

Yes Yes

M223C4 100.2 M223C4

BUTANE Yes

Yes Yes M22C5 100.2 M22C5

BUTANE Yes

Yes Yes

M23C5 100.2 M23C5

DECANE Yes

Yes Yes M24C5 100.2 M24C5

BUTANE Yes

Yes Yes

M2C6 100.2 M2C6

DECANE Yes

Yes Yes

M33C5 100.2 M33C5

BUTANE Yes

Yes Yes M3C6 100.2 M3C6

DECANE Yes

Yes Yes

ET3C5 100.2 ET3C5

DECANE Yes

Yes Yes

M11CC5 98.2 M11CC5

BUTANE Yes

Yes Yes M12CC5 98.2 M12CC5

DECANE Yes

Yes Yes

CYCC7 98.2 CYCC7

DECANE Yes

Yes Yes

M13CYC5 98.2 M13CYC5

DECANE Yes

Yes Yes ETCYCC5 98.2 ETCYCC5

DECANE Yes

Yes Yes

NC8 114.2 NC8

DECANE Yes

Yes Yes

BRC8 114.2 BRC8

DECANE Yes

Yes Yes M224C5 114.2 M224C5

BUTANE Yes

Yes Yes

M22C6 114.2 M22C6

BUTANE Yes

Yes Yes

M234C5 114.2 M234C5

BUTANE Yes

Yes Yes

M23C6 114.2 M23C6

DECANE Yes

Yes Yes

M24C6 114.2 M24C6

DECANE Yes

Yes Yes

M25C6 114.2 M25C6

DECANE Yes

Yes Yes M2C7 114.2 M2C7

DECANE Yes

Yes Yes

M3C7 114.2 M3C7

DECANE Yes

Yes Yes

M4C7 114.2 M4C7

DECANE Yes

Yes Yes M233C5 114.2 M233C5

BUTANE Yes

Yes Yes

M34C6 114.2 M34C6

DECANE Yes

Yes Yes

E3M2C5 114.2 E3M2C5

DECANE Yes

Yes Yes M112CC5 112.2 M112CC5

BUTANE Yes

Yes Yes

M113CC5 112.2 M113CC5

BUTANE Yes

Yes Yes

M11CC6 112.2 M11CC6

DECANE Yes

Yes Yes

Page 93: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

81

SPC MOLWT EMIS_SUR DEPV_SUR SCAV_SUR TRNS DDEP WDEP CONC

M14CC6 112.2 M14CC6

DECANE Yes

Yes Yes

CYCC8 112.2 CYCC8

DECANE Yes

Yes Yes

M13CYC6 112.2 M13CYC6

DECANE Yes

Yes Yes NC9 128.3 NC9

DECANE Yes

Yes Yes

BRC9 128.3 BRC9

DECANE Yes

Yes Yes

M225C6 128.3 M225C6

BUTANE Yes

Yes Yes M235C6 128.3 M235C6

DECANE Yes

Yes Yes

M24C7 128.3 M24C7

DECANE Yes

Yes Yes

M2C8 128.3 M2C8

DECANE Yes

Yes Yes M35C7 128.3 M35C7

DECANE Yes

Yes Yes

M4C8 128.3 M4C8

DECANE Yes

Yes Yes

M33C7 128.3 M33C7

BUTANE Yes

Yes Yes M224C6 128.3 M224C6

BUTANE Yes

Yes Yes

M26C7 128.3 M26C7

DECANE Yes

Yes Yes

M25C7 128.3 M25C7

DECANE Yes

Yes Yes M3C8 128.3 M3C8

DECANE Yes

Yes Yes

ET3C7 128.3 ET3C7

DECANE Yes

Yes Yes

M123CC6 126.2 M123CC6

DECANE Yes

Yes Yes M135CC6 126.2 M135CC6

DECANE Yes

Yes Yes

M113CC6 126.2 M113CC6

DECANE Yes

Yes Yes

E1M4CC6 126.2 E1M4CC6

DECANE Yes

Yes Yes C3CYCC6 126.2 C3CYCC6

DECANE Yes

Yes Yes

CYCC9 126.2 CYCC9

DECANE Yes

Yes Yes

NC10 142.3 NC10

DECANE Yes

Yes Yes BRC10 142.3 BRC10

DECANE Yes

Yes Yes

M24C8 142.3 M24C8

DECANE Yes

Yes Yes

M26C8 142.3 M26C8

DECANE Yes

Yes Yes M2C9 142.3 M2C9

DECANE Yes

Yes Yes

M3C9 142.3 M3C9

DECANE Yes

Yes Yes

M4C9 142.3 M4C9

DECANE Yes

Yes Yes M33C8 142.3 M33C8

DECANE Yes

Yes Yes

M224C7 142.3 M224C7

DECANE Yes

Yes Yes

M225C7 142.3 M225C7

DECANE Yes

Yes Yes M23C8 142.3 M23C8

DECANE Yes

Yes Yes

M25C8 142.3 M25C8

DECANE Yes

Yes Yes

M2E3C7 142.3 M2E3C7

DECANE Yes

Yes Yes CYCC10 140.3 CYCC10

DECANE Yes

Yes Yes

C4CYCC6 140.3 C4CYCC6

DECANE Yes

Yes Yes

NC11 156.3 NC11

DECANE Yes

Yes Yes BRC11 156.3 BRC11

DECANE Yes

Yes Yes

M26C9 156.3 M26C9

DECANE Yes

Yes Yes M3C10 156.3 M3C10

DECANE Yes

Yes Yes

M4C10 156.3 M4C10

DECANE Yes

Yes Yes

CYCC11 154.3 CYCC11

DECANE Yes

Yes Yes E1P2CC6 154.3 E1P2CC6

DECANE Yes

Yes Yes

NC12 170.3 NC12

DECANE Yes

Yes Yes

BRC12 170.3 BRC12

DECANE Yes

Yes Yes M36C10 170.3 M36C10

DECANE Yes

Yes Yes

M3C11 170.3 M3C11

DECANE Yes

Yes Yes

M5C11 170.3 M5C11

DECANE Yes

Yes Yes NC13 184.4 NC13

DECANE Yes

Yes Yes

NC14 198.4 NC14

DECANE Yes

Yes Yes

NC15 212.4 NC15

DECANE Yes

Yes Yes NC16 226.4 NC16

DECANE Yes

Yes Yes

PROPENE 42.1 PRPE

PROPENE Yes

Yes Yes

ALLENE 40.1 ALLENE

ETHENE Yes

Yes Yes

BUTENE1 56.1 BUTENE1

ETHENE Yes

Yes Yes

ISOBUTEN 56.1 ISOBUTEN ETHENE Yes

Yes Yes

C2BUTE 56.1 C2BUTE

ETHENE Yes

Yes Yes T2BUTE 56.1 T2BUTE

ETHENE Yes

Yes Yes

BUTDE12 56.1 BUTDE12

ETHENE Yes

Yes Yes

BUTDE13 56.1 BUTDE13

ETHENE Yes

Yes Yes PENTEN1 70.1 PENTEN1

ETHENE Yes

Yes Yes

M1BUT3 70.1 M1BUT3

ETHENE Yes

Yes Yes

M1BUT2 70.1 M1BUT2

ETHENE Yes

Yes Yes M2BUT2 70.1 M2BUT2

ETHENE Yes

Yes Yes

C2PENT 70.1 C2PENT

ETHENE Yes

Yes Yes

T2PENT 70.1 T2PENT

ETHENE Yes

Yes Yes

Page 94: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

82

SPC MOLWT EMIS_SUR DEPV_SUR SCAV_SUR TRNS DDEP WDEP CONC

CYCPNTE 68.1 CYCPNTE

ETHENE Yes

Yes Yes

HEXENE1 84.2 HEXENE1

ETHENE Yes

Yes Yes

M33BUT1 84.2 M33BUT1

ETHENE Yes

Yes Yes M3C5E1 84.2 M3C5E1

ETHENE Yes

Yes Yes

M2C5E1 84.2 M2C5E1

ETHENE Yes

Yes Yes

M2C5E2 84.2 M2C5E2

ETHENE Yes

Yes Yes C2C6E 84.2 C2C6E

ETHENE Yes

Yes Yes

C3C6E 84.2 C3C6E

ETHENE Yes

Yes Yes

M3C5E2 84.2 M3C5E2

ETHENE Yes

Yes Yes M4T2C5E 84.2 M4T2C5E

ETHENE Yes

Yes Yes

T2C6E 84.2 T2C6E

ETHENE Yes

Yes Yes

T3C6E 84.2 T3C6E

ETHENE Yes

Yes Yes C6OLE2 84.2 C6OLE2

ETHENE Yes

Yes Yes

M3CC5E 82.1 M3CC5E

ETHENE Yes

Yes Yes

M1CC5E 82.1 M1CC5E

ETHENE Yes

Yes Yes CYCHEXE 82.1 CYCHEXE

ETHENE Yes

Yes Yes

T2C7E 98.2 T2C7E

ETHENE Yes

Yes Yes

T3C7E 98.2 T3C7E

ETHENE Yes

Yes Yes C7OLE1 98.2 C7OLE1

ETHENE Yes

Yes Yes

C8COLE 110.2 C8COLE

ETHENE Yes

Yes Yes

OCTENE1 112.2 OCTENE1

ETHENE Yes

Yes Yes M244C5E1 112.2 M244C5E1 ETHENE Yes

Yes Yes

C9E1 126.2 C9E1

ETHENE Yes

Yes Yes

T4C9E 126.2 T4C9E

ETHENE Yes

Yes Yes C10E1 140.3 C10E1

ETHENE Yes

Yes Yes

E34C6E2 140.3 E34C6E2

ETHENE Yes

Yes Yes

C10OLE2 140.3 C10OLE2

ETHENE Yes

Yes Yes CARENE3 136.2 CARENE3

PINENE Yes

Yes Yes

APINENE 136.2 APINENE

PINENE Yes

Yes Yes

BPINENE 136.2 BPINENE

PINENE Yes

Yes Yes DLIMONE 136.2 DLIMONE

PINENE Yes

Yes Yes

SABINENE 136.2 SABINENE PINENE Yes

Yes Yes

C11E1 154.3 C11E1

ETHENE Yes

Yes Yes T5C11E 154.3 T5C11E

ETHENE Yes

Yes Yes

TOLUENE 92.1 TOLUENE

TOLUENE Yes

Yes Yes

C2BENZ 106.2 C2BENZ

TOLUENE Yes

Yes Yes MXYLENE 106.2 MXYLENE

O-XYLENE Yes

Yes Yes

OXYLENE 106.2 OXYLENE

O-XYLENE Yes

Yes Yes

PXYLENE 106.2 PXYLENE

O-XYLENE Yes

Yes Yes STYRENE 104.1 STYRENE

ETHENE Yes

Yes Yes

NC3BEN 120.2 NC3BEN

TOLUENE Yes

Yes Yes IC3BEN 120.2 IC3BEN

TOLUENE Yes

Yes Yes

METTOL 120.2 METTOL

O-XYLENE Yes

Yes Yes

OETTOL 120.2 OETTOL

O-XYLENE Yes

Yes Yes PETTOL 120.2 PETTOL

O-XYLENE Yes

Yes Yes

TMB123 120.2 TMB123

O-XYLENE Yes

Yes Yes

TMB124 120.2 TMB124

O-XYLENE Yes

Yes Yes TMB135 120.2 TMB135

O-XYLENE Yes

Yes Yes

C10BEN1 134.2 C10BEN1

TOLUENE Yes

Yes Yes

TC4BEN 134.2 TC4BEN

TOLUENE Yes

Yes Yes MC10BEN2 134.2 MC10BEN2 O-XYLENE Yes

Yes Yes

OC10BEN2 134.2 OC10BEN2 O-XYLENE Yes

Yes Yes

PC10BEN2 134.2 PC10BEN2 O-XYLENE Yes

Yes Yes PCYMENE 134.2 PCYMENE

O-XYLENE Yes

Yes Yes

C10B123 134.2 C10B123

O-XYLENE Yes

Yes Yes

C10B124 134.2 C10B124

O-XYLENE Yes

Yes Yes

C10B135 134.2 C10B135

O-XYLENE Yes

Yes Yes

BEN1234 134.2 BEN1234

O-XYLENE Yes

Yes Yes

BEN1245 134.2 BEN1245

O-XYLENE Yes

Yes Yes MBEN1235 134.2 MBEN1235 O-XYLENE Yes

Yes Yes

NAPHTHAL 128.2 NAPHTHAL O-XYLENE Yes

Yes Yes

C11BEN1 148.2 C11BEN1

TOLUENE Yes

Yes Yes MC11BEN2 148.2 MC11BEN2 O-XYLENE Yes

Yes Yes

OC11BEN2 148.2 OC11BEN2 O-XYLENE Yes

Yes Yes

PC11BEN2 148.2 PC11BEN2 O-XYLENE Yes

Yes Yes C11B123 148.2 C11B123

O-XYLENE Yes

Yes Yes

C11B124 148.2 C11B124

O-XYLENE Yes

Yes Yes

C11B135 148.2 C11B135

O-XYLENE Yes

Yes Yes

Page 95: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

83

SPC MOLWT EMIS_SUR DEPV_SUR SCAV_SUR TRNS DDEP WDEP CONC

NAPH1 148.2 NAPH1

O-XYLENE Yes

Yes Yes

C12BEN1 162.3 C12BEN1

TOLUENE Yes

Yes Yes

MC12BEN2 162.3 MC12BEN2 O-XYLENE Yes

Yes Yes OC12BEN2 162.3 OC12BEN2 O-XYLENE Yes

Yes Yes

PC12BEN2 162.3 PC12BEN2 O-XYLENE Yes

Yes Yes

C12B123 162.3 C12B123

O-XYLENE Yes

Yes Yes C12B124 162.3 C12B124

O-XYLENE Yes

Yes Yes

C12B135 162.3 C12B135

O-XYLENE Yes

Yes Yes

ETOX 44.1 ETOX

Yes ETOH 46.1 ETOH

ETHANOL Yes

Yes Yes

MEOME 46.1 MEOME

BUTANE Yes

Yes Yes

MEFORM 60.1 MEFORM

ETHANE Yes

Yes Yes ETGLYCL 62.1 ETGLYCL

DECANE Yes

Yes Yes

PROX 58.1 PROX

PROPANE Yes

Yes Yes

IC3OH 60.1 IC3OH

BUTANE Yes

Yes Yes NC3OH 60.1 NC3OH

BUTANE Yes

Yes Yes

ACYRACID 72.1 ACYRACID ETHENE Yes

Yes Yes

MEACET 74.1 MEACET

PROPANE Yes

Yes Yes PRGLYCL 76.1 PRGLYCL

DECANE Yes

Yes Yes

MEOETOH 76.1 MEOETOH DECANE Yes

Yes Yes

GLYCERL 92.1 GLYCERL

DECANE Yes

Yes Yes CROTALD 70.1 CROTALD

Yes

Yes

THF 72.1 THF

DECANE Yes

Yes Yes

MEC3AL2 72.1 MEC3AL2 VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes C4RCHO1 72.1 C4RCHO1 VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes

IC4OH 74.1 IC4OH

DECANE Yes

Yes Yes

NC4OH 74.1 NC4OH

DECANE Yes

Yes Yes SC4OH 74.1 SC4OH

DECANE Yes

Yes Yes

TC4OH 74.1 TC4OH

PROPANE Yes

Yes Yes

ETOET 74.1 ETOET

DECANE Yes

Yes Yes VINACET 86.1 VINACET

ETHENE Yes

Yes Yes

ETACET 88.1 ETACET

PROPANE Yes

Yes Yes

C4OH12 90.1 C4OH12

DECANE Yes

Yes Yes MEOC3OH 90.1 MEOC3OH DECANE Yes

Yes Yes

ETOETOH 90.1 ETOETOH

DECANE Yes

Yes Yes

DETGLCL 106.1 DETGLCL

DECANE Yes

Yes Yes MBUTENOL 86.1 MBUTENOL ETHENE Yes

Yes Yes

C5RCHO1 86.1 C5RCHO1 VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes

IAMOH 88.1 IAMOH

DECANE Yes

Yes Yes MTBE 88.1 MTBE

BUTANE Yes

Yes Yes

ETACRYL 100.1 ETACRYL

ETHENE Yes

Yes Yes MEMACRT 100.1 MEMACRT ETHENE Yes

Yes Yes

IPRACET 102.1 IPRACET

BUTANE Yes

Yes Yes

PRACET 102.1 PRACET

BUTANE Yes

Yes Yes MOEOETOH 120.1 MOEOETOH DECANE Yes

Yes Yes

CC6KET 98.1 CC6KET

MEK Yes

Yes Yes

CC6OH 100.2 CC6OH

DECANE Yes

Yes Yes C6RCHO1 100.2 C6RCHO1 VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes

MIBK 100.2 MIBK

MEK Yes

Yes Yes

MNBK 100.2 MNBK

MEK Yes

Yes Yes ETBE 102.2 ETBE

DECANE Yes

Yes Yes

IBUACET 116.2 IBUACET

BUTANE Yes

Yes Yes

BUACET 116.2 BUACET

BUTANE Yes

Yes Yes DIACTALC 116.2 DIACTALC

MEK Yes

Yes Yes

M24C5OH2 118.2 M24C5OH2 DECANE Yes

Yes Yes

BUOETOH 118.2 BUOETOH DECANE Yes

Yes Yes

PGMEACT 132.2 PGMEACT

DECANE Yes

Yes Yes

CSVACET 132.2 CSVACET

DECANE Yes

Yes Yes

DGEE 134.2 DGEE

DECANE Yes

Yes Yes DPRGLCL 134.2 DPRGLCL

DECANE Yes

Yes Yes

ADIPACD 146.1 ADIPACD

DECANE Yes

Yes Yes

BZCH2OH 108.1 BZCH2OH

TOLUENE Yes

Yes Yes C7RCHO1 114.2 C7RCHO1 VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes

C7KET2 114.2 C7KET2

MEK Yes

Yes Yes

M3HXO2 114.2 M3HXO2

MEK Yes

Yes Yes BUOC3OH 132.2 BUOC3OH DECANE Yes

Yes Yes

E3EOC3OH 146.2 E3EOC3OH DECANE Yes

Yes Yes

DPGOME2 148.2 DPGOME2 DECANE Yes

Yes Yes

Page 96: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

84

SPC MOLWT EMIS_SUR DEPV_SUR SCAV_SUR TRNS DDEP WDEP CONC

C8RCHO1 128.2 C8RCHO1 VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes

IBUIBTR 144.2 IBUIBTR

BUTANE Yes

Yes Yes

DGBE 162.2 DGBE

DECANE Yes

Yes Yes TEXANOL 216.3 TEXANOL

DECANE Yes

Yes Yes

DBUPTHT 278.3 DBUPTHT

TOLUENE Yes

Yes Yes

CH3CL 50.5 CH3CL

Yes xCL 35.5

ACRYLNIT 53.1 ACRYLNIT

DECANE Yes

Yes Yes

AMP 89.1 AMP

Yes NRAD 72.1

C13DCP 111 C13DCP

DECANE Yes

Yes Yes

xCLCCHO 78.5 xCLCCHO CLCCHO 78.5

VD_ALD CHLOROACETALDEHY Yes Yes Yes Yes

HCL 36.5 HCL VD_HCL HCL Yes Yes Yes Yes

CLACET 92.5

CHLOROACETONE Yes

Yes Yes C2CL 64.5 C2CL

PROPANE Yes

Yes Yes

CHCL3 119.4 CHCL3

Yes

CL212ETH 99 CL212ETH ETHANE Yes

Yes Yes HL2BEN 147 HL2BEN

TOLUENE Yes

Yes Yes

CL2ME 85 CL2ME

ETHANE Yes

Yes Yes

CL3ETHE 131.4 CL3ETHE

BUTANE Yes

Yes Yes CL4ETHE 165.8 CL4ETHE

ETHANE Yes

Yes Yes

HLBEN 93.1 HLBEN

TOLUENE Yes

Yes Yes

CLETHE 62.5 CLETHE

DECANE Yes

Yes Yes ETACTYL 54.1 ETACTYL

ETHENE Yes

Yes Yes

ETAMINE 45.1 ETAMINE

DECANE Yes

Yes Yes

ETOHNH2 61.1 ETOHNH2

DECANE Yes

Yes Yes HFC152A 66.1 HFC152A

Yes

INDTET 118.2 INDTET

O-XYLENE Yes

Yes Yes

MEACTYL 40.1 MEACTYL

TOLUENE Yes

Yes Yes MEBR 94.9 MEBR

Yes

NMP 99.1 NMP

TOLUENE Yes

Yes Yes

SIOME4 296.6 SIOME4

Yes T13DCP 110.1 T13DCP

DECANE Yes

Yes Yes

TCE111 133.4 TCE111

Yes

TMAMINE 59.1 TMAMINE DECANE Yes

Yes Yes VINACYL 52.1 VINACYL

TOLUENE Yes

Yes Yes

PROPALD 58.1 PROPALD VD_GEN_ALD GENERIC_ALDEHYDE Yes Yes Yes Yes

MEK 80 MEK

MEK Yes

Yes Yes HS 33

MOLINATE 187.3 MOLINATE DECANE Yes

Yes Yes xR2NCOS 160.3

HSO 49

R2NCOS 160.3 R2NCOSO 176.3

OTH1 75.1 OTH1

ETHANE Yes

Yes Yes

OTH2 74.1 OTH2

PROPANE Yes

Yes Yes OTH3 56.1 OTH3

BUTANE Yes

Yes Yes

OTH4 87.1 OTH4

BUTANE Yes

Yes Yes

OTH5 87.1 OTH5

DECANE Yes

Yes Yes OLE1 72.3 OLE1

ETHENE Yes

Yes Yes

OLE2 75.8 OLE2

ETHENE Yes

Yes Yes

ARO1 95.2 ARO1

TOLUENE Yes

Yes Yes ARO2 118.7 ARO2

O-XYLENE Yes

Yes Yes

TERP 136.2 TERP

PINENE Yes

Yes Yes

SESQ 204.4 SESQ

PINENE Yes

Yes Yes

CL2 70 CL2

CL2 Yes

Yes Yes

CL 35.5

Yes

CLNO 65.5

NITROSYL_CHLORID Yes

Yes Yes CLONO 81.5

Yes

Yes

CLNO2 81.5

NITRYL_CHLORIDE Yes

Yes Yes

CLO 51.5

Yes CLONO2 97.5

Yes

Yes

HOCL 52.5

VD_HOCL HOCL Yes Yes Yes Yes

xCLACET 92.5 CLCHO 64.5

VD_FMCL FMCL Yes Yes Yes Yes *This table is a subset of the GC_saprc11d_ae5_aq.csv file. See Table 13 for explanation of the columns.

Page 97: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

85

4.2.3. Photolysis rate data

Parameters (quantum yield, cross section area, surface albedo for different land use types, cloud

effect on extinction and scattering) needed for photolysis rate calculations are generally based on

the parameters available in CMAQ 5.0.1. The mechanism definition file provided by the UCR

team contains “-” in the photolysis reaction labels and were renames to use “_” to match with

CMAQ’s naming convention. Three new photolysis reactions for MITC (methyl isothiocyanate),

CS2 (carbon disulfide), CCL3NO2 (trichloro-nitro-methane) in the original S11D were excluded

in this study as no their emission rates were not available based on current VOC speciation

profiles. In this study, photolysis rates are calculated offline using the JPROC program.

4.2.4. Modifications to the CMAQ model code

Parameter spc_dim on Line 147 in CGRID_SPCS.F needs to be modified from 200 to 500

and parameter MXARRAY on line 55 in GRVARS.F needs to be changed from 4200 to 25000 to

incorporate the large number of species used in S11D. Calls to subroutine AQCHEM in

convcld_acm.F and rescld.F are commented out so that wet deposition is calculated but

aqueous chemistry in cloud droplets are not performed. Comment out call to subroutine AERO is

in sciproc.F.

In addition to the above changes, it is necessary to make sure Input/Output Applications

Programming Interface (I/OAPI) version 3.1 (http://www.baronams.com/products/ioapi/AVAIL.html ) is

used to build CMAQ, as it allows a maximum of 2048 variables in a single IOAPI output file. An

earlier version of IOAPI can also be used but needs to be manually modified to allow more than

150 variables in a single output file. The pario (parallel I/O) library in CMAQ also needs to be

modified. The variable MXNVARHD in pinterpb_mod.f,v needs to be changed to 2048. This

file is located in $M3HOME/models/PARIO/src.

4.3. Emission processing

4.3.1. National Emission Inventory (NEI)

The 2005 NEI v4.2 was used to generate emissions for all 4 nested domains. Point source

emissions in the 2005 NEI were replaced by point source inventories provided by the TCEQ

when generating emissions for the 4 and 2 km domains. The Sparse Matrix Operator Kernel

Emissions (SMOKE) emission processing model v2.6 (http://www.cmascenter.org/smoke/) was

used to process raw emission inventories to generate CMAQ model-ready emissions.

Spatial allocation: Spatial allocation surrogates were generated using the UNC Spatial Allocator

program (available from http://www.ie.unc.edu/cempd/projects/mims/spatial/). The necessary

shapefiles for the spatial allocator program were downloaded from

http://www.epa.gov/ttn/chief/emch/spatial/. An in-house program was developed to combine

surrogate 160 and 300 to generate surrogate file for surrogate 165 (0.5 Residential heating + 0.5

Page 98: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

86

low intensity residential), which is needed for 2005 NEI v4.2. Candian surrogates for the 36-km

domain were based on regridding the 12-km resolution surrogate file included with 2005 NEI

v4.2 using the surgtool in SMOKE. Surrogate file for Mexico emissions were also generated

using the Spatial Allocator tool, based on 2000 Census data for population.

Temporal allocation: Temporal allocation files provided with 2005 NEI v4.2 were used without

modification.

Speciation: 2005 NEI v4.2 does not provide speciation profiles for processing emissions for the

SAPRC mecahnsims. The speciation profiles for anthropogenic VOCs used in this study were

provided by the UCR team and was documented separately

(http://www.cert.ucr.edu/~carter/emitdb/SpecDB_Update_8_13.zip).

Biogenic emissions: Biogenic emissions are generated using the Biogenic Emissions Inventory

System, v3.14 (BEIS3.14) incorporated in SMOKE. Speciation of biogenic emissions was based

on mapping detailed species from BEIS into SAPRC model species. Table 15 shows the

mappings for S11D and S11L.

Table 15. Emission species/compounds (including 14 monoterpenes and 1 sesquiterpene) from

BEIS v3.14 and mappings to SAPRC-11D and SAPRC-11L.

BEIS species Name* Spliting factor S11D S11L

SESQT Sesquiterpene 1 SESQ TERP

ISOP Isoprene 1 ISOP ISOP

NO Nitric oxide 1 NO NO

MBO 2-methyl-3-buten-2-ol 1 MBUTENOL OLE2

APIN Alpha-pinene 1 APINENE TERP

BPIN Beta-pinene 1 BPINENE TERP

D3CAR Delta-3-carene 1 CARENE3 TERP

DLIM D-limonene 1 DLIMONE TERP

CAMPH Camphene 1 TERP TERP

MYRC Myrcene 1 TERP TERP

ATERP Alpha-terpinene 1 TERP TERP

BPHE Beta-phellandrene 1 TERP TERP

SABI Sabinene 1 SABINENE TERP

PCYM P-cymene 1 PCYMENE TERP

OCIM Ocimene 1 TERP TERP

ATHU Alpha-thujene 1 TERP TERP

TRPO Terpinolene 1 TERP TERP

GTERP Gamma-terpinene 1 TERP TERP

METH Methanol 1 MEOH MEOH

ETHE Ethene 1 ETHE ETHE

PROPE Propene 1 PROPENE OLE1

ETHO Ethanol 1 ETOH ALK3

ACET Acetone 1 ACET ACET

Page 99: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

87

BEIS species Name* Spliting factor S11D S11L

HEXA Hexanal 1 C6RCHO1 RCHO

HEXE Hexenol 1 OLE1 OLE1

HEXY Hexenylacetate 1 OLE1 OLE1

FORM Formaldehyde 1 HCHO HCHO

ACTAL Acetaldehyde 1 CCHO CCHO

BUTE Butene 1 BUTENE1 OLE2

ETHA Ethane 1 ETHANE ALK1

FORAC Formic acid 1 HCOOH HCOOH

ACTAC Acetic acid 1 CCOOH CCOOH

BUTO Butenone (aka methyl vinyl ketone) 1 MVK OLE1

CO Carbon monoxide 1 CO CO

ORVOC Other reactive VOCs 0.1 OLE2 OLE2

ORVOC

0.85 OTH2 ALK2 *http://www.cmascenter.org/smoke/documentation/3.1/html/ch06s12.html.

4.3.2. Point source emissions data from Texas Commission of Environmental Quality

The following emission inventories (Table 16) from the TCEQ were based on suggestions from

Jim Smith (Personal Communication, February 7, 2013) and Ron Thomas (Personal

Communication, February 7, 2013).

Table 16. TCEQ emission inventory for Texas emissions and their corresponding VOC

speciation and cross reference files.

Inventory file VOC speciation and cross reference files Note*

afs.aggVOC_SI_for_15Aug2006_episode_v9 xref.voc.eps3f.stars_2006_vSIc.pt.FACILITY

prof.emscvt.stars_2006_vSIc.pt H

afs.ard_minus_SI_for_15Aug2006_episode_v8 xref.voc.eps3f.stars_2006_v3a.pt.FACILITY

prof.emscvt.stars_2006_v3a.pt H

afs.osd_n_ard_SI_paths_for_15Aug2006_episod

e_v8

xref.voc.eps3f.stars_2006_v3a.pt.FACILITY

prof.emscvt.stars_2006_v3a.pt H

afs.osd_minus_SI_for_15Aug2006_episode_v8 xref.voc.eps3f.stars_2006_v3a.pt.FACILITY

prof.emscvt.stars_2006_v3a.pt D

afs.landing_losses_all_2006_episodes_v1 xref.voc.eps3f.stars_2006_vLL.pt.FACILITY

prof.emscvt.stars_2006_vLL.pt H

afs.aggVOC_extra_alkenes_for_2006_v2 xref.voc.eps3f.stars_2006_vXA.pt.FACILITY

prof.emscvt.stars_2006_vXA.pt D

afs.NOx_SI_for_15Aug2006_episode_v9 Not needed. NOx is split into NO2 and NO using a

molar ratio of 0.05:0.95. H

*H stands for hourly data and D stands for daily emissions.

Temporal allocation and cross reference files used for average day emission files to generate

hourly emissions are: tmprl.profs.tx_osd_2005 and tmprl.xref.tx_osd_2005.

Both files were downloaded from the TCEQ’s ftp server. The temporal or speciation profiles for

an emission record can be identified using a combination of FIPS, plant id, stack id and point id.

Records in the extra alkenes inventory did not match any temporal profiles and the daily

emissions were evenly splitting into 24 hours (Personal Communication with Ron Thomas).

Page 100: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

88

The detailed VOC speciation profiles (prof.emscvt.*, downloaded from the TCEQ’s ftp server)

are preprocessed using the profile processing program developed by Dr. Bill Carter of the UCR

team (http://www.cert.ucr.edu/~carter/emitdb/SpecDB_Update_8_13.zip). The processed

profiles are in GSPRO format, which is also used by our in-house emission processing code.

The in-house program was developed to process VOC, NOx, CO and SO2 emissions for the

TCEQ point source inventories listed above. It reads the TCEQ emission inventory into

computer memory and then record- by-record, finds the matching VOC speciation profile (for

other species, no speciation profiles are needed) and temporal allocation profile. The speciation

profile is applied to generate emissions of model-specific VOC species, and the temporal

allocation profile is used to generate hourly emissions from daily emissions if necessary. Unit

conversion is applied to convert short ton into metric and molar units. Subsequently, the program

calculates the position of the point sources using the latitude/longitude information in the record,

and a coordinate conversion subroutine is used to map the point source into model grid cells.

Next, the program calculates the plume rise using stack information (height, temperature,

diameter and exit velocity, directly available in the inventory files) to determine the vertical

distribution of the emissions. Finally, it generates a netCDF file of emissions at each model grid

cell. Three subroutines of the SMOKE emission processing system (preplm.f, plmris.f and

postplm.f) were used for the plume rise calculations; other parts of the code were developed by

the Texas A&M team for this project. The source code can be made available upon request.

4.4. Summary

In section 4, we documented the files, software and procedures needed to implement four

versions of the SAPRC mechanisms into the CMAQ v5.0.1 framework. All SAPRC mechanisms

describe the gas-phase atmospheric reactions of VOCs and nitrogen oxides in urban and regional

atmospheres. The SAPRC-11D (S11D) is based on the detailed SAPRC-11 mechanism that

explicitly representing the atmospheric reactions of ~300 types of VOCs while the SAPRC-11L

(S11L) is a condensed version of SAPRC-11 that represents VOCs using a limited number of

lumped VOC classes. In addition to S11D and S11L, two versions of an older version of the

SAPRC mechanism (SAPRC-07) were also implemented in CMAQ v5.0.1: a condensed version

of SAPRC-07 with standard lumping (SAPRC-07L, or S07L) and an extended SAPRC-07 with

explicit treatment of several air toxic species (SAPRC-07T, or S07T). The procedures for

implementing these mechanisms are described in section 4. In addition, input data and software

and procedures used to geneate CMAQ model-ready emissions for these mechanisms are also

described.

Page 101: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

89

5. Comparison of Mechanisms by Carrying out CMAQ Simulations

5.1. Introduction

Three-dimensional (3-D) air quality models have been widely used to understand the formation

mechanisms of air pollutants (Russell and Dennis, 2000) and to demonstrate the effectiveness of

emission control on air quality (U.S. EPA, 2007). Many hundreds of types of volatile organic

compounds (VOCs) were used in developing photochemical mechanisms that describe the

formation and transformation of gaseous pollutants in the atmosphere (Carter, 2004b). These

VOCs react at different rates and mechanisms and form a large number of oxidation products

that influence the formation of ozone (O3) and other secondary pollutants (NRC, 1991).

While traditional photochemical modeling relies on chemical mechanisms that represent most of

the VOCs in the atmosphere using a small number of lumped model species, recent

developments in photochemical mechanisms tend to include more explicitly represented model

species. Ying and Li (2011) compared gas phase model results using a near-explicit (the Master

Chemical Mechanism (MCM, Saunders et al, 2003)) and a lumped photochemical mechanism

(SARPC-07) and noticed differences in predicted reactive radical concentrations and

photochemical oxidation products. However, since the MCM and the SAPRC-07 are based on

different model development principles, it was unclear whether the difference is due to the effect

of lumping and/or due to the different ways reaction intermediate products were modeled by the

two mechanisms.

In Southeast Texas, seven alkenes (ethene, propene, 1,3-butadiene, 1-butene, isobutene, trans-2-

butene, and cis-2-butene) are classified as Highly Reactive Volatile Organic Compounds

(HRVOCs) due to their high emissions (Murphy and Allen, 2005) and their high reactivities

(Calvert et al., 2000). Many of the reactive alkene species (except for ethene) are represented in

most photochemical mechanisms as lumped model species. The emissions (and thus relative

concentrations) of these HRVOCs in the Houston area are likely different from those in other

urban areas. However, the reaction parameters of the lumped photochemical mechanisms were

often developed based on representative urban VOC compositions. Thus, it is unclear whether it

is appropriate to use a lumped photochemical to model ozone formation in the Houston area. A

comparison of modeled ozone concentrations using a lumped representation of most of these

species and a detailed version that represents many reactive species explicitly is necessary to

build confidence for current modeling practices or provide guidance on developing/applying

more detailed photochemical mechanisms in air quality modeling studies.

The objective of Task 5 (perform CMAQ simulations) for this project is to compare results from

several SAPRC mechanisms with different levels of VOC lumping to understand the effects

lumping on ozone predictions and and better simulate O3 formation from both urban emissions

and industrial HRVOC emissions in Southeast Texas.

Page 102: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

90

5.2. Model application

5.2.1. Model domains

In this study, CMAQ 5.0.1 with four versions of the SAPRC mechanisms were applied to study

ozone formation in Southeast Texas for a two-week long episode, from August 28 to September

15, 2006. The data-rich episode is part of the 2006 TexAQS II study with an extensive collection

of field measurements, emissions and meteorology data and has been used by the TCEQ for

ozone attainment demonstration. The first three days of the model episodes were considered as

spin-up days and the results from these days were excluded from the subsequent analysis. The

simulations were conducted using a four-level nested domain, with the innermost 2-km domain

centered on the Houston-Galveston Bay area (HGB). The horizontal domain structures are

identical to the ones used in the Houston-Galveston-Brazoria 8-Hour Ozone SIP Modeling

(2005/2006 episodes). The coarse domain is for the eastern United States with 36-km horizontal

resolution. The 12-km and 4-km resolution nested domains cover the east part of Texas and its

surrounding states, and the HGB and BPA areas in Southeast Texas, respectively. The 2-km

domain focuses on the HGB area only. In all the three domains, the vertical extent of the model

is divided into 14 layers, reaching 21,000 m above the surface. The first layer thickness is

42 m. Figure 30 shows the 4-km and 2-km domains and the locations of 12 monitoring stations

with ozone measurements in the domain.

Figure 30. 4-km (entire plot) and 2-km (marked by the box with red borders) nested domains

used in this study. The Continuous Ambient Monitoring Stations (CAMS) shown on the map are

(a) HALC, (b) HNWA, (c) HWAA, (d) HLAA, (e) HCQA, (f) BAYP, (g) HSWA, (h) SHWH, (i)

HROC, (j) HOEA, (k) C35C, and (l) DRPK. See

http://www.tceq.texas.gov/airquality/airmod/data/hgb8h/hgb2_site.html for more information about the sites.

Page 103: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

91

5.2.2. Chemical mechanisms

Four fixed-parameter versions of the SAPRC mechanisms with different levels of complexities

in terms of VOC representations were implemented into the most recent version of the

Community Multiscale Air Quality (CMAQ) model, version 5.0.1 (downloaded from

http://www.cmascenter.org /cmaq/). SAPRC-07L (S07L) is the condensed version of the detailed

SAPRC-07 (S07) mechanism with standard lumping (Carter, 2010). The standard lumping

version of the SAPRC-07 uses a small number of lumped VOC species to represent most of the

emitted VOCs included in the emission inventories. SAPRC-07T (S07T) is the so-called “toxics”

version of the S07 mechanism (Carter, 2010; Hutzell, 2012). S07T is also a lumped version of

the S07 mechanism but with some more emission species treated explicitly. Although S07T is

already included in CMAQ 5.0.1, the 2005 National Emission Inventory (NEI) released by the

U.S. EPA and the point source inventories provided the TCEQ do not include necessary files to

support preparation of CMAQ model-ready emissions for S07T. SAPRC-11D (S11D) is an

update to the detailed S07 mechanism. Similar to S07L, SAPRC-11L (S11L) is the condensed

version of the detailed SAPRC-11 with standard lumping. Section 3.2.1 (Mechanisms evaluated

for this project) provides additional information on S11D and S11L. Details of the

implementation of the mechanisms are described in section 4 and are not repeated here.

5.2.3. Emissions

Emissions were generated from the 2005 National Emission Inventory (NEI) (version 4.2 of the

2005-based modeling platform, downloaded from the website of the U.S. EPA Emission

Modeling Clearing House) using the Sparse Matrix Operator Kernel Emission (SMOKE) model.

For 4-km and 2-km simulations, point source emissions for the Houston-Galveston-Brazoria

(HGB) and Beaumont-Port Arthur (BAP) areas in the 2005 NEI v4.2 were replaced by point

source inventories provided by the TCEQ. The TCEQ-provided speciation profiles and temporal

allocation profiles were used to develop VOC speciation profiles for model mechanisms and to

temporally allocate the daily emissions. Several TCEQ inventories contained hourly data. For

these hourly data, temporal allocation was not necessary. Speciation profiles to split VOC

emissions into explicit and lumped model species for both the NEI emissions (based on

SPECIATE 4.3) and the TCEQ emissions were generated and provided by Carter (Carter,

August 2013, personal communication) and separately documented

(http://www.cert.ucr.edu/~carter/emitdb/SpecDB_Update_8_13.zip). Biogenic emissions were

generated using the Biogenic Emissions Inventory System, Version 3.14 (BEIS 3.14). A 1-km

resolution vegetation cover database that includes ~230 different vegetation types were used to

estimate biogenic emissions (Vukovich and Pierce, 2002). Emissions factors for each vegetation

type were included in BEIS and used to estimate biogenic emissions by applying temperature

and solar radiation corrections (Pierce and Waldruff, 1991). More details on the emission

processing can be found in a previous paper (Zhang and Ying, 2012). Open biomass burning

emissions for years 2002-2010 were based on the satellite-based Fire INventory from NCAR

(FINN) (Wiedinmyer et al., 2011).

Historically, developers of condensed chemical mechanisms had not trusted emissions data due

to various uncertainties in the emission inventories. Thus, they used limited amounts of ambient

measurements in deciding the compositions of condensed species (e.g., OLE1 and OLE2 in

Page 104: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

92

SAPRC-07; and OLE and IOLE in CB05). However, this results in discrepancies in the assumed

composition during mechanism development and the composition during air quality simulations

because air quality simulations with 3-dimensional Eulerian models heavily rely on emissions

data. The standard-lumping fixed-parameter version of SAPRC-11 (S11L) was developed based

on average ambient VOC concentrations in urban areas in the United States in the 1980s

(Lonneman, 1988). It is informative to check if the compositions of the lumped alkene species

(OLE1 and OLE2) used in deriving the mechanism agree with current emissions.

The fractional contributions of major alkene species/groups to OLE1 based on the current

emission inventory estimations are shown in Figure 31. All species show significant spatial

variations in fractional contributions to OLE1. For propene, most of the areas show a relative

contribution of ~35%. This agrees well with the 29.4% used in OLE1 mechanism development

(Table 7; Carter, 2010). However, in the Houston Ship Channel (HSC) area, relative

contributions of propene can be as high as 90-100%. 1-Hexene shows a relative contribution of

~0.5-1%. This is significantly lower than the assumed 23.7% in model development (Table 7)

but agrees well with the median contribution of 1-hexene to the OLE1 group based on the

measurements at the La Porte site during the Texas Air Quality Study 2000 (see Table 3 of Heo

et al (2010)). Relative contributions of 1-butene and 1-pentene are approximately 10-15% and 5-

10%, respectively, which generally agrees with the assumed value of 12% for both species

(Table 7). Contributions of 3-methy-1-butene to OLE1 are 15-30% in the Houston area, and are

much higher than 3% assumed in model development (Table 7). The emission rates of 1-hexene

and 3-methy-1-butene in the 2-km domain are predicted to be 5 and 40 kmol day-1

, respectively.

While the 1-hexene emission rates are much lower than the emission rates of propene (624 kmol

day-1

), emission rates of 3-methyl-1-butene might be high enough that it may lead to errors in

ozone predictions using the fixed-parameter version of the SAPRC mechanism. The high

contributions of 3-methyl-1-butene to OLE1 and its high emission rates, however, are likely due

to errors in profiles 8750 and 8751 in the SPECIATE 4.3 database (Heo et al, 2012b). These two

profiles are used to generate vehicle exhaust emissions for vehicles powered by E0/E10 gasoline

mixtures in the current U.S. market. The mass fraction for 3-methyl-1-butene in profile 8750 is

approximately 6%, which is inconsistent with results of many previous tunnel and ambient

studies as pointed out by Heo et al (2012b). Further investigations are necessary to address this

inconsistency.

Page 105: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

93

Figure 31. Fractional contributions of selected alkene species or groups to the emissions of

lumped species OLE1 in SAPRC-11L. Results are based on daily average emissions of August

30 (Wednesday), 2006. Note the scales are different for each panel to better illustrate spatial

distribution.

Similar to the analysis for OLE1, Figure 32 shows the fractional contributions to OLE2 for major

species/components. Contributions of cis-2-pentene are 3-8% in general and do not vary much in

the Houston area. This is somewhat lower than 14.3% used in model development (Table 7).

Most of the other alkenes shown in Figure 32 also show a relatively uniform spatial distribution

in the Houston area. Contributions of 1,3-butadiene in some areas can be as high as 20-30%

(Figure 32), which is much higher than 5.6% used in the model development (Table 7) but is

supported by analysis presented in Table 3 of Heo et al (2010) based on the measurements at the

La Porte site during the Texas Air Quality Study 2000. In other areas, fractional contributions of

1,3-butadinene are closer to the assumed faction, 5.6%. Emissions of 1,3-butadinene in the 2-km

domain are approximately 49 kmol day-1

, which is approxiamtely 10% of the propene emission

rates in the domain.

Figure 32. Fractional contributions of selected alkene species or groups to the emissions of

lumped species OLE2 in SAPRC-11L. Results are based on daily average emissions of August

30 (Wednesday), 2006.

Page 106: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

94

5.2.4. Meteorology

MM5 modeling results provided by TCEQ were used to generate meteorology inputs for the 36,

12 and 4-km resolution domains. The MM5 meteorology was extensively evaluated in a previous

study (Ngan et al, 2012). An in-house program based on bilinear interpolation method (Chapra,

2008) was developed to generate 2-km resolution meteorology fields from 4-km results.

5.3. Results and discussion: CMAQ simulation results

5.3.1. Model performance

Model performance of ozone was evaluated using time series and performance statistics. Figure

33 shows the predicted (2-km, S11D) and observed ozone concentrations at 12 Continuous

Ambient Monitoring Stations (CAMS) from August 31, 2006 to September 14, 2006. Predictions

generally agree well with observations. Ozone concentrations are significantly under-predicted at

C35C. This under-prediction is likely due to an over-prediction of diesel emissions from port

activities as the emissions from that source category in 2005 NEI were based on year 2000

emission estimations and were not adjusted to match reported port emissions for 2005. A

previous study using an older version of 2005 NEI (v2) but with adjusted port emissions showed

better model performance at the site (Zhang and Ying, 2012). Time series from other

mechanisms are visually similar and presented in section D-1 of Appendix D.

Page 107: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

95

Figure 33. Predicted (based on 2-km resolution SAPRC-11D) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

To quantitatively evaluate model performance for ozone, the U.S. EPA recommends several

model performance statistics for air quality modeling. In the following, three of these statistics

are examined in detail: the unpaired predicted-to-observed peak ozone ratio (accuracy of

unpaired peak; AUP), the mean normalized error (MNE), and the mean normalized bias (MNB).

The mean normalized error parameter provides an overall assessment of model performance and

can be interpreted as precision, and the normalized bias parameter measures a model’s ability to

reproduce observed spatial and temporal patterns and can be interpreted as accuracy. The U.S.

EPA criteria require an accuracy of AUP<±20%, MNB within ±15% and MNE< 35% for all

data points above a threshold ozone value of 60 ppb. The AUP, MNB and MNE are defined by

equations (1) – (3) listed below:

, ,

,

p ppeak o opeak

o opeak

C CAUP

C

(1)

, ,

,1

1MNB

m i o

i

Ni

oi

C C

N C

(2)

Page 108: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

96

,

1

,

,

1 m i o i

o i

N

i

C CMNE

N C

(3)

where Cm is the model-predicted concentration at station i, Co is the observed concentration at

station i, and N equals the number of prediction-observation pairs drawn from all monitoring

stations. The subscripts ppeak and opeak are the hours when predicted and observed peak

concentrations occur.

While most of the results at most stations meet model performance criteria, detailed model

performance analysis suggests that there are noticeable differences in model performance

statistics between the simulations with different mechanisms. Table 17 shows a comparison of

mean normalized bias (MNB), mean normalized error (MNE) and accuracy of unpaired peak

(AUP) for S11D and S11L based on 2 and 4 km simulations results. Average MNB, MNE and

AUP for S11D-2km are -0.070, 0.203 and -0.020, respectively. All these three statistics are better

than results from S11L simulations. S11D-4km simulation shows similar model performance as

S11D-2km in these three model performance criteria. S11L-4km shows better model

performance than S11-2km in all three performance statistics. It can be concluded that the

detailed chemical mechanism yield better ozone performance than the same mechanism with

standard lumping in TexAQS 2006. Using a higher grid resolution based on interpolated

meteorology (not physically consistent or realistic) does not lead to consistent improvements in

model performance. Detailed performance statistics shown in Table D-1 to Table D-4 in

Appendix D further support this conclusion. This conclusion is also generally correct for

SAPRC-07 simulations (see Table D-5 through Table D-9 in Appendix D).

Table 17. Comparison of Mean Normalized Bias (MNB), Mean Normalized Error (MNE) and

Accuracy of Unpaired Peak (AUP) for four SAPRC-11 simulations. MNB MNE AUP

S11D-

4km

S11D-

2km

S11L-

4km

S11L-

2km

S11D-

4km

S11D-

2km

S11L-

4km

S11L-

2km

S11D-

4km

S11D-

2km

S11L-

4km

S11L-

2km

HALC -0.082 -0.057 -0.114 -0.089 0.153 0.153 0.169 0.165 -0.052 0.004 -0.082 -0.03 HNWA -0.070 -0.068 -0.105 -0.100 0.122 0.125 0.144 0.142 -0.061 -0.037 -0.089 -0.06

HWAA 0.020 0.028 -0.017 -0.008 0.157 0.154 0.153 0.150 0.053 0.062 0.023 0.03

HLAA 0.036 -0.001 -0.004 -0.039 0.166 0.162 0.155 0.158 0.099 0.069 0.036 0.03 HCQA 0.065 0.082 0.025 0.040 0.259 0.261 0.244 0.245 0.138 0.160 0.130 0.12

BAYP -0.207 -0.220 -0.239 -0.253 0.239 0.251 0.258 0.269 -0.203 -0.201 -0.208 -0.23

HSMA -0.025 -0.016 -0.060 -0.054 0.232 0.232 0.231 0.231 0.040 0.038 0.000 0.00 SHWH -0.101 -0.084 -0.137 -0.120 0.232 0.233 0.232 0.233 -0.017 0.008 -0.061 -0.03

HROC -0.122 -0.085 -0.150 -0.125 0.222 0.216 0.229 0.216 -0.063 -0.030 -0.082 -0.06 HOEA -0.113 -0.146 -0.147 -0.180 0.199 0.211 0.208 0.225 -0.123 -0.153 -0.145 -0.18

C35C -0.168 -0.241 -0.178 -0.280 0.222 0.271 0.228 0.295 -0.061 -0.139 -0.033 -0.18

DRPK -0.076 -0.037 -0.113 -0.072 0.172 0.171 0.179 0.178 -0.045 -0.016 -0.059 -0.05 Avg. -0.070 -0.070 -0.103 -0.107 0.198 0.203 0.203 0.209 -0.025 -0.020 -0.048 -0.054

Figure 34 shows the predicted (based on 2-km S11D simulations) and observed alkene

concentrations based on Auto-GC measurements at two sites (C35C and DRPK) in the Houston

area. Measured concentrations are generally in agreement with model predictions. In C35C, peak

alkene concentrations are still under-predicted in a number of days. Since C35C is close to the

HSC industrial area, emissions from industrial sources might still be under-estimated in that area.

At DRPK, predicted peak concentrations of trans-2-pentene, cis-2-pentene and 1-pentene are

lower than the observations although the model correctly predicts the diurnal variation of these

species. Agreement of trans-2-butene, cis-2-butene, 1-butene, propene and ethene are better

Page 109: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

97

(Figure 34). The 2-km resolution simulation appears to be able to predict several sharp alkene-

increasing events better than the 4-km resolution simulations (see Figure D-4 in Appendix D).

Figure 34. Predicted (based on 2-km resolution SAPRC-11D) and observed concentrations of

ethene, propene, 1-butene, cis-2-butene, trans-2-butene, 1-pentene, cis-2-pentene, and trans-2-

pentene (in units of ppbC) at 12 CAMS monitoring sites within the HGB area.

Page 110: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

98

5.3.2. Regional differences

Figure 35 and Figure 36 show the differences in predicted peak hour (1400-1500 CST) average

and daily average O3, OH, HO2 and PAN concentrations between S11D and S11L based on the

15-day simulations (August 31, 2006 – September 14, 2006). Both peak ozone and daily average

ozone have a clear difference of a few percent, with higher predictions from S11D. Maximum

difference in both daily and hour ozone concentrations can be as high as 10% in urban Houston

area. For OH, S11L is lower than S11D by ~5-10% in Houston and other urban areas in the

domain. OH concentrations predicted by S11L are higher than these predicted by S11D in other

parts of the domain. For HO2, S11L is lower than S11D in the southwest part of the domain by as

much as 20-30% in the urban Houston area. This applies to both peak hourly and daily average

concentrations. At peak ozone hour, S11D predicts higher PAN concentrations by 20-30% than

S11L throughout the domain except in the northwest corner of the domain. On average over the

entire episode, PAN concentrations predicted by S11D are higher by 15-20% than those for

S11L in most parts of the domain.

Figure 35. Predicted episode-averaged (August 31-September 15, 2006) O3, OH, HO2 and PAN

concentrations (in units of parts per million (ppm)) at 1300-1400 CDT using S11D and the

relative differences ((S11L-S11D)/S11L; in 0-1 scale) between S11D and S11L.

Figure 36. Predicted episode-averaged (August 31-September 15, 2006) daily O3, OH, HO2 and

PAN concentrations (in units of parts per million (ppm)) using S11D and the relative differences

((S11L-S11D)/S11L; in 0-1 scale) between S11D and S11L.

Page 111: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

99

These differences between S11D and S11L are most probably because “VOC mixtures used to

develop the fixed-parameter lumped SAPRC mechanism” are different from the modeled VOC

mixtures influenced by spatially and temporally varying emissions, as demonstrated in this study

for major alkene species. Differences in “NO” between S11L and S11D were larger than those in

“NO2” based on the maps of absolute differences and relative differences in NO and NO2 (not

shown). More abundant peroxy radicals (e.g., HO2) for S11D resulted in more NO-into-NO2

conversion and higher O3 than for S11L, which is clearly applicable to the NOx abundant

modeling cells (i.e., higher HO2, lower NO and higher NO2, and higher O3 for S11D compared to

S11L). More detailed analyses of the model results, possibly with process analysis, are needed to

further understand these differences.

5.3.3. Changes of ozone due to updated gasoline exhaust emission profiles

As discussed in section 5.2.3, specation profiles for light-duty gasoline vehicle exhaust using E0

and E10 gasoline (SPECIATE 4.3 profiles 8750 and 8751) appear to have too much 3-methyl-1-

butene (6% in mass fraction) but low isopentane (0.2%). This is inconsistent with results from

many previous tunnel and ambient studies (Heo et al, 2012b), which indicate that isopentane is

one of the major components and 3-methyl-1-butene should have a low mass contribution below

1%. Since 3-methyl-1-butene reacts much faster with OH and has higher ozone reactivity than

isopentane (Carter, 2010), an additional simulation was conducted to investigate whether this

apparent error in the VOC speciation has significant impact on ozone predictions in the HGB

area. In the additional simulation, mass fractions of isopentane and 3-methly-1-butene in profile

8750 and 8751 were swapped and emissions were regenerated for the 4-km domain for the S11D

mechanism. While the new simulation predicts slightly lower ozone concentrations, the

maximum absolute and relative difference in the O3 concentration in the entire 4-km HGB

domain is approximately 0.6 ppb and 1.5% thoughout the entire model episode. The small

difference indicates that ozone formation in the HGB area is dominated by other reactive VOCs

and the apparent error in the speciation profiles does not significantly affect O3 modeling results.

5.3.4 Computation time comparison

In order to evaluate the computation burden of the four mechanisms used in this study, several

timing simulations were performed by running the 4-km nested domain simulations on identical

computation nodes (Figure 37). The simulations were conducted using an 8-node cluster, each

equipped with a 4-core Intel Q6600 running at 2.6GHz and 2GB of DDR2 RAM. Only one core

on each node was used in the simulation for a total of 8 cores. The nodes are connected through

Gigabit Ethernet and all the input and output files were resided on an NFS mount. Message

Passing Interface (MPI) was MPICH2 v2.1.4. The chemical mechanisms were solved using

SMVGEAR included in the CMAQ distribution. Intel Fortran Compiler (ifort) v11.1 was used to

compile the source codes with the following options:

-O3 -xSSSE3 -override-limits -fno-alias -mp1 -fp-model precise

The numbers of reactions and model species are listed in Table 11 in section 4. S11D has 422

model species and 1127 reactions. In comparison, S11L has 126 model species and 354

Page 112: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

100

reactions. The S07L and S07T have 133 speices and 609 reactions and 150 species and 689

reactions, respectively. There are more reactions in the S07 mechanisms than in S11L because

they were based on the “C” versions, which use explicit reactions for peroxy radical operators.

The computation times (for one simulated day) for S11D, S11L, S07L and S07T are 5.3, 1.57,

1.65 and 1.75 hours, respectively (Figure 37). The computation time is more affected by the

number of active model species than number of reactions because it determines the size of the

Jacobian matrix. The number of reactions can slightly affect the computation time of each entry

in the Jacobian but does not significantly affect overall computation time.

Figure 37. Comparison of average time needed (hour) to complete one simulated day.

5.4. Summary

In this study, four SAPRC mechanisms with different levels of VOC lumping were implemented

in the most recent version of CMAQ and applied to a summer high ozone episode in Southeast

Texas during the 2006 Texas Air Quality Study. The SAPRC-11D (S11D) with ~300 explicit

emitted VOC species is the most detailed SAPRC mechanism ever applied in regional air quality

simulations. The SAPRC-11 with standard lumping (S11L) is a condensed and fixed-parameter

version of SAPRC-11D. In addition to the two recent versions of the SAPRC mechanisms, two

older versions of SAPRC-07 were also applied. The SAPRC-07 with standard lumping (S07L) is

similar to S11L but with outdated mechanisms for aromatics. The SAPRC-07T is an extended

version of S07 with a number of VOCs represented as explicit speices. While the ozone time

series predicted by the four mechanisms using two different horizontal grid resolutions (4 km

and 2 km) appear similar and agree with observations, statistical analysis of the hourly average

and peak hour ozone concentrations shows that S11D yields better ozone model performance

than S11L. Predicted alkene concentrations by S11D at an urban site and an industrial site also

agree with observations in general, although several peak events at the industrial sites are not

well predicted. While the 2-km resolution simulations are better in reproducing the rapid increase

Page 113: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

101

in alkene concentrations in the urban site, ozone predictions are not improved by using 2-km grid

resolution.

Averaged over the entire episode, S11D-predicted O3, OH, HO2 and PAN concentrations are

significantly different from those predicted by S11L. S11D predicts higher O3 and PAN

throughout the domain and higher OH and HO2 in urban Houston areas and lower OH and HO2

in areas with less anthropogenic emissions. The differences in these species between S11D and

S11L are most probably because VOC mixtures used to develop the fixed-parameter lumped

SAPRC mechanism are different from the modeled VOC mixtures influenced by spatially and

temporally varying emissions, as demonstrated in this study for major alkene species. More

detailed analyses of the model results, possibly with process analysis, are needed to further

understand the major causes of these differences. In addition, developing a version of SAPRC

with an intermediate level of explicitness between SAPRC-11D and SAPRC-11L is needed to

reduce the computational cost and better predict/reproduce ozone concentrations in the Houston

area.

Page 114: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

102

6. Conclusions and Recommendations

Chamber experiments were designed and carried out to evaluate and improve the existing

mechanisms for simulating ozone formation from both typical urban emissions and industrial

emissions of Highly Reactive Volatile Organic Compounds (HRVOCs). The mechanisms for the

5 HRVOCs (1-butene, isobutene, trans-2-butene, cis-2-butene and 1,3-butadiene) and the 5 non-

HRVOCs (1-pentene, 1-hexene, trans-2-pentene, cis-2-pentene, 2-methyl-2-butene) were

evaluated by using the newly generated chamber experimental data of the 36 reactor runs.

The detailed SAPRC-11 (SAPRC-11D) reasonably simulated ozone formation from 7 of the 10

alkenes while the performance for 1,3-butadiene, 1-hexene and 2-methyl-2-butene was not

satisfactory. The mechanism evaluation results for SAPRC-11D increase our confidence in the

mechanisms for 1-butene, 1-pentene, isobutene and cis/trans 2-butene and 2-pentene. On the

other hand, the evaluation results also highlight mechanism issues for 1,3-butadiene, 1-hexene

and 2-methyl-2-butene. SAPRC-11D showed limitations in simulating the maximum ozone

concentration for 1,3-butadiene (about 25% underprediction), 1-hexene (about 20%

overprediction), and probably 2-methyl-2-butene (about 20% underprediction). SAPRC-11D also

underpredicted the NO oxidation and O3 formation rate (D(O3-NO) Rate) for 1,3-butadiene by

about 65-70% on average. Note that we voluntarily included chamber simulation results for the

Carbon Bond mechanism in Appendix E to provide additional data potentially useful to evaluate

and update the mechanisms currently used by the TCEQ. The mechanism for 1,3-butadiene has

many similar features to that for isoprene, and knowledge gained during updating the isoprene

chemistry should be used to update the 1,3-butadiene chemistry, and vise-versa.

Under the experimental conditions used for this study, in general, SAPRC-11D showed better

performance in simulating ozone formation from the tested alkenes than two other versions of

SAPRC (SAPRC-07T and SAPRC-11L) that more heavily rely on lumped reactions (i.e., OLE1

and OLE2 reactions). Chamber simulation results showed that lumping effects may be important

when a few compounds dominate the ozone reactivity. Environmental chamber conditions (i.e.,

the reactivity was dominated by a single alkene) are certainly very different from typical ambient

conditions. However, chamber simulations also indicated that the performance of a chemical

mechanism with explicit major alkenes (e.g., HRVOCs alkenes) is less vulnerable to changes in

the air composition (e.g., due to variable emissions and variable atmospheric mixing conditions).

In regard to lumping methods, unbranched C3+ 1-alkenes seem to share similar O3 formation

mechanisms but also have non-negligible differences (e.g., different organic nitrate yields) based

on the results for propene, 1-butene, 1-pentene, and 1-hexene. Unbranched internal alkenes seem

to share similar ozone formation mechanisms based on the results for cis/trans 2-butene and 2-

pentene. On the other hand, ozone formation from isobutene (a branched terminal olefin) and 2-

methyl-2-butene (a branched internal olefin) seems to be difficult to simulate by using the OLE2

reactions that are more useful to simulate ozone formation from unbranched internal olefins (e.g.,

2-butene isomers). If lumping methods for the tested 10 alkenes need to be re-derived, reliable

emissions data as well as these mechanism evaluation results should be considered.

Four SAPRC mechanisms with different levels of VOC lumping were implemented in the

CMAQ atmospheric model and applied to a summer ozone episode in Southeast Texas during

Page 115: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

103

the 2006 Texas Air Quality Study. The SAPRC-11D with ~300 explicit emitted VOC species is

the most detailed SAPRC mechanism ever applied in regional air quality simulations. The

SAPRC-11 with standard lumping (SAPRC-11L) is a condensed and fixed-parameter version of

SAPRC-11D. In addition to these two recent versions of the SAPRC chemical mechanism, two

older versions of SAPRC-07 were also applied. The SAPRC-07 with standard lumping (SAPRC-

07L) is similar to SAPRC-11L but with outdated mechanisms for aromatics. The SAPRC-07T is

an extended version of SAPRC-07L with a number of VOCs represented as explicit species.

While the ozone time series predicted by the four mechanisms using two different horizontal grid

resolutions (2 km and 4 km) appear similar and agree with observations, statistical analysis of the

hourly average and peak hour ozone concentrations shows that SAPRC-11D yields better ozone

model performance than that of SAPRC11L. The alkene concentrations predicted by SAPRC-

11D at an urban site and an industrial site also agree with observations in general, although

several peak events at the industrial sites are not well predicted. Although the 2-km resolution

simulations are better in reproducing the rapid increases in alkene concentrations in the urban

site, ozone model performance does not appear to be significantly improved with 2km grid

resolution.

Averaged over the entire episode, SAPRC-11D predicted O3, OH, HO2 and PAN concentrations

are significantly different from those predicted by SAPRC-11L. SAPRC-11D predicts higher O3

and PAN throughout the domain and higher OH and HO2 in urban Houston areas and lower OH

and HO2 in areas with less anthropogenic emissions. The differences in these species between

SAPRC-11D and SAPRC-11L are most likely due to differences in the air composition (i.e.,

relative abundance of different VOCs) assumed during the development of SAPRC-11L and the

VOC mixture simulated for this study based on the emission inventories. These differences can

occur due to spatially and temporally varying emissions, as demonstrated in this study for

propene and 1,3-butadiene. More detailed analyses of the model results, possibly with process

analysis, are needed to further understand the causes of the differences. In addition, developing a

version of SAPRC with an intermediate level of explicitness between SAPRC-11D and SAPRC-

11L is needed to reduce the computational cost and better predict/reproduce ozone

concentrations in the Houston area.

Chemically detailed emissions data generated for this project were useful to inspect consistency

between the compositions of the lumped alkene species (OLE1 and OLE2) used in deriving the

mechanism and the emissions inventory data that air quality simulations with 3-dimensional

Eulerian models heavily rely on. The contribution of 1-hexene assumed during the development

of SAPRC-11L was much higher than the contribution indicated by the emission data. On the

other hand, the contribution of 3-methyl-1-butene assumed for SAPRC-11L was much lower

than the contribution indicated by the emissions data. However, this is most probably due to

errors in the SPECIATE profiles 8750 and 8751 that are used to generate vehicle exhaust

emissions for vehicles powered by E0/E10 gasoline mixtures. The impact of these errors on

modeled ozone concentrations appears to be less than about 0.6 ppb or 1.5% in the HGB area

during the studied modeling episode. Explicitly modeling propene and 1,3-butadiene is

potentially useful to improve the accuracy of ozone predictions based on the spatial variability of

propene and 1,3-butadiene emissions in the Houston area. Additional testing under ambient

conditions is needed for this. Further work is needed to limit the impact of uncertainties in

emissions on testing and improving mechanisms under ambient conditions.

Page 116: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

104

7. References

Atkinson, R., Tuazon, E.C., Aschmann, S.M., 1995. Products of the gas-phase reactions of a

series of 1-alkenes and 1-methylcylcohexene with the OH radical in the presence of NO.

Environ. Sci. Technol. 29, 1674-1680.

Atkinson, R., Baulch, D.L., Cox, R.A., Crowley, J.N., Hampson, R.F., Hynes, R.G., Jenkin, M.E.,

Rossi, M.J., Troe, J., 2006. Evaluated kinetic and photochemical data for atmospheric

chemistry: Volume II – gas phase reactions of organic species. Atmospheric Chemistry and

Physics 6, 3625-4055. Available at http://www.atmos-chem-phys.net/6/3625/2006/.

Baker, J., Aery, J., Atkinson, R., 2005. Formation and reaction of hydroxycarbonyls from the

reaction of OH radicals with 1,3-butadiene and isoprene. Environ. Sci. Technol. 39, 4091-

4099.

Berndt, T., Bӧge, O., 2007. Atmospheric reaction of OH radicals with 1,3-butadiene and 4-

hydroxy-2-butenal. J. Phys. Chem. A 111, 12,099-12,105.

Bertram, T.H., Cohen, R.C.,Thorn, W.J., Chu, P.M., 2005. Consistency of ozone and nitrogen

oxides standards at tropospherically relevant mixing ratios. J. Air & Waste Manage. Assoc.

55(10), 1473-1479.

Byun, D., Schere, K.L., 2006. Review of the governing equations, computational algorithms, and

other components of the Models-3 community multiscale air quality (CMAQ) modeling

system. Applied Mechanics Reviews 59, 51–77.

Calvert, J. G., R. Atkinson, R., J. A. Kerr, J.A., S. Madronich, S., G. K. Moortgat, G.K., T. J.

Wallington, T.J., Yarwood, G., 2000. The Mechanisms of Atmospheric Oxidation of Alkenes,

Oxford University Press, New York, 552pp.

Calvert, J.G., Mellouki, A., Orlando, J.J., Pilling, M.J., Wallington, T.J., 2011. The Mechanisms

of Atmospheric Oxidation of the Oxygenates. Oxford University Press, New York, 1634pp.

Carter, W.P.L., 2000. Documentation of the SAPRC-99 chemical mechanism for VOC reactivity

assessment. Report to the California Air Resources Board, Contracts 92-329 and 95-308.

Available at http://www.cert.ucr.edu/~carter/absts.htm#saprc99.

Carter, W.P.L., 2002. Development of a Next Generation Environmental Chamber Facility for

Chemical Mechanism and VOC Reactivity Research. Draft Research Plan and First Progress

Report to the United States Environmental Protection Agency Cooperative Agreement CR

827331-01-0, January 3. Available at http://www.cert.ucr.edu/~carter/epacham.

Carter, W.P.L., 2004a. Evaluation of a Gas-Phase Atmospheric Reaction Mechanism for Low

NOx Conditions. Final Report to California Air Resources Board Contract No. 01-305, May

5. Available at http://www.cert.ucr.edu/~carter/absts.htm#lnoxrptf.

Carter, W.P.L., 2004b. Development of a Chemical Speciation Database and Software for Pro-

cessing VOC Emissions for Air Quality Models, Proceedings of the 13th International

Emission Inventory Conference "Working for Clean Air in Clearwater", Clearwater, Florida,

USA.

Carter, W.P.L., 2008. Reactivity Estimates for Selected Consumer Product Compounds. Final

Report to California Air Resources Board, Contract No. 06-408, February 19.

Page 117: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

105

Carter, W.P.L., 2010. Development of the SAPRC-07 Chemical Mechanism and Updated Ozone

Reactivity Scales. Revised Final report to the California Air Resources Board Contract No.

03-318. January 27. Available at www.cert.ucr.edu/~carter/SAPRC. See also Carter, W.P.L.,

2010. Development of the SAPRC-07 chemical mechanism. Atmospheric Environment 44,

5324-5335; Carter, W.P.L., 2010b. Development of the SAPRC-07 chemical mechanism.

Atmospheric Environment 44(40), 5324-5335.

Carter, W.P.L., 2011. Environmental Chamber Studies of Ozone Impacts of Coatings VOCs.

Final Report to the California Air Resources Board, Contract 07-339, March 11. Available at

http://www.cert.ucr.edu/~carter/pubs/coatrpt2.pdf.

Carter, W.P.L., Atkinson, R., 1987. An experimental study of incremental hydrocarbon reactivity.

Environmental Science & Technology 21, 670-679.

Carter, W.P.L., Heo, G., 2012. Development of revised SAPRC aromatics mechanisms. Final

Report to the California Air Resources Board, Contracts No. 07-730 and 08-326, April 12.

Available at http://www.cert.ucr.edu/~carter/SAPRC/saprc11.pdf.

Carter, W.P.L., Heo, G., 2013. Development of revised SAPRC aromatics mechanisms.

Atmospheric Environment 77, 404-414, http://dx.doi.org/10.1016/j.atmosenv.2013.05.021.

Carter, W.P.L., Malkina, I.L., 2005. Evaluation of Atmospheric Impacts of Selected Coatings

VOC Emissions, Final report to the California Air Resources Board Contract No. 00-333,

March 21. Available at http://www.cert.ucr.edu/~carter/absts.htm#coatrpt.

Carter, W.P.L., Malkina, I.L., 2007. Investigation of the Atmospheric Impacts of Selected

Pesticides. Final Report to the California Air Resources Board Contract 04-334, January 10.

Available at http://www.cert.ucr.edu/~carter/absts.htm#pestrep.

Carter, W.P.L., Luo, D., Malkina, I.L., Fitz, D., 1995. The University of California, Riverside

Environmental Chamber Data Base for Evaluating Oxidant Mechanism. Indoor Chamber

Experiments through 1993. Report submitted to the U. S. Environmental Protection Agency,

EPA/AREAL, Research Triangle Park, NC, March 20. Available at

http://www.cert.ucr.edu/~carter/absts.htm#databas .

Carter, W.P.L., Seinfeld, J.H., Fitz, D.R., Tonnesen, G.S., 1999. Development of a Next-

Generation Environmental Chamber Facility for Chemical Mechanism and VOC Reactivity

Evaluation. Proposal to the U. S. Environmental Protection Agency, February 22. Available

at http://www.cert.ucr.edu/~carter/epacham.

Carter, W.P.L., Cocker, D.R., Fitz, D.R., Malkina, I.L., Bumiller, K., Sauer, C.G., Pisano, J.T.,

Bufalino, C., Song, C., 2005. A new environmental chamber for evaluation of gas-phase

chemical mechanisms and secondary aerosol formation. Atmospheric Environment 39, 7768-

7788.

Carter, W.P.L., Heo, G., Cocker, D.R., Nakao, S., 2012. SOA formation: chamber study and

model development. Final Report to the California Air Resources Board, Contract 08-326,

May 21. Available at http://www.cert.ucr.edu/~carter/SAPRC/pmchrpt.pdf.

Chapra, S.C., 2008. Applied Numerical Methods with MATLAB for Engineers and Scientists.

McGraw Hill.

Page 118: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

106

Czader, B.H., Byun, D.W., Kim, S.-T., Carter, W.P.L., 2008. A study of VOC reactivity in the

Houston-Galveston air mixture utilizing an extended version of SAPRC-99 chemical

mechanism. Atmospheric Environment 42, 5733-5742.

Daum, P. H., Kleinman, L.I., Springston, S.R., Nunnermacker, L.J., Lee, Y.-N., Weinstein-Lloyd,

J., Zheng, J., Berkowitz, C.M., 2003. A comparative study of O3 formation in the Houston

urban and industrial plumes during the 2000 Texas Air Quality Study. Journal of

Geophysical Research-Atmospheres 108(D23), 4715, doi:10.1029/2003JD003552.

Daum, P. H., Kleinman, L.I., Springston, S.R., Nunnermacker, L.J., Lee, Y.-N., Weinstein-Lloyd,

J., Zheng, J., Berkowitz, C.M., 2004. Origin and properties of plumes of high ozone observed

during the Texas 2000 Air Quality Study (TexAQS 2000). Journal of Geophysical Research-

Atmospheres 109, D17306, doi:10.1029/2003JD004311.

Fried, A, Hodgeson, J., 1982. Laser photoacoustic detection of nitrogen dioxide in the gas-phase

titration of nitric oxide with ozone. Anal. Chem. 54 (2), 278-282.

Gilman, J.B., Kuster, W.C., Goldan, P.D., Herndon, S.C., Zahniser, M.S., Tucker, S.C., Brewer,

W.A., Lerner, B.M., Williams, E.J., Harley, R.A., Fehsenfeld, F.C., Warneke, C., de Gouw,

J.A., 2009. Measurements of volatile organic compounds during the 2006

TexAQS/GoMACCS campaign: Industrial influences, regional characteristics, and diurnal

dependencies of the OH reactivity. Journal of Geophysical Research-Atmospheres 114,

D00F06, doi:10.1029/2008JD011525.

Hargrove, J. and J. Zhang, J., 2008. Measurements of NOx, acyl peroxynitrates, and NOy with

automatic interference corrections using a NO2 analyzer and gas phase titration. Rev. Sci.

Instrum. 79, 46109.

Heo, G., Kimura, Y., McDonald-Buller, E., Carter, W.P.L., Yarwood, G., Allen, D.T., 2010.

Modeling alkene chemistry using condensed mechanisms for conditions relevant to southeast

Texas, USA. Atmospheric Environment 44, 5365-5374.

Heo, G., McDonald-Buller, E., Carter, W.P.L., Yarwood, G., Whitten, G.Z., Allen, D.T., 2012a.

Modeling ozone formation from alkene reactions using the Carbon Bond chemical

mechanism, Atmospheric Environment 59, 141-150, doi:10.1016/j.atmosenv.2012.05.042.

Heo, G., Carter, W.P.L., Yarwood, G., 2012b. Developing chemical mechanisms that are more

robust to changes in atmospheric composition. Presented at the 11th Annual CMAS

Conference, Chapel Hill, NC, October 15-17, 2012. Available at

http://www.cmascenter.org/conference/2012/abstracts/heo_developing_chemical_2012.pdf.

Hutzell, W.T., Luecken, D.J., Appel, K.W., Carter, W.P.L., 2012. Interpreting predictions from

the SAPRC07 mechanism based on regional and continential simulations. Atomospheric

Environment 46, 417-429.

IUPAC, 2005. IUPAC Subcommittee on Gas Kinetic Data Evaluation: Data Sheet Ox_VOC3,

December 19. Available at http://www.iupac-

kinetic.ch.cam.ac.uk/datasheets/pdf/Ox_VOC3_O3_alkene.pdf.

IUPAC, 2007a. IUPAC Subcommittee on Gas Kinetic Data Evaluation: Data Sheet

HOx_VOC48, Auguest 2. Available at http://www.iupac-

kinetic.ch.cam.ac.uk/datasheets/pdf/HOx_VOC48_HO_CH2C%28CH3%29C%28O%29OO

NO2%28MPAN%29.pdf.

Page 119: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

107

IUPAC, 2007b. IUPAC Subcommittee on Gas Kinetic Data Evaluation: Data Sheet

HOx_VOC17, October 18. Available at http://www.iupac-

kinetic.ch.cam.ac.uk/datasheets/pdf/HOx_VOC17_HO_HOCH2CHO.pdf.

IUPAC, 2008. IUPAC Subcommittee on Gas Kinetic Data Evaluation: Data Sheet HOx_VOC18,

May 29. Available at http://www.iupac-

kinetic.ch.cam.ac.uk/datasheets/pdf/HOx_VOC18_HO_CH3C%28O%29CHO.pdf.

Jang, C.-H., Kim, Y.-H., Kim, K.-H., 2013. Effective Carbon Number (ECN)-based evaluation

of GC-FID sensitivity and split ratio in the analysis of gaseous VOC: Comparison between

SPME and Direct Injection method. Journal of Korean Society of Odor Research and

Engineering 12(1), 17-26, http://dx.doi.org/10.11161/jkosore.2013.12.1.17.

Jeffries, H.E., Gery, M.W., Carter, W.P.L., 1992. Protocols for evaluating oxidant mechanisms

for urban and regional models. Final Report to the U.S. EPA, Cooperative Agreement

815779, EPA-600/R-82/112, June 1992. Available at

http://www.cert.ucr.edu/~carter/pubs/mechprot.pdf.

Jobson, B. T., Berkowitz, C. M., Kuster, W. C., Goldan, P. D., Williams, E. J., Fesenfeld, F. C.,

Apel, E. C., Karl, T., Lonneman, W. A., Riemer, D., 2004. Hydrocarbon source signatures in

Houston, Texas: Influence of the petrochemical industry. Journal of Geophysical Research-

Atmospheres 109, D24305, doi:10.1029/2004JD004887.

Kaduwela, A., 2013. Detailed speciation information for California, Northern California and

Southern California. Personal communication with William Carter, May 25.

Kramp, F., Paulson, S.E., 2000. The gas phase reaction of ozone with 1,3-butadiene: formation

yields of some toxic products. Atmospheric Environment 34, 35-43.

Kwok, E.S., Atkinson, R., Arey, J., 1996. Isomerization of β-hydroxyalkoxy radicals formed

from the OH radical-initiated reactions of C4−C8 1-alkenes. Environ. Sci. Technol. 30, 1048-

1052.

Lonneman, W., 1988. Comparison of 0600-0900 am Hydrocabon Compositions Obtained from

29 Cities. U.S. Environmental Protection Agency, Washing, D.C. EPA/600/D-89/010 (NTIS

PB89218788).

Luecken, D., 2013. Total US Emissions based on the 2005ah_tox inventory using the criteria

VOC emissions only from all sectors except biogenic & fires. Personal communication with

Willam Carter, March 16.

Murphy, C. F., Allen, D.T., 2005. Hydrocarbon emissions from industrial release events in the

Houston-Galveston area and their impact on ozone formation. Atmospheric Environment 39,

3785-3798.

Ngan, F., Byun, D., Kim, H., Lee, D., Rappengluck, B., Pour-Biazar, A., 2012. Performance as-

sessment of retrospective meteorological inputs for use in air quality modeling during

TexAQS 2006. Atmospheric Environment 54, 86-96.

NRC, 1991. Rethinking the Ozone Problem in Urban and Regional Air Pollution. National Re-

search Council Committee on Tropospheric Ozone Formation and Measurement. National

Academy Press, Washington D.C.

Page 120: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

108

O’Brien, J.M., Czuba, E., Hastie, D.R., Francisco, J.S., Shepson, P.B., 1998. Determination of

the hydroxyl nitrate yields from the reaction of C2–C6 alkenes with OH in the presence of

NO. Journal of Physical Chemistry A, 102, 8903-8908.

Orlando, J.J., Tyndall, G.S., 2002. Mechanisms for the reactions of OH radicals with two

unsaturated aldehydes: crotonaldehyde and acrolein. J. Phys. Chem. A 106, 12252-12259.

Russell, A., Dennis, R., 2000. NARSTO critical review of photochemical models and modeling.

Atmospheric Environment 34, 2283-2324.

Ryerson, T.B., Trainer, M., Angevine, W.M., Brock, C.A., Dissly, R.W., Fehsenfeld, F.C., Frost,

G.J., Goldan, P.D., Holloway, J.S., Hubler, G., Jakoubek, R.O., Kuster, W.C., Neuman, J.A.,

Nicks Jr., D. K., Parrish, D.D., Roberts, J.M., Sueper, D.T., Atlas, E.L., Donnelly, S.G.,

Flocke, F., Fried, A., Plotter, W.T., Schauffler, S., Stroud, V., Weinheimer, A.J., Wert, B.P.,

Wiedinmyer, C., 2003. Effect of petrochemical industrial emissions of reactive alkenes and

NOx on tropospheric ozone formation in Houston, Texas. Journal of Geophysical Research-

Atmospheres 108(D8), 4249, doi:10.1029/2002JD003070.

Sarwar, G., Fahey, K., Kwok, R., Gilliam, R.C., Roselle, S.J., Mathur, R., Xue, J., Yu, J., Carter,

W.P.L., 2013. Potential impacts of two SO2 oxidation pathways on regional sulfate

concentrations: Aqueous-phase oxidation by NO2 and gas-phase oxidation by Stabilized

Criegee Intermediates. Atmos. Environ. 68, 186-197.

Sato, K., Nakao, S., Clark, C.H., Qi, L., Cocker, D., 2011. Secondary organic aerosol formation

from the photooxidation of isoprene, 1,3-butadiene, and 2,3-dimethyl-1,3-butadiene under

high NOx conditions. Atmos. Chem. Phys., 11, 7301–7317, 2011, www.atmos-chem-

phys.net/11/7301/2011/.

Saunders, S.M., Jenkin, M.E., Derwent, R.G., Pilling, M.J., 2003. Protocol for the development

of the Master Chemical Mechanism, MCM v3 (Part A): tropospheric degradation of non-

aromatic volatile organic compounds. Atmospheric Chemistry and Physics 3, 161-180.

Available at http://www.atmos-chem-phys.net/3/161/2003/.

Scanlon, J.T., Willis, D.E., 1985. Calculation of flame ionization detector relative response

factors using the effective carbon number concept. J. Chromatogr. Sci. 23(8), 333-340, doi:

10.1093/chromsci/23.8.333.

Seila, R.L., Lonneman, W.A., Meeks, S.A., 1989. Determination of C2 to C12 ambient air

hydrocarbons in 39 U. S. cities from 1984 through 1986. Report to the U.S. Environmental

Protection Agency, Washington, D. C., EPA/600/3-89/058.

Singh, T, Sawyer, R.F., Starkman, E.S., Caretto, L.S., 1968. Rapid continuous determination of

nitric oxide concentration in exhaust gases. Journal of the Air Pollution Control Association

18(2), 102-105.

Sullivan, D. W., Kumura, Y., Allen, D.T., 2013. Development of an Updated Base Case Ambient

VOC Mixture for Assessing Atmospheric Reactivity, Revision 1. Prepared for the California

Air Resources Board Contract 08-327, May 24. Available at

http://www.arb.ca.gov/research/single-project.php?row_id=64978.

TCEQ, 2012. TCEQ web site, http://www.tceq.texas.gov/airquality/stationary-rules/hrvoc.html

(accessed in June 2012).

Page 121: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

109

Thomas, R., Smith, J., Jones, M., MacKay, J., Jarvie, J., 2008. Emissions modeling of specific

highly reactive volatile organic compounds (HRVOC) in the Houston-Galveston-Brazoria

ozone nonattainment area. Presented at the 17th Annual International Emission Inventory

Conference: Inventory Evolution – Portal to Improved Air Quality, Portland, Oregon, June 2-

5, 2008. Available at http://www.epa.gov/ttn/chief/conference/ei17/session6/thomas.pdf.

Tuazon, E.C., Alvarado, A., Aschmann, S.M., Atkinson, R., Arey, J., 1999. Products of the gas-

phase reactions of 1,3-butadiene with OH and NO3 radicals. Environ. Sci. Technol. 33, 3586-

3595.

U.S. EPA, 2007. Guidance on the Use of Models and Other Analyses for Demonstrating

Attainment of Air Quality Goals for Ozone, PM2.5 and Regional Haze, U.S. Environmental

Protection Agency, Office of Air Quality Planning and Standards, Air Quality Analysis

Division, Air Quality Modeling Group, Research Triangle Park, North Carolina, EPA -

454/B-07-002, April 2007. Available at http://www.epa.gov/ttn/scram/guidance/guide/final-

03-pm-rh-guidance.pdf.

Vukovich, J.M., Pierce, T., 2002. The Implementation of BEIS3 within the SMOKE modeling

framework. MCNC-Environmental Modeling Center, Research Triangle Park and National

Oceanic and Atmospheric Administration.

Webster, M., Nam, J., Kimura, Y., Jeffries, H., Vizuete, W., Allen, D.T., 2007. The effect of

variability in industrial emissions on ozone formation in Houston, Texas. Atmospheric

Environment 41, 9580-9593.

Wert, B.P., Trainer, M., Fried, A., Ryerson, T.B., Henry, B., Potter, W., Angevine, W.M., Atlas,

E., Donnelly, S.G., Fehsenfeld, F.C., Frost, G.J., Goldan, P.D., Hansel, A., Holloway, J.S.,

Hubler, G., Kuster, W.C., Nicks Jr., D.K., Neuman, J.A., Parrish, D.D., Schauffler, S., Stutz,

J., Sueper, D.T., Wiedinmyer, C., Wisthaler, A., 2003. Signatures of terminal alkene

oxidation in airborne formaldehyde measurements during TexAQS 2000. Journal of

Geophysical Research-Atmospheres 108(D3), 4104, doi:10.1029/2002JD002502.

Whitten, G.Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D.T., Carter, W.P.L., Yarwood,

G., 2010. A new condensed toluene mechanism for Carbon Bond: CB05-TU. Atmospheric

Environment 44(40), 5346-5355.

Wiedinmyer, C., Akagi, S.K., Yokelson, R.J., Emmons, L.K., Al-Saadi, J.A., Orlando, J.J., Soja,

A.J., 2011. The Fire INventory from NCAR (FINN): a high resolution global model to

estimate the emissions from open burning. Geoscientific Model Development 4, 625-641.

Xie, Y., Paulot, F., Carter, W. P. L., Nolte, C. G., Luecken, D. J., Hutzell, W. T., Wennberg, P.

O., Cohen, R. C., Pinder, R. W., 2013. Understanding the impact of recent advances in

isoprene photooxidation on simulations of regional air quality, Atmos. Chem. Phys. 13,

8439-8455, doi:10.5194/acp-13-8439-2013.

Yarwood, G., Rao, S., Yocke, M., Whitten, G.Z., 2005. Updates to the Carbon Bond Mechanism:

CB05. Report to the U.S. Environmental Protection Agency, RT-04-00675, December 2005.

Available at http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf.

Yarwood, G., Whitten, G.Z., Jung, J., Heo, G., Allen, D.T., 2010. Development, evaluation and

testing of version 6 of the Carbon Bond chemical mechanism (CB6). Final Report to the

Texas Commission on Environmental Quality, Work Order No. 582-7-84005-FY10-26.

Page 122: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

110

Yarwood, G., Heo, G., Carter, W.P.L., Whitten, G.Z., 2012. Environmental chamber

experiments to evaluate NOx sinks and recycling in atmospheric chemical mechanisms. Final

Report, Prepared for Dr. Elena C. McDonald-Buller, Texas Air Quality Research Program,

The University of Texas at Austin, AQRP Project 10-042. Available at

http://aqrp.ceer.utexas.edu/viewprojects.cfm?Prop_Num=10-042.

Ying, Q., 2013. Profile number and corresponding mass emissions in Southeast Texas based on

NEI 2005 for a typical day in August. Personal communication with William Carter, May 27.

Ying, Q., Li, J., 2011. Implementation and initial application of the near-explicit Master

Chemical Mechanism in the 3D Community Multiscale Air Quality (CMAQ) model.

Atmospheric Environment 45, 3244-3256.

Zafonte, L., Rieger, P.L., Holmes, J.R., 1977. Nitrogen dioxide photolysis in the Los Angeles

atmosphere. Environ. Sci. Technol. 11, 483-487.

Zhang, H., Ying, Q., 2012. Secondary organic aerosol from polycyclic aromatic hydrocarbons in

Southeast Texas. Atmospheric Environment 55, 279-287.

Page 123: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

111

Appendices

Appendix A. Chamber Experiments Designed and Carried Out for this Project

Appendix B. Additional Information on Mechanisms Used for Chamber Simulations

Appendix C. Additional Information on Implementing Mechanisms for CMAQ Simulations

Appendix D. Additional Information on Implementing Mechanisms for CMAQ Simulations

Appendix E. Chamber Simulation Results for the Carbon Bond Chemical Mechanism

Page 124: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

112

Appendix A. Chamber Experiments Designed and Carried Out for this Project

Table A-1. Summary of 24 reactor runs designed for the 5 HRVOCs and 5 non-HRVOCs.*

Test compound Number of experiments

Test VOC (ppm)

NO (ppm)

VOC/NO (ppm/ppm)

Notes and comments based on simulations of virtual chamber

experiments

HRVOCs

1 1,3-butadiene 3 0.100 0.012 8.33 O3 peak in 4 hours

2 0.140 0.017 8.24 NOx-limited regime in ~ 4-5 hours

3 0.300 0.025 12.00 NOx-limited regime in ~ 4-5 hours

4 isobutene 3 0.090 0.024 3.75 relatively low ozone formation rate

5 0.140 0.025 5.60 medium ozone formation rate

6 0.250 0.040 6.25 relatively rapid ozone formation rate

7 cis-2-butene 3 0.040 0.015 2.67 a

8 0.060 0.025 2.40 additional experiment for cis-2-butene but not for other 2-alkenes

9 0.090 0.040 2.25 b

10 trans-2-butene 2 0.040 0.015 2.67 a

11 0.090 0.040 2.25 b

12 1-butene 3 0.100 0.015 6.67 additional experiment for 1-butene but not for other 1-alkenes

13 0.200 0.030 6.67 c

14 0.400 0.050 8.00 d

Non-HRVOCs

15 1-pentene 2 0.200 0.030 6.67 c

16 0.400 0.050 8.00 d

17 1-hexene 2 0.200 0.030 6.67 c

18 0.400 0.050 8.00 d

19 cis-2-pentene 2 0.040 0.015 2.67 a

20 0.090 0.040 2.25 b

21 trans-2-pentene 2 0.040 0.015 2.67 a

22 0.090 0.040 2.25 b

23 2-methyl-2-butene 2 0.040 0.050 0.80 at least 3-4 data points for 2-methyl-2-butene

24 0.070 0.090 0.78 at least 3-4 data points for 2-methyl-2-butene

*This table is Table 2 of Report 1 for Task 1 of this project.

a0.04 ppm test VOC and 0.015 ppm NO used 2-alkenes.

b0.09 ppm test VOC and 0.040 ppm NO used for 2-alkenes.

c0.02 ppm test VOC and 0.03 ppm NO used for 1-akenes.

d0.04 ppm test VOC and 0.05 ppm NO used for 1-akenes.

Page 125: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

113

Table A-2. Summary of 12 experiments designed for the 24 reactor runs listed in Table A-1.*

Experiment ID Side ID Test compound Test VOC (ppm)

NO (ppm)

Notes

1 A 2-methyl-2-butene 0.070 0.090 a

B 2-methyl-2-butene 0.040 0.050

2 A cis-2-pentene 0.040 0.015 a, b

B trans-2-pentene 0.040 0.015 b

3 A trans-2-pentene 0.090 0.040 a, b

B cis-2-pentene 0.090 0.040 b

4 A cis-2-butene 0.040 0.015 a, b

B trans-2-butene 0.040 0.015 b

5 A trans-2-butene 0.090 0.040 a, b

B cis-2-butene 0.090 0.040 b

6 A cis-2-butene 0.060 0.025 a

B isobutene 0.090 0.024

7 A isobutene 0.250 0.040 c

B isobutene 0.140 0.025 c

8 A 1,3-butadene 0.100 0.012 c

B 1,3-butadene 0.140 0.017 c

9 A 1,3-butadene 0.300 0.025

B 1-butene 0.100 0.015

10 A 1-butene 0.400 0.050 d

B 1-pentene 0.200 0.030 d

11 A 1-hexene 0.400 0.050 d

B 1-butene 0.200 0.030 d

12 A 1-pentene 0.400 0.050 d

B 1-hexene 0.200 0.030 d

*This table is Table 3 of Report 1 for Task 1 of this project.

aIf necessary, repeat this run as a single experiment using only side A.

bcis and trans isomers simultaneously.

cSame test VOC in both sides.

dTwo different 1-alkenes in side A and side B.

Table A-3. Summary of 5 chamber characterization experiments designed for this project.*

Experiment type

Number of experiments

CO (ppm)

H2O2 (ppm)

NO (ppm)

Propene (ppm)

Notes

1 Pure air 1 0 0 0 0 check the degree of cleanness of the chamber.

2 CO - air 1 50 0 0 0 check the NOx offgasing and radical formation.

3 CO - NO 1 50 0 0.03 0 check the radical formation.

4 H2O2 - air 1 0 1 0 0 check the NOx offgasing.

5 Propene - NO 1 0 0 0.015 0.3 standard experiment for quality assurance.

*This table is Table 1 of Report 1 for Task 1 of this project.

Page 126: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

114

Table A-4. List of 44 experiments (84 reactor runs) carried out for this project. Experiment ID Run ID Date Description Notes

1

EPA1671 EPA1671A 3/7/13 Air To check cleanness of the reactor

EPA1671 EPA1671B 3/7/13 Air To check cleanness of the reactor

EPA1672 EPA1672A 3/12/13 H2O2 - Air Chamber characterization

EPA1672 EPA1672B 3/12/13 H2O2 - Air Chamber characterization

EPA1673 EPA1673A 3/13/13 Air To check cleanness of the reactor

EPA1673 EPA1673B 3/13/13 Air To check cleanness of the reactor

EPA1674 EPA1674A 3/14/13 CO - Air Chamber characterization

EPA1674 EPA1674B 3/14/13 CO - Air Chamber characterization

EPA1679 EPA1679A 3/21/13 CO - Air Chamber characterization

EPA1679 EPA1679B 3/21/13 CO - Air Chamber characterization

EPA1680 EPA1680A 3/22/13 CO - NOx Chamber characterization

EPA1680 EPA1680B 3/22/13 CO - NOx Chamber characterization

EPA1682 EPA1682A 3/28/13 VOC mixture - CO GC QA dark experiment

EPA1683 EPA1683A 3/29/13 Propene - NOx QA experiment

EPA1683 EPA1683B 3/29/13 Propene - NOx QA experiment

EPA1684 EPA1684A 4/1/13 VOC mixture - CO GC QA dark experiment

EPA1685 EPA1685A 4/2/13 cis-2-Pentene - NOx Expt 2A; no GC data

EPA1685 EPA1685B 4/2/13 trans-2-Pentene - NOx Expt 2B

EPA1686 EPA1686A 4/3/13 trans-2-Pentene - NOx Expt 3A; no GC data; invalid NO span

EPA1686 EPA1686B 4/3/13 cis-2-Pentene - NOx Expt 3B; invalid NO span

EPA1687 EPA1687A 4/5/13 trans-2-Pentene - NOx Expt 3A; repeat of Expt 3A; no GC data

EPA1687 EPA1687B 4/5/13 cis-2-Pentene - NOx Expt 3B; repeat of Expt 3B

EPA1691 EPA1691A 4/12/13 cis-2-Butene - NOx Expt 4A; no GC data

EPA1691 EPA1691B 4/12/13 trans-2-Butene - NOx Expt 4B

EPA1692 EPA1692A 4/15/13 trans-2-Butene - NOx Expt 5A; no GC data

EPA1692 EPA1692B 4/15/13 cis-2-Butene - NOx Expt 5B

EPA1693 EPA1693A 4/16/13 2-Methyl-2-butene - NOx Expt 1A; no GC data

EPA1693 EPA1693B 4/16/13 2-Methyl-2-butene - NOx Expt 1B; early termination

EPA1694 EPA1694A 4/18/13 2-Methyl-2-butene - NOx Expt 1A; repeat of Expt 1A; no GC data

EPA1694 EPA1694B 4/18/13 2-Methyl-2-butene - NOx Expt 1B; repeat of Expt 1B

EPA1695 EPA1695A 4/19/13 cis-2-Butene - NOx Expt 6A; potentially problematic; no GC data

EPA1695 EPA1695B 4/19/13 Isobutene - NOx Expt 6B; potentially problematic

EPA1697 EPA1697A 4/23/13 2-Methyl-2-butene - NOx Expt 1A; repeat of Expt 1A;2 no GC

data

EPA1697 EPA1697B 4/23/13 2-Methyl-2-butene - NOx Expt 1B; repeat of Expt 1B; early termination

EPA1698 EPA1698A 4/24/13 2-Methyl-2-butene - NOx Expt 1A; repeat of Expt 1A3

EPA1698 EPA1698B 4/24/13 2-Methyl-2-butene - NOx Expt 1B; repeat of Expt 1B

EPA1699 EPA1699A 4/25/13 cis-2-Butene - NOx Expt 6A; repeat of Expt 6A

EPA1699 EPA1699B 4/25/13 Isobutene - NOx Expt 6B; repeat of Expt 6B

EPA1700 EPA1700A 4/26/13 cis-2-Butene - NOx - CO Expt 6A; repeat of Expt 6A4

EPA1700 EPA1700B 4/26/13 Isobutene - NOx - CO Expt 6B; repeat of Expt 6B4

Page 127: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

115

Experiment ID Run ID Date Description Notes1

EPA1701 EPA1701A 4/29/13 Isobutene - NOx – CO Expt 7A4

EPA1701 EPA1701B 4/29/13 Isobutene – NOx - CO Expt 7B4

EPA1702 EPA1702A 4/30/13 1,3-Butadiene - NOx Expt 8A

EPA1702 EPA1702B 4/30/13 1,3-Butadiene - NOx Expt 8B

EPA1703 EPA1703A 5/1/13 1,3-Butadiene - NOx Expt 9A

EPA1703 EPA1703B 5/1/13 1-Butene - NOx Expt 9B

EPA1704 EPA1704A 5/2/13 1-Butene - NOx Expt 10A

EPA1704 EPA1704B 5/2/13 1-Pentene - NOx Expt 10B

EPA1705 EPA1705A 5/3/13 1-Hexene - NOx Expt 11A

EPA1705 EPA1705B 5/3/13 1-Butene - NOx Expt 11B

EPA1706 EPA1706A 5/6/13 CO - NOx Chamber characterization

EPA1706 EPA1706B 5/6/13 CO - NOx Chamber characterization

EPA1707 EPA1707A 5/9/13 1-Pentene - NOx Expt 12A

EPA1707 EPA1707B 5/9/13 1-Hexene - NOx Expt 12B

EPA1708 EPA1708A 5/10/13 1-Hexene - NOx Repeat of Expt 11A

EPA1708 EPA1708B 5/10/13 1-Butene - NOx Repeat of Expt 11B

EPA1709 EPA1709A 5/13/13 H2O2 - CO - Air Characterization

EPA1709 EPA1709B 5/13/13 H2O2 - CO - Air Characterization

EPA1710 EPA1710A 5/14/13 1-Pentene - NOx Repeat of Expt 12A

EPA1710 EPA1710B 5/14/13 1-Hexene - NOx Repeat of Expt 12B

EPA1711 EPA1711A 5/15/13 1-Hexene - NOx Expt 13A (additional)5

EPA1711 EPA1711B 5/15/13 1-Pentene - NOx Expt 13B (additional)6

EPA1712 EPA1712A 5/16/13 1,3-Butadiene - NOx Expt 14A (additional)7

EPA1712 EPA1712B 5/16/13 trans-2-Butene - NOx Expt 14B (additional)8

EPA1713 EPA1713A 5/20/13 Propene - NOx QA experiment

EPA1713 EPA1713B 5/20/13 Propene - NOx QA experiment

EPA1714 EPA1714A 5/21/13 VOC mixture - CO GC QA dark experiment

EPA1714 EPA1714B 5/21/13 VOC mixture - CO GC QA dark experiment

EPA1715 EPA1715A 5/22/13 VOC mixture - CO GC QA dark experiment

EPA1715 EPA1715B 5/22/13 VOC mixture - CO GC QA dark experiment

EPA1716 EPA1716A 5/23/13 VOC mixture - CO GC QA dark experiment

EPA1716 EPA1716B 5/23/13 VOC mixture - CO GC QA dark experiment

EPA1717 EPA1717A 5/31/13 2-Methyl-2-butene - NOx Repeat of EPA1697A (Expt 1A)

EPA1717 EPA1717B 5/31/13 2-Methyl-2-butene - NOx Repeat of EPA1697B (Expt 1B)

EPA1719 EPA1719 6/5/13 in-reactor k1 in-reactor k1

EPA1720 EPA1720 6/6/13 in-reactor k1 in-reactor k1

EPA1721 EPA1721A 6/9/13 Air Chamber characterization

EPA1721 EPA1721B 6/9/13 Air Chamber characterization

EPA1722 EPA1722A 6/10/13 trans-2-Butene - NOx Repeat of EPA1692A

EPA1722 EPA1722B 6/10/13 cis-2-Butene - NOx Repeat of EPA1691A

EPA1723 EPA1723A 6/11/13 VOC mixture - CO GC QA experiment

EPA1723 EPA1723B 6/11/13 VOC mixture - CO GC QA experiment

EPA1724 EPA1724A 6/12/13 trans-2-Pentene - NOx Repeat of EPA1686A

EPA1724 EPA1724B 6/12/13 cis-2-Pentene - NOx Repeat of EPA1685A 1Unless noted otherwise, Experiment ID’s (Expt ID’s) are from Table 3 of Report 1 (Task 1 Report) submitted for

this project. Refer to Table A-2.

Page 128: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

116

2Expt EPA1697A: initial 2-methyl-2-butene and NO concentrations were revised from 70 and 90 ppb to 40 and 25

ppb, respectively to reduce the NO level but design an experiment giving results similar to Expt 1B. 3Expt EPA1698A: initial 2-methyl-2-butene and NO concentrations were revised from 70 and 90 ppb to 60 and 50

ppb, respectively to reduce the NO level and design an experiment giving ozone concentrations higher than those for

Expt EPA1697A. 4Expt EPA1700A, EPA1700B, EPA1701A and EPA1701B: about 10 ppm CO was also injected.

5Expt 13A: target initial concentrations - 250 ppb 1-hexene, 30 ppb NO.

6Expt 13B: target initial concentrations - 300 ppb 1-pentene, 20 ppb NO.

7Expt 14A: target initial concentrations - 140 ppb 1,3-butadiene, 25 ppb NO.

8Expt 14B: target initial concentrations - 60 ppb trans-2-butene, 25 ppb NO.

Table A-5. Summary of the chamber experiments used to evaluate mechanisms: 4 propene -

NOx and 36 test alkene - NOx experiments carried out for this project and 22 experiments carried

out for previous studies.

RunID VOC/NOx

(ppm/ppm) NOx

(ppm) NO

(ppm) NO2

(ppm) Test VOC

VOC (ppm)

CO (ppm)

Note

EPA1683A 17.8 0.020 0.018 0.001 Propene 0.352 0.0 a

EPA1683B 17.8 0.020 0.018 0.001 Propene 0.352 0.0 a

EPA1713A 20.7 0.016 0.016 0.000 Propene 0.335 0.0 a

EPA1713B 20.8 0.016 0.016 0.000 Propene 0.337 0.0 a

EPA1703B 5.8 0.015 0.015 0.000 1-Butene 0.087 0.0 a

EPA1704A 8.0 0.050 0.049 0.001 1-Butene 0.401 0.0 a

EPA1705B 6.7 0.029 0.029 0.000 1-Butene 0.196 0.0 a

EPA1708B 6.3 0.031 0.031 0.000 1-Butene 0.195 0.0 a

EPA1704B 7.9 0.030 0.030 0.000 1-Pentene 0.237 0.0 a

EPA1707A 8.8 0.049 0.048 0.001 1-Pentene 0.426 0.0 a

EPA1710A 8.6 0.054 0.054 0.000 1-Pentene 0.467 0.0 a

EPA1711B 16.3 0.021 0.020 0.001 1-Pentene 0.334 0.1 a

EPA1705A 8.8 0.052 0.051 0.001 1-Hexene 0.452 0.0 a

EPA1707B 7.4 0.032 0.031 0.001 1-Hexene 0.238 0.0 a

EPA1708A 8.5 0.053 0.053 0.001 1-Hexene 0.455 0.0 a

EPA1710B 7.0 0.030 0.030 0.000 1-Hexene 0.213 0.0 a

EPA1711A 9.0 0.032 0.032 0.001 1-Hexene 0.290 0.0 a

EPA1692B 2.2 0.040 0.040 0.001 c-2-Butene 0.088 0.0 a

EPA1699A 1.9 0.029 0.027 0.002 c-2-Butene 0.057 0.0 a

EPA1700A 2.0 0.029 0.029 0.000 c-2-Butene 0.059 10.7 a

EPA1722B 2.4 0.016 0.016 0.000 c-2-Butene 0.039 0.0 a

EPA1691B 2.5 0.016 0.016 0.000 t-2-Butene 0.041 0.0 a

EPA1712B 2.2 0.026 0.026 0.000 t-2-Butene 0.058 0.0 a

EPA1722A 2.1 0.045 0.044 0.001 t-2-Butene 0.096 0.0 a

EPA1687B 4.0 0.035 0.034 0.001 c-2-Pentene 0.139 0.0 a

EPA1724B 3.1 0.016 0.016 0.000 c-2-Pentene 0.051 0.0 a

EPA1685B 3.5 0.018 0.017 0.000 t-2-Pentene 0.061 0.0 a

EPA1724A 2.6 0.042 0.041 0.001 t-2-Pentene 0.109 0.0 a

EPA1699B 2.9 0.031 0.031 0.000 Isobutene 0.088 0.0 a

EPA1700B 3.1 0.032 0.031 0.000 Isobutene 0.099 6.7 a

Page 129: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

117

RunID VOC/NOx

(ppm/ppm) NOx

(ppm) NO

(ppm) NO2

(ppm) Test VOC

VOC (ppm)

CO (ppm)

Note

EPA1701A 5.9 0.044 0.044 0.000 Isobutene 0.257 11.6 a

EPA1701B 5.1 0.025 0.025 0.000 Isobutene 0.128 10.3 a

EPA1698A 1.2 0.062 0.062 0.000 2-Methyl-2-butene 0.075 0.0 a

EPA1698B 1.0 0.061 0.061 0.000 2-Methyl-2-butene 0.061 0.0 a

EPA1717A 2.0 0.027 0.027 0.000 2-Methyl-2-butene 0.053 0.0 a

EPA1717B 0.8 0.060 0.060 0.000 2-Methyl-2-butene 0.050 0.0 a

EPA1702A 8.6 0.014 0.014 0.000 1,3-Butadiene 0.120 0.0 a

EPA1702B 8.4 0.018 0.018 0.000 1,3-Butadiene 0.153 0.0 a

EPA1703A 10.7 0.027 0.027 0.000 1,3-Butadiene 0.290 0.0 a

EPA1712A 5.7 0.026 0.026 0.001 1,3-Butadiene 0.152 0.1 a

ITC927 2.0 0.538 0.332 0.206 1-Butene 1.063 0.0 b

ITC930 5.3 0.526 0.333 0.193 1-Butene 2.792 0.0 b

ITC935 2.6 1.088 0.709 0.379 1-Butene 2.862 0.0 b

EC122 0.4 0.505 0.400 0.105 1-Butene 0.217 1.9 b

EC123 0.8 0.510 0.401 0.109 1-Butene 0.404 1.9 b

EC124 0.4 1.004 0.612 0.392 1-Butene 0.424 1.9 b

DTC052B 1.8 0.297 0.197 0.101 Isobutene 0.543 0.8 b

ITC694 2.0 0.500 0.397 0.103 Isobutene 1.013 0.0 b

TVA063 1.3 0.020 0.018 0.001 t-2-Butene 0.025 0.0 b

TVA064 0.6 0.040 0.036 0.004 t-2-Butene 0.024 0.0 b

TVA065 0.6 0.041 0.037 0.004 t-2-Butene 0.024 0.0 b

EC146 0.5 0.512 0.390 0.122 t-2-Butene 0.231 2.1 b

EC147 0.4 0.962 0.760 0.203 t-2-Butene 0.417 2.1 b

EC157 0.4 0.557 0.415 0.142 t-2-Butene 0.216 1.7 b

EPA1072A 0.5 0.266 0.254 0.012 1,3-Butadiene 0.125 0.0 c

EPA1072B 0.5 0.117 0.112 0.005 1,3-Butadiene 0.060 0.0 c

ITC929 1.6 0.519 0.322 0.197 1-Hexene 0.844 0.0 b

ITC931 3.3 0.512 0.322 0.190 1-Hexene 1.706 0.0 b

ITC934 1.5 1.069 0.709 0.361 1-Hexene 1.613 0.0 b

ITC941 1.2 0.546 0.345 0.201 Acrolein 0.673 0.0 b

ITC944 6.2 0.267 0.173 0.094 Acrolein 1.643 0.0 b

ITC946 1.3 0.538 0.352 0.186 Acrolein 0.723 0.0 b aCarried out for this project.

bCarried out for other previous projects (see Carter et al (1995), Carter (2010)).

cCarried out by Sato et al (2011)

Page 130: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

118

Appendix B. Additional Information on Mechanisms Used for Chamber Simulations

Table B-1. Listing of model species for SAPRC-11D. Name Description

Constant Species.

O2 Oxygen

M Air

H2O Water

H2 Hydrogen Molecules

HV Light

Active Inorganic Species.

O3 Ozone

NO Nitric Oxide

NO2 Nitrogen Dioxide

NO3 Nitrate Radical

N2O5 Nitrogen Pentoxide

HONO Nitrous Acid

HNO3 Nitric Acid

HNO4 Peroxynitric Acid

HO2H Hydrogen Peroxide

CO Carbon Monoxide

SO2 Sulfur Dioxide

Active Radical Species and Operators.

OH Hydroxyl Radicals

HO2 Hydroperoxide Radicals

MEO2 Methyl Peroxy Radicals

RO2C Peroxy Radical Operator representing NO to NO2 and NO3 to NO2 conversions, and the effects of peroxy radical reactions on acyl peroxy and other peroxy radicals.

RO2XC Peroxy Radical Operator representing NO consumption (used in conjunction with organic nitrate formation), and the effects of peroxy radical reactions on NO3, acyl peroxy radicals, and other peroxy radicals.

MECO3 Acetyl Peroxy Radicals

RCO3 Peroxy Propionyl and higher peroxy acyl Radicals

BZCO3 Peroxyacyl radical formed from Aromatic Aldehydes

MACO3 Peroxyacyl radicals formed from methacrolein and other acroleins.

Steady State Radical Species

O3P Ground State Oxygen Atoms

O1D Excited Oxygen Atoms

TBUO t-Butoxy Radicals

BZO Phenoxy Radicals

HCOCO3 Acyl peroxy radicals formed from glyoxal (does not form PAN analogue)

NO2EX Electronically excited NO2 (only needed if reaction with H2O forming OH is non-negligible)

Stabilized Criegee biradicals

HCHO2 Unsubstituted stabilized Criegee biradical

Page 131: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

119

Name Description

CCHO2 Methyl substituted stabilized Criegee biradical

RCHO2 Other stabilized Criegee biradical

PAN and PAN Analogues

PAN Peroxy Acetyl Nitrate

PAN2 PPN and other higher alkyl PAN analogues

PBZN PAN analogues formed from Aromatic Aldehydes

MAPAN PAN analogue formed from Methacrolein

Explicit and Lumped Molecule Reactive Organic Product Species

HCHO Formaldehyde

CCHO Acetaldehyde

RCHO Lumped C3+ Aldehydes (mechanism based on propionaldehyde)

GLCHO Glycolaldehyde

ACET Acetone

PROD1 Ketones and other non-aldehyde oxygenated products which react with OH radicals slower than 5 x 10-12 cm3 molec-2 sec-1. (Mechanism based on MEK)

MEOH Methanol

HCOOH Formic Acid

CCOOH Acetic Acid.

RCOOH Higher organic acids (mechanism based on propionic acid).

CCO3H Peroxyacetic acid

RCO3H Higher organic peroxy acids (mechanism based on peroxypropionic acid).

COOH Methyl Hydroperoxide

ROOH Lumped organic hydroperoxides with 2-4 carbons. Mechanism based on that estimated for n-propyl hydroperoxide.

R6OOH Lumped organic hydroperoxides with 5 or more carbons (other than those formed following OH addition to aromatic rings, which is reprsented separately). Mechanism based on that estimated for 3-hexyl hydroperoxide.

RAOOH Organic hydroperoxides formed following OH addition to aromatic rings, which is reprsented separately because of their probable role in SOA formation. Mechanism based on two isomers expected to be formed in the m-xylene system.

GLY Glyoxal

MGLY Methyl Glyoxal

BACL Biacetyl

PHEN Phenol

CRES Cresols

XYNL Xylenols and higher alkylphenols

CATL Catechols

NPHE Nitrophenols

BALD Aromatic aldehydes (e.g., benzaldehyde)

ACRO Acrolein

MACR Methacrolein

MVK Methyl Vinyl Ketone

IPRD Lumped isoprene product species

Aromatic unsaturated ring fragmentation products

AFG1 Monounsaturated dialdehydes or aldehyde-ketones formed from aromatics. - Most photoreactive

AFG2 Monounsaturated dialdehydes or aldehyde-ketones formed from aromatics. - Least photoreactive

Page 132: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

120

Name Description

AFG3 Diunsaturatred dicarbonyl aromatic fragmentation products that are assumed not to photolyze rapidly. Formed from ARO-OH + NO2 reaction only.

AFG4 3-hexene-2,5-dione and other monounsaturated diketone aromatic products.

AFG5 Unsaturated epoxy dicarbonyl aromatic fragmentation products

Lumped Parameter Products

PROD2 Ketones and other non-aldehyde oxygenated products which react with OH radicals faster than 5 x 10-12 cm3 molec-2 sec-1.

RNO3 Lumped Organic Nitrates

Steady state operators used to represent radical or product formation in peroxy radical reactions.

xHO2 Formation of HO2 from alkoxy radicals formed in peroxy radical reactions with NO and NO3 (100% yields) and RO2 (50% yields)

xOH As above, but for OH

xNO2 As above, but for NO2

xMEO2 As above, but for MEO2

xMECO3 As above, but for MECO3

xRCO3 As above, but for RCO3

xMACO3 As above, but for MACO3

xTBUO As above, but for TBUO

xCO As above, but for CO

xHCHO As above, but for HCHO

xCCHO As above, but for CCHO

xRCHO As above, but for RCHO

xGLCHO As above, but for HOCCHO

xACET As above, but for ACET

xPROD1 As above, but for PROD1

xPROD2 As above, but for PROD2

xGLY As above, but for GLY

xMGLY As above, but for MGLY

xBACL As above, but for BACL

xBALD As above, but for BALD

xAFG1 As above, but for AFG1

xAFG2 As above, but for AFG2

xAFG4 As above, but for AFG4

xACRO As above, but for AFG3

xMACR As above, but for MACR

xMVK As above, but for MVK

xIPRD As above, but for IPRD

xRNO3 As above, but for RNO3

zRNO3 Formation of RNO3 in the RO2 + NO, reaction, or formation of corresponding non-nitrate products (represented by PROD2) formed from alkoxy radicals formed in RO2 + NO3 and (in 50% yields) RO2 + RO2 reactions.

yROOH Formation of ROOH following RO2 + HO2 reactions, or formation of H-shift disproportionation products (represented by MEK) in the RO2 + RCO3 and (in 50% yields) RO2 + RO2 reactions.

yR6OOH As above, but the RO2 + HO2 product is represented by R6OOH and the H-shift products are represented by PROD2.

yRAOOH As above, but for RAOOH

Non-Reacting Species

Page 133: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

121

Name Description

CO2 Carbon Dioxide

SULF Sulfates (SO3 or H2SO4)

XC Lost Carbon or carbon in unreactive products

XN Lost Nitrogen or nitrogen in unreactive products

Primary Organics represented explicitly in the standard mechanism

CH4 methane

ETHE ethene

ISOP isoprene (2-methyl-1,3-butadiene)

BENZ benzene

ACYL acetylene

Primary Organics and VOC catetories represented explicitly (SAPRC-11D)

NC4 n-butane

NC8 n-octane

PROPENE propene

BUTENE1 1-butene

ISOBUTEN isobutene

C2BUTE cis-2-butene

T2BUTE trans-2-butene

BUTDE12 1,2-butadiene

BUTDE13 1,3-butadiene

M2BUT2 2-methyl-2-butene

PENTEN1 1-pentene

C2PENT cis-2-pentene

T2PENT trans-2-pentene

HEXENE1 1-hexene

TOLUENE toluene

MXYLENE m-xylene

ETHANE ethane

PROPANE propane

M2C3 isobutane

NC5 n-pentane

M2C4 isopentane

CYCC5 cyclopentane

NC6 n-hexane

M22C4 2,2-dimethyl butane

M23C4 2,3-dimethyl butane

M2C5 2-methyl pentane

M3C5 3-methyl pentane

CYCC6 cyclohexane

MECYCC5 methyl cyclopentane

NC7 n-heptane

M223C4 2,2,3-trimethyl butane

M22C5 2,2-dimethyl pentane

M23C5 2,3-dimethyl pentane

M24C5 2,4-dimethyl pentane

M2C6 2-methyl hexane

M33C5 3,3-dimethyl pentane

M3C6 3-methyl hexane

Page 134: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

122

Name Description

ET3C5 3-ethyl pentane

M11CC5 1,1-dimethyl cyclopentane

M12CC5 1,2-dimethyl cyclopentane

CYCC7 C7 cycloalkanes

M13CYC5 1,3-dimethyl cyclopentane

ETCYCC5 ethyl cyclopentane

BRC8 branched C8 alkanes

M224C5 2,2,4-trimethyl pentane

M22C6 2,2-dimethyl hexane

M234C5 2,3,4-trimethyl pentane

M23C6 2,3-dimethyl hexane

M24C6 2,4-dimethyl hexane

M25C6 2,5-dimethyl hexane

M2C7 2-methyl heptane

M3C7 3-methyl heptane

M4C7 4-methyl heptane

M233C5 2,3,3-trimethyl pentane

M34C6 3,4-dimethyl hexane

E3M2C5 3-ethyl 2-methyl pentane

M112CC5 1,1,2-trimethyl cyclopentane

M113CC5 1,1,3-trimethyl cyclopentane

M11CC6 1,1-dimethyl cyclohexane

M14CC6 1,4-dimethyl cyclohexane

CYCC8 C8 cycloalkanes

M13CYC6 1,3-dimethyl cyclohexane

NC9 n-nonane

BRC9 branched C9 alkanes

M225C6 2,2,5-trimethyl hexane

M235C6 2,3,5-trimethyl hexane

M24C7 2,4-dimethyl heptane

M2C8 2-methyl octane

M35C7 3,5-dimethyl heptane

M4C8 4-methyl octane

M33C7 3,3-dimethyl heptane

M224C6 2,2,4-trimethyl hexane

M26C7 2,6-dimethyl heptane

M25C7 2,5-dimethyl heptane

M3C8 3-methyl octane

ET3C7 3-ethyl heptane

M123CC6 1,2,3-trimethyl cyclohexane

M135CC6 1,3,5-trimethyl cyclohexane

M113CC6 1,1,3-trimethyl cyclohexane

E1M4CC6 1-ethyl-4-methyl cyclohexane

C3CYCC6 propyl cyclohexane

CYCC9 C9 cycloalkanes

NC10 n-decane

BRC10 branched C10 alkanes

M24C8 2,4-dimethyl octane

Page 135: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

123

Name Description

M26C8 2,6-dimethyl octane

M2C9 2-methyl nonane

M3C9 3-methyl nonane

M4C9 4-methyl nonane

M33C8 3,3-dimethyl octane

M224C7 2,2,4-trimethyl heptane

M225C7 2,2,5-trimethyl heptane

M23C8 2,3-dimethyl octane

M25C8 2,5-dimethyl octane

M2E3C7 2-methyl-3-ethyl heptane

CYCC10 C10 cycloalkanes

C4CYCC6 butyl cyclohexane

NC11 n-undecane

BRC11 branched C11 alkanes

M26C9 2,6-dimethyl nonane

M3C10 3-methyl decane

M4C10 4-methyl decane

CYCC11 C11 cycloalkanes

E1P2CC6 1-ethyl-2-propyl cyclohexane

NC12 n-dodecane

BRC12 branched C12 alkanes

M36C10 3,6-dimethyl decane

M3C11 3-methyl undecane

M5C11 5-methyl undecane

NC13 n-tridecane

NC14 n-tetradecane

NC15 n-pentadecane

NC16 n-C16

ALLENE 1,2-propadiene (allene)

M1BUT3 3-methyl-1-butene

M1BUT2 2-methyl-1-butene

CYCPNTE cyclopentene

M33BUT1 3,3-dimethyl-1-butene

M3C5E1 3-methyl-1-pentene

M2C5E1 2-methyl-1-pentene

M2C5E2 2-methyl-2-pentene

C2C6E cis-2-hexene

C3C6E cis-3-hexene

M3C5E2 cis-3-methyl-2-pentene

M4T2C5E trans-4-methyl-2-pentene

T2C6E trans-2-hexene

T3C6E trans-3-hexene

C6OLE2 C6 internal alkenes

M3CC5E 3-methyl cyclopentene

M1CC5E 1-methyl cyclopentene

CYCHEXE cyclohexene

T2C7E trans-2-heptene

T3C7E trans-3-heptene

Page 136: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

124

Name Description

C7OLE1 C7 terminal alkenes

C8COLE C8 cycloolefins

OCTENE1 1-octene

M244C5E1 2,4,4-trimethyl-1-pentene

C9E1 1-nonene

T4C9E trans-4-nonene

C10E1 1-decene

E34C6E2 3,4-diethyl-2-hexene

C10OLE2 trans-4-decene

CARENE3 3-carene

APINENE alpha-pinene

BPINENE beta-pinene

DLIMONE d-limonene

SABINENE sabinene

C11E1 1-undecene

T5C11E trans-5-undecene

C2BENZ ethyl benzene

OXYLENE o-xylene

PXYLENE p-xylene

STYRENE styrene

NC3BEN n-propyl benzene

IC3BEN isopropyl benzene (cumene)

METTOL m-ethyl toluene

OETTOL o-ethyl toluene

PETTOL p-ethyl toluene

TMB123 1,2,3-trimethyl benzene

TMB124 1,2,4-trimethyl benzene

TMB135 1,3,5-trimethyl benzene

C10BEN1 C10 monosubstituted benzenes

TC4BEN tert-butyl benzene

MC10BEN2 m-C10 disubstituted benzenes

OC10BEN2 o-C10 disubstituted benzenes

PC10BEN2 p-C10 disubstituted benzenes

PCYMENE 1-methyl-4-isopropyl benzene (p-cymene)

C10B123 1,2,3-C10 trisubstituted benzenes

C10B124 1,2,4-C10 trisubstituted benzenes

C10B135 1,3,5-C10 trisubstituted benzenes

BEN1234 1,2,3,4-tetramethyl benzene

BEN1245 1,2,4,5-tetramethyl benzene

MBEN1235 1,2,3,5-tetramethyl benzene

NAPHTHAL naphthalene

C11BEN1 C11 monosubstituted benzenes

MC11BEN2 m-C11 disubstituted benzenes

OC11BEN2 o-C11 disubstituted benzenes

PC11BEN2 p-C11 disubstituted benzenes

C11B123 1,2,3-C11 trisubstituted benzenes

C11B124 1,2,4-C11 trisubstituted benzenes

C11B135 1,3,5-C11 trisubstituted benzenes

Page 137: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

125

Name Description

NAPH1 substitued naphthalenes (based on methyl naphthalenes)

C12BEN1 C12 monosubstituted benzenes

MC12BEN2 m-C12 disubstituted benzenes

OC12BEN2 o-C12 disubstituted benzenes

PC12BEN2 p-C12 disubstituted benzenes

C12B123 1,2,3-C12 trisubstituted benzenes

C12B124 1,2,4-C12 trisubstituted benzenes

C12B135 1,3,5-C12 trisubstituted benzenes

ETOX ethylene oxide

ETOH ethanol

MEOME dimethyl ether

MEFORM methyl formate

ETGLYCL ethylene glycol

PROX propylene oxide

IC3OH isopropyl alcohol

NC3OH n-propyl alcohol

ACYRACID acrylic acid

MEACET methyl acetate

PRGLYCL propylene glycol

MEOETOH 2-methoxy ethanol

GLYCERL glycerol

CROTALD crotonaldehyde

THF tetrahydrofuran

MEC3AL2 2-methyl propanal

C4RCHO1 butanal

IC4OH isobutyl alcohol

NC4OH n-butyl alcohol

SC4OH sec-butyl alcohol

TC4OH tert-butyl alcohol

ETOET diethyl ether

VINACET vinyl acetate

ETACET ethyl acetate

C4OH12 1,2-butandiol

MEOC3OH 1-methoxy-2-propanol

ETOETOH 2-ethoxy-ethanol

DETGLCL diethylene glycol

MBUTENOL 2-methyl-3-butene-2-ol

C5RCHO1 pentanal (valeraldehyde)

IAMOH isoamyl alcohol (3-methyl-1-butanol)

MTBE methyl t-butyl ether

ETACRYL ethyl acrylate

MEMACRT methyl methacrylate

IPRACET isopropyl acetate

PRACET propyl acetate

MOEOETOH 2-(2-methoxyethoxy) ethanol

CC6KET cyclohexanone

CC6OH cyclohexanol

C6RCHO1 hexanal

Page 138: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

126

Name Description

MIBK 4-methyl-2-pentanone

MNBK methyl n-butyl ketone

ETBE ethyl tert-butyl ether

IBUACET isobutyl acetate

BUACET n-butyl acetate

DIACTALC diacetone alcohol

M24C5OH2 2-methyl-2,4-pentanediol

BUOETOH 2-butoxy-ethanol

PGMEACT 1-methoxy-2-propyl acetate

CSVACET 2-ethoxyethyl acetate

DGEE 2-(2-ethoxyethoxy) ethanol

DPRGLCL dipropylene glycol isomer (1-[2-hydroxypropyl]-2-propanol)

ADIPACD adipic acid (hexanedioic acid)

BZCH2OH benzyl alcohol

C7RCHO1 heptanal

C7KET2 2-heptanone

M3HXO2 2-methyl-3-hexanone

BUOC3OH n-butoxy-2-propanol (propylene glycol n-butyl ether)

E3EOC3OH ethyl 3-ethoxy propionate

DPGOME2 dipropylene glycol methyl ether: 2-(2-methoxypropoxy)-1-propanol

C8RCHO1 octanal

IBUIBTR isobutyl isobutyrate

DGBE 2-(2-butoxyethoxy)-ethanol

TEXANOL 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate and isomers (texanol® )

DBUPTHT dibutyl phthalate

CH3CL methyl chloride

CL2ME dichloromethane

MEBR methyl bromide

CHCL3 chloroform

ETAMINE ethyl amine

ETOHNH2 ethanolamine

CLETHE vinyl chloride

C2CL ethyl chloride

HFC152A 1,1-difluoroethane; HFC-152a

CL212ETH 1,2-dichloroethane

CL3ETHE trichloroethylene

TCE111 1,1,1-trichloroethane

CL4ETHE perchloroethylene

MEACTYL methyl acetylene

ACRYLNIT acrylonitrile

TMAMINE trimethyl amine

T13DCP trans-1,3-dichloropropene

C13DCP cis-1,3-dichloropropene

VINACYL 1-buten-3-yne (vinyl acetylene)

ETACTYL ethyl acetylene

AMP 2-amino-2-methyl-1-propanol

NMP n-methyl-2-pyrrolidone

HLBEN Monosubstitued halobenzenes and other unreactive monosubstitued benzenes

Page 139: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

127

Name Description

HL2BEN Di- and polysubstituted halobenzenes and other unreactive di- and polysubstitued benzenes

SIOME4 cyclosiloxane D4 (octamethylcyclotetrasiloxane)

INDTET indans and tetralins

Primary Organics and VOC catetories represented explicitly (SAPRC-11D) (Special mechanisms -- reactions assigned explicitly)

CCL3NO2 chloropicrin (trichloro-nitro-methane)

CS2 carbon disulfide

MITC methyl isothiocyanate

MOLINATE molinate (S-ethyl hexahydro-1H-azepine-1-carbothioate)

Special reactive intermediate radicals and chemical operators

HS HS Radicals

HSO HSO Radicals

R2NCOS C3H7N(C3H7)C(O)S· Radicals. (Steady state approximation employed) (MOLINATE mechanism only)

R2NCOSO C3H7N(C3H7)C(O)SO· Radicals. (Steady state approximation employed) (MOLINATE mechanism only)

xR2NCOS Formation of R2NCOS. following RO2 + NO and RO2 + RO2 reactions.

NRAD Lumped nitrogen-centered radicals that don't have alpha H's, such as t-butyl-NH.

Emitted VOCs whose mechanisms are used to represent lumped product species (but are represented separately)

PROPALD Lumped C3+ Aldehydes (mechanism based on propionaldehyde)

MEK methyl ethyl ketone

Species used in Lumped Mechanisms for Base Case and Ambient Simulations

OTH1 Lumped compounds that react similarly to alkanes, and have kOH between 2 and 5 x 102 ppm-1 min-1.

OTH2 Lumped compounds that react similarly to alkanes that have kOH between 5 x 102 and 2.5 x 103 ppm-1 min-1.

OTH3 Lumped compounds that react similarly to alkanes, and have kOH between 2.5 x 103 and 5 x 103 ppm-1 min-1.

OTH4 Lumped compounds that react similarly to alkanes, and have kOH between 5 x 103 and 1 x 104 ppm-1 min-1.

OTH5 Lumped compounds that react similarly to alkanes, and have kOH greater than 1 x 104 ppm-1 min-1.

OLE1 Lumped alkenes with kOH < 7x104 ppm-1 min-1.

OLE2 Lumped alkenes with kOH > 7x104 ppm-1 min-1.

ARO1 Lumped aromatics with kOH < 2x104 ppm-1 min-1.

ARO2 Lumped aromatics with kOH > 2x104 ppm-1 min-1.

TERP Terpenes

SESQ Sesquiterpenes

Chlorine Species

Active Inorganic Species.

CL2 Chlorine molecules

CLNO ClNO

CLONO ClONO

CLNO2 ClNO2

CLONO2 ClONO2

HOCL HOCl

Page 140: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

128

Name Description

Active Radical Species and Operators.

CL Chlorine atoms

CLO ClO. Radicals

Active Organic Product Species

CLCCHO Chloroacetaldehyde (and other alpha-chloro aldehydes that are assumed to be similarly photoreactive)

CLACET Chloroacetone (and other alpha-chloro ketones that are assumed to be similarly photoreactive)

Steady state operators used to represent radical or product formation in peroxy radical reactions.

xCL Formation of Cl radicals from alkoxy radicals formed in peroxy radical reactions with NO and NO3 (100% yields) and RO2 (50% yields)

xCLCCHO As above, but for CLCCHO

xCLACET As above, but for CLACET

Low Reactivity Compounds Represented as Unreactive

HCL Hydrochloric acid

CLCHO Formyl Chloride (assumed to be unreactive)

Page 141: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

129

Table B-2. Listing of reactions used in SAPRC-11D.

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

1 NO2 + HV = NO + O3P Phot Set= NO2-06 1

2 O3P + O2 + M = O3 + M 5.68E-34 5.68E-34 0.00 -2.60

1

3 O3P + O3 = #2 O2 8.34E-15 8.00E-12 4.09 1

4 O3P + NO = NO2 1.64E-12 Falloff, F=0.60, N=1.00 1

5 O3P + NO2 = NO + O2 1.03E-11 5.50E-12 -0.37 1

6 O3P + NO2 = NO3 3.24E-12 Falloff, F=0.60, N=1.00 1

7 O3 + NO = NO2 + O2 2.02E-14 3.00E-12 2.98 1

8 O3 + NO2 = O2 + NO3 3.72E-17 1.40E-13 4.91 1

9 NO + NO3 = #2 NO2 2.60E-11 1.80E-11 -0.22 1

10 NO + NO + O2 = #2 NO2 1.93E-38 3.30E-39 -1.05 1

11 NO2 + NO3 = N2O5 1.24E-12 Falloff, F=0.35, N=1.33 1

12 N2O5 = NO2 + NO3 5.69E-02 Falloff, F=0.35, N=1.33 1

13 N2O5 + H2O = #2 HNO3 2.50E-22 1

14 N2O5 + H2O + H2O = #2 HNO3 + H2O 1.80E-39 1

15 NO2 + NO3 = NO + NO2 + O2 6.75E-16 4.50E-14 2.50 1

16 NO3 + HV = NO + O2 Phot Set= NO3NO-06 1

17 NO3 + HV = NO2 + O3P Phot Set= NO3NO2-6 1

18 O3 + HV = O1D + O2 Phot Set= O3O1D-06 1

19 O3 + HV = O3P + O2 Phot Set= O3O3P-06 1

20 O1D + H2O = #2 OH 1.99E-10 1.63E-10 -0.12 1

21 O1D + M = O3P + M 3.28E-11 2.38E-11 -0.19 1

22 OH + NO = HONO 7.31E-12 Falloff, F=0.60, N=1.00 1

23 HONO + HV = OH + NO Phot Set= HONO-06 1

24 OH + HONO = H2O + NO2 5.95E-12 2.50E-12 -0.52 1

25 OH + NO2 = HNO3 1.05E-11 Falloff, F=0.60, N=1.00 1

26 OH + NO3 = HO2 + NO2 2.00E-11 1

27 OH + HNO3 = H2O + NO3 1.51E-13 k = k1+k0M/(1+k0M/k2) 1

28 HNO3 + HV = OH + NO2 Phot Set= HNO3 1

29 OH + CO = HO2 + CO2 2.28E-13 k = k1 + k0 [M] 1

30 OH + O3 = HO2 + O2 7.41E-14 1.70E-12 1.87 1

31 HO2 + NO = OH + NO2 8.85E-12 3.60E-12 -0.54 1

32 HO2 + NO2 = HNO4 1.12E-12 Falloff, F=0.60, N=1.00 1

33 HNO4 = HO2 + NO2 1.07E-01 Falloff, F=0.60, N=1.00 1

34 HNO4 + HV = #.61 {HO2 + NO2} + #.39 {OH + NO3} Phot Set= HNO4-06 1

35 HNO4 + OH = H2O + NO2 + O2 4.61E-12 1.30E-12 -0.76 1

36 HO2 + O3 = OH + #2 O2 2.05E-15 2.03E-16 -1.38 4.57 1

37 HO2 + HO2 = HO2H + O2 2.84E-12 k = k1 + k0 [M] 1

38 HO2 + HO2 + H2O = HO2H + O2 + H2O 6.09E-30 k = k1 + k0 [M] 1

39 NO3 + HO2 = #.8 {OH + NO2 + O2} + #.2 {HNO3 + O2} 4.00E-12 1

40 NO3 + NO3 = #2 NO2 + O2 2.41E-16 8.50E-13 4.87 1

41 HO2H + HV = #2 OH Phot Set= H2O2 1

Page 142: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

130

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

42 HO2H + OH = HO2 + H2O 1.80E-12 1.80E-12 0.00 1

43 OH + HO2 = H2O + O2 1.10E-10 4.80E-11 -0.50 1

44 OH + SO2 = HO2 + SULF 9.49E-13 Falloff, F=0.60, N=1.00 1

45 OH + H2 = HO2 + H2O 7.02E-15 7.70E-12 4.17 1

EX1 NO2 + HV = NO2EX Phot Set= NO2EX 1

EX2 NO2EX + M = NO2 2.76E-11 1

EX3 NO2EX + H2O = NO2 1.70E-10 1

EXOH NO2EX + H2O = OH + HONO 0.00E+00 1

OL01 HCHO2 + SO2 = SULF + HCHO 3.90E-11 5

OL02 HCHO2 + NO2 = HCHO + NO3 7.00E-12 5

OL03 HCHO2 + H2O = HCOOH 2.40E-15 5

OL04 CCHO2 + SO2 = SULF + CCHO 3.90E-11 5

OL05 CCHO2 + NO2 = CCHO + NO3 7.00E-12 5

OL06 CCHO2 + H2O = CCOOH 2.40E-15 5

OL07 RCHO2 + SO2 = SULF + RCHO 3.90E-11 5

OL08 RCHO2 + NO2 = RCHO + NO3 7.00E-12 5

OL09 RCHO2 + H2O = RCOOH 2.40E-15 5

BR01 MEO2 + NO = NO2 + HCHO + HO2 7.64E-12 2.30E-12 -0.72 1

BR02 MEO2 + HO2 = COOH + O2 4.65E-12 3.46E-13 -1.55 0.36 1

BR03 MEO2 + HO2 = HCHO + O2 + H2O 4.50E-13 3.34E-14 -1.55 -3.53

1

BR04 MEO2 + NO3 = HCHO + HO2 + NO2 1.30E-12 1

BR05 MEO2 + MEO2 = MEOH + HCHO + O2 2.16E-13 6.39E-14 -0.73 -1.80

1

BR06 MEO2 + MEO2 = #2 {HCHO + HO2} 1.31E-13 7.40E-13 1.03 1

BR07 RO2C + NO = NO2 9.23E-12 2.60E-12 -0.76 1

BR08 RO2C + HO2 = 7.63E-12 3.80E-13 -1.79 1

BR09 RO2C + NO3 = NO2 2.30E-12 1

BR10 RO2C + MEO2 = #.5 HO2 + #.75 HCHO + #.25 MEOH 2.00E-13 1

BR11 RO2C + RO2C = 3.50E-14 1

BR12 RO2XC + NO = XN Same k as rxn BR07 1

BR13 RO2XC + HO2 = Same k as rxn BR08 1

BR14 RO2XC + NO3 = NO2 Same k as rxn BR09 1

BR15 RO2XC + MEO2 = #.5 HO2 + #.75 HCHO + #.25 MEOH Same k as rxn BR10 1

BR16 RO2XC + RO2C = Same k as rxn BR11 1

BR17 RO2XC + RO2XC = Same k as rxn BR11 1

BR18 MECO3 + NO2 = PAN 9.37E-12 Falloff, F=0.30, N=1.41 1

BR19 PAN = MECO3 + NO2 6.27E-04 Falloff, F=0.30, N=1.41 1

BR20 PAN + HV = #.6 {MECO3 + NO2} + #.4 {MEO2 + CO2 + NO3}

Phot Set= PAN 1

BR21 MECO3 + NO = MEO2 + CO2 + NO2 1.97E-11 7.50E-12 -0.58 1

BR22 MECO3 + HO2 = #.44 {OH + MEO2 + CO2} + #.41 CCO3H + #.15 {O3 + CCOOH}

1.36E-11 5.20E-13 -1.95 4,4a

BR23 MECO3 + NO3 = MEO2 + CO2 + NO2 + O2 Same k as rxn BR09 1

BR24 MECO3 + MEO2 = #.1 {CCOOH + HCHO + O2} + #.9 {HCHO + HO2 + MEO2 + CO2}

1.06E-11 2.00E-12 -0.99 1

Page 143: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

131

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BR25 MECO3 + RO2C = MEO2 + CO2 1.56E-11 4.40E-13 -2.13 1

BR26 MECO3 + RO2XC = MEO2 + CO2 Same k as rxn BR25 1

BR27 MECO3 + MECO3 = #2 {MEO2 + CO2} + O2 1.54E-11 2.90E-12 -0.99 1

BR28 RCO3 + NO2 = PAN2 1.21E-11 1.21E-11 0.00 -1.07

1

BR29 PAN2 = RCO3 + NO2 5.48E-04 8.30E+16 27.70 1

BR30 PAN2 + HV = #.6 {RCO3 + NO2} + #.4 {RO2C + xHO2 + yROOH + xCCHO + CO2 + NO3}

Phot Set= PAN 1

BR31 RCO3 + NO = NO2 + RO2C + xHO2 + yROOH + xCCHO + CO2

2.08E-11 6.70E-12 -0.68 1

BR32 RCO3 + HO2 = #.44 {OH + RO2C + xHO2 + xCCHO + yROOH + CO2} + #.41 RCO3H + #.15 {O3 + RCOOH}

Same k as rxn BR22 4,4a

BR33 RCO3 + NO3 = NO2 + RO2C + xHO2 + yROOH + xCCHO + CO2 + O2

Same k as rxn BR09 1

BR34 RCO3 + MEO2 = HCHO + HO2 + RO2C + xHO2 + xCCHO + yROOH + CO2

Same k as rxn BR24 1

BR35 RCO3 + RO2C = RO2C + xHO2 + xCCHO + yROOH + CO2

Same k as rxn BR25 1

BR36 RCO3 + RO2XC = RO2C + xHO2 + xCCHO + yROOH + CO2

Same k as rxn BR25 1

BR37 RCO3 + MECO3 = #2 CO2 + MEO2 + RO2C + xHO2 + yROOH + xCCHO + O2

Same k as rxn BR27 1

BR38 RCO3 + RCO3 = #2 {RO2C + xHO2 + xCCHO + yROOH + CO2}

Same k as rxn BR27 1

BR39 BZCO3 + NO2 = PBZN 1.37E-11 1

BR40 PBZN = BZCO3 + NO2 4.27E-04 7.90E+16 27.82 1

BR41 PBZN + HV = #.6 {BZCO3 + NO2} + #.4 {CO2 + BZO + RO2C + NO3}

Phot Set= PAN 1

BR42 BZCO3 + NO = NO2 + CO2 + BZO + RO2C Same k as rxn BR31 1

BR43 BZCO3 + HO2 = #.44 {OH + BZO + RO2C + CO2} + #.41 RCO3H + #.15 {O3 + RCOOH} + #2.24 XC

Same k as rxn BR22 4,4a

BR44 BZCO3 + NO3 = NO2 + CO2 + BZO + RO2C + O2 Same k as rxn BR09 1

BR45 BZCO3 + MEO2 = HCHO + HO2 + RO2C + BZO + CO2 Same k as rxn BR24 1

BR46 BZCO3 + RO2C = RO2C + BZO + CO2 Same k as rxn BR25 1

BR47 BZCO3 + RO2XC = RO2C + BZO + CO2 Same k as rxn BR25 1

BR48 BZCO3 + MECO3 = #2 CO2 + MEO2 + BZO + RO2C Same k as rxn BR27 1

BR49 BZCO3 + RCO3 = #2 CO2 + RO2C + xHO2 + yROOH + xCCHO + BZO + RO2C

Same k as rxn BR27 1

BR50 BZCO3 + BZCO3 = #2 {BZO + RO2C + CO2} Same k as rxn BR27 1

BR51 MACO3 + NO2 = MAPAN Same k as rxn BR28 1

BR52 MAPAN = MACO3 + NO2 4.79E-04 1.60E+16 26.80 1

BR53 MAPAN + HV = #.6 {MACO3 + NO2} + #.4 {CO2 + HCHO + MECO3 + NO3}

Phot Set= PAN 1

BR54 MACO3 + NO = NO2 + CO2 + HCHO + MECO3 Same k as rxn BR31 1

BR55 MACO3 + HO2 = #.44 {OH + HCHO + MECO3 + CO2} + #.41 RCO3H + #.15 {O3 + RCOOH} + #.56 XC

Same k as rxn BR22 4,4a

BR56 MACO3 + NO3 = NO2 + CO2 + HCHO + MECO3 + O2 Same k as rxn BR09 1

BR57 MACO3 + MEO2 = #2 HCHO + HO2 + CO2 + MECO3 Same k as rxn BR24 1

BR58 MACO3 + RO2C = CO2 + HCHO + MECO3 Same k as rxn BR25 1

BR59 MACO3 + RO2XC = CO2 + HCHO + MECO3 Same k as rxn BR25 1

BR60 MACO3 + MECO3 = #2 CO2 + MEO2 + HCHO + MECO3 + O2

Same k as rxn BR27 1

Page 144: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

132

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BR61 MACO3 + RCO3 = HCHO + MECO3 + RO2C + xHO2 + yROOH + xCCHO + #2 CO2

Same k as rxn BR27 1

BR62 MACO3 + BZCO3 = HCHO + MECO3 + BZO + RO2C + #2 CO2

Same k as rxn BR27 1

BR63 MACO3 + MACO3 = #2 {HCHO + MECO3 + CO2} Same k as rxn BR27 1

BR64 TBUO + NO2 = RNO3 + #-2 XC 2.40E-11 1

BR65 TBUO = ACET + MEO2 1.18E+03 7.50E+14 16.20 1

BR66 BZO + NO2 = NPHE 3.79E-11 2.30E-11 -0.30 1

BR67 BZO + HO2 = CRES + #-1 XC Same k as rxn BR08 1

BR68 BZO = CRES + RO2C + xHO2 + #-1 XC 1.00E-03 1

RO01 xHO2 = HO2 k is variable parameter: RO2RO 2

RO02 xHO2 = k is variable parameter: RO2XRO 2

RO03 xOH = OH k is variable parameter: RO2RO 2

RO04 xOH = k is variable parameter: RO2XRO 2

RO05 xNO2 = NO2 k is variable parameter: RO2RO 2

RO06 xNO2 = XN k is variable parameter: RO2XRO 2

RO07 xMEO2 = MEO2 k is variable parameter: RO2RO 2

RO08 xMEO2 = XC k is variable parameter: RO2XRO 2

RO09 xMECO3 = MECO3 k is variable parameter: RO2RO 2

RO10 xMECO3 = #2 XC k is variable parameter: RO2XRO 2

RO11 xRCO3 = RCO3 k is variable parameter: RO2RO 2

RO12 xRCO3 = #3 XC k is variable parameter: RO2XRO 2

RO13 xMACO3 = MACO3 k is variable parameter: RO2RO 2

RO14 xMACO3 = #4 XC k is variable parameter: RO2XRO 2

RO15 xTBUO = TBUO k is variable parameter: RO2RO 2

RO16 xTBUO = #4 XC k is variable parameter: RO2XRO 2

RO17 xCO = CO k is variable parameter: RO2RO 2

RO18 xCO = XC k is variable parameter: RO2XRO 2

BP01 HCHO + HV = #2 HO2 + CO Phot Set= HCHOR-06 1

BP02 HCHO + HV = H2 + CO Phot Set= HCHOM-06 1

BP03 HCHO + OH = HO2 + CO + H2O 8.47E-12 5.40E-12 -0.27 1

BP07 HCHO + NO3 = HNO3 + HO2 + CO 6.06E-16 2.00E-12 4.83 1

BP08 CCHO + OH = MECO3 + H2O 1.49E-11 4.40E-12 -0.73 1

BP09 CCHO + HV = CO + HO2 + MEO2 Phot Set= CCHO_R 1

BP10 CCHO + NO3 = HNO3 + MECO3 2.84E-15 1.40E-12 3.70 1

BP11 RCHO + OH = #.965 RCO3 + #.035 {RO2C + xHO2 + xCO + xCCHO + yROOH}

1.97E-11 5.10E-12 -0.80 1

BP12 RCHO + HV = RO2C + xHO2 + yROOH + xCCHO + CO + HO2

Phot Set= C2CHO 1

BP13 RCHO + NO3 = HNO3 + RCO3 6.74E-15 1.40E-12 3.18 1

BP14 ACET + OH = RO2C + xMECO3 + xHCHO + yROOH 1.91E-13 4.56E-14 -0.85 3.65 1

BP15 ACET + HV = #.62 MECO3 + #1.38 MEO2 + #.38 CO Phot Set= ACET-06, qy= 5.0E-1 1

BP16 PROD1 + OH = #.967 RO2C + #.039 {RO2XC + zRNO3} + #.376 xHO2 + #.51 xMECO3 + #.074 xRCO3 + #.088 xHCHO + #.504 xCCHO + #.376 xRCHO + yROOH + #.3 XC

1.20E-12 1.30E-12 0.05 2.00 1,3a

Page 145: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

133

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BP17 PROD1 + HV = MECO3 + RO2C + xHO2 + xCCHO + yROOH

Phot Set= MEK-06, qy= 1.8E-1 1,3a

BP18 MEOH + OH = HCHO + HO2 9.02E-13 2.85E-12 0.69 1

BP19 HCOOH + OH = HO2 + CO2 4.50E-13 1

BP20 CCOOH + OH = #.509 MEO2 + #.491 RO2C + #.509 CO2 + #.491 xHO2 + #.491 xMGLY + #.491 yROOH + #-0.491 XC

7.26E-13 4.20E-14 -1.70 1

BP21 RCOOH + OH = RO2C + xHO2 + #.143 CO2 + #.142 xCCHO + #.4 xRCHO + #.457 xBACL + yROOH + #-.455 XC

1.20E-12 1

BP22 COOH + OH = H2O + #.3 {HCHO + OH} + #.7 MEO2 7.40E-12 3.80E-12 -0.40 1

BP23 COOH + HV = HCHO + HO2 + OH Phot Set= COOH 1

BP24 ROOH + OH = #.744 OH + #.251 RO2C + #.004 RO2XC + #.004 zRNO3 + #.744 RCHO + #.239 xHO2 + #.012 xOH + #.012 xHCHO + #.012 xCCHO + #.205 xRCHO + #.034 xPROD2 + #.256 yROOH + #-0.111 XC

2.50E-11 4

BP25 ROOH + HV = RCHO + HO2 + OH Phot Set= COOH 1

BP26 R6OOH + OH = #.84 OH + #.222 RO2C + #.029 RO2XC + #.029 zRNO3 + #.84 PROD2 + #.09 xHO2 + #.041 xOH + #.02 xCCHO + #.075 xRCHO + #.084 xPROD2 + #.16 yROOH + #.017 XC

5.60E-11 4

BP27 R6OOH + HV = OH + #.142 HO2 + #.782 RO2C + #.077 RO2XC + #.077 zRNO3 + #.085 RCHO + #.142 PROD2 + #.782 xHO2 + #.026 xCCHO + #.058 xRCHO + #.698 xPROD2 + #.858 yR6OOH + #.017 XC

Phot Set= COOH 1

BP28 RAOOH + OH = #.139 OH + #.148 HO2 + #.589 RO2C + #.124 RO2XC + #.124 zRNO3 + #.074 PROD2 + #.147 MGLY + #.139 IPRD + #.565 xHO2 + #.024 xOH + #.448 xRCHO + #.026 xGLY + #.03 xPROD1 + #.252 xMGLY + #.073 xAFG1 + #.073 xAFG2 + #.713 yR6OOH + #1.674 XC

1.41E-10 4

BP29 RAOOH + HV = OH + HO2 + #.5 {GLY + MGLY + AFG1 + AFG2} + #-.5 XC

Phot Set= COOH 4

BP30 GLY + HV = #2 {CO + HO2} Phot Set= GLY-07R 1

BP31 GLY + HV = HCHO + CO Phot Set= GLY-07M 1

BP32 GLY + OH = #.7 HO2 + #1.4 CO + #.3 HCOCO3 9.63E-12 3.10E-12 -0.68 4

BP33 GLY + NO3 = HNO3 + #.7 HO2 + #1.4 CO + #.3 HCOCO3

1.02E-15 2.80E-12 4.72 4

BP80 HCOCO3 + NO = HO2 + CO + CO2 + NO2 Same k as rxn BR31 4

BP81 HCOCO3 + NO2 = HO2 + CO + CO2 + NO3 Same k as rxn BR28 4

BP82 HCOCO3 + HO2 = #.44 {OH + HO2 + CO + CO2} + #.56 GLY + #.15 O3

Same k as rxn BR22 4

BP34 MGLY + HV = HO2 + CO + MECO3 Phot Set= MGLY-06 1

BP35 MGLY + OH = CO + MECO3 1.50E-11 1

BP36 MGLY + NO3 = HNO3 + CO + MECO3 2.53E-15 1.40E-12 3.77 1

BP37 BACL + HV = #2 MECO3 Phot Set= BACL-07 1

BP83 PHEN + OH = #.700 HO2 + #.100 BZO + #.104 xHO2 + #.096 OH + #.104 RO2C + #.700 CATL + #.096 AFG3 + #.052 xAFG1 + #.052 xAFG2 + #.104 xGLY + #.104 yRAOOH +#-.200 XC

2.74E-11 4.70E-13 -2.42 4

BP84 PHEN + NO3 = #.100 HNO3 + #.900 XN + #.700 HO2 + #.100 BZO + #.104 xHO2 + #.096 OH + #.104 RO2C + #.700 CATL + #.096 AFG3 + #.052 xAFG1 + #.052 xAFG2 + #.104 xGLY + #.104 yRAOOH + #-.200 XC

3.80E-12 4

Page 146: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

134

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BP38 CRES + OH = #.700 HO2 + #.100 BZO + #.177 xHO2 + #.023 OH + #.177 RO2C + #.700 CATL + #.023 AFG3 + #.089 xAFG1 + #.089 xAFG2 + #.089 xGLY + #.089 xMGLY + #.177 yRAOOH + #.704 XC

4.06E-11 1.60E-12 -1.93 4

BP39 CRES + NO3 = #.100 HNO3 + #.900 XN + #.700 HO2 + #.100 BZO + #.177 xHO2 + #.023 OH + #.177 RO2C + #.700 CATL + #.023 AFG3 + #.089 xAFG1 + #.089 xAFG2 + #.089 xGLY + #.089 xMGLY + #.177 yRAOOH + #.704 XC

1.40E-11 4

BP85 XYNL + OH = #.700 HO2 + #.075 BZO + #.225 xHO2 + #.225 RO2C + #.700 CATL + #.113 xAFG1 + #.113 xAFG2 + #.113 xGLY + #.113 xMGLY + #.225 yRAOOH + #1.655 XC

7.38E-11 4

BP86 XYNL + NO3 = #.075 HNO3 + #.925 XN + #.700 HO2 + #.075 BZO + #.225 xHO2 + #.225 RO2C + #.700 CATL + #.113 xAFG1 + #.113 xAFG2 + #.113 xGLY + #.113 xMGLY + #.225 yRAOOH + #1.655 XC

3.06E-11 4

BP87 CATL + OH = #.400 HO2 + #.200 BZO + #.200 xHO2 + #.200 OH + #.200 RO2C + #.200 AFG3 + #.100 xAFG1 + #.100 xAFG2 + #.100 xGLY + #.100 xMGLY + #.200 yRAOOH + #1.900 XC

2.00E-10 4

BP88 CATL + NO3 = #.200 HNO3 + #.800 XN + #.400 HO2 + #.200 BZO + #.200 xHO2 + #.200 OH + #.200 RO2C + #.200 AFG3 + #.100 xAFG1 + #.100 xAFG2 + #.100 xGLY + #.100 xMGLY + #.200 yRAOOH + #1.900 XC

1.70E-10 4

BP40 NPHE + OH = BZO + XN 3.50E-12 1

BP41 NPHE + HV = HONO + #6 XC Phot Set= NO2-06, qy= 1.5E-3 1

BP42 NPHE + HV = #6 XC + XN Phot Set= NO2-06, qy= 1.5E-2 1

BP43 BALD + OH = BZCO3 1.20E-11 1

BP44 BALD + HV = #7 XC Phot Set= BALD-06, qy= 6.0E-2 1

BP45 BALD + NO3 = HNO3 + BZCO3 2.73E-15 1.34E-12 3.70 1

BP46 AFG1 + OH = #.217 MACO3 + #.723 RO2C + #.06 {RO2XC + zRNO3} + #.521 xHO2 + #.201 xMECO3 + #.334 xCO + #.407 xRCHO + #.129 xPROD1 + #.107 xGLY + #.267 xMGLY + #.783 yR6OOH + #.284 XC

7.40E-11 4

BP48 AFG1 + HV = #1.023 HO2 + #.173 MEO2 + #.305 MECO3 + #.5 MACO3 + #.695 CO + #.195 GLY + #.305 MGLY + #.217 XC

Phot Set= AFG1 4

BP49 AFG2 + OH = #.217 MACO3 + #.723 RO2C + #.06 {RO2XC + zRNO3} + #.521 xHO2 + #.201 xMECO3 + #.334 xCO + #.407 xRCHO + #.129 xPROD1 + #.107 xGLY + #.267 xMGLY + #.783 yR6OOH + #.284 XC

7.40E-11 4

BP51 AFG2 + HV = PROD2 + #-1 XC Phot Set= AFG1 1

BP52 AFG3 + OH = #.206 MACO3 + #.733 RO2C + #.117 {RO2XC + zRNO3} + #.561 xHO2 + #.117 xMECO3 + #.114 xCO + #.274 xGLY + #.153 xMGLY + #.019 xBACL + #.195 xAFG1 + #.195 xAFG2 + #.231 xIPRD + #.794 yR6OOH + #.938 XC

9.35E-11 1

BP53 AFG3 + O3 = #.471 OH + #.554 HO2 + #.013 MECO3 + #.258 RO2C + #.007 {RO2XC + zRNO3} + #.580 CO + #.190 CO2 + #.366 GLY + #.184 MGLY + #.350 AFG1 + #.350 AFG2 + #.139 AFG3 + #.003 MACR + #.004 MVK + #.003 IPRD + #.095 xHO2 + #.163 xRCO3 + #.163 xHCHO + #.095 xMGLY + #.264 yR6OOH + #-.575 XC

1.43E-17 1

BP89 AFG4 + OH = #.902 RO2C + #.098 RO2XC + #.098 zRNO3 + #.902 xMECO3 + #.902 xRCHO + yROOH + #.902 XC

6.30E-11 1

Page 147: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

135

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BP90 AFG5 + OH = #.197 RCO3 + #.215 MACO3 + #.817 RO2C + #.114 RO2XC + #.114 zRNO3 + #.331 xHO2 + #.124 xMECO3 + #.019 xRCO3 + #.049 xCO + #.456 xRCHO + #.118 xGLY + #.13 xMGLY + #.034 xBACL + #.588 yR6OOH + #2.381 XC

5.93E-11 1

BP91 AFG5 + O3 = #.491 OH + #.456 HO2 + #.472 RO2C + #.017 RO2XC + #.017 zRNO3 + #.107 xHO2 + #.031 xMECO3 + #.199 xRCO3 + #.482 CO + #.17 CO2 + #.666 RCHO + #.377 GLY + #.163 MGLY + #.139 RCOOH + #.107 xCO + #.198 xHCHO + #.012 xRCHO + #.08 xBACL + #.355 yR6OOH + #1.268 XC

4.18E-18 1

BP54 MACR + OH = #.5 MACO3 + #.5 {RO2C + xHO2} + #.416 xCO + #.084 xHCHO + #.416 xPROD1 + #.084 xMGLY + #.5 yROOH + #-0.416 XC

2.84E-11 8.00E-12 -0.76 1

BP55 MACR + O3 = #.208 OH + #.108 HO2 + #.1 RO2C + #.45 CO + #.117 CO2 + #.1 HCHO + #.9 MGLY + #.333 HCOOH + #.1 xRCO3 + #.1 xHCHO + #.1 yROOH + #-0.1 XC

1.28E-18 1.40E-15 4.17 1

BP56 MACR + NO3 = #.5 {MACO3 + RO2C + HNO3 + xHO2 + xCO} + #.5 yROOH + #1.5 XC + #.5 XN

3.54E-15 1.50E-12 3.61 1

BP57 MACR + O3P = RCHO + XC 6.34E-12 1

BP58 MACR + HV = #.33 OH + #.67 HO2 + #.34 MECO3 + #.33 MACO3 + #.33 RO2C + #.67 CO + #.34 HCHO + #.33 xMECO3 + #.33 xHCHO + #.33 yROOH

Phot Set= MACR-06 1

BP59 MVK + OH = #.975 RO2C + #.025 {RO2XC + zRNO3} + #.3 xHO2 + #.675 xMECO3 + #.3 xHCHO + #.675 xGLCHO + #.3 xMGLY + yROOH + #-0.05 XC

1.99E-11 2.60E-12 -1.21 1

BP60 MVK + O3 = #.164 OH + #.064 HO2 + #.05 {RO2C + xHO2} + #.475 CO + #.124 CO2 + #.05 HCHO + #.95 MGLY + #.351 HCOOH + #.05 xRCO3 + #.05 xHCHO + #.05 yROOH + #-0.05 XC

5.36E-18 8.50E-16 3.02 4

BP62 MVK + O3P = #.45 RCHO + #.55 PROD1 + #.45 XC 4.32E-12 1

BP63 MVK + HV = #.4 MEO2 + #.6 CO + #.6 PROD2 + #.4 MACO3 + #-2.2 XC

Phot Set= MVK-06 1

BP64 IPRD + OH = #.289 MACO3 + #.67 {RO2C + xHO2} + #.041 {RO2XC + zRNO3} + #.336 xCO + #.055 xHCHO + #.129 xGLCHO + #.013 xRCHO + #.15 xPROD1 + #.332 xPROD2 + #.15 xGLY + #.174 xMGLY + #-0.504 XC + #.711 yR6OOH

6.19E-11 1

BP65 IPRD + O3 = #.285 OH + #.4 HO2 + #.048 {RO2C + xRCO3} + #.498 CO + #.14 CO2 + #.124 HCHO + #.21 PROD1 + #.023 GLY + #.742 MGLY + #.1 HCOOH + #.372 RCOOH + #.047 xGLCHO + #.001 xHCHO + #.048 yR6OOH + #-.329 XC

4.18E-18 1

BP66 IPRD + NO3 = #.15 {MACO3 + HNO3} + #.799 {RO2C + xHO2} + #.051 {RO2XC + zRNO3} + #.572 xCO + #.227 xHCHO + #.218 xRCHO + #.008 xMGLY + #.572 xRNO3 + #.85 yR6OOH + #.278 XN + #-.815 XC

1.00E-13 1

BP67 IPRD + HV = #1.233 HO2 + #.467 MECO3 + #.3 RCO3 + #1.233 CO + #.3 HCHO + #.467 GLCHO + #.233 PROD1 + #-.233 XC

Phot Set= MACR-06 1

BP68 PROD2 + OH = #.472 HO2 + #.379 xHO2 + #.029 xMECO3 + #.049 xRCO3 + #.473 RO2C + #.071 RO2XC + #.071 zRNO3 + #.002 HCHO + #.211 xHCHO + #.001 CCHO + #.083 xCCHO + #.143 RCHO + #.402 xRCHO + #.115 xPROD1 + #.329 PROD2 + #.007 xPROD2 + #.528 yR6OOH + #.877 XC

1.55E-11 1

BP69 PROD2 + HV = #.913 xHO2 + #.4 MECO3 + #.6 RCO3 + #1.59 RO2C + #.087 RO2XC + #.087 zRNO3 + #.303 xHCHO + #.163 xCCHO + #.78 xRCHO + yR6OOH + #-.091 XC

Phot Set= MEK-06, qy= 4.9E-3 1

Page 148: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

136

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BP70 RNO3 + OH = #.189 HO2 + #.305 xHO2 + #.019 NO2 + #.313 xNO2 + #.976 RO2C + #.175 RO2XC + #.175 zRNO3 + #.011 xHCHO + #.429 xCCHO + #.001 RCHO + #.036 xRCHO + #.004 xACET + #.01 PROD1 + #.17 xPROD1 + #.008 PROD2 + #.031 xPROD2 + #.189 RNO3 + #.305 xRNO3 + #.157 yROOH + #.636 yR6OOH + #.174 XN + #.04 XC

7.20E-12 1

BP71 RNO3 + HV = #.344 HO2 + #.554 xHO2 + NO2 + #.721 RO2C + #.102 RO2XC + #.102 zRNO3 + #.074 HCHO + #.061 xHCHO + #.214 CCHO + #.23 xCCHO + #.074 RCHO + #.063 xRCHO + #.008 xACET + #.124 PROD1 + #.083 xPROD1 + #.19 PROD2 + #.261 xPROD2 + #.066 yROOH + #.591 yR6OOH + #.396 XC

Phot Set= IC3ONO2 1

BP72 GLCHO + OH = MECO3 + H2O Same k as rxn BP08 1

BP73 GLCHO + HV = CO + #2 HO2 + HCHO Phot Set= HOCCHO 1

BP74 GLCHO + NO3 = HNO3 + MECO3 Same k as rxn BP10 1

BP75 ACRO + OH = #.25 RO2C + #.25 xHO2 + #.75 MACO3 + #.167 xCO + #.083 xHCHO + #.167 xGLCHO + #.083 xGLY + #.25 yROOH + #-.75 XC

1.99E-11 6

BP76 ACRO + O3 = #.33 OH + #.83 HO2 + #1.005 CO + #.31 CO2 + #.5 HCHO + #.5 GLY + #.185 HCHO2

3.07E-19 1.40E-15 5.02 7

BP77 ACRO + NO3 = #.031 xHO2 + #.967 MACO3 + #.031 RO2C + #.002 RO2XC + #.002 zRNO3 + #.967 HNO3 + #.031 xCO + #.031 xRNO3 + #.033 yROOH + #.002 XN + #-1.097 XC

1.18E-15 1

BP78 ACRO + O3P = RCHO 2.37E-12 1

BP79 ACRO + HV = #.178 OH + #1.066 HO2 + #.234 MEO2 + #.33 MACO3 + #1.188 CO + #.102 CO2 + #.34 HCHO + #.05 CCHO2 + #-.284 XC

Phot Set= ACRO-09 7

BT80 CCO3H + OH = #.98 MECO3 + #.02 {RO2C + CO2 + xOH + xHCHO + yROOH}

5.28E-12 1

BT81 CCO3H + HV = MEO2 + CO2 + OH Phot Set= PAA 1

BT82 RCO3H + OH = #.806 RCO3 + #.194 {RO2C + yROOH} + #.11 {CO2 + xOH + xCCHO} + #.084 {xHO2 + xRCHO}

6.42E-12 1

BT83 RCO3H + HV = xHO2 + xCCHO + yROOH + CO2 + OH Phot Set= PAA 1

PO01 xHCHO = HCHO k is variable parameter: RO2RO 2

PO02 xHCHO = XC k is variable parameter: RO2XRO 2

PO03 xCCHO = CCHO k is variable parameter: RO2RO 2

PO04 xCCHO = #2 XC k is variable parameter: RO2XRO 2

PO05 xRCHO = RCHO k is variable parameter: RO2RO 2

PO06 xRCHO = #3 XC k is variable parameter: RO2XRO 2

PO07 xACET = ACET k is variable parameter: RO2RO 2

PO08 xACET = #3 XC k is variable parameter: RO2XRO 2

PO09 xPROD1 = PROD1 k is variable parameter: RO2RO 2

PO10 xPROD1 = #4 XC k is variable parameter: RO2XRO 2

PO11 xPROD2 = PROD2 k is variable parameter: RO2RO 2

PO12 xPROD2 = #6 XC k is variable parameter: RO2XRO 2

PO13 xGLY = GLY k is variable parameter: RO2RO 2

PO14 xGLY = #2 XC k is variable parameter: RO2XRO 2

PO15 xMGLY = MGLY k is variable parameter: RO2RO 2

PO16 xMGLY = #3 XC k is variable parameter: RO2XRO 2

Page 149: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

137

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

PO17 xBACL = BACL k is variable parameter: RO2RO 2

PO18 xBACL = #4 XC k is variable parameter: RO2XRO 2

PO19 xBALD = BALD k is variable parameter: RO2RO 2

PO20 xBALD = #7 XC k is variable parameter: RO2XRO 2

PO21 xAFG1 = AFG1 k is variable parameter: RO2RO 2

PO22 xAFG1 = #5 XC k is variable parameter: RO2XRO 2

PO23 xAFG2 = AFG2 k is variable parameter: RO2RO 2

PO24 xAFG2 = #5 XC k is variable parameter: RO2XRO 2

PO51 xAFG4 = AFG4 k is variable parameter: RO2RO 2

PO52 xAFG4 = #6 XC k is variable parameter: RO2XRO 2

PO27 xMACR = MACR k is variable parameter: RO2RO 2

PO28 xMACR = #4 XC k is variable parameter: RO2XRO 2

PO29 xMVK = MVK k is variable parameter: RO2RO 2

PO30 xMVK = #4 XC k is variable parameter: RO2XRO 2

PO31 xIPRD = IPRD k is variable parameter: RO2RO 2

PO32 xIPRD = #5 XC k is variable parameter: RO2XRO 2

PO33 xRNO3 = RNO3 k is variable parameter: RO2RO 2

PO34 xRNO3 = #6 XC + XN k is variable parameter: RO2XRO 2

PO35 zRNO3 = RNO3 + #-1 XN k is variable parameter: RO2NO 2

PO36 zRNO3 = PROD2 + HO2 k is variable parameter: RO22NN 2

PO37 zRNO3 = #6 XC k is variable parameter: RO2XRO 2

PO38 yROOH = ROOH + #-3 XC k is variable parameter: RO2HO2 2

PO39 yROOH = PROD1 + #-4 XC k is variable parameter: RO2RO2M 2

PO40 yROOH = k is variable parameter: RO2RO 2

PO41 yR6OOH = R6OOH + #-6 XC k is variable parameter: RO2HO2 2

PO42 yR6OOH = PROD2 + #-6 XC k is variable parameter: RO2RO2M 2

PO43 yR6OOH = k is variable parameter: RO2RO 2

PO44 yRAOOH = RAOOH + #-7 XC k is variable parameter: RO2HO2 4

PO45 yRAOOH = PROD2 + #-6 XC k is variable parameter: RO2RO2M 2

PO46 yRAOOH = k is variable parameter: RO2RO 2

PO47 xGLCHO = GLCHO k is variable parameter: RO2RO 2

PO48 xGLCHO = #2 XC k is variable parameter: RO2XRO 2

PO49 xACRO = ACRO k is variable parameter: RO2RO 2

PO50 xACRO = #3 XC k is variable parameter: RO2XRO 2

BE01 CH4 + OH = MEO2 6.62E-15 1.85E-12 3.36 1

T02H NC4 + OH = #1.334 RO2C + #.079 RO2XC + #.079 zRNO3 + #.921 xHO2 + #.632 xCCHO + #.12 xRCHO + #.485 xPROD1 + yROOH + #-.038 XC

2.38E-12 1.63E-12 -0.23 2.00 10

T28H NC8 + OH = #1.432 RO2C + #.354 RO2XC + #.354 zRNO3 + #.646 xHO2 + #.024 xRCHO + #.622 xPROD2 + yR6OOH + #2.072 XC

8.16E-12 2.45E-12 -0.72 2.00 10

BE02 ETHE + OH = xHO2 + RO2C + #1.61 xHCHO + #.195 xGLCHO + yROOH

8.15E-12 Falloff, F=0.60, N=1.00 1

BE03 ETHE + O3 = #.16 HO2 + #.16 OH + #.51 CO + #.12 CO2 + HCHO + #.37 HCHO2

1.68E-18 9.14E-15 5.13 1

Page 150: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

138

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BE04 ETHE + NO3 = xHO2 + RO2C + xRCHO + yROOH + XN + #-1 XC

2.24E-16 3.30E-12 5.72 1

BE05 ETHE + O3P = #.8 HO2 + #.29 xHO2 + #.51 MEO2 + #.29 RO2C + #.51 CO + #.278 xCO + #.278 xHCHO + #.1 CCHO + #.012 xGLY + #.29 yROOH + #.2 XC

7.43E-13 1.07E-11 1.59 1

BE06 ISOP + OH = #.907 xHO2 + #.986 RO2C + #.093 RO2XC + #.093 zRNO3 + #.624 xHCHO + #.23 xMACR + #.32 xMVK + #.357 xIPRD + yR6OOH + #-.167 XC

9.96E-11 2.54E-11 -0.81 1

BE07 ISOP + O3 = #.066 HO2 + #.266 OH + #.192 xMACO3 + #.192 RO2C + #.008 RO2XC + #.008 zRNO3 + #.275 CO + #.122 CO2 + #.4 HCHO + #.192 xHCHO + #.204 HCHO2 + #.39 MACR + #.16 MVK + #.15 RCHO2 + #.1 PROD2 + #.2 yR6OOH + #-.259 XC

1.34E-17 7.86E-15 3.80 7,8

BE08 ISOP + NO3 = #.749 xHO2 + #.187 xNO2 + #.936 RO2C + #.064 RO2XC + #.064 zRNO3 + #.936 xIPRD + yR6OOH + #.813 XN + #-.064 XC

6.81E-13 3.03E-12 0.89 1

BE09 ISOP + O3P = #.25 MEO2 + #.24 xMACO3 + #.24 RO2C + #.01 RO2XC + #.01 zRNO3 + #.24 xHCHO + #.75 PROD2 + #.25 yR6OOH + #-1.01 XC

3.50E-11 1

T99H PROPENE + OH = #.984 RO2C + #.016 RO2XC + #.016 zRNO3 + #.984 xHO2 + #.984 xHCHO + #.984 xCCHO + yROOH + #-.048 XC

2.60E-11 4.85E-12 -1.00 10

T99O PROPENE + O3 = #.35 OH + #.165 HO2 + #.355 MEO2 + #.525 CO + #.215 CO2 + #.5 HCHO + #.5 CCHO + #.185 HCHO2 + #.075 CCHO2 + #.07 XC

1.05E-17 5.51E-15 3.73 10

T99N PROPENE + NO3 = #.949 RO2C + #.051 RO2XC + #.051 zRNO3 + #.949 xHO2 + yROOH + XN + #2.694 XC

9.73E-15 4.59E-13 2.30 10

T99P PROPENE + O3P = #.45 RCHO + #.55 PROD1 + #-.55 XC

4.01E-12 1.02E-11 0.56 10

T101H BUTENE1 + OH = #.986 RO2C + #.027 RO2XC + #.027 zRNO3 + #.973 xHO2 + #.948 xHCHO + #.946 xRCHO + #.007 xACRO + #.015 xMVK + #.005 xIPRD + yROOH + #-.054 XC

3.11E-11 6.55E-12 -0.93 10

T101O BUTENE1 + O3 = #.063 RO2C + #.128 OH + #.095 HO2 + #.063 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.063 xCCHO + #.5 RCHO + #.185 HCHO2 + #.425 RCHO2 + #.063 yROOH + #.023 XC

9.08E-18 3.36E-15 3.53 10

T101N BUTENE1 + NO3 = #.995 RO2C + #.08 RO2XC + #.08 zRNO3 + #.92 xHO2 + #.075 xCCHO + #.92 xRNO3 + yROOH + #.08 XN + #-2.15 XC

1.38E-14 3.14E-13 1.86 10

T101P BUTENE1 + O3P = #.45 RCHO + #.55 PROD1 + #.45 XC 4.17E-12 1.34E-11 0.70 10

T102H ISOBUTEN + OH = #.9 RO2C + #.1 RO2XC + #.1 zRNO3 + #.9 xHO2 + #.9 xHCHO + #.9 xACET + yROOH + #-.2 XC

5.08E-11 9.47E-12 -1.00 10

T102O ISOBUTEN + O3 = #.667 RO2C + #.72 OH + #.053 HO2 + #.667 xMECO3 + #.17 CO + #.04 CO2 + #.667 HCHO + #.667 xHCHO + #.333 ACET + #.123 HCHO2 + #.667 yROOH

1.17E-17 2.70E-15 3.24 10

T102N ISOBUTEN + NO3 = #.961 RO2C + #.039 RO2XC + #.039 zRNO3 + #.644 xNO2 + #.316 xMEO2 + #.644 xHCHO + #.644 xACET + yROOH + #.356 XN + #.874 XC

3.44E-13 10

T102P ISOBUTEN + O3P = #.4 RCHO + #.6 PROD1 + #.4 XC 1.68E-11 1.14E-11 -0.23 10

T103H C2BUTE + OH = #.965 RO2C + #.035 RO2XC + #.035 zRNO3 + #.965 xHO2 + #1.93 xCCHO + yROOH + #-.07 XC

5.58E-11 1.10E-11 -0.97 10

T103O C2BUTE + O3 = #.54 OH + #.17 HO2 + #.71 MEO2 + #.54 CO + #.31 CO2 + CCHO + #.15 CCHO2 + #.14 XC

1.28E-16 3.22E-15 1.92 10

T103N C2BUTE + NO3 = #.92 RO2C + #.08 RO2XC + #.08 zRNO3 + #.705 xNO2 + #.215 xHO2 + #1.41 xCCHO + #.215 xRNO3 + yROOH + #.08 XN + #-.59 XC

3.52E-13 10

Page 151: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

139

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T103P C2BUTE + O3P = PROD1 1.75E-11 1.10E-11 -0.28 10

T104H T2BUTE + OH = #.965 RO2C + #.035 RO2XC + #.035 zRNO3 + #.965 xHO2 + #1.93 xCCHO + yROOH + #-.07 XC

6.32E-11 1.01E-11 -1.09 10

T104O T2BUTE + O3 = #.54 OH + #.17 HO2 + #.71 MEO2 + #.54 CO + #.31 CO2 + CCHO + #.15 CCHO2 + #.14 XC

1.95E-16 6.64E-15 2.10 10

T104N T2BUTE + NO3 = #.92 RO2C + #.08 RO2XC + #.08 zRNO3 + #.705 xNO2 + #.215 xHO2 + #1.41 xCCHO + #.215 xRNO3 + yROOH + #.08 XN + #-.59 XC

3.93E-13 1.10E-13 -0.76 2.00 10

T104P T2BUTE + O3P = PROD1 1.99E-11 1.09E-11 -0.36 10

T105H BUTDE12 + OH = #.961 RO2C + #.039 RO2XC + #.039 zRNO3 + #.961 xHO2 + #.42 xMVK + #.541 xIPRD + yROOH + #-.619 XC

2.60E-11 10

T106H BUTDE13 + OH = #1.189 RO2C + #.049 RO2XC + #.049 zRNO3 + #.951 xHO2 + #.708 xHCHO + #.48 xACRO + #.471 xIPRD + yROOH + #-.797 XC

6.59E-11 1.48E-11 -0.89 10

T106O BUTDE13 + O3 = #.08 OH + #.08 HO2 + #.255 CO + #.185 CO2 + #.5 HCHO + #.125 PROD2 + #.5 ACRO + #.185 HCHO2 + #.375 RCHO2 + #-.5 XC

6.64E-18 1.34E-14 4.54 10

T106N BUTDE13 + NO3 = #1.055 RO2C + #.065 RO2XC + #.065 zRNO3 + #.12 xNO2 + #.815 xHO2 + #.115 xHCHO + #.46 xMVK + #.12 xIPRD + #.355 xRNO3 + yROOH + #.524 XN + #-1.075 XC

1.00E-13 10

T106P BUTDE13 + O3P = #.235 RO2C + #.015 RO2XC + #.015 zRNO3 + #.25 HO2 + #.117 xHO2 + #.118 xMACO3 + #.115 xCO + #.75 PROD2 + #.115 xACRO + #.001 xAFG1 + #.001 xAFG2 + #.25 yROOH + #-1.532 XC

1.98E-11 2.26E-11 0.08 10

T107H PENTEN1 + OH = #1.093 RO2C + #.076 RO2XC + #.076 zRNO3 + #.924 xHO2 + #.767 xHCHO + #.047 xCCHO + #.845 xRCHO + #.019 xPROD2 + #.047 xACRO + #.005 xMVK + #.009 xIPRD + yR6OOH + #.828 XC

3.14E-11 10

T107O PENTEN1 + O3 = #.061 RO2C + #.001 RO2XC + #.001 zRNO3 + #.128 OH + #.095 HO2 + #.061 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.061 xRCHO + #.013 PROD1 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #.908 XC

1.10E-17 2.13E-15 3.14 10

T107N PENTEN1 + NO3 = #1.615 RO2C + #.166 RO2XC + #.166 zRNO3 + #.834 xHO2 + #.016 xRCHO + #.834 xRNO3 + yR6OOH + #.166 XN + #-1.048 XC

1.50E-14 10

T107P PENTEN1 + O3P = #.45 RCHO + #.55 PROD1 + #1.45 XC

4.69E-12 1.78E-11 0.79 10

T111H C2PENT + OH = #.944 RO2C + #.066 RO2XC + #.066 zRNO3 + #.934 xHO2 + #.931 xCCHO + #.921 xRCHO + #.012 xIPRD + yR6OOH + #-.081 XC

6.50E-11 10

T111O C2PENT + O3 = #.063 RO2C + #.318 OH + #.1 HO2 + #.063 xHO2 + #.355 MEO2 + #.318 CO + #.183 CO2 + #.5 CCHO + #.063 xCCHO + #.5 RCHO + #.075 CCHO2 + #.425 RCHO2 + #.063 yR6OOH + #.093 XC

1.31E-16 3.70E-15 1.99 10

T111N C2PENT + NO3 = #1.148 RO2C + #.134 RO2XC + #.134 zRNO3 + #.471 xNO2 + #.395 xHO2 + #.481 xCCHO + #.471 xRCHO + #.395 xRNO3 + yR6OOH + #.134 XN + #-.549 XC

3.70E-13 10

T111P C2PENT + O3P = PROD1 + XC 1.70E-11 1.14E-11 -0.24 10

T112H T2PENT + OH = #.939 RO2C + #.066 RO2XC + #.066 zRNO3 + #.934 xHO2 + #.926 xCCHO + #.921 xRCHO + #.013 xIPRD + yR6OOH + #-.076 XC

6.70E-11 10

Page 152: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

140

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T112O T2PENT + O3 = #.063 RO2C + #.318 OH + #.1 HO2 + #.063 xHO2 + #.355 MEO2 + #.318 CO + #.183 CO2 + #.5 CCHO + #.063 xCCHO + #.5 RCHO + #.075 CCHO2 + #.425 RCHO2 + #.063 yR6OOH + #.093 XC

1.63E-16 7.10E-15 2.25 10

T112N T2PENT + NO3 = #1.148 RO2C + #.134 RO2XC + #.134 zRNO3 + #.471 xNO2 + #.395 xHO2 + #.481 xCCHO + #.471 xRCHO + #.395 xRNO3 + yR6OOH + #.134 XN + #-.549 XC

3.70E-13 10

T112P T2PENT + O3P = PROD1 + XC 2.10E-11 1.15E-11 -0.36 10

T114H HEXENE1 + OH = #1.342 RO2C + #.104 RO2XC + #.104 zRNO3 + #.896 xHO2 + #.483 xHCHO + #.005 xCCHO + #.612 xRCHO + #.263 xPROD2 + #.048 xACRO + #.009 xMVK + #.008 xIPRD + yR6OOH + #1.249 XC

3.70E-11 10

T114O HEXENE1 + O3 = #.105 RO2C + #.004 RO2XC + #.004 zRNO3 + #.128 OH + #.095 HO2 + #.058 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.058 xRCHO + #.013 PROD1 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #1.899 XC

1.17E-17 1.62E-15 2.94 10

T114N HEXENE1 + NO3 = #1.608 RO2C + #.237 RO2XC + #.237 zRNO3 + #.763 xHO2 + #.763 xRNO3 + yR6OOH + #.237 XN

1.80E-14 10

T114P HEXENE1 + O3P = #.45 RCHO + #.55 PROD1 + #2.45 XC

5.03E-12 1.51E-11 0.66 10

T110H M2BUT2 + OH = #.935 RO2C + #.065 RO2XC + #.065 zRNO3 + #.935 xHO2 + #.935 xCCHO + #.935 xACET + yR6OOH + #-.065 XC

8.60E-11 1.92E-11 -0.89 10

T110O M2BUT2 + O3 = #.7 RO2C + #.862 OH + #.051 HO2 + #.213 MEO2 + #.7 xMECO3 + #.162 CO + #.093 CO2 + #.7 xHCHO + #.7 CCHO + #.3 ACET + #.045 CCHO2 + #.7 yR6OOH + #.042 XC

4.11E-16 6.51E-15 1.65 10

T110N M2BUT2 + NO3 = #.935 RO2C + #.065 RO2XC + #.065 zRNO3 + #.935 xNO2 + #.935 xCCHO + #.935 xACET + yR6OOH + #.065 XN + #-.065 XC

9.37E-12 10

T110P M2BUT2 + O3P = PROD1 + XC 5.08E-11 2.44E-11 -0.44 10

T147H TOLUENE + OH = #.605 RO2C + #.074 RO2XC + #.074 zRNO3 + #.094 OH + #.227 HO2 + #.605 xHO2 + #.29 xGLY + #.25 xMGLY + #.18 CRES + #.065 xBALD + #.292 xAFG1 + #.248 xAFG2 + #.094 AFG3 + #.047 AFG5 + #.073 yR6OOH + #.606 yRAOOH + #-.176 XC

5.58E-12 1.81E-12 -0.67 10

T149H MXYLENE + OH = #.6 RO2C + #.098 RO2XC + #.098 zRNO3 + #.128 OH + #.174 HO2 + #.6 xHO2 + #.11 xGLY + #.45 xMGLY + #.11 XYNL + #.04 xBALD + #.308 xAFG1 + #.252 xAFG2 + #.128 AFG3 + #.064 AFG5 + #.046 yR6OOH + #.651 yRAOOH + #.538 XC

2.31E-11 10

Reactions that were not actually used in chamber simualtions but are included in SAPRC-11D

BE10 ACYL + OH = #.3 HO2 + #.7 OH + #.3 CO + #.3 HCOOH + #.7 GLY

7.56E-13 Falloff, F=0.60, N=1.00 4

BE11 ACYL + O3 = #1.5 HO2 + #.5 OH + #1.5 CO + #.5 CO2 1.16E-20 1.00E-14 8.15 1

BE12 BENZ + OH = #.31 RO2C + #.027 RO2XC + #.027 zRNO3 + #.062 OH + #.601 HO2 + #.31 xHO2 + #.31 xGLY + #.57 PHEN + #.155 xAFG1 + #.155 xAFG2 + #.062 AFG3 + #.031 AFG5 + #.337 yRAOOH + #-.403 XC

1.22E-12 2.33E-12 0.38 4

T00H ETHANE + OH = RO2C + xHO2 + xCCHO + yROOH 2.54E-13 1.34E-12 0.99 2.00 10

T01H PROPANE + OH = #.965 RO2C + #.035 RO2XC + #.035 zRNO3 + #.965 xHO2 + #.261 xRCHO + #.704 xACET + yROOH + #-.105 XC

1.11E-12 1.49E-12 0.17 2.00 10

Page 153: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

141

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T03H M2C3 + OH = #1.03 RO2C + #.042 RO2XC + #.042 zRNO3 + #.198 xHO2 + #.76 xTBUO + #.073 xHCHO + #.128 xRCHO + #.07 xACET + yROOH + #.041 XC

2.14E-12 1.05E-12 -0.42 2.00 10

T04H NC5 + OH = #1.505 RO2C + #.145 RO2XC + #.145 zRNO3 + #.855 xHO2 + #.147 xCCHO + #.22 xRCHO + #.238 xPROD1 + #.397 xPROD2 + yR6OOH + #-.158 XC

3.84E-12 2.27E-12 -0.31 2.00 10

T05H M2C4 + OH = #1.783 RO2C + #.095 RO2XC + #.095 zRNO3 + #.881 xHO2 + #.024 xMEO2 + #.012 xHCHO + #.78 xCCHO + #.101 xRCHO + #.762 xACET + #.038 xPROD1 + yR6OOH + #.093 XC

3.60E-12 10

T06H CYCC5 + OH = #2.438 RO2C + #.224 RO2XC + #.224 zRNO3 + #.776 xHO2 + #.054 xCO + #.756 xRCHO + #.02 xPROD1 + yR6OOH + #1.254 XC

5.02E-12 2.46E-12 -0.43 2.00 10

T07H NC6 + OH = #1.562 RO2C + #.225 RO2XC + #.225 zRNO3 + #.775 xHO2 + #.011 xCCHO + #.113 xRCHO + #.688 xPROD2 + yR6OOH + #.161 XC

5.25E-12 7.62E-12 0.22 1.00 10

T08H M22C4 + OH = #1.885 RO2C + #.176 RO2XC + #.176 zRNO3 + #.304 xHO2 + #.009 xMEO2 + #.51 xTBUO + #.227 xHCHO + #.73 xCCHO + #.103 xRCHO + #.001 xGLCHO + #.202 xACET + #.009 xPROD1 + yR6OOH + #.255 XC

2.27E-12 3.37E-11 1.61 10

T09H M23C4 + OH = #1.761 RO2C + #.14 RO2XC + #.14 zRNO3 + #.86 xHO2 + #.01 xHCHO + #.008 xCCHO + #.094 xRCHO + #1.555 xACET + yR6OOH + #.187 XC

5.79E-12 1.49E-12 -0.81 2.00 10

T10H M2C5 + OH = #1.671 RO2C + #.185 RO2XC + #.185 zRNO3 + #.815 xHO2 + #.001 xHCHO + #.003 xCCHO + #.657 xRCHO + #.343 xACET + #.006 xPROD1 + #.16 xPROD2 + yR6OOH + #.899 XC

5.20E-12 10

T11H M3C5 + OH = #1.833 RO2C + #.156 RO2XC + #.156 zRNO3 + #.844 xHO2 + #.005 xHCHO + #.986 xCCHO + #.069 xRCHO + #.629 xPROD1 + #.036 xPROD2 + yR6OOH + #.148 XC

5.20E-12 10

T12H CYCC6 + OH = #1.272 RO2C + #.201 RO2XC + #.201 zRNO3 + #.799 xHO2 + #.203 xRCHO + #.597 xPROD2 + yR6OOH + #.603 XC

7.02E-12 2.93E-12 -0.52 2.00 10

T13H MECYCC5 + OH = #2.294 RO2C + #.305 RO2XC + #.305 zRNO3 + #.453 xHO2 + #.239 xMECO3 + #.002 xRCO3 + #.021 xCO + #.016 xHCHO + #.686 xRCHO + #.006 xPROD2 + yR6OOH + #1.555 XC

5.68E-12 10

T14H NC7 + OH = #1.504 RO2C + #.295 RO2XC + #.295 zRNO3 + #.705 xHO2 + #.055 xRCHO + #.659 xPROD2 + yR6OOH + #1.111 XC

6.81E-12 1.76E-12 -0.81 2.00 10

T15H M223C4 + OH = #1.772 RO2C + #.19 RO2XC + #.19 zRNO3 + #.196 xHO2 + #.614 xTBUO + #.116 xHCHO + #.005 xCCHO + #.1 xRCHO + #.828 xACET + yR6OOH + #.494 XC

3.82E-12 8.28E-13 -0.91 2.00 10

T16H M22C5 + OH = #1.619 RO2C + #.209 RO2XC + #.209 zRNO3 + #.453 xHO2 + #.339 xTBUO + #.045 xHCHO + #.004 xCCHO + #.516 xRCHO + #.014 xACET + #.018 xPROD1 + #.268 xPROD2 + yR6OOH + #1.067 XC

3.40E-12 10

T17H M23C5 + OH = #1.848 RO2C + #.215 RO2XC + #.215 zRNO3 + #.785 xHO2 + #.008 xHCHO + #.409 xCCHO + #.066 xRCHO + #.001 xGLCHO + #.717 xACET + #.516 xPROD1 + #.025 xPROD2 + yR6OOH + #.319 XC

7.15E-12 10

T18H M24C5 + OH = #2.178 RO2C + #.221 RO2XC + #.221 zRNO3 + #.779 xHO2 + #.483 xHCHO + #.021 xCCHO + #.537 xRCHO + #.297 xACET + #.018 xPROD1 + #.181 xPROD2 + yR6OOH + #1.489 XC

4.77E-12 10

Page 154: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

142

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T19H M2C6 + OH = #1.634 RO2C + #.269 RO2XC + #.269 zRNO3 + #.731 xHO2 + #.019 xHCHO + #.048 xCCHO + #.223 xRCHO + #.134 xACET + #.515 xPROD2 + yR6OOH + #1.11 XC

6.89E-12 10

T20H M33C5 + OH = #2.33 RO2C + #.238 RO2XC + #.238 zRNO3 + #.737 xHO2 + #.025 xMEO2 + #.163 xHCHO + #1.318 xCCHO + #.046 xRCHO + #.01 xGLCHO + #.618 xACET + #.096 xPROD1 + #.002 xPROD2 + yR6OOH + #.34 XC

3.00E-12 10

T21H M3C6 + OH = #1.674 RO2C + #.25 RO2XC + #.25 zRNO3 + #.75 xHO2 + #.002 xHCHO + #.207 xCCHO + #.463 xRCHO + #.256 xPROD1 + #.235 xPROD2 + yR6OOH + #1.261 XC

7.17E-12 10

T22H ET3C5 + OH = #1.746 RO2C + #.213 RO2XC + #.213 zRNO3 + #.787 xHO2 + #.002 xHCHO + #.837 xCCHO + #.167 xRCHO + #.567 xPROD1 + #.053 xPROD2 + yR6OOH + #.959 XC

7.58E-12 10

T23H M11CC5 + OH = #2.173 RO2C + #.387 RO2XC + #.387 zRNO3 + #.523 xHO2 + #.053 xMECO3 + #.037 xRCO3 + #.281 xCO + #.112 xHCHO + #.564 xRCHO + #.007 xACET + #.011 xPROD1 + #.001 xMGLY + yR6OOH + #2.308 XC

3.98E-12 10

T24H M12CC5 + OH = #2.144 RO2C + #.373 RO2XC + #.373 zRNO3 + #.217 xHO2 + #.352 xMECO3 + #.058 xRCO3 + #.008 xCO + #.008 xHCHO + #.065 xCCHO + #.562 xRCHO + #.007 xPROD2 + yR6OOH + #2.01 XC

6.82E-12 10

T25H CYCC7 + OH = #1.737 RO2C + #.33 RO2XC + #.33 zRNO3 + #.67 xHO2 + #.011 xHCHO + #.002 xCCHO + #.423 xRCHO + #.251 xPROD2 + yR6OOH + #2.23 XC

9.64E-12 10

T26H M13CYC5 + OH = #2.146 RO2C + #.381 RO2XC + #.381 zRNO3 + #.279 xHO2 + #.339 xMECO3 + #.001 xRCO3 + #.036 xCO + #.026 xHCHO + #.001 xCCHO + #.585 xRCHO + #.033 xPROD2 + yR6OOH + #2.016 XC

6.82E-12 10

T27H ETCYCC5 + OH = #2.262 RO2C + #.387 RO2XC + #.387 zRNO3 + #.402 xHO2 + #.21 xRCO3 + #.018 xCO + #.01 xHCHO + #.135 xCCHO + #.589 xRCHO + #.001 xGLCHO + #.003 xPROD1 + #.007 xPROD2 + #.006 xMGLY + yR6OOH + #1.909 XC

7.27E-12 10

T29H BRC8 + OH = #1.778 RO2C + #.347 RO2XC + #.347 zRNO3 + #.653 xHO2 + #.123 xHCHO + #.188 xCCHO + #.274 xRCHO + #.04 xACET + #.075 xPROD1 + #.393 xPROD2 + yR6OOH + #1.819 XC

8.51E-12 10

T30H M224C5 + OH = #2.426 RO2C + #.245 RO2XC + #.245 zRNO3 + #.479 xHO2 + #.275 xTBUO + #.789 xHCHO + #.001 xCCHO + #.387 xRCHO + #.346 xACET + #.175 xPROD1 + #.029 xPROD2 + yR6OOH + #1.566 XC

3.38E-12 2.12E-12 -0.28 2.00 10

T31H M22C6 + OH = #1.398 RO2C + #.291 RO2XC + #.291 zRNO3 + #.466 xHO2 + #.243 xTBUO + #.024 xHCHO + #.041 xCCHO + #.355 xRCHO + #.002 xACET + #.013 xPROD1 + #.349 xPROD2 + yR6OOH + #1.959 XC

4.80E-12 10

T32H M234C5 + OH = #1.966 RO2C + #.283 RO2XC + #.283 zRNO3 + #.717 xHO2 + #.02 xHCHO + #.409 xCCHO + #.057 xRCHO + #.001 xGLCHO + #1.101 xACET + #.295 xPROD1 + yR6OOH + #.808 XC

6.60E-12 10

T33H M23C6 + OH = #1.819 RO2C + #.299 RO2XC + #.299 zRNO3 + #.701 xHO2 + #.008 xHCHO + #.105 xCCHO + #.169 xRCHO + #.548 xACET + #.298 xPROD1 + #.264 xPROD2 + yR6OOH + #1.061 XC

8.57E-12 10

Page 155: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

143

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T34H M24C6 + OH = #2.01 RO2C + #.362 RO2XC + #.362 zRNO3 + #.638 xHO2 + #.237 xHCHO + #.362 xCCHO + #.284 xRCHO + #.068 xACET + #.093 xPROD1 + #.324 xPROD2 + yR6OOH + #1.495 XC

8.57E-12 10

T35H M25C6 + OH = #2.178 RO2C + #.351 RO2XC + #.351 zRNO3 + #.649 xHO2 + #.155 xHCHO + #.43 xRCHO + #.571 xACET + #.226 xPROD2 + yR6OOH + #1.38 XC

8.29E-12 10

T36H M2C7 + OH = #1.54 RO2C + #.341 RO2XC + #.341 zRNO3 + #.659 xHO2 + #.014 xHCHO + #.025 xCCHO + #.149 xRCHO + #.022 xACET + #.549 xPROD2 + yR6OOH + #2.083 XC

8.31E-12 10

T37H M3C7 + OH = #1.604 RO2C + #.338 RO2XC + #.338 zRNO3 + #.662 xHO2 + #.001 xHCHO + #.177 xCCHO + #.148 xRCHO + #.062 xPROD1 + #.522 xPROD2 + yR6OOH + #1.793 XC

8.59E-12 10

T38H M4C7 + OH = #1.551 RO2C + #.324 RO2XC + #.324 zRNO3 + #.676 xHO2 + #.002 xHCHO + #.004 xCCHO + #.377 xRCHO + #.115 xPROD1 + #.376 xPROD2 + yR6OOH + #2.199 XC

8.59E-12 10

T39H M233C5 + OH = #2.292 RO2C + #.27 RO2XC + #.27 zRNO3 + #.712 xHO2 + #.018 xMEO2 + #.115 xHCHO + #.677 xCCHO + #.034 xRCHO + #.004 xGLCHO + #1.336 xACET + #.059 xPROD1 + #.001 xPROD2 + yR6OOH + #.533 XC

4.40E-12 10

T40H M34C6 + OH = #1.819 RO2C + #.282 RO2XC + #.282 zRNO3 + #.718 xHO2 + #.007 xHCHO + #.535 xCCHO + #.044 xRCHO + #.001 xGLCHO + #.874 xPROD1 + #.133 xPROD2 + yR6OOH + #.803 XC

8.85E-12 10

T41H E3M2C5 + OH = #1.768 RO2C + #.274 RO2XC + #.274 zRNO3 + #.726 xHO2 + #.005 xHCHO + #.241 xCCHO + #.261 xRCHO + #.662 xACET + #.444 xPROD1 + #.039 xPROD2 + yR6OOH + #1.09 XC

8.98E-12 10

T42H M112CC5 + OH = #2.038 RO2C + #.439 RO2XC + #.439 zRNO3 + #.15 xHO2 + #.234 xMECO3 + #.177 xRCO3 + #.021 xCO + #.066 xHCHO + #.107 xCCHO + #.376 xRCHO + #.112 xACET + #.005 xPROD2 + #.001 xMGLY + yR6OOH + #2.569 XC

5.11E-12 10

T43H M113CC5 + OH = #2.055 RO2C + #.455 RO2XC + #.455 zRNO3 + #.331 xHO2 + #.203 xMECO3 + #.01 xRCO3 + #.182 xCO + #.104 xHCHO + #.001 xCCHO + #.439 xRCHO + #.026 xACET + #.002 xPROD1 + #.093 xPROD2 + yR6OOH + #2.585 XC

5.11E-12 10

T44H M11CC6 + OH = #1.687 RO2C + #.366 RO2XC + #.366 zRNO3 + #.634 xHO2 + #.035 xCO + #.146 xHCHO + #.353 xRCHO + #.005 xGLCHO + #.024 xACET + #.367 xPROD2 + #.001 xGLY + yR6OOH + #2.278 XC

7.44E-12 10

T45H M14CC6 + OH = #2.038 RO2C + #.46 RO2XC + #.46 zRNO3 + #.54 xHO2 + #.051 xHCHO + #.024 xCCHO + #.528 xRCHO + #.005 xGLCHO + #.048 xPROD2 + yR6OOH + #3.259 XC

1.19E-11 10

T46H CYCC8 + OH = #1.613 RO2C + #.364 RO2XC + #.364 zRNO3 + #.635 xHO2 + #.002 xHCHO + #.151 xCCHO + #.305 xRCHO + #.334 xPROD2 + yR6OOH + #2.593 XC

1.20E-11 10

T47H M13CYC6 + OH = #1.906 RO2C + #.436 RO2XC + #.436 zRNO3 + #.561 xHO2 + #.003 xMECO3 + #.009 xCO + #.019 xHCHO + #.013 xCCHO + #.486 xRCHO + #.002 xPROD1 + #.09 xPROD2 + yR6OOH + #3.318 XC

1.19E-11 10

T48H NC9 + OH = #1.379 RO2C + #.398 RO2XC + #.398 zRNO3 + #.602 xHO2 + #.018 xRCHO + #.584 xPROD2 + yR6OOH + #3.054 XC

9.75E-12 2.28E-12 -0.87 2.00 10

Page 156: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

144

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T49H BRC9 + OH = #1.635 RO2C + #.408 RO2XC + #.408 zRNO3 + #.593 xHO2 + #.082 xHCHO + #.015 xCCHO + #.255 xRCHO + #.018 xACET + #.019 xPROD1 + #.474 xPROD2 + yR6OOH + #2.701 XC

9.95E-12 10

T50H M225C6 + OH = #1.78 RO2C + #.33 RO2XC + #.33 zRNO3 + #.477 xHO2 + #.193 xTBUO + #.044 xHCHO + #.612 xRCHO + #.002 xGLCHO + #.434 xACET + #.004 xPROD1 + #.056 xPROD2 + yR6OOH + #2.71 XC

6.08E-12 10

T51H M235C6 + OH = #1.943 RO2C + #.379 RO2XC + #.379 zRNO3 + #.621 xHO2 + #.154 xHCHO + #.067 xCCHO + #.157 xRCHO + #.605 xACET + #.012 xPROD1 + #.459 xPROD2 + yR6OOH + #1.35 XC

7.90E-12 10

T52H M24C7 + OH = #1.771 RO2C + #.411 RO2XC + #.411 zRNO3 + #.589 xHO2 + #.162 xHCHO + #.013 xCCHO + #.414 xRCHO + #.029 xACET + #.034 xPROD1 + #.398 xPROD2 + yR6OOH + #2.493 XC

9.99E-12 10

T53H M2C8 + OH = #1.501 RO2C + #.413 RO2XC + #.413 zRNO3 + #.587 xHO2 + #.002 xHCHO + #.064 xRCHO + #.014 xACET + #.536 xPROD2 + yR6OOH + #3.07 XC

1.01E-11 10

T54H M35C7 + OH = #2.02 RO2C + #.455 RO2XC + #.455 zRNO3 + #.545 xHO2 + #.008 xHCHO + #.656 xCCHO + #.144 xRCHO + #.058 xPROD1 + #.407 xPROD2 + yR6OOH + #1.844 XC

1.03E-11 10

T55H M4C8 + OH = #1.496 RO2C + #.395 RO2XC + #.395 zRNO3 + #.605 xHO2 + #.001 xHCHO + #.032 xCCHO + #.126 xRCHO + #.006 xPROD1 + #.563 xPROD2 + yR6OOH + #2.785 XC

9.70E-12 10

T56H M33C7 + OH = #1.821 RO2C + #.368 RO2XC + #.368 zRNO3 + #.624 xHO2 + #.008 xMEO2 + #.059 xHCHO + #.483 xCCHO + #.311 xRCHO + #.005 xGLCHO + #.208 xACET + #.008 xPROD1 + #.32 xPROD2 + yR6OOH + #2.24 XC

5.84E-12 10

T57H M224C6 + OH = #1.969 RO2C + #.417 RO2XC + #.417 zRNO3 + #.396 xHO2 + #.187 xTBUO + #.297 xHCHO + #.328 xCCHO + #.253 xRCHO + #.015 xACET + #.23 xPROD1 + #.11 xPROD2 + yR6OOH + #2.413 XC

6.36E-12 10

T58H M26C7 + OH = #1.685 RO2C + #.389 RO2XC + #.389 zRNO3 + #.611 xHO2 + #.001 xHCHO + #.365 xRCHO + #.306 xACET + #.26 xPROD2 + yR6OOH + #3.092 XC

9.71E-12 10

T59H M25C7 + OH = #1.986 RO2C + #.414 RO2XC + #.414 zRNO3 + #.586 xHO2 + #.035 xHCHO + #.292 xCCHO + #.185 xRCHO + #.203 xACET + #.125 xPROD1 + #.409 xPROD2 + yR6OOH + #1.779 XC

9.99E-12 10

T60H M3C8 + OH = #1.504 RO2C + #.393 RO2XC + #.393 zRNO3 + #.607 xHO2 + #.001 xHCHO + #.091 xCCHO + #.118 xRCHO + #.019 xPROD1 + #.525 xPROD2 + yR6OOH + #2.879 XC

1.00E-11 10

T61H ET3C7 + OH = #1.532 RO2C + #.392 RO2XC + #.392 zRNO3 + #.608 xHO2 + #.147 xCCHO + #.145 xRCHO + #.045 xPROD1 + #.503 xPROD2 + yR6OOH + #2.721 XC

1.04E-11 10

T62H M123CC6 + OH = #1.867 RO2C + #.489 RO2XC + #.489 zRNO3 + #.478 xHO2 + #.026 xMECO3 + #.007 xRCO3 + #.001 xCO + #.014 xHCHO + #.104 xCCHO + #.15 xRCHO + #.357 xPROD2 + yR6OOH + #3.178 XC

1.36E-11 10

T63H M135CC6 + OH = #1.917 RO2C + #.508 RO2XC + #.508 zRNO3 + #.485 xHO2 + #.006 xMECO3 + #.013 xCO + #.033 xHCHO + #.021 xCCHO + #.476 xRCHO + #.004 xPROD1 + #.032 xPROD2 + yR6OOH + #4.216 XC

1.36E-11 10

Page 157: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

145

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T64H M113CC6 + OH = #1.924 RO2C + #.476 RO2XC + #.476 zRNO3 + #.522 xHO2 + #.002 xMECO3 + #.071 xCO + #.149 xHCHO + #.107 xCCHO + #.465 xRCHO + #.038 xACET + #.005 xPROD1 + #.148 xPROD2 + yR6OOH + #3.289 XC

8.70E-12 10

T65H E1M4CC6 + OH = #1.857 RO2C + #.481 RO2XC + #.481 zRNO3 + #.518 xHO2 + #.001 xMECO3 + #.033 xHCHO + #.139 xCCHO + #.412 xRCHO + #.003 xGLCHO + #.143 xPROD2 + yR6OOH + #3.701 XC

1.37E-11 10

T66H C3CYCC6 + OH = #1.427 RO2C + #.377 RO2XC + #.377 zRNO3 + #.622 xHO2 + #.001 xRCO3 + #.345 xRCHO + #.419 xPROD2 + yR6OOH + #3.186 XC

1.34E-11 10

T67H CYCC9 + OH = #1.642 RO2C + #.429 RO2XC + #.429 zRNO3 + #.57 xHO2 + #.001 xMECO3 + #.001 xRCO3 + #.017 xHCHO + #.07 xCCHO + #.379 xRCHO + #.002 xGLCHO + #.281 xPROD2 + yR6OOH + #3.437 XC

1.36E-11 10

T68H NC10 + OH = #1.345 RO2C + #.428 RO2XC + #.428 zRNO3 + #.572 xHO2 + #.015 xRCHO + #.557 xPROD2 + yR6OOH + #4.045 XC

1.10E-11 2.85E-12 -0.81 2.00 10

T69H BRC10 + OH = #1.555 RO2C + #.436 RO2XC + #.436 zRNO3 + #.564 xHO2 + #.059 xCCHO + #.197 xRCHO + #.076 xACET + #.037 xPROD1 + #.398 xPROD2 + yR6OOH + #3.911 XC

1.25E-11 10

T70H M24C8 + OH = #1.615 RO2C + #.447 RO2XC + #.447 zRNO3 + #.553 xHO2 + #.085 xHCHO + #.034 xCCHO + #.206 xRCHO + #.016 xACET + #.007 xPROD1 + #.492 xPROD2 + yR6OOH + #3.519 XC

1.14E-11 10

T71H M26C8 + OH = #1.663 RO2C + #.433 RO2XC + #.433 zRNO3 + #.567 xHO2 + #.108 xCCHO + #.307 xRCHO + #.145 xACET + #.071 xPROD1 + #.277 xPROD2 + yR6OOH + #3.884 XC

1.29E-11 10

T72H M2C9 + OH = #1.446 RO2C + #.449 RO2XC + #.449 zRNO3 + #.551 xHO2 + #.035 xRCHO + #.012 xACET + #.516 xPROD2 + yR6OOH + #4.069 XC

1.28E-11 10

T73H M3C9 + OH = #1.479 RO2C + #.449 RO2XC + #.449 zRNO3 + #.551 xHO2 + #.036 xCCHO + #.062 xRCHO + #.014 xPROD1 + #.503 xPROD2 + yR6OOH + #3.974 XC

1.14E-11 10

T74H M4C9 + OH = #1.447 RO2C + #.428 RO2XC + #.428 zRNO3 + #.572 xHO2 + #.001 xHCHO + #.019 xCCHO + #.138 xRCHO + #.004 xPROD1 + #.522 xPROD2 + yR6OOH + #3.831 XC

1.14E-11 10

T75H M33C8 + OH = #1.749 RO2C + #.402 RO2XC + #.402 zRNO3 + #.59 xHO2 + #.007 xMEO2 + #.047 xHCHO + #.365 xCCHO + #.373 xRCHO + #.004 xGLCHO + #.188 xACET + #.008 xPROD1 + #.294 xPROD2 + yR6OOH + #3.317 XC

7.26E-12 10

T76H M224C7 + OH = #1.751 RO2C + #.43 RO2XC + #.43 zRNO3 + #.412 xHO2 + #.158 xTBUO + #.167 xHCHO + #.002 xCCHO + #.52 xRCHO + #.007 xACET + #.14 xPROD1 + #.173 xPROD2 + yR6OOH + #3.438 XC

7.78E-12 10

T77H M225C7 + OH = #1.657 RO2C + #.342 RO2XC + #.342 zRNO3 + #.497 xHO2 + #.16 xTBUO + #.025 xHCHO + #.236 xCCHO + #.434 xRCHO + #.001 xGLCHO + #.005 xACET + #.21 xPROD1 + #.233 xPROD2 + yR6OOH + #3.254 XC

7.78E-12 10

T78H M23C8 + OH = #1.559 RO2C + #.415 RO2XC + #.415 zRNO3 + #.585 xHO2 + #.002 xHCHO + #.03 xCCHO + #.078 xRCHO + #.27 xACET + #.001 xPROD1 + #.53 xPROD2 + yR6OOH + #3.22 XC

1.14E-11 10

Page 158: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

146

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T79H M25C8 + OH = #1.763 RO2C + #.47 RO2XC + #.47 zRNO3 + #.53 xHO2 + #.011 xHCHO + #.001 xCCHO + #.305 xRCHO + #.162 xACET + #.026 xPROD1 + #.42 xPROD2 + yR6OOH + #3.142 XC

1.14E-11 10

T80H M2E3C7 + OH = #1.605 RO2C + #.407 RO2XC + #.407 zRNO3 + #.593 xHO2 + #.001 xHCHO + #.04 xCCHO + #.16 xRCHO + #.349 xACET + #.002 xPROD1 + #.506 xPROD2 + yR6OOH + #2.906 XC

1.18E-11 10

T81H CYCC10 + OH = #1.585 RO2C + #.447 RO2XC + #.447 zRNO3 + #.551 xHO2 + #.002 xRCO3 + #.002 xCO + #.009 xHCHO + #.083 xCCHO + #.236 xRCHO + #.001 xGLCHO + #.115 xACET + #.355 xPROD2 + yR6OOH + #3.95 XC

1.51E-11 10

T82H C4CYCC6 + OH = #1.364 RO2C + #.412 RO2XC + #.412 zRNO3 + #.588 xHO2 + #.025 xCCHO + #.164 xRCHO + #.494 xPROD2 + yR6OOH + #4.022 XC

1.47E-11 10

T83H NC11 + OH = #1.324 RO2C + #.447 RO2XC + #.447 zRNO3 + #.553 xHO2 + #.013 xRCHO + #.54 xPROD2 + yR6OOH + #5.039 XC

1.23E-11 10

T84H BRC11 + OH = #1.505 RO2C + #.469 RO2XC + #.469 zRNO3 + #.531 xHO2 + #.008 xCCHO + #.139 xRCHO + #.06 xACET + #.007 xPROD1 + #.436 xPROD2 + yR6OOH + #4.929 XC

1.28E-11 10

T85H M26C9 + OH = #1.569 RO2C + #.467 RO2XC + #.467 zRNO3 + #.533 xHO2 + #.001 xCCHO + #.22 xRCHO + #.12 xACET + #.006 xPROD1 + #.377 xPROD2 + yR6OOH + #4.89 XC

1.28E-11 10

T86H M3C10 + OH = #1.443 RO2C + #.474 RO2XC + #.474 zRNO3 + #.526 xHO2 + #.029 xCCHO + #.038 xRCHO + #.012 xPROD1 + #.49 xPROD2 + yR6OOH + #4.996 XC

1.29E-11 10

T87H M4C10 + OH = #1.439 RO2C + #.469 RO2XC + #.469 zRNO3 + #.531 xHO2 + #.001 xCCHO + #.079 xRCHO + #.003 xPROD1 + #.501 xPROD2 + yR6OOH + #4.929 XC

1.29E-11 10

T88H CYCC11 + OH = #1.539 RO2C + #.49 RO2XC + #.49 zRNO3 + #.508 xHO2 + #.001 xMECO3 + #.001 xRCO3 + #.002 xCO + #.004 xHCHO + #.083 xCCHO + #.188 xRCHO + #.001 xPROD1 + #.356 xPROD2 + yR6OOH + #5.179 XC

1.68E-11 10

T89H E1P2CC6 + OH = #1.57 RO2C + #.514 RO2XC + #.514 zRNO3 + #.486 xHO2 + #.003 xHCHO + #.014 xCCHO + #.123 xRCHO + #.408 xPROD2 + yR6OOH + #5.068 XC

1.70E-11 10

T90H NC12 + OH = #1.31 RO2C + #.458 RO2XC + #.458 zRNO3 + #.542 xHO2 + #.011 xRCHO + #.53 xPROD2 + yR6OOH + #6.039 XC

1.32E-11 10

T91H BRC12 + OH = #1.487 RO2C + #.493 RO2XC + #.493 zRNO3 + #.507 xHO2 + #.001 xHCHO + #.052 xCCHO + #.077 xRCHO + #.03 xPROD1 + #.477 xPROD2 + yR6OOH + #5.724 XC

1.44E-11 10

T92H M36C10 + OH = #1.573 RO2C + #.506 RO2XC + #.506 zRNO3 + #.494 xHO2 + #.001 xHCHO + #.087 xCCHO + #.109 xRCHO + #.055 xPROD1 + #.459 xPROD2 + yR6OOH + #5.488 XC

1.45E-11 10

T93H M3C11 + OH = #1.412 RO2C + #.484 RO2XC + #.484 zRNO3 + #.516 xHO2 + #.025 xCCHO + #.033 xRCHO + #.011 xPROD1 + #.484 xPROD2 + yR6OOH + #5.999 XC

1.43E-11 10

T94H M5C11 + OH = #1.391 RO2C + #.476 RO2XC + #.476 zRNO3 + #.524 xHO2 + #.009 xCCHO + #.057 xRCHO + #.505 xPROD2 + yR6OOH + #5.925 XC

1.43E-11 10

T95H NC13 + OH = #1.301 RO2C + #.465 RO2XC + #.465 zRNO3 + #.535 xHO2 + #.01 xRCHO + #.525 xPROD2 + yR6OOH + #7.03 XC

1.51E-11 10

Page 159: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

147

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T96H NC14 + OH = #1.295 RO2C + #.47 RO2XC + #.47 zRNO3 + #.53 xHO2 + #.009 xRCHO + #.521 xPROD2 + yR6OOH + #8.027 XC

1.79E-11 10

T97H NC15 + OH = #1.291 RO2C + #.473 RO2XC + #.473 zRNO3 + #.527 xHO2 + #.008 xRCHO + #.519 xPROD2 + yR6OOH + #9.024 XC

2.07E-11 10

T98H NC16 + OH = #1.288 RO2C + #.475 RO2XC + #.475 zRNO3 + #.525 xHO2 + #.008 xRCHO + #.517 xPROD2 + yR6OOH + #10.024 XC

2.32E-11 10

T100H ALLENE + OH = RO2C + xHO2 + xIPRD + yROOH + #-2 XC

9.80E-12 7.66E-12 -0.15 10

T108H M1BUT3 + OH = #1.132 RO2C + #.075 RO2XC + #.075 zRNO3 + #.9 xHO2 + #.025 xMEO2 + #.719 xHCHO + #.698 xRCHO + #.162 xGLCHO + #.156 xACET + #.011 xPROD2 + #.002 xACRO + #.019 xMACR + #.03 xMVK + #.009 xIPRD + yR6OOH + #.607 XC

3.14E-11 5.32E-12 -1.06 10

T108O M1BUT3 + O3 = #.06 RO2C + #.003 RO2XC + #.003 zRNO3 + #.128 OH + #.095 HO2 + #.06 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.06 xACET + #.013 PROD1 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #.899 XC

9.87E-18 3.36E-15 3.48 10

T108N M1BUT3 + NO3 = #1.678 RO2C + #.149 RO2XC + #.149 zRNO3 + #.851 xHO2 + #.794 xACET + #.884 xRNO3 + yR6OOH + #.116 XN + #-3.58 XC

1.39E-14 10

T108P M1BUT3 + O3P = #.45 RCHO + #.55 PROD1 + #1.45 XC 4.19E-12 1.03E-11 0.54 10

T109H M1BUT2 + OH = #.939 RO2C + #.066 RO2XC + #.066 zRNO3 + #.934 xHO2 + #.924 xHCHO + #.92 xPROD1 + #.004 xMVK + #.011 xIPRD + yR6OOH + #-.071 XC

6.10E-11 10

T109O M1BUT2 + O3 = #.64 RO2C + #.026 RO2XC + #.026 zRNO3 + #.72 OH + #.053 HO2 + #.558 xMECO3 + #.082 xRCO3 + #.17 CO + #.04 CO2 + #.667 HCHO + #.082 xHCHO + #.558 xCCHO + #.333 PROD1 + #.123 HCHO2 + #.667 yR6OOH + #-.048 XC

1.48E-17 4.90E-15 3.46 10

T109N M1BUT2 + NO3 = #1.851 RO2C + #.065 RO2XC + #.065 zRNO3 + #.019 xNO2 + #.916 xHO2 + #.019 xHCHO + #.916 xCCHO + #.019 xPROD1 + yR6OOH + #.981 XN + #2.683 XC

3.32E-13 10

T109P M1BUT2 + O3P = #.4 RCHO + #.6 PROD1 + #1.4 XC 1.80E-11 10

T113H CYCPNTE + OH = #.99 RO2C + #.071 RO2XC + #.071 zRNO3 + #.921 xHO2 + #.009 xMACO3 + #.018 xCO + #.028 xHCHO + #.901 xRCHO + #.018 xACRO + #.001 xMVK + yR6OOH + #1.731 XC

6.70E-11 10

T113O CYCPNTE + O3 = #.12 RO2C + #.005 RO2XC + #.005 zRNO3 + #.095 OH + #.03 HO2 + #.12 xRCO3 + #.095 CO + #.055 CO2 + #.875 RCHO + #.125 yR6OOH + #1.835 XC

5.61E-16 1.80E-15 0.70 10

T113N CYCPNTE + NO3 = #1.013 RO2C + #.125 RO2XC + #.125 zRNO3 + #.812 xNO2 + #.064 xHO2 + #.735 xRCHO + #.077 xMGLY + #.064 xRNO3 + yR6OOH + #.125 XN + #1.43 XC

4.20E-13 10

T113P CYCPNTE + O3P = #.24 PROD1 + #.76 PROD2 + #-.52 XC

2.10E-11 2.40E-11 0.08 10

T115H M33BUT1 + OH = #1.455 RO2C + #.123 RO2XC + #.123 zRNO3 + #.37 xHO2 + #.006 xMEO2 + #.501 xTBUO + #.361 xHCHO + #.358 xRCHO + #.527 xGLCHO + #.005 xACET + #.005 xMACR + #.006 xMVK + #.002 xIPRD + yR6OOH + #.694 XC

2.80E-11 10

Page 160: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

148

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T115O M33BUT1 + O3 = #.06 RO2C + #.002 RO2XC + #.002 zRNO3 + #.128 OH + #.095 HO2 + #.06 xTBUO + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.013 PROD1 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #1.845 XC

4.08E-18 3.36E-15 4.00 10

T115N M33BUT1 + NO3 = #1.658 RO2C + #.188 RO2XC + #.188 zRNO3 + #.812 xTBUO + #.845 xRNO3 + yR6OOH + #.155 XN + #-3.446 XC

1.38E-14 10

T115P M33BUT1 + O3P = #.45 RCHO + #.55 PROD1 + #2.45 XC

4.80E-12 10

T116H M3C5E1 + OH = #1.204 RO2C + #.121 RO2XC + #.121 zRNO3 + #.878 xHO2 + #.654 xHCHO + #.154 xCCHO + #.689 xRCHO + #.09 xGLCHO + #.04 xPROD1 + #.021 xPROD2 + #.007 xACRO + #.051 xMVK + #.027 xIPRD + yR6OOH + #1.419 XC

3.55E-11 10

T116O M3C5E1 + O3 = #.08 RO2C + #.005 RO2XC + #.005 zRNO3 + #.128 OH + #.095 HO2 + #.057 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.045 xCCHO + #.5 RCHO + #.013 PROD1 + #.035 xPROD1 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #1.837 XC

3.97E-18 3.36E-15 4.02 10

T116N M3C5E1 + NO3 = #1.825 RO2C + #.224 RO2XC + #.224 zRNO3 + #.776 xHO2 + #.454 xCCHO + #.348 xPROD1 + #.826 xRNO3 + yR6OOH + #.174 XN + #-2.6 XC

1.39E-14 10

T116P M3C5E1 + O3P = #.45 RCHO + #.55 PROD2 + #1.35 XC 5.60E-12 10

T117H M2C5E1 + OH = #.929 RO2C + #.101 RO2XC + #.101 zRNO3 + #.899 xHO2 + #.872 xHCHO + #.024 xCCHO + #.868 xPROD1 + #.023 xMACR + #.008 xIPRD + yR6OOH + #.87 XC

6.30E-11 10

T117O M2C5E1 + O3 = #.623 RO2C + #.043 RO2XC + #.043 zRNO3 + #.72 OH + #.053 HO2 + #.556 xMECO3 + #.067 xRCO3 + #.17 CO + #.04 CO2 + #.667 HCHO + #.067 xHCHO + #.556 xRCHO + #.333 PROD1 + #.123 HCHO2 + #.667 yR6OOH + #.362 XC

1.66E-17 4.90E-15 3.39 10

T117N M2C5E1 + NO3 = #1.729 RO2C + #.173 RO2XC + #.173 zRNO3 + #.827 xHO2 + #.156 xRCHO + #.67 xRNO3 + yR6OOH + #.33 XN + #.474 XC

3.32E-13 10

T117P M2C5E1 + O3P = #.4 RCHO + #.6 PROD1 + #2.4 XC 2.03E-11 10

T118H M2C5E2 + OH = #.909 RO2C + #.099 RO2XC + #.099 zRNO3 + #.9 xHO2 + #.001 xMEO2 + #.004 xCCHO + #.893 xRCHO + #.895 xACET + #.002 xACRO + #.004 xMACR + #.002 xIPRD + yR6OOH + #.001 XC

8.90E-11 10

T118O M2C5E2 + O3 = #.737 RO2C + #.728 OH + #.009 HO2 + #.038 xHO2 + #.7 xMECO3 + #.029 CO + #.017 CO2 + #.7 xHCHO + #.038 xCCHO + #.7 RCHO + #.3 ACET + #.255 RCHO2 + #.737 yR6OOH + #.013 XC

3.48E-16 10

T118N M2C5E2 + NO3 = #1.068 RO2C + #.115 RO2XC + #.115 zRNO3 + #.725 xNO2 + #.159 xHO2 + #.006 xHCHO + #.725 xRCHO + #.725 xACET + #.159 xRNO3 + yR6OOH + #.115 XN

9.37E-12 10

T118P M2C5E2 + O3P = PROD1 + #2 XC 3.86E-11 10

T119H C2C6E + OH = #.931 RO2C + #.102 RO2XC + #.102 zRNO3 + #.898 xHO2 + #.004 xHCHO + #.894 xCCHO + #.875 xRCHO + #.008 xMVK + #.02 xIPRD + yR6OOH + #.839 XC

6.60E-11 10

T119O C2C6E + O3 = #.061 RO2C + #.001 RO2XC + #.001 zRNO3 + #.318 OH + #.1 HO2 + #.061 xHO2 + #.355 MEO2 + #.318 CO + #.183 CO2 + #.5 CCHO + #.5 RCHO + #.061 xRCHO + #.013 PROD1 + #.075 CCHO2 + #.425 RCHO2 + #.063 yR6OOH + #.978 XC

1.08E-16 3.20E-15 2.02 10

Page 161: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

149

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T119N C2C6E + NO3 = #1.466 RO2C + #.221 RO2XC + #.221 zRNO3 + #.12 xNO2 + #.659 xHO2 + #.12 xCCHO + #.127 xRCHO + #.659 xRNO3 + yR6OOH + #.221 XN + #.099 XC

3.70E-13 10

T119P C2C6E + O3P = #.76 PROD1 + #.24 PROD2 + #1.52 XC 2.05E-11 10

T120H C3C6E + OH = #.963 RO2C + #.105 RO2XC + #.105 zRNO3 + #.895 xHO2 + #.015 xCCHO + #1.668 xRCHO + #.041 xPROD2 + #.023 xIPRD + yR6OOH + #-.025 XC

6.56E-11 10

T120O C3C6E + O3 = #.125 RO2C + #.095 OH + #.03 HO2 + #.125 xHO2 + #.095 CO + #.055 CO2 + #.125 xCCHO + RCHO + #.85 RCHO2 + #.125 yR6OOH + #.05 XC

1.43E-16 3.22E-15 1.86 10

T120N C3C6E + NO3 = #1.457 RO2C + #.22 RO2XC + #.22 zRNO3 + #.072 xNO2 + #.708 xHO2 + #.01 xCCHO + #.144 xRCHO + #.708 xRNO3 + yR6OOH + #.22 XN + #-.02 XC

3.70E-13 10

T120P C3C6E + O3P = #.76 PROD1 + #.24 PROD2 + #1.52 XC 2.05E-11 10

T121H M3C5E2 + OH = #.908 RO2C + #.099 RO2XC + #.099 zRNO3 + #.901 xHO2 + #.899 xCCHO + #.893 xPROD1 + #.007 xMVK + #.002 xIPRD + yR6OOH + #-.002 XC

8.85E-11 10

T121O M3C5E2 + O3 = #.672 RO2C + #.028 RO2XC + #.028 zRNO3 + #.862 OH + #.051 HO2 + #.213 MEO2 + #.586 xMECO3 + #.087 xRCO3 + #.162 CO + #.093 CO2 + #.087 xHCHO + #.7 CCHO + #.586 xCCHO + #.3 PROD1 + #.045 CCHO2 + #.7 yR6OOH + #-.018 XC

4.58E-16 6.51E-15 1.58 10

T121N M3C5E2 + NO3 = #.932 RO2C + #.098 RO2XC + #.098 zRNO3 + #.872 xNO2 + #.03 xHO2 + #.902 xCCHO + #.872 xPROD1 + #.03 xRNO3 + yR6OOH + #.098 XN + #-.06 XC

9.37E-12 10

T121P M3C5E2 + O3P = #.6 PROD1 + #.4 PROD2 + #1.2 XC 3.71E-11 10

T122H M4T2C5E + OH = #.96 RO2C + #.105 RO2XC + #.105 zRNO3 + #.885 xHO2 + #.01 xMEO2 + #.837 xCCHO + #.825 xRCHO + #.046 xPROD2 + #.024 xIPRD + yR6OOH + #.815 XC

5.98E-11 1.13E-11 -0.99 10

T122O M4T2C5E + O3 = #.06 RO2C + #.003 RO2XC + #.003 zRNO3 + #.318 OH + #.1 HO2 + #.06 xHO2 + #.355 MEO2 + #.318 CO + #.183 CO2 + #.5 CCHO + #.5 RCHO + #.06 xACET + #.013 PROD1 + #.075 CCHO2 + #.425 RCHO2 + #.063 yR6OOH + #.969 XC

1.15E-16 10

T122N M4T2C5E + NO3 = #1.525 RO2C + #.206 RO2XC + #.206 zRNO3 + #.068 xNO2 + #.726 xHO2 + #.068 xCCHO + #.068 xRCHO + #.336 xACET + #.74 xRNO3 + yR6OOH + #.192 XN + #-1.024 XC

3.70E-13 10

T122P M4T2C5E + O3P = #.88 PROD1 + #.12 PROD2 + #1.76 XC

1.84E-11 10

T123H T2C6E + OH = #.927 RO2C + #.101 RO2XC + #.101 zRNO3 + #.899 xHO2 + #.898 xCCHO + #.871 xRCHO + #.008 xMVK + #.02 xIPRD + yR6OOH + #.853 XC

6.60E-11 10

T123O T2C6E + O3 = #.061 RO2C + #.001 RO2XC + #.001 zRNO3 + #.318 OH + #.1 HO2 + #.061 xHO2 + #.355 MEO2 + #.318 CO + #.183 CO2 + #.5 CCHO + #.5 RCHO + #.061 xRCHO + #.013 PROD1 + #.075 CCHO2 + #.425 RCHO2 + #.063 yR6OOH + #.978 XC

1.57E-16 7.60E-15 2.31 10

T123N T2C6E + NO3 = #1.466 RO2C + #.221 RO2XC + #.221 zRNO3 + #.12 xNO2 + #.659 xHO2 + #.12 xCCHO + #.127 xRCHO + #.659 xRNO3 + yR6OOH + #.221 XN + #.099 XC

3.70E-13 10

T123P T2C6E + O3P = #.76 PROD1 + #.24 PROD2 + #1.52 XC 2.05E-11 10

T124H T3C6E + OH = #.955 RO2C + #.104 RO2XC + #.104 zRNO3 + #.895 xHO2 + #.006 xCCHO + #1.668 xRCHO + #.041 xPROD2 + #.024 xIPRD + yR6OOH + #-.006 XC

6.56E-11 10

Page 162: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

150

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T124O T3C6E + O3 = #.125 RO2C + #.095 OH + #.03 HO2 + #.125 xHO2 + #.095 CO + #.055 CO2 + #.125 xCCHO + RCHO + #.85 RCHO2 + #.125 yR6OOH + #.05 XC

1.64E-16 6.64E-15 2.21 10

T124N T3C6E + NO3 = #1.457 RO2C + #.22 RO2XC + #.22 zRNO3 + #.072 xNO2 + #.708 xHO2 + #.01 xCCHO + #.144 xRCHO + #.708 xRNO3 + yR6OOH + #.22 XN + #-.02 XC

3.70E-13 10

T124P T3C6E + O3P = #.76 PROD1 + #.24 PROD2 + #1.52 XC 2.05E-11 10

T125H C6OLE2 + OH = #.929 RO2C + #.102 RO2XC + #.102 zRNO3 + #.899 xHO2 + #.002 xHCHO + #.896 xCCHO + #.873 xRCHO + #.008 xMVK + #.02 xIPRD + yR6OOH + #.843 XC

6.60E-11 10

T125P C6OLE2 + O3P = #.76 PROD1 + #.24 PROD2 + #1.52 XC

2.05E-11 10

T126H M3CC5E + OH = #.969 RO2C + #.107 RO2XC + #.107 zRNO3 + #.881 xHO2 + #.003 xMECO3 + #.009 xMACO3 + #.014 xCO + #.027 xHCHO + #.005 xCCHO + #.862 xRCHO + #.008 xACRO + #.005 xMACR + #.008 xIPRD + #.002 xAFG1 + #.002 xAFG2 + yR6OOH + #2.575 XC

6.67E-11 10

T126O M3CC5E + O3 = #.115 RO2C + #.011 RO2XC + #.011 zRNO3 + #.095 OH + #.03 HO2 + #.002 xHO2 + #.112 xRCO3 + #.095 CO + #.055 CO2 + #.875 RCHO + #.002 xRCHO + #.125 yR6OOH + #2.817 XC

1.15E-16 10

T126N M3CC5E + NO3 = #1.218 RO2C + #.218 RO2XC + #.218 zRNO3 + #.641 xNO2 + #.117 xHO2 + #.024 xRCO3 + #.024 xCCHO + #.442 xRCHO + #.199 xMGLY + #.117 xRNO3 + yR6OOH + #.242 XN + #1.947 XC

3.70E-13 10

T126P M3CC5E + O3P = PROD2 2.05E-11 10

T127H M1CC5E + OH = #.916 RO2C + #.099 RO2XC + #.099 zRNO3 + #.901 xHO2 + #.007 xCO + #.007 xHCHO + #.893 xRCHO + #.003 xMACR + #.004 xMVK + #.001 xIPRD + yR6OOH + #2.68 XC

8.96E-11 10

T127O M1CC5E + O3 = #.667 RO2C + #.071 RO2XC + #.071 zRNO3 + #.728 OH + #.009 HO2 + #.035 xHO2 + #.564 xMECO3 + #.068 xRCO3 + #.029 CO + #.017 CO2 + #.068 xHCHO + #.599 xRCHO + #.008 PROD1 + #.255 RCHO2 + #.737 yR6OOH + #1.534 XC

6.81E-16 1.08E-14 1.65 10

T127N M1CC5E + NO3 = #.93 RO2C + #.101 RO2XC + #.101 zRNO3 + #.888 xNO2 + #.011 xHO2 + #.872 xRCHO + #.016 xBACL + #.011 xRNO3 + yR6OOH + #.101 XN + #2.648 XC

9.37E-12 10

T127P M1CC5E + O3P = PROD2 3.71E-11 10

T128H CYCHEXE + OH = #.966 RO2C + #.111 RO2XC + #.111 zRNO3 + #.87 xHO2 + #.019 xRCO3 + #.001 xHCHO + #.843 xRCHO + #.001 xACRO + #.034 xIPRD + yR6OOH + #2.574 XC

6.77E-11 10

T128O CYCHEXE + O3 = #.225 RO2C + #.016 RO2XC + #.016 zRNO3 + #.095 OH + #.03 HO2 + #.109 xHO2 + #.095 CO + #.008 xCO + #.055 CO2 + #.875 RCHO + #.109 xRCHO + #.125 yR6OOH + #2.794 XC

8.30E-17 2.87E-15 2.11 10

T128N CYCHEXE + NO3 = #.941 RO2C + #.165 RO2XC + #.165 zRNO3 + #.296 xNO2 + #.539 xHO2 + #.296 xRCHO + #.539 xRNO3 + yR6OOH + #.165 XN + #.888 XC

5.10E-13 10

T128P CYCHEXE + O3P = PROD2 2.00E-11 2.21E-11 0.06 10

T129H T2C7E + OH = #.899 RO2C + #.142 RO2XC + #.142 zRNO3 + #.858 xHO2 + #.002 xHCHO + #.819 xCCHO + #.833 xRCHO + #.016 xPROD2 + #.01 xMVK + #.021 xIPRD + yR6OOH + #1.768 XC

6.80E-11 10

Page 163: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

151

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T129O T2C7E + O3 = #.105 RO2C + #.004 RO2XC + #.004 zRNO3 + #.318 OH + #.1 HO2 + #.058 xHO2 + #.355 MEO2 + #.318 CO + #.183 CO2 + #.5 CCHO + #.5 RCHO + #.058 xRCHO + #.013 PROD1 + #.075 CCHO2 + #.425 RCHO2 + #.063 yR6OOH + #1.969 XC

1.15E-16 10

T129N T2C7E + NO3 = #1.498 RO2C + #.299 RO2XC + #.299 zRNO3 + #.013 xNO2 + #.689 xHO2 + #.013 xCCHO + #.013 xRCHO + #.689 xRNO3 + yR6OOH + #.299 XN + #1.007 XC

3.70E-13 10

T129P T2C7E + O3P = PROD2 + XC 2.34E-11 10

T130H T3C7E + OH = #.942 RO2C + #.147 RO2XC + #.147 zRNO3 + #.853 xHO2 + #.027 xCCHO + #1.557 xRCHO + #.042 xPROD2 + #.002 xMVK + #.035 xIPRD + yR6OOH + #.958 XC

6.70E-11 10

T130O T3C7E + O3 = #.124 RO2C + #.001 RO2XC + #.001 zRNO3 + #.095 OH + #.03 HO2 + #.124 xHO2 + #.095 CO + #.055 CO2 + #.063 xCCHO + RCHO + #.061 xRCHO + #.013 PROD1 + #.85 RCHO2 + #.125 yR6OOH + #.933 XC

1.15E-16 10

T130N T3C7E + NO3 = #1.465 RO2C + #.293 RO2XC + #.293 zRNO3 + #.025 xNO2 + #.682 xHO2 + #.055 xRCHO + #.682 xRNO3 + yR6OOH + #.293 XN + #.985 XC

3.70E-13 10

T130P T3C7E + O3P = PROD2 + XC 2.05E-11 10

T131H C7OLE1 + OH = #1.272 RO2C + #.2 RO2XC + #.2 zRNO3 + #.8 xHO2 + #.394 xHCHO + #.004 xCCHO + #.504 xRCHO + #.27 xPROD2 + #.037 xACRO + #.015 xMVK + #.013 xIPRD + yR6OOH + #2.03 XC

4.00E-11 10

T131O C7OLE1 + O3 = #.113 RO2C + #.008 RO2XC + #.008 zRNO3 + #.128 OH + #.095 HO2 + #.055 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.055 xRCHO + #.013 PROD1 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #2.884 XC

1.21E-17 4.20E-15 3.49 10

T131N C7OLE1 + NO3 = #1.509 RO2C + #.3 RO2XC + #.3 zRNO3 + #.7 xHO2 + #.7 xRNO3 + yR6OOH + #.3 XN + XC

2.00E-14 10

T131P C7OLE1 + O3P = #.45 RCHO + #.55 PROD2 + #2.35 XC 8.70E-12 10

T132H C8COLE + OH = #1.287 RO2C + #.268 RO2XC + #.268 zRNO3 + #.732 xHO2 + #.037 xCCHO + #.578 xRCHO + #.405 xPROD2 + #.007 xMVK + #.039 xIPRD + yR6OOH + #1.931 XC

6.90E-11 10

T132O C8COLE + O3 = #.123 RO2C + #.003 RO2XC + #.003 zRNO3 + #.095 OH + #.03 HO2 + #.123 xHO2 + #.095 CO + #.055 CO2 + RCHO + #.123 xRCHO + #.025 PROD1 + #.85 RCHO2 + #.125 yR6OOH + #1.813 XC

1.34E-16 6.64E-15 2.33 10

T132N C8COLE + NO3 = #1.426 RO2C + #.355 RO2XC + #.355 zRNO3 + #.645 xHO2 + #.645 xRNO3 + yR6OOH + #.355 XN + #2 XC

3.70E-13 10

T132P C8COLE + O3P = PROD2 + #2 XC 2.40E-11 10

T133H OCTENE1 + OH = #1.241 RO2C + #.26 RO2XC + #.26 zRNO3 + #.74 xHO2 + #.359 xHCHO + #.457 xRCHO + #.259 xPROD2 + #.043 xACRO + #.013 xMVK + #.012 xIPRD + yR6OOH + #2.915 XC

3.83E-11 10

T133O OCTENE1 + O3 = #.107 RO2C + #.012 RO2XC + #.012 zRNO3 + #.128 OH + #.095 HO2 + #.051 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.051 xRCHO + #.013 PROD2 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #3.846 XC

1.45E-17 3.36E-15 3.25 10

Page 164: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

152

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T133N OCTENE1 + NO3 = #1.426 RO2C + #.355 RO2XC + #.355 zRNO3 + #.645 xHO2 + #.645 xRNO3 + yR6OOH + #.355 XN + #2 XC

1.39E-14 10

T133P OCTENE1 + O3P = #.45 RCHO + #.55 PROD2 + #3.35 XC

5.60E-12 10

T134H M244C5E1 + OH = #.85 RO2C + #.177 RO2XC + #.177 zRNO3 + #.813 xHO2 + #.01 xTBUO + #.809 xHCHO + #.007 xRCHO + #.801 xPROD1 + #.011 xMACR + #.005 xIPRD + yR6OOH + #2.795 XC

5.97E-11 10

T134O M244C5E1 + O3 = #.577 RO2C + #.09 RO2XC + #.09 zRNO3 + #.72 OH + #.053 HO2 + #.515 xMECO3 + #.062 xRCO3 + #.17 CO + #.04 CO2 + #.667 HCHO + #.062 xHCHO + #.515 xRCHO + #.333 PROD1 + #.123 HCHO2 + #.667 yR6OOH + #2.305 XC

1.18E-17 10

T134N M244C5E1 + NO3 = #2.576 RO2C + #.442 RO2XC + #.442 zRNO3 + #.047 xNO2 + #.495 xHO2 + #.015 xTBUO + #1.153 xHCHO + #.048 xRCHO + #.334 xACET + #.174 xRNO3 + yR6OOH + #.779 XN + #1.945 XC

3.32E-13 10

T134P M244C5E1 + O3P = #.4 RCHO + #.6 PROD1 + #4.4 XC 1.73E-11 10

T135H C9E1 + OH = #1.199 RO2C + #.309 RO2XC + #.309 zRNO3 + #.691 xHO2 + #.331 xHCHO + #.417 xRCHO + #.252 xPROD2 + #.041 xACRO + #.012 xMVK + #.01 xIPRD + yR6OOH + #3.831 XC

3.98E-11 10

T135O C9E1 + O3 = #.101 RO2C + #.016 RO2XC + #.016 zRNO3 + #.128 OH + #.095 HO2 + #.047 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.047 xRCHO + #.013 PROD2 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #4.834 XC

1.01E-17 10

T135N C9E1 + NO3 = #1.392 RO2C + #.403 RO2XC + #.403 zRNO3 + #.597 xHO2 + #.597 xRNO3 + yR6OOH + #.403 XN + #3 XC

1.39E-14 10

T135P C9E1 + O3P = #.45 RCHO + #.55 PROD2 + #4.35 XC 5.60E-12 10

T136H T4C9E + OH = #1.08 RO2C + #.277 RO2XC + #.277 zRNO3 + #.723 xHO2 + #.002 xHCHO + #.02 xCCHO + #.912 xRCHO + #.236 xPROD2 + #.011 xMVK + #.036 xIPRD + yR6OOH + #2.92 XC

6.98E-11 10

T136O T4C9E + O3 = #.167 RO2C + #.006 RO2XC + #.006 zRNO3 + #.095 OH + #.03 HO2 + #.119 xHO2 + #.095 CO + #.055 CO2 + RCHO + #.119 xRCHO + #.025 PROD1 + #.85 RCHO2 + #.125 yR6OOH + #2.807 XC

1.15E-16 10

T136N T4C9E + NO3 = #1.362 RO2C + #.395 RO2XC + #.395 zRNO3 + #.005 xNO2 + #.6 xHO2 + #.01 xRCHO + #.6 xRNO3 + yR6OOH + #.395 XN + #3 XC

3.70E-13 10

T136P T4C9E + O3P = PROD2 + #3 XC 2.05E-11 10

T137H C10E1 + OH = #1.163 RO2C + #.342 RO2XC + #.342 zRNO3 + #.658 xHO2 + #.308 xHCHO + #.388 xRCHO + #.252 xPROD2 + #.038 xACRO + #.01 xMVK + #.007 xIPRD + yR6OOH + #4.775 XC

4.12E-11 10

T137O C10E1 + O3 = #.099 RO2C + #.021 RO2XC + #.021 zRNO3 + #.128 OH + #.095 HO2 + #.042 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.037 xRCHO + #.013 PROD2 + #.005 xPROD2 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #5.804 XC

9.68E-18 3.36E-15 3.49 10

T137N C10E1 + NO3 = #1.358 RO2C + #.433 RO2XC + #.433 zRNO3 + #.567 xHO2 + #.567 xRNO3 + yR6OOH + #.433 XN + #4 XC

1.40E-14 10

T137P C10E1 + O3P = #.45 RCHO + #.55 PROD2 + #5.35 XC 5.60E-12 10

Page 165: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

153

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T138H E34C6E2 + OH = #.834 RO2C + #.243 RO2XC + #.243 zRNO3 + #.757 xHO2 + #.002 xHCHO + #.774 xCCHO + #.002 xRCHO + #.719 xPROD2 + #.003 xMVK + #.035 xIPRD + yR6OOH + #2.485 XC

9.39E-11 10

T138O E34C6E2 + O3 = #.579 RO2C + #.121 RO2XC + #.121 zRNO3 + #.862 OH + #.051 HO2 + #.213 MEO2 + #.579 xRCO3 + #.162 CO + #.093 CO2 + #.7 CCHO + #.141 xCCHO + #.438 xPROD1 + #.3 PROD2 + #.045 CCHO2 + #.7 yR6OOH + #1.745 XC

4.28E-18 6.78E-17 1.65 10

T138N E34C6E2 + NO3 = #1.685 RO2C + #.323 RO2XC + #.323 zRNO3 + #.048 xNO2 + #.629 xHO2 + #.314 xCCHO + #.263 xRCHO + #.354 xPROD1 + #.048 xPROD2 + #.709 xRNO3 + yR6OOH + #.242 XN + #.687 XC

9.37E-12 10

T138P E34C6E2 + O3P = PROD2 + #4 XC 3.71E-11 10

T139H C10OLE2 + OH = #1.059 RO2C + #.312 RO2XC + #.312 zRNO3 + #.688 xHO2 + #.002 xHCHO + #.019 xCCHO + #.853 xRCHO + #.23 xPROD2 + #.01 xMVK + #.037 xIPRD + yR6OOH + #3.924 XC

7.12E-11 10

T139O C10OLE2 + O3 = #.174 RO2C + #.009 RO2XC + #.009 zRNO3 + #.095 OH + #.03 HO2 + #.116 xHO2 + #.095 CO + #.055 CO2 + RCHO + #.116 xRCHO + #.025 PROD1 + #.85 RCHO2 + #.125 yR6OOH + #3.798 XC

1.15E-16 10

T139N C10OLE2 + NO3 = #1.322 RO2C + #.422 RO2XC + #.422 zRNO3 + #.005 xNO2 + #.573 xHO2 + #.01 xRCHO + #.573 xRNO3 + yR6OOH + #.422 XN + #4 XC

3.70E-13 10

T139P C10OLE2 + O3P = PROD2 + #4 XC 2.05E-11 10

T140H CARENE3 + OH = #.85 RO2C + #.15 RO2XC + #.15 zRNO3 + #.85 xHO2 + #.85 xRCHO + yR6OOH + #6.55 XC

8.80E-11 10

T140O CARENE3 + O3 = #.592 RO2C + #.175 RO2XC + #.175 zRNO3 + #.728 OH + #.009 HO2 + #.003 xHO2 + #.502 xMECO3 + #.058 xRCO3 + #.029 CO + #.017 CO2 + #.058 xHCHO + #.505 xRCHO + #.008 PROD1 + #.255 RCHO2 + #.737 yR6OOH + #5.356 XC

3.76E-17 5.00E-16 1.54 10

T140N CARENE3 + NO3 = #.811 RO2C + #.241 RO2XC + #.241 zRNO3 + #.744 xNO2 + #.015 xHO2 + #.002 xCO + #.744 xRCHO + #.002 xGLCHO + #.002 xACET + #.015 xRNO3 + yR6OOH + #.241 XN + #6.22 XC

9.10E-12 10

T140P CARENE3 + O3P = PROD2 + #4 XC 3.20E-11 10

T141H APINENE + OH = #1.042 RO2C + #.197 RO2XC + #.197 zRNO3 + #.799 xHO2 + #.004 xRCO3 + #.002 xCO + #.022 xHCHO + #.776 xRCHO + #.034 xACET + #.02 xMGLY + #.023 xBACL + yR6OOH + #6.2 XC

5.18E-11 1.21E-11 -0.87 10

T141O APINENE + O3 = #1.511 RO2C + #.337 RO2XC + #.337 zRNO3 + #.728 OH + #.009 HO2 + #.102 xHO2 + #.001 xMECO3 + #.297 xRCO3 + #.029 CO + #.051 xCO + #.017 CO2 + #.344 xHCHO + #.24 xRCHO + #.345 xACET + #.008 PROD1 + #.002 xGLY + #.081 xBACL + #.255 RCHO2 + #.737 yR6OOH + #3.764 XC

8.55E-17 5.00E-16 1.05 10

T141N APINENE + NO3 = #1.05 RO2C + #.293 RO2XC + #.293 zRNO3 + #.643 xNO2 + #.056 xHO2 + #.007 xRCO3 + #.005 xCO + #.007 xHCHO + #.684 xRCHO + #.069 xACET + #.002 xMGLY + #.056 xRNO3 + yR6OOH + #.301 XN + #5.608 XC

6.09E-12 1.19E-12 -0.97 10

T141P APINENE + O3P = PROD2 + #4 XC 3.20E-11 10

T142H BPINENE + OH = #.999 RO2C + #.184 RO2XC + #.184 zRNO3 + #.811 xHO2 + #.005 xRCO3 + #.002 xCO + #.784 xHCHO + #.046 xRCHO + #.035 xACET + #.781 xPROD2 + #.007 xMGLY + yR6OOH + #3.145 XC

7.35E-11 1.55E-11 -0.93 10

Page 166: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

154

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T142O BPINENE + O3 = #.458 RO2C + #.093 RO2XC + #.093 zRNO3 + #.353 OH + #.123 HO2 + #.07 xHO2 + #.067 xRCO3 + #.393 CO + #.092 CO2 + #.23 HCHO + #.011 xHCHO + #.006 xRCHO + #.104 xACET + #.77 PROD2 + #.007 xMGLY + #.063 xBACL + #.285 HCHO2 + #.23 yR6OOH + #3.007 XC

1.57E-17 1.20E-15 2.58 10

T142N BPINENE + NO3 = #2.435 RO2C + #.611 RO2XC + #.611 zRNO3 + #.33 xHO2 + #.059 xRCO3 + #.027 xCO + #.027 xHCHO + #.258 xRCHO + #.393 xACET + #.001 xGLY + #.33 xRNO3 + yR6OOH + #.67 XN + #2.168 XC

2.51E-12 10

T142P BPINENE + O3P = #.4 RCHO + #.6 PROD2 + #5.2 XC 2.70E-11 10

T143H DLIMONE + OH = #.972 RO2C + #.17 RO2XC + #.17 zRNO3 + #.827 xHO2 + #.003 xRCO3 + #.288 xHCHO + #.539 xRCHO + #.053 xPROD1 + #.287 xPROD2 + #.019 xMVK + #.012 xIPRD + yR6OOH + #4.996 XC

1.63E-10 4.28E-11 -0.80 10

T143O DLIMONE + O3 = #.619 RO2C + #.177 RO2XC + #.177 zRNO3 + #.729 OH + #.009 HO2 + #.021 xHO2 + #.482 xMECO3 + #.058 xRCO3 + #.029 CO + #.017 CO2 + #.089 xHCHO + #.5 xRCHO + #.008 PROD2 + #.015 xMACR + #.007 xIPRD + #.255 RCHO2 + #.738 yR6OOH + #5.257 XC

2.17E-16 2.95E-15 1.56 10

T143N DLIMONE + NO3 = #1.11 RO2C + #.296 RO2XC + #.296 zRNO3 + #.626 xNO2 + #.076 xHO2 + #.002 xRCO3 + #.078 xHCHO + #.641 xRCHO + #.009 xGLCHO + #.039 xMACR + #.009 xMVK + #.028 xIPRD + #.069 xRNO3 + yR6OOH + #.304 XN + #5.453 XC

1.22E-11 10

T143P DLIMONE + O3P = PROD2 + #4 XC 7.20E-11 10

T144H SABINENE + OH = #2.649 RO2C + #.366 RO2XC + #.366 zRNO3 + #.235 xHO2 + #.399 xRCO3 + #.18 xHCHO + #.4 xRCHO + #.139 xACET + #.178 xPROD2 + #.058 xBACL + yR6OOH + #3.51 XC

1.17E-10 10

T144O SABINENE + O3 = #.285 RO2C + #.058 RO2XC + #.058 zRNO3 + #.303 OH + #.133 HO2 + #.073 xHO2 + #.038 xRCO3 + #.423 CO + #.1 CO2 + #.17 HCHO + #.072 xACET + #.83 PROD2 + #.076 xBACL + #.307 HCHO2 + #.17 yR6OOH + #3.038 XC

8.40E-17 5.00E-16 1.06 10

T144N SABINENE + NO3 = #2.257 RO2C + #.562 RO2XC + #.562 zRNO3 + #.438 xHO2 + #.009 xRCHO + #.43 xACET + #.456 xRNO3 + yR6OOH + #.544 XN + #2.575 XC

1.00E-11 10

T144P SABINENE + O3P = #.4 RCHO + #.6 PROD2 + #5.2 XC 6.27E-11 10

T145H C11E1 + OH = #1.138 RO2C + #.364 RO2XC + #.364 zRNO3 + #.636 xHO2 + #.291 xHCHO + #.363 xRCHO + #.258 xPROD2 + #.032 xACRO + #.009 xMVK + #.007 xIPRD + yR6OOH + #5.721 XC

4.26E-11 10

T145O C11E1 + O3 = #.094 RO2C + #.025 RO2XC + #.025 zRNO3 + #.128 OH + #.095 HO2 + #.038 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.5 RCHO + #.033 xRCHO + #.013 PROD2 + #.005 xPROD2 + #.185 HCHO2 + #.425 RCHO2 + #.063 yR6OOH + #6.792 XC

1.01E-17 10

T145N C11E1 + NO3 = #1.332 RO2C + #.45 RO2XC + #.45 zRNO3 + #.55 xHO2 + #.55 xRNO3 + yR6OOH + #.45 XN + #5 XC

1.40E-14 10

T145P C11E1 + O3P = #.45 RCHO + #.55 PROD2 + #6.35 XC 5.60E-12 10

T146H T5C11E + OH = #1.041 RO2C + #.334 RO2XC + #.334 zRNO3 + #.666 xHO2 + #.004 xHCHO + #.004 xCCHO + #.815 xRCHO + #.232 xPROD2 + #.015 xMVK + #.031 xIPRD + yR6OOH + #4.932 XC

7.26E-11 10

Page 167: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

155

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T146O T5C11E + O3 = #.218 RO2C + #.012 RO2XC + #.012 zRNO3 + #.095 OH + #.03 HO2 + #.113 xHO2 + #.095 CO + #.055 CO2 + RCHO + #.113 xRCHO + #.025 PROD1 + #.85 RCHO2 + #.125 yR6OOH + #4.789 XC

1.15E-16 10

T146N T5C11E + NO3 = #1.302 RO2C + #.44 RO2XC + #.44 zRNO3 + #.56 xHO2 + #.56 xRNO3 + yR6OOH + #.44 XN + #5 XC

3.70E-13 10

T146P T5C11E + O3P = PROD2 + #5 XC 2.05E-11 10

T148H C2BENZ + OH = #.642 RO2C + #.105 RO2XC + #.105 zRNO3 + #.067 OH + #.186 HO2 + #.642 xHO2 + #.023 xRCHO + #.161 xPROD2 + #.246 xGLY + #.212 xMGLY + #.153 XYNL + #.165 xAFG1 + #.293 xAFG2 + #.067 AFG3 + #.034 AFG5 + #.213 yR6OOH + #.533 yRAOOH + #.986 XC

6.50E-12 10

T150H OXYLENE + OH = #.695 RO2C + #.114 RO2XC + #.114 zRNO3 + #.054 OH + #.137 HO2 + #.695 xHO2 + #.13 xGLY + #.33 xMGLY + #.19 xBACL + #.11 XYNL + #.045 xBALD + #.273 xAFG1 + #.377 xAFG2 + #.054 AFG3 + #.027 AFG5 + #.053 yR6OOH + #.756 yRAOOH + #.294 XC

1.36E-11 10

T151H PXYLENE + OH = #.655 RO2C + #.107 RO2XC + #.107 zRNO3 + #.072 OH + #.166 HO2 + #.655 xHO2 + #.37 xGLY + #.2 xMGLY + #.13 XYNL + #.085 xBALD + #.164 xAFG1 + #.036 xAFG2 + #.072 AFG3 + #.37 xAFG4 + #.036 AFG5 + #.099 yR6OOH + #.663 yRAOOH + #.407 XC

1.43E-11 10

T152H STYRENE + OH = #.82 RO2C + #.18 RO2XC + #.18 zRNO3 + #.82 xHO2 + #.82 xHCHO + #.82 xBALD + yR6OOH + #.36 XC

5.80E-11 10

T152O STYRENE + O3 = #.4 HCHO + #.6 HCOOH + #.4 RCOOH + #.6 BALD + #1.6 XC

1.76E-17 3.36E-15 3.13 10

T152N STYRENE + NO3 = #.87 RO2C + #.13 RO2XC + #.13 zRNO3 + #.65 xHO2 + #.22 xHCHO + #.22 xBALD + #.65 xRNO3 + yR6OOH + #.35 XN + #1.56 XC

1.50E-13 10

T152P STYRENE + O3P = PROD2 + #2 XC 1.75E-11 1.10E-11 -0.28 10

T153H NC3BEN + OH = #.698 RO2C + #.14 RO2XC + #.14 zRNO3 + #.038 OH + #.124 HO2 + #.698 xHO2 + #.023 xRCHO + #.36 xPROD2 + #.169 xGLY + #.146 xMGLY + #.105 XYNL + #.17 xAFG1 + #.145 xAFG2 + #.038 AFG3 + #.019 AFG5 + #.46 yR6OOH + #.377 yRAOOH + #2.341 XC

6.13E-12 10

T154H IC3BEN + OH = #.627 RO2C + #.126 RO2XC + #.126 zRNO3 + #.058 OH + #.189 HO2 + #.526 xHO2 + #.1 xMEO2 + #.046 xRCHO + #.1 xPROD2 + #.258 xGLY + #.222 xMGLY + #.16 XYNL + #.168 xAFG1 + #.312 xAFG2 + #.058 AFG3 + #.029 AFG5 + #.176 yR6OOH + #.577 yRAOOH + #1.935 XC

6.20E-12 10

T155H METTOL + OH = #.612 RO2C + #.123 RO2XC + #.123 zRNO3 + #.108 OH + #.158 HO2 + #.612 xHO2 + #.008 xRCHO + #.054 xPROD2 + #.104 xGLY + #.425 xMGLY + #.104 XYNL + #.021 xBALD + #.343 xAFG1 + #.185 xAFG2 + #.108 AFG3 + #.054 AFG5 + #.1 yR6OOH + #.634 yRAOOH + #1.678 XC

1.86E-11 10

T156H OETTOL + OH = #.709 RO2C + #.142 RO2XC + #.142 zRNO3 + #.034 OH + #.115 HO2 + #.709 xHO2 + #.012 xRCHO + #.085 xPROD2 + #.116 xGLY + #.294 xMGLY + #.169 xBACL + #.098 XYNL + #.033 xBALD + #.278 xAFG1 + #.301 xAFG2 + #.034 AFG3 + #.017 AFG5 + #.156 yR6OOH + #.695 yRAOOH + #1.545 XC

1.19E-11 10

Page 168: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

156

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T157H PETTOL + OH = #.664 RO2C + #.133 RO2XC + #.133 zRNO3 + #.054 OH + #.149 HO2 + #.664 xHO2 + #.012 xRCHO + #.086 xPROD2 + #.346 xGLY + #.187 xMGLY + #.122 XYNL + #.033 xBALD + #.187 xAFG1 + #.054 AFG3 + #.346 xAFG4 + #.027 AFG5 + #.158 yR6OOH + #.64 yRAOOH + #1.612 XC

1.18E-11 10

T158H TMB123 + OH = #.736 RO2C + #.148 RO2XC + #.148 zRNO3 + #.057 OH + #.059 HO2 + #.736 xHO2 + #.06 xGLY + #.17 xMGLY + #.47 xBACL + #.031 XYNL + #.036 xBALD + #.266 xAFG1 + #.434 xAFG2 + #.057 AFG3 + #.028 AFG5 + #.044 yR6OOH + #.841 yRAOOH + #1.007 XC

3.27E-11 10

T159H TMB124 + OH = #.581 RO2C + #.117 RO2XC + #.117 zRNO3 + #.187 OH + #.116 HO2 + #.581 xHO2 + #.077 xGLY + #.36 xMGLY + #.11 xBACL + #.022 XYNL + #.034 xBALD + #.182 xAFG1 + #.198 xAFG2 + #.187 AFG3 + #.167 xAFG4 + #.094 AFG5 + #.04 yR6OOH + #.657 yRAOOH + #1.341 XC

3.25E-11 10

T160H TMB135 + OH = #.638 RO2C + #.128 RO2XC + #.128 zRNO3 + #.129 OH + #.105 HO2 + #.638 xHO2 + #.61 xMGLY + #.04 XYNL + #.028 xBALD + #.226 xAFG1 + #.384 xAFG2 + #.129 AFG3 + #.065 AFG5 + #.034 yR6OOH + #.732 yRAOOH + #1.478 XC

5.67E-11 10

T161H C10BEN1 + OH = #.703 RO2C + #.151 RO2XC + #.151 zRNO3 + #.05 OH + #.139 HO2 + #.597 xHO2 + #.063 xMEO2 + #.044 xCCHO + #.03 xRCHO + #.307 xPROD2 + #.173 xGLY + #.149 xMGLY + #.114 XYNL + #.116 xAFG1 + #.207 xAFG2 + #.05 AFG3 + #.025 AFG5 + #.414 yR6OOH + #.397 yRAOOH + #3.166 XC

8.73E-12 10

T162H TC4BEN + OH = #.69 RO2C + #.119 RO2XC + #.119 zRNO3 + #.076 OH + #.21 HO2 + #.5 xHO2 + #.095 xMEO2 + #.095 xHCHO + #.095 xPROD2 + #.269 xGLY + #.231 xMGLY + #.172 XYNL + #.18 xAFG1 + #.32 xAFG2 + #.076 AFG3 + #.038 AFG5 + #.114 yR6OOH + #.6 yRAOOH + #2.621 XC

4.50E-12 10

T163H MC10BEN2 + OH = #.582 RO2C + #.134 RO2XC + #.134 zRNO3 + #.121 OH + #.164 HO2 + #.572 xHO2 + #.01 xMEO2 + #.011 xRCHO + #.063 xPROD2 + #.098 xGLY + #.401 xMGLY + #.103 XYNL + #.01 xBALD + #.274 xAFG1 + #.224 xAFG2 + #.121 AFG3 + #.06 AFG5 + #.103 yR6OOH + #.613 yRAOOH + #2.725 XC

2.47E-11 10

T164H OC10BEN2 + OH = #.677 RO2C + #.155 RO2XC + #.155 zRNO3 + #.048 OH + #.121 HO2 + #.66 xHO2 + #.016 xMEO2 + #.018 xRCHO + #.102 xPROD2 + #.108 xGLY + #.275 xMGLY + #.158 xBACL + #.097 XYNL + #.016 xBALD + #.227 xAFG1 + #.314 xAFG2 + #.048 AFG3 + #.024 AFG5 + #.167 yR6OOH + #.665 yRAOOH + #2.618 XC

1.52E-11 10

T165H PC10BEN2 + OH = #.633 RO2C + #.145 RO2XC + #.145 zRNO3 + #.067 OH + #.155 HO2 + #.617 xHO2 + #.015 xMEO2 + #.017 xRCHO + #.098 xPROD2 + #.327 xGLY + #.177 xMGLY + #.121 XYNL + #.015 xBALD + #.145 xAFG1 + #.032 xAFG2 + #.067 AFG3 + #.327 xAFG4 + #.034 AFG5 + #.159 yR6OOH + #.619 yRAOOH + #2.664 XC

1.59E-11 10

T166H PCYMENE + OH = #.622 RO2C + #.143 RO2XC + #.143 zRNO3 + #.071 OH + #.164 HO2 + #.58 xHO2 + #.042 xMEO2 + #.019 xRCHO + #.042 xPROD2 + #.347 xGLY + #.187 xMGLY + #.129 XYNL + #.027 xBALD + #.154 xAFG1 + #.034 xAFG2 + #.071 AFG3 + #.347 xAFG4 + #.036 AFG5 + #.108 yR6OOH + #.656 yRAOOH + #2.544 XC

1.45E-11 10

Page 169: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

157

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T167H C10B123 + OH = #.722 RO2C + #.166 RO2XC + #.166 zRNO3 + #.055 OH + #.058 HO2 + #.722 xHO2 + #.004 xRCHO + #.03 xPROD2 + #.057 xGLY + #.161 xMGLY + #.446 xBACL + #.03 XYNL + #.023 xBALD + #.253 xAFG1 + #.412 xAFG2 + #.055 AFG3 + #.028 AFG5 + #.07 yR6OOH + #.817 yRAOOH + #2.124 XC

3.34E-11 10

T168H C10B124 + OH = #.575 RO2C + #.132 RO2XC + #.132 zRNO3 + #.181 OH + #.112 HO2 + #.575 xHO2 + #.004 xRCHO + #.03 xPROD2 + #.073 xGLY + #.341 xMGLY + #.104 xBACL + #.021 XYNL + #.023 xBALD + #.173 xAFG1 + #.187 xAFG2 + #.181 AFG3 + #.158 xAFG4 + #.091 AFG5 + #.07 yR6OOH + #.637 yRAOOH + #2.45 XC

3.34E-11 10

T169H C10B135 + OH = #.624 RO2C + #.143 RO2XC + #.143 zRNO3 + #.128 OH + #.104 HO2 + #.624 xHO2 + #.002 xRCHO + #.017 xPROD2 + #.592 xMGLY + #.04 XYNL + #.013 xBALD + #.219 xAFG1 + #.373 xAFG2 + #.128 AFG3 + #.064 AFG5 + #.041 yR6OOH + #.727 yRAOOH + #2.543 XC

5.76E-11 10

T170H BEN1234 + OH = #.623 RO2C + #.143 RO2XC + #.143 zRNO3 + #.129 OH + #.105 HO2 + #.623 xHO2 + #.597 xMGLY + #.04 XYNL + #.026 xBALD + #.221 xAFG1 + #.376 xAFG2 + #.129 AFG3 + #.065 AFG5 + #.032 yR6OOH + #.734 yRAOOH + #2.506 XC

5.94E-11 10

T171H BEN1245 + OH = #.623 RO2C + #.143 RO2XC + #.143 zRNO3 + #.129 OH + #.105 HO2 + #.623 xHO2 + #.597 xMGLY + #.04 XYNL + #.026 xBALD + #.221 xAFG1 + #.376 xAFG2 + #.129 AFG3 + #.065 AFG5 + #.032 yR6OOH + #.734 yRAOOH + #2.506 XC

5.94E-11 10

T172H MBEN1235 + OH = #.621 RO2C + #.143 RO2XC + #.143 zRNO3 + #.13 OH + #.106 HO2 + #.621 xHO2 + #.601 xMGLY + #.04 XYNL + #.021 xBALD + #.222 xAFG1 + #.379 xAFG2 + #.13 AFG3 + #.065 AFG5 + #.025 yR6OOH + #.739 yRAOOH + #2.502 XC

7.51E-11 10

T173H NAPHTHAL + OH = #.244 RO2C + #.056 RO2XC + #.056 zRNO3 + #.05 HO2 + #.244 xHO2 + #.5 RCO3 + #.15 BZO + #.244 xGLY + #.05 XYNL + #.122 xAFG1 + #.122 xAFG2 + #.3 yRAOOH + #5.156 XC

2.30E-11 1.56E-11 -0.23 10

T174H C11BEN1 + OH = #.703 RO2C + #.167 RO2XC + #.167 zRNO3 + #.043 OH + #.119 HO2 + #.616 xHO2 + #.055 xMEO2 + #.032 xCCHO + #.024 xRCHO + #.374 xPROD2 + #.147 xGLY + #.127 xMGLY + #.098 XYNL + #.098 xAFG1 + #.175 xAFG2 + #.043 AFG3 + #.021 AFG5 + #.497 yR6OOH + #.341 yRAOOH + #4.291 XC

1.02E-11 10

T175H MC11BEN2 + OH = #.588 RO2C + #.146 RO2XC + #.146 zRNO3 + #.113 OH + #.153 HO2 + #.553 xHO2 + #.035 xMEO2 + #.013 xRCHO + #.11 xPROD2 + #.09 xGLY + #.369 xMGLY + #.097 XYNL + #.004 xBALD + #.253 xAFG1 + #.207 xAFG2 + #.113 AFG3 + #.056 AFG5 + #.16 yR6OOH + #.574 yRAOOH + #3.816 XC

2.64E-11 10

T176H OC11BEN2 + OH = #.68 RO2C + #.169 RO2XC + #.169 zRNO3 + #.043 OH + #.108 HO2 + #.625 xHO2 + #.055 xMEO2 + #.021 xRCHO + #.173 xPROD2 + #.096 xGLY + #.244 xMGLY + #.14 xBACL + #.087 XYNL + #.007 xBALD + #.201 xAFG1 + #.278 xAFG2 + #.043 AFG3 + #.021 AFG5 + #.25 yR6OOH + #.599 yRAOOH + #3.758 XC

1.69E-11 10

Page 170: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

158

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T177H PC11BEN2 + OH = #.64 RO2C + #.159 RO2XC + #.159 zRNO3 + #.061 OH + #.14 HO2 + #.588 xHO2 + #.052 xMEO2 + #.02 xRCHO + #.166 xPROD2 + #.291 xGLY + #.157 xMGLY + #.11 XYNL + #.007 xBALD + #.129 xAFG1 + #.028 xAFG2 + #.061 AFG3 + #.291 xAFG4 + #.03 AFG5 + #.24 yR6OOH + #.559 yRAOOH + #3.788 XC

1.76E-11 10

T178H C11B123 + OH = #.714 RO2C + #.177 RO2XC + #.177 zRNO3 + #.053 OH + #.056 HO2 + #.714 xHO2 + #.006 xRCHO + #.059 xPROD2 + #.054 xGLY + #.154 xMGLY + #.425 xBACL + #.029 XYNL + #.016 xBALD + #.24 xAFG1 + #.392 xAFG2 + #.053 AFG3 + #.027 AFG5 + #.101 yR6OOH + #.79 yRAOOH + #3.232 XC

3.46E-11 10

T179H C11B124 + OH = #.574 RO2C + #.143 RO2XC + #.143 zRNO3 + #.175 OH + #.108 HO2 + #.574 xHO2 + #.006 xRCHO + #.059 xPROD2 + #.069 xGLY + #.324 xMGLY + #.099 xBACL + #.021 XYNL + #.016 xBALD + #.164 xAFG1 + #.178 xAFG2 + #.175 AFG3 + #.15 xAFG4 + #.088 AFG5 + #.101 yR6OOH + #.615 yRAOOH + #3.533 XC

3.46E-11 10

T180H C11B135 + OH = #.619 RO2C + #.154 RO2XC + #.154 zRNO3 + #.126 OH + #.102 HO2 + #.619 xHO2 + #.004 xRCHO + #.035 xPROD2 + #.571 xMGLY + #.039 XYNL + #.01 xBALD + #.211 xAFG1 + #.36 xAFG2 + #.126 AFG3 + #.063 AFG5 + #.06 yR6OOH + #.713 yRAOOH + #3.581 XC

5.88E-11 10

T181H NAPH1 + OH = #.272 RO2C + #.068 RO2XC + #.068 zRNO3 + #.05 HO2 + #.272 xHO2 + #.5 RCO3 + #.11 BZO + #.151 xGLY + #.121 xMGLY + #.05 XYNL + #.136 xAFG1 + #.136 xAFG2 + #.34 yRAOOH + #6.007 XC

1.59E-11 10

T182H C12BEN1 + OH = #.706 RO2C + #.178 RO2XC + #.178 zRNO3 + #.038 OH + #.105 HO2 + #.631 xHO2 + #.049 xMEO2 + #.026 xCCHO + #.02 xRCHO + #.423 xPROD2 + #.127 xGLY + #.11 xMGLY + #.086 XYNL + #.085 xAFG1 + #.152 xAFG2 + #.038 AFG3 + #.019 AFG5 + #.559 yR6OOH + #.299 yRAOOH + #5.377 XC

1.16E-11 10

T183H MC12BEN2 + OH = #.595 RO2C + #.153 RO2XC + #.153 zRNO3 + #.11 OH + #.15 HO2 + #.566 xHO2 + #.021 xMEO2 + #.009 xCCHO + #.014 xRCHO + #.126 xPROD2 + #.087 xGLY + #.357 xMGLY + #.095 XYNL + #.003 xBALD + #.244 xAFG1 + #.2 xAFG2 + #.11 AFG3 + #.055 AFG5 + #.18 yR6OOH + #.56 yRAOOH + #4.844 XC

2.70E-11 10

T184H OC12BEN2 + OH = #.691 RO2C + #.177 RO2XC + #.177 zRNO3 + #.041 OH + #.104 HO2 + #.646 xHO2 + #.032 xMEO2 + #.013 xCCHO + #.021 xRCHO + #.195 xPROD2 + #.091 xGLY + #.232 xMGLY + #.134 xBACL + #.084 XYNL + #.004 xBALD + #.192 xAFG1 + #.265 xAFG2 + #.041 AFG3 + #.021 AFG5 + #.278 yR6OOH + #.577 yRAOOH + #4.814 XC

1.75E-11 10

T185H PC12BEN2 + OH = #.652 RO2C + #.167 RO2XC + #.167 zRNO3 + #.059 OH + #.135 HO2 + #.609 xHO2 + #.031 xMEO2 + #.013 xCCHO + #.02 xRCHO + #.187 xPROD2 + #.278 xGLY + #.15 xMGLY + #.106 XYNL + #.004 xBALD + #.123 xAFG1 + #.027 xAFG2 + #.059 AFG3 + #.278 xAFG4 + #.029 AFG5 + #.267 yR6OOH + #.539 yRAOOH + #4.843 XC

1.82E-11 10

T186H C12B123 + OH = #.709 RO2C + #.185 RO2XC + #.185 zRNO3 + #.052 OH + #.054 HO2 + #.685 xHO2 + #.023 xMEO2 + #.01 xRCHO + #.072 xPROD2 + #.053 xGLY + #.149 xMGLY + #.411 xBACL + #.028 XYNL + #.014 xBALD + #.233 xAFG1 + #.38 xAFG2 + #.052 AFG3 + #.026 AFG5 + #.121 yR6OOH + #.773 yRAOOH + #4.275

3.54E-11 10

Page 171: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

159

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

XC

T187H C12B124 + OH = #.573 RO2C + #.15 RO2XC + #.15 zRNO3 + #.171 OH + #.106 HO2 + #.55 xHO2 + #.023 xMEO2 + #.01 xRCHO + #.072 xPROD2 + #.067 xGLY + #.314 xMGLY + #.096 xBACL + #.02 XYNL + #.014 xBALD + #.159 xAFG1 + #.172 xAFG2 + #.171 AFG3 + #.146 xAFG4 + #.086 AFG5 + #.121 yR6OOH + #.602 yRAOOH + #4.567 XC

3.54E-11 10

T188H C12B135 + OH = #.615 RO2C + #.161 RO2XC + #.161 zRNO3 + #.124 OH + #.1 HO2 + #.601 xHO2 + #.014 xMEO2 + #.006 xRCHO + #.043 xPROD2 + #.558 xMGLY + #.038 XYNL + #.008 xBALD + #.206 xAFG1 + #.352 xAFG2 + #.124 AFG3 + #.062 AFG5 + #.072 yR6OOH + #.704 yRAOOH + #4.618 XC

5.96E-11 10

T189H ETOX + OH = #2 RO2C + xHO2 + #.657 xCO + #.041 CO2 + #.041 xHCHO + #.657 HCOOH + yROOH + #.604 XC

7.60E-14 10

T190H ETOH + OH = #.05 RO2C + #.95 HO2 + #.05 xHO2 + #.081 xHCHO + #.95 CCHO + #.01 xGLCHO + #.05 yROOH + #-.001 XC

3.21E-12 5.49E-13 -1.05 2.00 10

T191H MEOME + OH = RO2C + xHO2 + #.079 xHCHO + yROOH + #1.921 XC

2.83E-12 1.03E-12 -0.60 2.00 10

T192H MEFORM + OH = RO2C + xHO2 + #.657 xCO + #.041 CO2 + #.041 xHCHO + #.657 HCOOH + yROOH + #.604 XC

2.27E-13 10

T193H ETGLYCL + OH = HO2 + #.067 HCHO + #.966 GLCHO + #.001 XC

1.47E-11 10

T194H PROX + OH = #2.206 RO2C + #.008 RO2XC + #.008 zRNO3 + #.774 xHO2 + #.218 xMECO3 + #.478 xCO + #.034 CO2 + #.229 xHCHO + #.025 xCCHO + #.006 xRCHO + #.362 HCOOH + #.334 CCOOH + yROOH + #.677 XC

5.20E-13 10

T195H IC3OH + OH = #.046 RO2C + #.001 RO2XC + #.001 zRNO3 + #.953 HO2 + #.046 xHO2 + #.046 xHCHO + #.046 xCCHO + #.953 ACET + #.047 yROOH + #-.003 XC

5.09E-12 3.63E-13 -1.57 2.00 10

T196H NC3OH + OH = #.238 RO2C + #.003 RO2XC + #.003 zRNO3 + #.759 HO2 + #.237 xHO2 + #.208 xHCHO + #.207 xCCHO + #.759 RCHO + #.031 xRCHO + #.241 yROOH + #-.01 XC

5.81E-12 4.60E-12 -0.14 10

T197H ACYRACID + OH = RO2C + xHO2 + #.015 CO2 + #.548 xHCHO + #.208 xRCHO + #.015 xGLCHO + #.548 xMGLY + #.229 xBACL + yROOH + #-.777 XC

2.85E-11 10

T197O ACYRACID + O3 = #.13 OH + #.13 HO2 + #.305 CO + #.11 CO2 + #.5 HCHO + #.5 MGLY + #.185 HCHO2 + #.4 XC

1.01E-17 10

T197N ACYRACID + NO3 = RO2C + xHO2 + #.062 CO2 + #.938 xBACL + #.062 xRNO3 + yROOH + #.938 XN + #-1.186 XC

2.76E-18 10

T197P ACYRACID + O3P = #.45 RCHO + #.55 RCOOH 4.60E-12 10

T198H MEACET + OH = #.985 RO2C + #.015 RO2XC + #.015 zRNO3 + #.985 xHO2 + #.64 xCO + #.64 CCOOH + yROOH + #.99 XC

3.49E-13 8.30E-13 0.52 10

T199H PRGLYCL + OH = #.013 RO2C + #.987 HO2 + #.013 xHO2 + #.027 HCHO + #.012 xHCHO + #.027 CCHO + #.313 RCHO + #.002 xRCHO + #.012 xGLCHO + #.646 PROD1 + #.013 yROOH + #-.646 XC

2.15E-11 10

Page 172: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

160

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T200H MEOETOH + OH = #.722 RO2C + #.278 HO2 + #.722 xHO2 + #.648 xHCHO + #.278 RCHO + #.03 xRCHO + #.048 xPROD2 + #.722 yROOH + #1.14 XC

1.33E-11 4.50E-12 -0.65 10

T201H GLYCERL + OH = HO2 + #.017 HCHO + #.435 RCHO + #.017 GLCHO + #.548 PROD2 + #-1.644 XC

1.87E-11 10

T202H CROTALD + OH = #.557 RO2C + #.023 RO2XC + #.023 zRNO3 + #.557 xHO2 + #.421 MACO3 + #.033 xCO + #.523 xCCHO + #.033 xRCHO + #.523 xGLY + #.579 yROOH + #-.046 XC

3.64E-11 10

T202O CROTALD + O3 = #.52 OH + #.835 HO2 + #.355 MEO2 + #1.02 CO + #.405 CO2 + #.5 CCHO + #.5 GLY + #.075 CCHO2 + #.07 XC

1.58E-18 10

T202N CROTALD + NO3 = #.438 RO2C + #.038 RO2XC + #.038 zRNO3 + #.186 xNO2 + #.252 xHO2 + #.523 MACO3 + #.523 HNO3 + #.219 xCO + #.186 xCCHO + #.186 xGLY + #.252 xRNO3 + #.477 yROOH + #.038 XN + #-.795 XC

5.12E-15 10

T202P CROTALD + O3P = #.88 RCHO + #.12 MGLY + XC 7.29E-12 10

T203H THF + OH = #1.943 RO2C + #.079 RO2XC + #.079 zRNO3 + #.911 xHO2 + #.009 xRCO3 + #.049 xCO + #.013 xHCHO + #.861 xRCHO + #.05 xPROD2 + yROOH + #.554 XC

1.61E-11 10

T204H MEC3AL2 + OH = #.093 RO2C + #.004 RO2XC + #.004 zRNO3 + #.082 xHO2 + #.914 RCO3 + #.078 xCO + #.011 xHCHO + #.011 xCCHO + #.004 xRCHO + #.067 xACET + #.086 yROOH + #.91 XC

2.68E-11 7.30E-12 -0.78 10

T204N MEC3AL2 + NO3 = RCO3 + HNO3 + XC 1.15E-14 3.60E-12 3.43 10

T205H C4RCHO1 + OH = #.103 RO2C + #.008 RO2XC + #.008 zRNO3 + #.088 xHO2 + #.905 RCO3 + #.052 xCO + #.014 xHCHO + #.015 xCCHO + #.073 xRCHO + #.001 xGLY + #.095 yROOH + #.92 XC

2.35E-11 6.00E-12 -0.81 10

T205N C4RCHO1 + NO3 = RCO3 + HNO3 + XC 1.15E-14 1.70E-12 2.98 10

T206H IC4OH + OH = #.403 RO2C + #.037 RO2XC + #.037 zRNO3 + #.597 HO2 + #.366 xHO2 + #.009 HCHO + #.384 xHCHO + #.036 xCCHO + #.597 RCHO + #.011 xRCHO + #.319 xACET + #.403 yROOH + #.532 XC

9.30E-12 10

T207H NC4OH + OH = #.47 RO2C + #.013 RO2XC + #.013 zRNO3 + #.584 HO2 + #.403 xHO2 + #.308 xHCHO + #.067 xCCHO + #.584 RCHO + #.243 xRCHO + #.013 xGLCHO + #.093 xPROD2 + #.416 yROOH + #.415 XC

8.45E-12 5.30E-12 -0.28 10

T208H SC4OH + OH = #.165 RO2C + #.006 RO2XC + #.006 zRNO3 + #.843 HO2 + #.152 xHO2 + #.016 xHCHO + #.007 CCHO + #.231 xCCHO + #.032 xRCHO + #.843 PROD1 + #.157 yROOH + #.004 XC

8.70E-12 10

T209H TC4OH + OH = #.678 RO2C + #.067 RO2XC + #.067 zRNO3 + #.678 xHO2 + #.254 TBUO + #.678 xHCHO + #.678 xACET + #.746 yROOH + #-.13 XC

1.07E-12 3.66E-13 -0.64 2.00 10

T210H ETOET + OH = #.958 RO2C + #.06 RO2XC + #.06 zRNO3 + #.128 xHO2 + #.811 xMEO2 + #.006 xHCHO + #.163 xCCHO + #.006 xRCHO + #.001 xGLCHO + #.84 xPROD1 + #.01 xPROD2 + yROOH + #-.943 XC

1.31E-11 8.02E-13 -1.66 2.00 10

T211H VINACET + OH = #.961 RO2C + #.039 RO2XC + #.039 zRNO3 + #.951 xHO2 + #.01 xRCO3 + #.872 xHCHO + #.079 xRCHO + #.01 CCOOH + yROOH + #2.607 XC

3.16E-11 10

T211O VINACET + O3 = #.08 OH + #.08 HO2 + #.255 CO + #.06 CO2 + #.5 HCHO + #.185 HCHO2 + #3 XC

1.01E-17 10

T211N VINACET + NO3 = #.961 RO2C + #.039 RO2XC + #.039 zRNO3 + #.063 xHO2 + #.897 xRCO3 + #.897 CCOOH + yROOH + XN + #-.719 XC

1.38E-14 10

T211P VINACET + O3P = #.45 RCHO + #.55 PROD1 + #.45 XC 5.60E-12 10

Page 173: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

161

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T212H ETACET + OH = #.966 RO2C + #.04 RO2XC + #.04 zRNO3 + #.156 xHO2 + #.804 xMECO3 + #.096 xRCHO + #.799 CCOOH + #.005 RCOOH + #.018 xMGLY + yROOH + #.197 XC

1.60E-12 10

T213H C4OH12 + OH = #.081 RO2C + #.003 RO2XC + #.003 zRNO3 + #.916 HO2 + #.081 xHO2 + #.022 HCHO + #.07 xCCHO + #.275 RCHO + #.011 xRCHO + #.07 xGLCHO + #.641 PROD1 + #.084 yROOH + #.258 XC

2.70E-11 10

T214H MEOC3OH + OH = #.6 RO2C + #.01 RO2XC + #.01 zRNO3 + #.39 HO2 + #.6 xHO2 + #.001 xHCHO + #.571 xCCHO + #.39 PROD2 + #.029 xPROD2 + #.61 yROOH + #.283 XC

2.00E-11 10

T215H ETOETOH + OH = #.792 RO2C + #.02 RO2XC + #.02 zRNO3 + #.188 HO2 + #.619 xHO2 + #.173 xMEO2 + #.549 xHCHO + #.07 xCCHO + #.188 RCHO + #.08 xRCHO + #.014 xGLCHO + #.437 xPROD1 + #.206 xPROD2 + #.812 yROOH + #-.798 XC

1.87E-11 10

T216H DETGLCL + OH = #.679 RO2C + #.028 RO2XC + #.028 zRNO3 + #.293 HO2 + #.679 xHO2 + #.679 xHCHO + #.293 RCHO + #.679 xPROD2 + #.707 yROOH + #-1.8 XC

2.75E-11 10

T217H MBUTENOL + OH = #.935 RO2C + #.065 RO2XC + #.065 zRNO3 + #.935 xHO2 + #.311 xHCHO + #.311 xRCHO + #.624 xGLCHO + #.624 xACET + yR6OOH + #.246 XC

6.26E-11 8.20E-12 -1.21 10

T217O MBUTENOL + O3 = #.141 OH + #.159 HO2 + #.386 CO + #.101 CO2 + #.3 HCHO + #.7 RCHO + #.038 ACET + #.008 PROD2 + #.259 HCHO2 + #.255 RCHO2 + #.927 XC

9.68E-18 3.36E-15 3.49 10

T217N MBUTENOL + NO3 = #.935 RO2C + #.065 RO2XC + #.065 zRNO3 + #.935 xHO2 + #.935 xACET + #.935 xRNO3 + yR6OOH + #.065 XN + #-3.805 XC

1.21E-14 4.60E-14 0.79 10

T217P MBUTENOL + O3P = #.45 RCHO + #.55 PROD1 + #1.45 XC

2.01E-11 10

T218H C5RCHO1 + OH = #.169 RO2C + #.018 RO2XC + #.018 zRNO3 + #.089 xHO2 + #.848 RCO3 + #.045 xRCO3 + #.043 xCO + #.011 xHCHO + #.021 xCCHO + #.087 xRCHO + #.002 xMGLY + #.152 yR6OOH + #1.85 XC

2.78E-11 9.90E-12 -0.62 10

T218N C5RCHO1 + NO3 = RCO3 + HNO3 + #2 XC 1.50E-14 10

T219H IAMOH + OH = #.794 RO2C + #.035 RO2XC + #.035 zRNO3 + #.484 HO2 + #.481 xHO2 + #.541 xHCHO + #.484 RCHO + #.166 xRCHO + #.098 xGLCHO + #.311 xACET + #.003 xPROD2 + #.516 yR6OOH + #1.152 XC

1.30E-11 10

T220H MTBE + OH = #1.124 RO2C + #.078 RO2XC + #.078 zRNO3 + #.743 xHO2 + #.162 xMEO2 + #.016 xTBUO + #.234 xHCHO + #.024 xACET + #.719 xPROD1 + #.007 xPROD2 + yR6OOH + #1.082 XC

2.95E-12 5.89E-13 -0.96 2.00 10

T221H ETACRYL + OH = #1.353 RO2C + #.094 RO2XC + #.094 zRNO3 + #.497 xHO2 + #.409 xMECO3 + #.395 xHCHO + #.38 xPROD2 + #.395 xMGLY + #.084 xBACL + #.047 xMVK + yR6OOH + #-.766 XC

3.01E-11 10

T221O ETACRYL + O3 = #.08 OH + #.08 HO2 + #.255 CO + #.06 CO2 + #.5 HCHO + #.5 MGLY + #.185 HCHO2 + #2.5 XC

1.01E-17 10

T221N ETACRYL + NO3 = #1.526 RO2C + #.106 RO2XC + #.106 zRNO3 + #.382 xHO2 + #.513 xMECO3 + #.253 HNO3 + #.119 xBACL + #.237 xMVK + #.538 xRNO3 + yR6OOH + #.209 XN + #-1.314 XC

3.70E-18 10

T221P ETACRYL + O3P = #.45 RCHO + #.55 PROD1 + #1.45 XC

4.60E-12 10

Page 174: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

162

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T222H MEMACRT + OH = #.935 RO2C + #.065 RO2XC + #.065 zRNO3 + #.935 xHO2 + #.935 xHCHO + #.935 xBACL + yR6OOH + #-.065 XC

5.25E-11 10

T222O MEMACRT + O3 = #.64 RO2C + #.026 RO2XC + #.026 zRNO3 + #.72 OH + #.053 HO2 + #.273 xHO2 + #.367 xRCO3 + #.17 CO + #.04 CO2 + #.667 HCHO + #.367 xHCHO + #.273 xMGLY + #.333 BACL + #.123 HCHO2 + #.667 yR6OOH + #.225 XC

1.18E-17 10

T222N MEMACRT + NO3 = #1.189 RO2C + #.083 RO2XC + #.083 zRNO3 + #.263 xHO2 + #.654 xRCO3 + #.01 HNO3 + #.167 xCO + #.01 xIPRD + #.167 xRNO3 + yR6OOH + #.822 XN + #1.321 XC

6.71E-17 10

T222P MEMACRT + O3P = #.4 RCHO + #.6 PROD1 + #1.4 XC 1.42E-11 10

T223H IPRACET + OH = #1.049 RO2C + #.055 RO2XC + #.055 zRNO3 + #.015 xHO2 + #.845 xMEO2 + #.085 xMECO3 + #.203 CO2 + #.093 xHCHO + #.203 xACET + #.085 CCOOH + #.011 xMGLY + yR6OOH + #2.547 XC

3.40E-12 10

T224H PRACET + OH = #.988 RO2C + #.066 RO2XC + #.066 zRNO3 + #.44 xHO2 + #.494 xRCO3 + #.012 xCO + #.001 xHCHO + #.041 xCCHO + #.05 xRCHO + #.348 xPROD1 + #.497 CCOOH + #.009 RCOOH + #.002 xMGLY + yR6OOH + #.458 XC

3.40E-12 10

T225H MOEOETOH + OH = #1.394 RO2C + #.059 RO2XC + #.059 zRNO3 + #.118 HO2 + #.823 xHO2 + #.307 xHCHO + #.118 RCHO + #.098 xRCHO + #.001 xGLCHO + #.019 xPROD1 + #.717 xPROD2 + #.001 HCOOH + #.882 yR6OOH + #-.69 XC

3.41E-11 10

T226H CC6KET + OH = #1.108 RO2C + #.178 RO2XC + #.178 zRNO3 + #.386 xHO2 + #.436 xRCO3 + #.059 xHCHO + #.194 xRCHO + #.197 xPROD2 + yR6OOH + #1.801 XC

6.40E-12 10

T227H CC6OH + OH = #.506 RO2C + #.055 RO2XC + #.055 zRNO3 + #.59 HO2 + #.355 xHO2 + #.04 xHCHO + #.246 xRCHO + #.59 PROD2 + #.115 xPROD2 + #.41 yR6OOH + #.662 XC

1.90E-11 10

T228H C6RCHO1 + OH = #.266 RO2C + #.04 RO2XC + #.04 zRNO3 + #.112 xHO2 + #.798 RCO3 + #.05 xRCO3 + #.014 xCO + #.002 xHCHO + #.103 xRCHO + #.018 xMGLY + #.202 yR6OOH + #2.837 XC

3.00E-11 10

T228N C6RCHO1 + NO3 = RCO3 + HNO3 + #3 XC 1.60E-14 10

T229H MIBK + OH = #1.717 RO2C + #.099 RO2XC + #.099 zRNO3 + #.012 xHO2 + #.878 xMECO3 + #.011 xRCO3 + #.827 xHCHO + #.021 xCCHO + #.096 xRCHO + #.768 xACET + #.004 xPROD1 + yR6OOH + #.14 XC

1.27E-11 7.90E-13 -1.66 10

T230H MNBK + OH = #1.438 RO2C + #.102 RO2XC + #.102 zRNO3 + #.424 xHO2 + #.459 xMECO3 + #.014 xRCO3 + #.338 xHCHO + #.195 xCCHO + #.65 xRCHO + #.145 xPROD1 + #.088 xPROD2 + yR6OOH + #.642 XC

9.10E-12 10

T231H ETBE + OH = #.953 RO2C + #.101 RO2XC + #.101 zRNO3 + #.143 xHO2 + #.644 xMEO2 + #.112 xTBUO + #.055 xHCHO + #.127 xCCHO + #.018 xRCHO + #.016 xACET + #.644 xPROD1 + yR6OOH + #1.315 XC

8.68E-12 6.03E-13 -1.59 2.00 10

T232H IBUACET + OH = #1.711 RO2C + #.12 RO2XC + #.12 zRNO3 + #.82 xHO2 + #.008 xMEO2 + #.051 xRCO3 + #.298 xCO + #.052 xHCHO + #.003 xCCHO + #.015 xRCHO + #.763 xACET + #.054 xPROD1 + #.349 CCOOH + yR6OOH + #1.515 XC

4.61E-12 10

T233H BUACET + OH = #1.203 RO2C + #.122 RO2XC + #.122 zRNO3 + #.688 xHO2 + #.19 xRCO3 + #.01 xCO + #.116 xCCHO + #.173 xRCHO + #.253 xPROD1 + #.262 xPROD2 + #.2 CCOOH + yR6OOH + #.953 XC

4.20E-12 10

Page 175: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

163

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T234H DIACTALC + OH = #.914 RO2C + #.086 RO2XC + #.086 zRNO3 + #.233 xHO2 + #.618 xMECO3 + #.063 xRCO3 + #.388 xHCHO + #.5 xRCHO + #.117 ACET + #.026 xACET + #.207 xPROD1 + #.026 xMGLY + yR6OOH + #.836 XC

1.49E-12 10

T235H M24C5OH2 + OH = #.195 RO2C + #.02 RO2XC + #.02 zRNO3 + #.785 HO2 + #.195 xHO2 + #.072 xHCHO + #.001 CCHO + #.015 xCCHO + #.141 xRCHO + #.011 ACET + #.119 xACET + #.785 PROD1 + #.042 xPROD2 + #.215 yR6OOH + #1.571 XC

2.77E-11 10

T236H BUOETOH + OH = #1.021 RO2C + #.112 RO2XC + #.112 zRNO3 + #.123 HO2 + #.765 xHO2 + #.55 xHCHO + #.013 xCCHO + #.123 RCHO + #.194 xRCHO + #.508 xPROD1 + #.26 xPROD2 + #.877 yR6OOH + #.209 XC

2.57E-11 10

T237H PGMEACT + OH = #1.722 RO2C + #.127 RO2XC + #.127 zRNO3 + #.33 xHO2 + #.538 xMECO3 + #.004 xRCO3 + #.029 xHCHO + #.005 xRCHO + #.049 xPROD1 + #.05 xPROD2 + #.543 CCOOH + yR6OOH + #2.524 XC

1.44E-11 10

T238H CSVACET + OH = #1.412 RO2C + #.111 RO2XC + #.111 zRNO3 + #.57 xHO2 + #.288 xMEO2 + #.031 xRCO3 + #.288 xCO + #.003 xHCHO + #.058 xCCHO + #.055 xRCHO + #.745 xPROD1 + #.06 xPROD2 + #.319 CCOOH + yR6OOH + #.403 XC

1.94E-11 10

T239H DGEE + OH = #1.206 RO2C + #.11 RO2XC + #.11 zRNO3 + #.099 HO2 + #.622 xHO2 + #.169 xMEO2 + #.233 xHCHO + #.01 xCCHO + #.099 RCHO + #.077 xRCHO + #.001 xGLCHO + #.405 xPROD1 + #.708 xPROD2 + #.901 yR6OOH + #-1.48 XC

5.08E-11 10

T240H DPRGLCL + OH = #.484 RO2C + #.052 RO2XC + #.052 zRNO3 + #.464 HO2 + #.484 xHO2 + #.484 xCCHO + #.464 PROD2 + #.484 xPROD2 + #.536 yR6OOH + #-.968 XC

3.64E-11 10

T241H ADIPACD + OH = #1.632 RO2C + #.112 RO2XC + #.112 zRNO3 + #.888 xHO2 + #.019 CO2 + #1.152 xRCHO + #.159 xPROD2 + #.031 xMGLY + #.129 xBACL + yR6OOH + #.29 XC

1.09E-11 10

T242H BZCH2OH + OH = #.422 RO2C + #.052 RO2XC + #.052 zRNO3 + #.06 OH + #.466 HO2 + #.422 xHO2 + #.227 xGLY + #.196 xMGLY + #.136 XYNL + #.3 BALD + #.063 xAFG1 + #.359 xAFG2 + #.06 AFG3 + #.03 AFG5 + #.474 yRAOOH + #-.282 XC

2.29E-11 10

T243H C7RCHO1 + OH = #.327 RO2C + #.067 RO2XC + #.067 zRNO3 + #.136 xHO2 + #.754 RCO3 + #.044 xRCO3 + #.009 xCO + #.118 xRCHO + #.017 xMGLY + #.246 yR6OOH + #3.79 XC

3.00E-11 10

T243N C7RCHO1 + NO3 = RCO3 + HNO3 + #4 XC 1.90E-14 10

T244H C7KET2 + OH = #1.449 RO2C + #.193 RO2XC + #.193 zRNO3 + #.513 xHO2 + #.283 xMECO3 + #.011 xRCO3 + #.099 xHCHO + #.013 xCCHO + #.589 xRCHO + #.347 xPROD2 + yR6OOH + #1.269 XC

1.10E-11 10

T245H M3HXO2 + OH = #1.125 RO2C + #.163 RO2XC + #.163 zRNO3 + #.298 xHO2 + #.539 xRCO3 + #.19 xHCHO + #.187 xCCHO + #.161 xRCHO + #.252 xACET + #.244 xPROD1 + yR6OOH + #1.626 XC

7.21E-12 10

T246H BUOC3OH + OH = #.921 RO2C + #.115 RO2XC + #.115 zRNO3 + #.22 HO2 + #.665 xHO2 + #.457 xCCHO + #.202 xRCHO + #.411 xPROD1 + #.22 PROD2 + #.257 xPROD2 + #.78 yR6OOH + #.284 XC

3.76E-11 10

Page 176: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

164

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T247H E3EOC3OH + OH = #1.392 RO2C + #.159 RO2XC + #.159 zRNO3 + #.407 xHO2 + #.278 xMEO2 + #.157 xMECO3 + #.002 xHCHO + #.058 xCCHO + #.056 xRCHO + #.73 xPROD1 + #.079 xPROD2 + #.091 RCOOH + #.315 xMGLY + #.001 xBACL + yR6OOH + #.552 XC

1.96E-11 10

T248H DPGOME2 + OH = #1.278 RO2C + #.139 RO2XC + #.139 zRNO3 + #.074 HO2 + #.659 xHO2 + #.128 xMEO2 + #.346 xHCHO + #.028 xCCHO + #.074 RCHO + #.113 xRCHO + #.008 xPROD1 + #.669 xPROD2 + #.002 HCOOH + #.926 yR6OOH + #1.027 XC

5.48E-11 10

T249H C8RCHO1 + OH = #.383 RO2C + #.096 RO2XC + #.096 zRNO3 + #.164 xHO2 + #.714 RCO3 + #.026 xRCO3 + #.008 xCO + #.149 xRCHO + #.015 xMGLY + #.286 yR6OOH + #4.704 XC

2.71E-11 10

T249N C8RCHO1 + NO3 = RCO3 + HNO3 + #5 XC 1.70E-14 10

T250H IBUIBTR + OH = #1.608 RO2C + #.235 RO2XC + #.235 zRNO3 + #.692 xHO2 + #.006 xMEO2 + #.067 xRCO3 + #.208 xCO + #.069 xHCHO + #.002 xCCHO + #.034 xRCHO + #.66 xACET + #.466 xPROD1 + #.003 xPROD2 + #.258 RCOOH + #.003 xBACL + yR6OOH + #1.352 XC

5.52E-12 10

T251H DGBE + OH = #1.225 RO2C + #.248 RO2XC + #.248 zRNO3 + #.089 HO2 + #.663 xHO2 + #.18 xHCHO + #.008 xCCHO + #.089 RCHO + #.231 xRCHO + #.001 xGLCHO + #.287 xPROD1 + #.643 xPROD2 + #.911 yR6OOH + #.348 XC

7.44E-11 10

T252H TEXANOL + OH = #.659 RO2C + #.181 RO2XC + #.181 zRNO3 + #.47 HO2 + #.346 xHO2 + #.004 xRCO3 + #.003 xCO + #.003 HCHO + #.184 xHCHO + #.001 xCCHO + #.162 RCHO + #.195 xRCHO + #.26 xACET + #.218 xPROD1 + #.314 PROD2 + #.006 xPROD2 + #.003 RCOOH + #.001 xBACL + #.53 yR6OOH + #6.054 XC

1.45E-11 10

T253H DBUPTHT + OH = #.761 RO2C + #.198 RO2XC + #.198 zRNO3 + #.027 OH + #.067 HO2 + #.625 xHO2 + #.084 xRCO3 + #.053 xCCHO + #.053 xPROD1 + #.312 xPROD2 + #.058 xGLY + #.148 xMGLY + #.085 xBACL + #.054 XYNL + #.122 xAFG1 + #.169 xAFG2 + #.027 AFG3 + #.013 AFG5 + #.534 yR6OOH + #.372 yRAOOH + #9.303 XC

8.59E-12 10

T254H CH3CL + OH = RO2C + xCL + xHCHO + yROOH 4.48E-14 3.15E-13 1.16 2.00 10

T255H ACRYLNIT + OH = RO2C + xHO2 + xHCHO + yROOH + XN + #2 XC

4.90E-12 10

T256H AMP + OH = #.015 RO2C + #.001 RO2XC + #.001 zRNO3 + #.185 HO2 + #.015 xHO2 + #.185 RCHO + #.015 xRCHO + #.799 NRAD + #.016 yROOH + #.201 XN + #.198 XC

2.80E-11 10

T256N AMP + NO3 = HNO3 + NRAD 5.88E-14 10

T257H C13DCP + OH = RO2C + xHO2 + xCLCCHO + yROOH + XC

8.45E-12 10

T257O C13DCP + O3 = #.063 RO2C + #.063 xCL + #.048 OH + #.015 HO2 + #.048 CO + #.343 CO2 + #.063 xHCHO + #.5 CLCCHO + #.61 RCHO2 + #.315 HCL + #.063 yROOH + #-.284 XC

1.60E-19 3.22E-15 5.91 10

T257N C13DCP + NO3 = #.949 RO2C + #.051 RO2XC + #.051 zRNO3 + #.949 xNO2 + #.949 xCLCCHO + yROOH + #.051 XN + #.796 XC

5.57E-18 10

T257P C13DCP + O3P = #.88 PROD1 + #.12 CLACET + #-.88 XC

4.79E-13 10

T258H C2CL + OH = #1.123 RO2C + xCL + #.246 xHCHO + #.877 xCCHO + yROOH

4.18E-13 6.94E-13 0.30 2.00 10

T259H CHCL3 + OH = RO2C + xCL + yROOH + XC 1.06E-13 5.67E-13 1.00 2.00 10

Page 177: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

165

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T260H CL212ETH + OH = RO2C + xCL + xCLCCHO + yROOH 2.53E-13 9.90E-13 0.81 2.00 10

T261H HL2BEN + OH = #.31 RO2C + #.027 RO2XC + #.027 zRNO3 + #.062 OH + #.601 HO2 + #.31 xHO2 + #.31 xGLY + #.57 XYNL + #.109 xAFG1 + #.202 xAFG2 + #.062 AFG3 + #.031 AFG5 + #.337 yRAOOH + #-1.548 XC

5.55E-13 10

T262H CL2ME + OH = RO2C + xCL + yROOH + XC 1.45E-13 7.69E-13 0.99 2.00 10

T263H CL3ETHE + OH = RO2C + xCL + #.75 xPROD1 + #.25 xCLCCHO + yROOH + #-1.5 XC

2.34E-12 5.63E-13 -0.85 10

T263N CL3ETHE + NO3 = RO2C + xCL + yROOH + XN + #2 XC 2.99E-16 10

T263P CL3ETHE + O3P = #2 XC 4.37E-14 10

T264H CL4ETHE + OH = RO2C + xCL + xPROD1 + yROOH + #-2 XC

1.71E-13 9.64E-12 2.40 10

T265H HLBEN + OH = #.31 RO2C + #.027 RO2XC + #.027 zRNO3 + #.062 OH + #.601 HO2 + #.31 xHO2 + #.31 xGLY + #.57 XYNL + #.109 xAFG1 + #.202 xAFG2 + #.062 AFG3 + #.031 AFG5 + #.337 yRAOOH + #-1.548 XC

7.70E-13 10

T266H CLETHE + OH = RO2C + #.649 xCL + #.351 xHO2 + #.351 xHCHO + #.649 xGLCHO + yROOH + #.351 XC

6.90E-12 1.69E-12 -0.84 10

T267H ETACTYL + OH = #.67 OH + #.33 RCO3 + #.33 HCOOH + #.67 MGLY + #.67 XC

8.00E-12 10

T268H ETAMINE + OH = #.515 RO2C + #.485 HO2 + #.515 xHO2 + #.485 PROD2 + #.515 xPROD2 + #.515 yROOH + XN + #-4 XC

2.58E-11 10

T268O ETAMINE + O3 = RO2C + OH + xHO2 + xPROD2 + yROOH + XN + #-4 XC

1.98E-20 10

T268N ETAMINE + NO3 = #.492 RO2C + #.508 HO2 + #.492 xHO2 + HNO3 + #.508 PROD2 + #.492 xPROD2 + #.492 yROOH + XN + #-4 XC

1.16E-13 10

T269H ETOHNH2 + OH = #.514 RO2C + #.486 HO2 + #.514 xHO2 + #.514 xHCHO + #.091 RCHO + #.394 PROD2 + #.514 xPROD2 + #.514 yROOH + XN + #-4.235 XC

4.41E-11 10

T269O ETOHNH2 + O3 = RO2C + OH + xHO2 + xHCHO + xPROD2 + yROOH + XN + #-5 XC

6.58E-20 10

T269N ETOHNH2 + NO3 = #.564 RO2C + #.436 HO2 + #.564 xHO2 + HNO3 + #.564 xHCHO + #.436 PROD2 + #.564 xPROD2 + #.564 yROOH + XN + #-4.564 XC

1.35E-13 10

T270H HFC152A + OH = RO2C + xHO2 + xCCHO + yROOH 3.47E-14 9.40E-13 1.97 10

T271H INDTET + OH = #.447 RO2C + #.103 RO2XC + #.103 zRNO3 + #.05 HO2 + #.447 xHO2 + #.3 RCO3 + #.1 BZO + #.285 xPROD2 + #.163 xGLY + #.05 XYNL + #.081 xAFG1 + #.081 xAFG2 + #.35 yR6OOH + #.2 yRAOOH + #4.637 XC

3.40E-11 10

T272H MEACTYL + OH = #.67 OH + #.33 MECO3 + #.33 HCOOH + #.67 MGLY

5.90E-12 10

T273H MEBR + OH = RO2C + xCL + xHCHO + yROOH 4.12E-14 2.34E-13 1.04 2.00 10

T274H NMP + OH = #.85 RO2C + #.15 RO2XC + #.15 zRNO3 + #.85 xHO2 + #.425 xRCHO + #.425 xPROD2 + yR6OOH + XN + #.275 XC

2.15E-11 10

T274N NMP + NO3 = #.85 RO2C + #.15 RO2XC + #.15 zRNO3 + #.85 xHO2 + #.85 xPROD2 + #2 XN + #-1 XC

1.26E-13 10

T275H SIOME4 + OH = #.4 RO2C + #.4 xHO2 + #.4 yR6OOH + #8 XC

1.00E-12 10

T276H T13DCP + OH = RO2C + xHO2 + xCLCCHO + yROOH + XC

1.44E-11 10

Page 178: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

166

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T276O T13DCP + O3 = #.063 RO2C + #.063 xCL + #.048 OH + #.015 HO2 + #.048 CO + #.343 CO2 + #.063 xHCHO + #.5 CLCCHO + #.61 RCHO2 + #.315 HCL + #.063 yROOH + #-.284 XC

7.12E-19 6.64E-15 5.45 10

T276N T13DCP + NO3 = #.949 RO2C + #.051 RO2XC + #.051 zRNO3 + #.949 xNO2 + #.949 xCLCCHO + yROOH + #.051 XN + #.796 XC

9.13E-17 10

T276P T13DCP + O3P = #.88 PROD1 + #.12 CLACET + #-.88 XC

1.30E-12 10

T277H TCE111 + OH = #2 RO2C + xCL + xHCHO + yROOH + XC

1.24E-14 5.33E-13 2.24 2.00 10

T278H TMAMINE + OH = RO2C + xHO2 + xPROD2 + yROOH + XN + #-3 XC

4.84E-11 10

T278O TMAMINE + O3 = RO2C + OH + xHO2 + xPROD2 + yROOH + XN + #-3 XC

7.84E-18 10

T278N TMAMINE + NO3 = RO2C + xHO2 + HNO3 + xPROD2 + yROOH + XN + #-3 XC

1.56E-13 10

T279H VINACYL + OH = #.986 RO2C + #.027 RO2XC + #.027 zRNO3 + #.973 xHO2 + #.948 xHCHO + #.946 xRCHO + #.007 xACRO + #.015 xMVK + #.005 xIPRD + yROOH + #-.054 XC

3.11E-11 6.55E-12 -0.93 10

T279O VINACYL + O3 = #.063 RO2C + #.128 OH + #.095 HO2 + #.063 xHO2 + #.303 CO + #.088 CO2 + #.5 HCHO + #.063 xCCHO + #.5 RCHO + #.185 HCHO2 + #.425 RCHO2 + #.063 yROOH + #.023 XC

9.08E-18 3.36E-15 3.53 10

T279N VINACYL + NO3 = #.995 RO2C + #.08 RO2XC + #.08 zRNO3 + #.92 xHO2 + #.075 xCCHO + #.92 xRNO3 + yROOH + #.08 XN + #-2.15 XC

1.38E-14 3.14E-13 1.86 10

T279P VINACYL + O3P = #.45 RCHO + #.55 PROD1 + #.45 XC 4.17E-12 1.34E-11 0.70 10

T300H PROPALD + OH = #.965 RCO3 + #.035 {RO2C + xHO2 + xCO + xCCHO + yROOH}

1.97E-11 5.10E-12 -0.80 16

T300N PROPALD + NO3 = HNO3 + RCO3 6.74E-15 1.40E-12 3.18 16

T300V PROPALD + HV = RO2C + xHO2 + yROOH + xCCHO + CO + HO2

Phot Set= C2CHO 16

T301H MEK + OH = #.967 RO2C + #.039 {RO2XC + zRNO3} + #.376 xHO2 + #.51 xMECO3 + #.074 xRCO3 + #.088 xHCHO + #.504 xCCHO + #.376 xRCHO + yROOH + #.3 XC

1.20E-12 1.30E-12 0.05 2.00 16

T301V MEK + HV = MECO3 + RO2C + xHO2 + xCCHO + yROOH

Phot Set= MEK-06, qy= 1.8E-1 16

SP01 MITC + OH = HS + #2 XC + XN 1.72E-12 19

SP02 MITC + HV = SO2 + #2 O3P + #2 XC + XN Phot Set= MITC 19

SP09 CS2 + OH = HO2 + SO2 + XC 2.76E-12 19

SP10 CS2 + HV = SO2 + O3P + XC Phot Set= CS2, qy= 1.2E-2 19

SP21 MOLINATE + OH = #.180 HO2 + #1.168 RO2C + #.512 xHO2 + #.820 yR6OOH + #.164 {RO2XC + zRNO3} + #.512 xRCHO + #.144 xCCHO + #.180 PROD2 + #.144 xR2NCOS + #4.104 XC + #.856 XN

2.42E-11 19

SP22 MOLINATE + NO3 = HNO3 + #1.28 RO2C + #.48 xHO2 + yR6OOH + #.2 {RO2XC + zRNO3} + #.48 xRCHO + #.32 xCCHO + #.32 xR2NCOS + #3.48 XC + #.68 XN

9.20E-15 19

SP25 CCL3NO2 + HV = NO2 + RO2C + xCL + XC Phot Set= CLPICERI, qy= 8.7E-1 19

SP03 HS + O3 = HSO + O2 3.34E-12 8.50E-12 0.56 19

SP04 HS + NO2 = HSO + NO 6.45E-11 2.90E-11 -0.48 19

SP05 HSO + O3 = #.55 {HS + O2 + O2} + #.45 {HO2 + SO2} 1.10E-13 19

SP06 HSO + NO2 = NO + HO2 + SO2 9.60E-12 19

Page 179: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

167

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

SP07 HS + O2 = HO2 + SO2 1.00E-20 19

SP08 HSO + O2 = HO2 + SO2 + O3P 1.00E-17 19

SP12 xR2NCOS = R2NCOS k is variable parameter: RO2RO 19

SP13 xR2NCOS = #7 XC + XN k is variable parameter: RO2XRO 19

SP14 R2NCOS + NO2 = R2NCOSO + NO 6.00E-11 19

SP15 R2NCOS + O3 = R2NCOSO + O2 4.90E-12 19

SP16 R2NCOSO + NO2 = RCO3 + SO2 + NO + #4 XC + XN 1.20E-11 19

SP17 R2NCOSO + O3 = RCO3 + SO2 + O2 + #4 XC + XN 4.10E-13 19

Nr01 NRAD + NO2 = PROD2 + #2 XN + #-2 XC Same k as rxn BR28 20

Nr03 NRAD + HO2 = #4 XC + XN Same k as rxn BR22 20

BL01 OTH1 + OH = #1.033 RO2C + xCL + #.033 xHCHO + #.595 xCLCCHO + yROOH + #.777 XC

2.23E-13 14

BL02 OTH2 + OH = #1.826 RO2C + #.097 RO2XC + #.097 zRNO3 + #.062 xHO2 + #.095 xMEO2 + #.034 xMECO3 + #.713 xTBUO + #.021 xCO + #.023 CO2 + #.857 xHCHO + #.019 xRCHO + #.023 xACET + #.055 RCOOH + #.008 xMGLY + yR6OOH + #.187 XC

7.74E-13 14

BL03 OTH3 + OH = #1.51 RO2C + #.046 RO2XC + #.046 zRNO3 + #.39 xCL + #.504 xHO2 + #.06 xRCO3 + #.144 xCO + #.002 xHCHO + #.429 xRCHO + #.011 xACET + #.053 xPROD1 + #.003 RCOOH + #.013 xMGLY + #.006 xBACL + #.39 xCLCCHO + yROOH + #.014 XC

2.31E-12 14

BL04 OTH4 + OH = #1.549 RO2C + #.197 RO2XC + #.197 zRNO3 + #.734 xHO2 + #.037 xMEO2 + #.002 xRCO3 + #.03 xTBUO + #.09 xHCHO + #.244 xCCHO + #.266 xRCHO + #.001 xGLCHO + #.126 xACET + #.049 xPROD1 + #.352 xPROD2 + #.002 CCOOH + yR6OOH + #.587 XC

5.16E-12 14

BL05 OTH5 + OH = #1.482 RO2C + #.435 RO2XC + #.435 zRNO3 + #.018 HO2 + #.524 xHO2 + #.001 xMEO2 + #.019 xRCO3 + #.001 xCO + #.015 xHCHO + #.092 xCCHO + #.004 RCHO + #.165 xRCHO + #.011 xACET + #.049 xPROD1 + #.014 PROD2 + #.375 xPROD2 + #.979 yR6OOH + #3.062 XC

1.92E-11 14

BL06 OLE1 + OH = #1.22 RO2C + #.254 RO2XC + #.254 zRNO3 + #.704 xHO2 + #.042 xRCO3 + #.012 xCO + #.376 xHCHO + #.004 xCCHO + #.198 xRCHO + #.005 xGLCHO + #.051 xACET + #.237 xPROD2 + #.218 xMGLY + #.053 xBACL + #.016 xACRO + #.039 xMVK + #.005 xIPRD + yR6OOH + #3.68 XC

3.78E-11 14

BL07 OLE1 + O3 = #.048 RO2C + #.013 RO2XC + #.013 zRNO3 + #.105 OH + #.088 HO2 + #.02 xHO2 + #.28 CO + #.075 CO2 + #.5 HCHO + #.265 RCHO + #.015 xRCHO + #.001 PROD1 + #.006 PROD2 + #.004 xPROD2 + #.235 MGLY + #.185 HCHO2 + #.225 RCHO2 + #.033 yR6OOH + #5.598 XC

1.01E-17 3.28E-15 3.45 14

BL08 OLE1 + NO3 = #1.333 RO2C + #.288 RO2XC + #.288 zRNO3 + #.7 xHO2 + #.002 xMEO2 + #.01 xRCO3 + #.269 HNO3 + #.091 xCO + #.001 xHCHO + #.027 xCCHO + #.004 xRCHO + #.108 xACET + #.001 xPROD1 + #.003 xPROD2 + #.142 xBACL + #.226 xMVK + #.345 xRNO3 + yR6OOH + #.387 XN + #3.194 XC

7.46E-15 14

BL09 OLE2 + O3P = #.012 RCHO + #.106 PROD1 + #.882 PROD2 + #4.248 XC

2.25E-11 14

Page 180: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

168

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BL10 OLE2 + OH = #.965 RO2C + #.249 RO2XC + #.249 zRNO3 + #.75 xHO2 + #.084 xHCHO + #.2 xCCHO + #.665 xRCHO + #.104 xACET + #.035 xPROD1 + #.147 xPROD2 + #.115 xBALD + #.002 xMACR + #.008 xMVK + #.022 xIPRD + yR6OOH + #3.738 XC

7.23E-11 14

BL11 OLE2 + O3 = #.235 RO2C + #.012 RO2XC + #.012 zRNO3 + #.225 OH + #.036 HO2 + #.072 xHO2 + #.06 MEO2 + #.109 xMECO3 + #.004 xRCO3 + #.113 CO + #.063 CO2 + #.048 HCHO + #.08 xHCHO + #.113 CCHO + #.019 xCCHO + #.681 RCHO + #.085 xRCHO + #.044 ACET + #.001 xACET + #.032 PROD1 + #.014 PROD2 + #.042 HCOOH + #.042 CCOOH + #.056 RCOOH + #.084 BALD + #.004 HCHO2 + #.013 CCHO2 + #.552 RCHO2 + #.197 yR6OOH + #3.857 XC

1.61E-16 2.47E-14 3.00 14

BL12 OLE2 + NO3 = #1.326 RO2C + #.34 RO2XC + #.34 zRNO3 + #.07 xNO2 + #.56 xHO2 + #.055 xHCHO + #.034 xCCHO + #.038 xRCHO + #.063 xACET + #.035 xPROD1 + #.031 xBALD + #.557 xRNO3 + #.86 yR6OOH + #.373 XN + #3.835 XC

3.32E-12 14

BL13 OLE1 + O3P = #.45 RCHO + #.264 PROD1 + #.286 PROD2 + #4.878 XC

5.13E-12 14

BL14 ARO1 + OH = #.661 RO2C + #.138 RO2XC + #.138 zRNO3 + #.051 OH + #.183 HO2 + #.58 xHO2 + #.049 xMEO2 + #.033 xCCHO + #.023 xRCHO + #.267 xPROD2 + #.181 xGLY + #.143 xMGLY + #.012 xBACL + #.005 CRES + #.152 XYNL + #.002 xBALD + #.126 xAFG1 + #.21 xAFG2 + #.051 AFG3 + #.026 AFG5 + #.361 yR6OOH + #.406 yRAOOH + #3.063 XC

8.04E-12 14

BL15 ARO2 + OH = #.514 RO2C + #.119 RO2XC + #.119 zRNO3 + #.06 OH + #.102 HO2 + #.508 xHO2 + #.006 xMEO2 + #.16 RCO3 + #.045 BZO + #.007 xRCHO + #.126 xPROD2 + #.145 xGLY + #.2 xMGLY + #.028 xBACL + #.071 XYNL + #.008 xBALD + #.168 xAFG1 + #.157 xAFG2 + #.06 AFG3 + #.048 xAFG4 + #.03 AFG5 + #.067 yR6OOH + #.461 yRAOOH + #3.584 XC

2.63E-11 14

BL16 TERP + OH = #1.147 RO2C + #.2 RO2XC + #.2 zRNO3 + #.759 xHO2 + #.042 xRCO3 + #.001 xCO + #.264 xHCHO + #.533 xRCHO + #.036 xACET + #.005 xPROD1 + #.255 xPROD2 + #.009 xMGLY + #.014 xBACL + #.002 xMVK + #.001 xIPRD + yR6OOH + #5.056 XC

7.98E-11 1.87E-11 -0.86 17

BL17 TERP + O3 = #.875 RO2C + #.203 RO2XC + #.203 zRNO3 + #.585 OH + #.052 HO2 + #.067 xHO2 + #.126 xMECO3 + #.149 xRCO3 + #.166 CO + #.019 xCO + #.045 CO2 + #.079 HCHO + #.15 xHCHO + #.22 xRCHO + #.165 xACET + #.004 PROD1 + #.29 PROD2 + #.001 xGLY + #.002 xMGLY + #.055 xBACL + #.001 xMACR + #.001 xIPRD + #.107 HCHO2 + #.161 RCHO2 + #.545 yR6OOH + #3.886 XC

6.99E-17 9.57E-16 1.56 17

BL18 TERP + NO3 = #1.509 RO2C + #.397 RO2XC + #.397 zRNO3 + #.421 xNO2 + #.162 xHO2 + #.019 xRCO3 + #.01 xCO + #.017 xHCHO + #.509 xRCHO + #.001 xGLCHO + #.175 xACET + #.001 xMGLY + #.003 xMACR + #.001 xMVK + #.002 xIPRD + #.163 xRNO3 + yR6OOH + #.416 XN + #4.473 XC

6.53E-12 1.28E-12 -0.97 17

BL19 TERP + O3P = #.147 RCHO + #.853 PROD2 + #4.441 XC

3.71E-11 17

BT19 SESQ + OH = #1.147 RO2C + #.2 RO2XC + #.2 zRNO3 + #.759 xHO2 + #.042 xRCO3 + #.001 xCO + #.264 xHCHO + #.533 xRCHO + #.036 xACET + #.005 xPROD1 + #.255 xPROD2 + #.009 xMGLY + #.014 xBACL + #.002 xMVK + #.001 xIPRD + yR6OOH + #10.056 XC

Same k as rxn BL16 1

Page 181: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

169

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BT20 SESQ + O3 = #.875 RO2C + #.203 RO2XC + #.203 zRNO3 + #.585 OH + #.052 HO2 + #.067 xHO2 + #.126 xMECO3 + #.149 xRCO3 + #.166 CO + #.019 xCO + #.045 CO2 + #.079 HCHO + #.15 xHCHO + #.22 xRCHO + #.165 xACET + #.004 PROD1 + #.29 PROD2 + #.001 xGLY + #.002 xMGLY + #.055 xBACL + #.001 xMACR + #.001 xIPRD + #.107 HCHO2 + #.161 RCHO2 + #.545 yR6OOH + #8.886 XC

Same k as rxn BL17 1

BT21 SESQ + NO3 = #1.509 RO2C + #.397 RO2XC + #.397 zRNO3 + #.421 xNO2 + #.162 xHO2 + #.019 xRCO3 + #.01 xCO + #.017 xHCHO + #.509 xRCHO + #.001 xGLCHO + #.175 xACET + #.001 xMGLY + #.003 xMACR + #.001 xMVK + #.002 xIPRD + #.163 xRNO3 + yR6OOH + #.416 XN + #9.473 XC

Same k as rxn BL18 1

BT22 SESQ + O3P = #.147 RCHO + #.853 PROD2 + #9.441 XC

Same k as rxn BL19 1

CI01 CL2 + HV = #2 CL Phot Set= CL2 1

CI02 CL + NO + M = CLNO + M 7.60E-32 7.60E-32 0.00 -1.80

1

CI03 CLNO + HV = CL + NO Phot Set= CLNO-06 1

CI04 CL + NO2 = CLONO 1.60E-11 Falloff, F=0.60, N=1.00 1

CI05 CL + NO2 = CLNO2 3.52E-12 Falloff, F=0.60, N=1.00 1

CI06 CLONO + HV = CL + NO2 Phot Set= CLONO 1

CI07 CLNO2 + HV = CL + NO2 Phot Set= CLNO2 1

CI08 CL + HO2 = HCL + O2 3.44E-11 3.44E-11 0.00 -0.56

1

CI09 CL + HO2 = CLO + OH 9.41E-12 9.41E-12 0.00 2.10

CI10 CL + O3 = CLO + O2 1.22E-11 2.80E-11 0.50 1

CI11 CL + NO3 = CLO + NO2 2.40E-11 1

CI12 CLO + NO = CL + NO2 1.66E-11 6.20E-12 -0.59 1

CI13 CLO + NO2 = CLONO2 2.29E-12 Falloff, F=0.60, N=1.00 1

CI14 CLONO2 + HV = CLO + NO2 Phot Set= CLONO2-1 1

CI15 CLONO2 + HV = CL + NO3 Phot Set= CLONO2-2 1

CI16 CLONO2 = CLO + NO2 4.12E-04 Falloff, F=0.60, N=1.00 1

CI17 CL + CLONO2 = CL2 + NO3 1.01E-11 6.20E-12 -0.29 1

CI18 CLO + HO2 = HOCL + O2 6.83E-12 2.20E-12 -0.68 1

CI19 HOCL + HV = OH + CL Phot Set= HOCL-06 1

CI20 CLO + CLO = #.29 CL2 + #1.42 CL + O2 1.82E-14 1.25E-11 3.89 1

CI21 OH + HCL = H2O + CL 7.90E-13 1.70E-12 0.46 1

CI22 CL + H2 = HCL + HO2 1.77E-14 3.90E-11 4.59 1

CP01 HCHO + CL = HCL + HO2 + CO 7.33E-11 8.10E-11 0.06 1

CP02 CCHO + CL = HCL + MECO3 8.00E-11 1

CP03 MEOH + CL = HCL + HCHO + HO2 5.50E-11 5.50E-11 0.00 1

CP04 RCHO + CL = HCL + #.9 RCO3 + #.1 {RO2C + xCCHO + xCO + xHO2 + yROOH}

1.23E-10 1

CP05 ACET + CL = HCL + RO2C + xHCHO + xMECO3 + yROOH

2.75E-12 7.70E-11 1.99 1

CP06 PROD1 + CL = HCL + #.975 RO2C + #.039 RO2XC + #.039 zRNO3 + #.84 xHO2 + #.085 xMECO3 + #.036 xRCO3 + #.065 xHCHO + #.07 xCCHO + #.84 xRCHO + yROOH + #.763 XC

3.60E-11 1

Page 182: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

170

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

CP07 RNO3 + CL = HCL + #.038 NO2 + #.055 HO2 + #1.282 RO2C + #.202 RO2XC + #.202 zRNO3 + #.009 RCHO + #.018 PROD1 + #.012 PROD2 + #.055 RNO3 + #.159 xNO2 + #.547 xHO2 + #.045 xHCHO + #.3 xCCHO + #.02 xRCHO + #.003 xACET + #.041 xPROD1 + #.046 xPROD2 + #.547 xRNO3 + #.908 yR6OOH + #.201 XN + #-.149 XC

1.92E-10 1

CP08 PROD2 + CL = HCL + #.314 HO2 + #.68 RO2C + #.116 RO2XC + #.116 zRNO3 + #.198 RCHO + #.116 PROD2 + #.541 xHO2 + #.007 xMECO3 + #.022 xRCO3 + #.237 xHCHO + #.109 xCCHO + #.591 xRCHO + #.051 xPROD1 + #.04 xPROD2 + #.686 yR6OOH + #1.262 XC

2.00E-10 1

CP09 GLY + CL = HCL + #.63 HO2 + #1.26 CO + #.37 RCO3 + #-.37 XC

7.33E-11 8.10E-11 0.06 1

CP10 MGLY + CL = HCL + CO + MECO3 8.00E-11 1

CP11 CRES + CL = HCL + xHO2 + xBALD + yR6OOH 6.20E-11 1

CP12 BALD + CL = HCL + BZCO3 8.00E-11 1

CP13 ROOH + CL = HCL + #.414 OH + #.588 RO2C + #.414 RCHO + #.104 xOH + #.482 xHO2 + #.106 xHCHO + #.104 xCCHO + #.197 xRCHO + #.285 xPROD1 + #.586 yROOH + #-0.287 XC

1.66E-10 1

CP14 R6OOH + CL = HCL + #.145 OH + #1.078 RO2C + #.117 {RO2XC + zRNO3} + #.145 PROD2 + #.502 xOH + #.237 xHO2 + #.186 xCCHO + #.676 xRCHO + #.28 xPROD2 + #.855 yR6OOH + #.348 XC

3.00E-10 1

CP15 RAOOH + CL = #.404 HCL + #.139 OH + #.148 HO2 + #.589 RO2C + #.124 RO2XC + #.124 zRNO3 + #.074 PROD2 + #.147 MGLY + #.139 IPRD + #.565 xHO2 + #.024 xOH + #.448 xRCHO + #.026 xGLY + #.03 xPROD1 + #.252 xMGLY + #.073 xAFG1 + #.073 xAFG2 + #.713 yR6OOH + #1.674 XC

4.29E-10 1

TP01 ACRO + CL = #.484 xHO2 + #.274 xCL + #.216 MACO3 + #1.032 RO2C + #.026 RO2XC + #.026 zRNO3 + #.216 HCL + #.484 xCO + #.274 xHCHO + #.274 xGLY + #.484 xCLCCHO + #.784 yROOH + #-.294 XC

2.94E-10 1

CP16 MACR + CL = #.25 HCL + #.165 MACO3 + #.802 RO2C + #.033 RO2XC + #.033 zRNO3 + #.802 xHO2 + #.541 xCO + #.082 xIPRD + #.18 xCLCCHO + #.541 xCLACET + #.835 yROOH + #.208 XC

3.85E-10 1

CP17 MVK + CL = #1.283 RO2C + #.053 {RO2XC + zRNO3} + #.322 xHO2 + #.625 xMECO3 + #.947 xCLCCHO + yROOH + #.538 XC

2.32E-10 1

CP18 IPRD + CL = #.401 HCL + #.084 HO2 + #.154 MACO3 + #.73 RO2C + #.051 RO2XC + #.051 zRNO3 + #.042 AFG1 + #.042 AFG2 + #.712 xHO2 + #.498 xCO + #.195 xHCHO + #.017 xMGLY + #.009 xAFG1 + #.009 xAFG2 + #.115 xIPRD + #.14 xCLCCHO + #.42 xCLACET + #.762 yR6OOH + #.709 XC

4.12E-10 1

CP19 CLCCHO + HV = HO2 + CO + RO2C + xCL + xHCHO + yROOH

Phot Set= CLCCHO 1

CP20 CLCCHO + OH = RCO3 + #-1 XC 3.10E-12 1

CP21 CLCCHO + CL = HCL + RCO3 + #-1 XC 1.29E-11 1

CP22 CLACET + HV = MECO3 + RO2C + xCL + xHCHO + yROOH

Phot Set= CLACET, qy= 5.0E-1 1

CP23 xCL = CL k is variable parameter: RO2RO 2

CP24 xCL = k is variable parameter: RO2XRO 2

CP25 xCLCCHO = CLCCHO k is variable parameter: RO2RO 2

Page 183: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

171

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

CP26 xCLCCHO = #2 XC k is variable parameter: RO2XRO 2

CP27 xCLACET = CLACET k is variable parameter: RO2RO 2

CP28 xCLACET = #3 XC k is variable parameter: RO2XRO 2

CE01 CH4 + CL = HCL + MEO2 1.02E-13 7.30E-12 2.54 1

CE02 ETHE + CL = xHO2 + #2 RO2C + xHCHO + CLCHO 1.04E-10 Falloff, F=0.60, N=1.00 1

CE03 ISOP + CL = #.15 HCL + #.738 xHO2 + #.177 xCL + #1.168 RO2C + #.085 RO2XC + #.085 zRNO3 + #.275 xHCHO + #.177 xMVK + #.671 xIPRD + #.067 xCLCCHO + yR6OOH + #.018 XC

4.80E-10 1

CE04 ACYL + CL = HO2 + CO + XC 4.97E-11 Falloff, F=0.60, N=1.00 1

T00L ETHANE + CL = RO2C + xHO2 + xCCHO + HCL + yROOH

5.95E-11 8.30E-11 0.20 10

T01L PROPANE + CL = #.97 RO2C + #.03 RO2XC + #.03 zRNO3 + #.97 xHO2 + #.482 xRCHO + #.488 xACET + HCL + yROOH + #-.09 XC

1.37E-10 1.20E-10 -0.08 10

T02L NC4 + CL = #1.418 RO2C + #.077 RO2XC + #.077 zRNO3 + #.923 xHO2 + #.481 xCCHO + #.313 xRCHO + #.37 xPROD1 + HCL + yROOH + #.157 XC

2.05E-10 10

T03L M2C3 + CL = #1.19 RO2C + #.049 RO2XC + #.049 zRNO3 + #.651 xHO2 + #.3 xTBUO + #.239 xHCHO + #.422 xRCHO + #.23 xACET + HCL + yROOH + #.311 XC

1.43E-10 10

T04L NC5 + CL = #1.577 RO2C + #.143 RO2XC + #.143 zRNO3 + #.857 xHO2 + #.105 xCCHO + #.328 xRCHO + #.177 xPROD1 + #.352 xPROD2 + HCL + yR6OOH + #.128 XC

2.80E-10 10

T05L M2C4 + CL = #1.734 RO2C + #.123 RO2XC + #.123 zRNO3 + #.869 xHO2 + #.008 xMEO2 + #.044 xHCHO + #.482 xCCHO + #.381 xRCHO + #.439 xACET + #.042 xPROD1 + HCL + yR6OOH + #.618 XC

2.20E-10 10

T06L CYCC5 + CL = #2.438 RO2C + #.224 RO2XC + #.224 zRNO3 + #.776 xHO2 + #.054 xCO + #.756 xRCHO + #.02 xPROD1 + HCL + yR6OOH + #1.254 XC

3.09E-10 10

T07L NC6 + CL = #1.591 RO2C + #.22 RO2XC + #.22 zRNO3 + #.78 xHO2 + #.009 xCCHO + #.214 xRCHO + #.585 xPROD2 + HCL + yR6OOH + #.51 XC

3.40E-10 10

T08L M22C4 + CL = #2.068 RO2C + #.167 RO2XC + #.167 zRNO3 + #.549 xHO2 + #.016 xMEO2 + #.268 xTBUO + #.409 xHCHO + #.637 xCCHO + #.185 xRCHO + #.001 xGLCHO + #.363 xACET + #.016 xPROD1 + HCL + yR6OOH + #.517 XC

1.96E-10 10

T09L M23C4 + CL = #1.733 RO2C + #.164 RO2XC + #.164 zRNO3 + #.836 xHO2 + #.047 xHCHO + #.039 xCCHO + #.456 xRCHO + #.734 xACET + #.001 xPROD1 + HCL + yR6OOH + #1.317 XC

2.30E-10 10

T10L M2C5 + CL = #1.661 RO2C + #.193 RO2XC + #.193 zRNO3 + #.807 xHO2 + #.001 xHCHO + #.004 xCCHO + #.625 xRCHO + #.234 xACET + #.006 xPROD1 + #.183 xPROD2 + HCL + yR6OOH + #1.134 XC

2.90E-10 10

T11L M3C5 + CL = #1.832 RO2C + #.191 RO2XC + #.191 zRNO3 + #.809 xHO2 + #.019 xHCHO + #.783 xCCHO + #.282 xRCHO + #.001 xGLCHO + #.344 xPROD1 + #.047 xPROD2 + HCL + yR6OOH + #.763 XC

2.80E-10 10

T12L CYCC6 + CL = #1.272 RO2C + #.201 RO2XC + #.201 zRNO3 + #.799 xHO2 + #.203 xRCHO + #.597 xPROD2 + HCL + yR6OOH + #.603 XC

3.50E-10 10

Page 184: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

172

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T13L MECYCC5 + CL = #2.241 RO2C + #.31 RO2XC + #.31 zRNO3 + #.596 xHO2 + #.092 xMECO3 + #.003 xRCO3 + #.028 xCO + #.052 xHCHO + #.679 xRCHO + #.001 xPROD1 + #.007 xPROD2 + HCL + yR6OOH + #1.784 XC

3.21E-10 10

T14L NC7 + CL = #1.519 RO2C + #.29 RO2XC + #.29 zRNO3 + #.71 xHO2 + #.143 xRCHO + #.575 xPROD2 + HCL + yR6OOH + #1.381 XC

3.90E-10 10

T15L M223C4 + CL = #1.925 RO2C + #.233 RO2XC + #.233 zRNO3 + #.589 xHO2 + #.178 xTBUO + #.348 xHCHO + #.016 xCCHO + #.302 xRCHO + #.755 xACET + HCL + yR6OOH + #1.339 XC

2.90E-10 10

T16L M22C5 + CL = #1.602 RO2C + #.215 RO2XC + #.215 zRNO3 + #.599 xHO2 + #.186 xTBUO + #.087 xHCHO + #.003 xCCHO + #.586 xRCHO + #.028 xACET + #.013 xPROD1 + #.191 xPROD2 + HCL + yR6OOH + #1.833 XC

2.58E-10 10

T17L M23C5 + CL = #1.846 RO2C + #.253 RO2XC + #.253 zRNO3 + #.747 xHO2 + #.038 xHCHO + #.412 xCCHO + #.314 xRCHO + #.003 xGLCHO + #.41 xACET + #.203 xPROD1 + #.047 xPROD2 + HCL + yR6OOH + #1.348 XC

2.79E-10 10

T18L M24C5 + CL = #1.857 RO2C + #.234 RO2XC + #.234 zRNO3 + #.766 xHO2 + #.213 xHCHO + #.009 xCCHO + #.661 xRCHO + #.23 xACET + #.008 xPROD1 + #.082 xPROD2 + HCL + yR6OOH + #2.168 XC

2.90E-10 10

T19L M2C6 + CL = #1.585 RO2C + #.267 RO2XC + #.267 zRNO3 + #.733 xHO2 + #.008 xHCHO + #.019 xCCHO + #.362 xRCHO + #.121 xACET + #.378 xPROD2 + HCL + yR6OOH + #1.635 XC

3.50E-10 10

T20L M33C5 + CL = #2.353 RO2C + #.244 RO2XC + #.244 zRNO3 + #.74 xHO2 + #.016 xMEO2 + #.359 xHCHO + #1.047 xCCHO + #.102 xRCHO + #.022 xGLCHO + #.477 xACET + #.174 xPROD1 + #.004 xPROD2 + HCL + yR6OOH + #.566 XC

2.60E-10 10

T21L M3C6 + CL = #1.67 RO2C + #.269 RO2XC + #.269 zRNO3 + #.731 xHO2 + #.005 xHCHO + #.17 xCCHO + #.433 xRCHO + #.133 xPROD1 + #.289 xPROD2 + HCL + yR6OOH + #1.476 XC

3.30E-10 10

T22L ET3C5 + CL = #1.739 RO2C + #.26 RO2XC + #.26 zRNO3 + #.74 xHO2 + #.009 xHCHO + #.658 xCCHO + #.366 xRCHO + #.001 xGLCHO + #.301 xPROD1 + #.073 xPROD2 + HCL + yR6OOH + #1.373 XC

3.31E-10 10

T23L M11CC5 + CL = #2.277 RO2C + #.383 RO2XC + #.383 zRNO3 + #.455 xHO2 + #.129 xMECO3 + #.032 xRCO3 + #.243 xCO + #.211 xHCHO + #.574 xRCHO + #.006 xACET + #.01 xPROD1 + HCL + yR6OOH + #2.114 XC

3.13E-10 10

T24L M12CC5 + CL = #2.03 RO2C + #.371 RO2XC + #.371 zRNO3 + #.392 xHO2 + #.157 xMECO3 + #.081 xRCO3 + #.011 xCO + #.029 xHCHO + #.09 xCCHO + #.543 xRCHO + #.005 xPROD2 + HCL + yR6OOH + #2.338 XC

3.32E-10 10

T25L CYCC7 + CL = #1.6 RO2C + #.318 RO2XC + #.318 zRNO3 + #.682 xHO2 + #.044 xHCHO + #.002 xCCHO + #.377 xRCHO + #.31 xPROD2 + HCL + yR6OOH + #2.053 XC

3.90E-10 10

T26L M13CYC5 + CL = #2.062 RO2C + #.383 RO2XC + #.383 zRNO3 + #.464 xHO2 + #.151 xMECO3 + #.002 xRCO3 + #.053 xCO + #.094 xHCHO + #.569 xRCHO + #.046 xPROD2 + HCL + yR6OOH + #2.264 XC

3.32E-10 10

Page 185: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

173

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T27L ETCYCC5 + CL = #2.269 RO2C + #.401 RO2XC + #.401 zRNO3 + #.524 xHO2 + #.075 xRCO3 + #.022 xCO + #.013 xHCHO + #.145 xCCHO + #.571 xRCHO + #.001 xGLCHO + #.003 xPROD1 + #.008 xPROD2 + #.008 xMGLY + HCL + yR6OOH + #2.245 XC

3.83E-10 10

T28L NC8 + CL = #1.449 RO2C + #.352 RO2XC + #.352 zRNO3 + #.648 xHO2 + #.088 xRCHO + #.561 xPROD2 + HCL + yR6OOH + #2.258 XC

4.60E-10 10

T29L BRC8 + CL = #1.634 RO2C + #.339 RO2XC + #.339 zRNO3 + #.661 xHO2 + #.054 xHCHO + #.11 xCCHO + #.352 xRCHO + #.033 xACET + #.043 xPROD1 + #.329 xPROD2 + HCL + yR6OOH + #2.391 XC

3.66E-10 10

T30L M224C5 + CL = #1.991 RO2C + #.209 RO2XC + #.209 zRNO3 + #.592 xHO2 + #.199 xTBUO + #.425 xHCHO + #.003 xCCHO + #.581 xRCHO + #.117 xACET + #.063 xPROD1 + #.097 xPROD2 + HCL + yR6OOH + #2.591 XC

2.60E-10 10

T31L M22C6 + CL = #1.49 RO2C + #.302 RO2XC + #.302 zRNO3 + #.509 xHO2 + #.189 xTBUO + #.055 xHCHO + #.038 xCCHO + #.419 xRCHO + #.002 xACET + #.009 xPROD1 + #.277 xPROD2 + HCL + yR6OOH + #2.34 XC

3.19E-10 10

T32L M234C5 + CL = #1.935 RO2C + #.313 RO2XC + #.313 zRNO3 + #.687 xHO2 + #.105 xHCHO + #.385 xCCHO + #.285 xRCHO + #.003 xGLCHO + #.649 xACET + #.123 xPROD1 + HCL + yR6OOH + #1.947 XC

2.90E-10 10

T33L M23C6 + CL = #1.753 RO2C + #.327 RO2XC + #.327 zRNO3 + #.673 xHO2 + #.019 xHCHO + #.123 xCCHO + #.363 xRCHO + #.31 xACET + #.108 xPROD1 + #.227 xPROD2 + HCL + yR6OOH + #1.96 XC

3.41E-10 10

T34L M24C6 + CL = #1.752 RO2C + #.34 RO2XC + #.34 zRNO3 + #.66 xHO2 + #.103 xHCHO + #.212 xCCHO + #.427 xRCHO + #.055 xACET + #.066 xPROD1 + #.227 xPROD2 + HCL + yR6OOH + #2.361 XC

3.41E-10 10

T35L M25C6 + CL = #1.801 RO2C + #.324 RO2XC + #.324 zRNO3 + #.676 xHO2 + #.068 xHCHO + #.541 xRCHO + #.366 xACET + #.143 xPROD2 + HCL + yR6OOH + #2.409 XC

3.40E-10 10

T36L M2C7 + CL = #1.489 RO2C + #.338 RO2XC + #.338 zRNO3 + #.662 xHO2 + #.006 xHCHO + #.01 xCCHO + #.229 xRCHO + #.021 xACET + #.45 xPROD2 + HCL + yR6OOH + #2.496 XC

3.91E-10 10

T37L M3C7 + CL = #1.562 RO2C + #.338 RO2XC + #.338 zRNO3 + #.662 xHO2 + #.002 xHCHO + #.129 xCCHO + #.265 xRCHO + #.058 xPROD1 + #.408 xPROD2 + HCL + yR6OOH + #2.237 XC

3.92E-10 10

T38L M4C7 + CL = #1.542 RO2C + #.338 RO2XC + #.338 zRNO3 + #.662 xHO2 + #.002 xHCHO + #.004 xCCHO + #.325 xRCHO + #.041 xPROD1 + #.411 xPROD2 + HCL + yR6OOH + #2.357 XC

3.92E-10 10

T39L M233C5 + CL = #2.264 RO2C + #.32 RO2XC + #.32 zRNO3 + #.675 xHO2 + #.005 xMEO2 + #.358 xHCHO + #.506 xCCHO + #.106 xRCHO + #.014 xGLCHO + #.941 xACET + #.133 xPROD1 + #.004 xPROD2 + HCL + yR6OOH + #.98 XC

2.71E-10 10

T40L M34C6 + CL = #1.75 RO2C + #.324 RO2XC + #.324 zRNO3 + #.676 xHO2 + #.036 xHCHO + #.37 xCCHO + #.201 xRCHO + #.004 xGLCHO + #.383 xPROD1 + #.219 xPROD2 + HCL + yR6OOH + #1.823 XC

3.42E-10 10

Page 186: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

174

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T41L E3M2C5 + CL = #1.784 RO2C + #.32 RO2XC + #.32 zRNO3 + #.68 xHO2 + #.026 xHCHO + #.287 xCCHO + #.473 xRCHO + #.002 xGLCHO + #.404 xACET + #.151 xPROD1 + #.068 xPROD2 + HCL + yR6OOH + #1.833 XC

3.42E-10 10

T42L M112CC5 + CL = #2.062 RO2C + #.434 RO2XC + #.434 zRNO3 + #.213 xHO2 + #.164 xMECO3 + #.189 xRCO3 + #.024 xCO + #.171 xHCHO + #.114 xCCHO + #.367 xRCHO + #.116 xACET + #.006 xPROD2 + #.001 xMGLY + HCL + yR6OOH + #2.59 XC

3.24E-10 10

T43L M113CC5 + CL = #2.09 RO2C + #.454 RO2XC + #.454 zRNO3 + #.374 xHO2 + #.159 xMECO3 + #.013 xRCO3 + #.195 xCO + #.227 xHCHO + #.001 xCCHO + #.431 xRCHO + #.011 xACET + #.002 xPROD1 + #.1 xPROD2 + HCL + yR6OOH + #2.561 XC

3.24E-10 10

T44L M11CC6 + CL = #1.819 RO2C + #.379 RO2XC + #.379 zRNO3 + #.621 xHO2 + #.031 xCO + #.236 xHCHO + #.379 xRCHO + #.004 xGLCHO + #.021 xACET + #.317 xPROD2 + #.001 xGLY + HCL + yR6OOH + #2.347 XC

3.74E-10 10

T45L M14CC6 + CL = #1.866 RO2C + #.446 RO2XC + #.446 zRNO3 + #.554 xHO2 + #.092 xHCHO + #.011 xCCHO + #.502 xRCHO + #.002 xGLCHO + #.068 xPROD2 + HCL + yR6OOH + #3.292 XC

3.94E-10 10

T46L CYCC8 + CL = #1.528 RO2C + #.365 RO2XC + #.365 zRNO3 + #.634 xHO2 + #.002 xHCHO + #.135 xCCHO + #.298 xRCHO + #.34 xPROD2 + HCL + yR6OOH + #2.604 XC

4.45E-10 10

T47L M13CYC6 + CL = #1.757 RO2C + #.417 RO2XC + #.417 zRNO3 + #.582 xHO2 + #.001 xMECO3 + #.012 xCO + #.08 xHCHO + #.017 xCCHO + #.451 xRCHO + #.001 xPROD1 + #.149 xPROD2 + HCL + yR6OOH + #3.119 XC

3.94E-10 10

T48L NC9 + CL = #1.393 RO2C + #.398 RO2XC + #.398 zRNO3 + #.602 xHO2 + #.068 xRCHO + #.535 xPROD2 + HCL + yR6OOH + #3.198 XC

4.80E-10 10

T49L BRC9 + CL = #1.524 RO2C + #.397 RO2XC + #.397 zRNO3 + #.603 xHO2 + #.036 xHCHO + #.007 xCCHO + #.275 xRCHO + #.013 xACET + #.008 xPROD1 + #.407 xPROD2 + HCL + yR6OOH + #3.23 XC

4.28E-10 10

T50L M225C6 + CL = #1.702 RO2C + #.351 RO2XC + #.351 zRNO3 + #.433 xHO2 + #.215 xTBUO + #.066 xHCHO + #.6 xRCHO + #.001 xGLCHO + #.223 xACET + #.003 xPROD1 + #.055 xPROD2 + HCL + yR6OOH + #3.155 XC

3.30E-10 10

T51L M235C6 + CL = #1.767 RO2C + #.381 RO2XC + #.381 zRNO3 + #.619 xHO2 + #.09 xHCHO + #.076 xCCHO + #.381 xRCHO + #.372 xACET + #.007 xPROD1 + #.243 xPROD2 + HCL + yR6OOH + #2.727 XC

3.52E-10 10

T52L M24C7 + CL = #1.588 RO2C + #.396 RO2XC + #.396 zRNO3 + #.604 xHO2 + #.071 xHCHO + #.007 xCCHO + #.387 xRCHO + #.019 xACET + #.014 xPROD1 + #.339 xPROD2 + HCL + yR6OOH + #3.231 XC

4.03E-10 10

T53L M2C8 + CL = #1.447 RO2C + #.4 RO2XC + #.4 zRNO3 + #.6 xHO2 + #.001 xHCHO + #.136 xRCHO + #.013 xACET + #.469 xPROD2 + HCL + yR6OOH + #3.338 XC

4.53E-10 10

T54L M35C7 + CL = #1.696 RO2C + #.408 RO2XC + #.408 zRNO3 + #.592 xHO2 + #.01 xHCHO + #.322 xCCHO + #.3 xRCHO + #.06 xPROD1 + #.302 xPROD2 + HCL + yR6OOH + #2.946 XC

4.04E-10 10

Page 187: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

175

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T55L M4C8 + CL = #1.472 RO2C + #.395 RO2XC + #.395 zRNO3 + #.605 xHO2 + #.001 xHCHO + #.012 xCCHO + #.188 xRCHO + #.004 xPROD1 + #.482 xPROD2 + HCL + yR6OOH + #3.133 XC

4.54E-10 10

T56L M33C7 + CL = #1.834 RO2C + #.376 RO2XC + #.376 zRNO3 + #.617 xHO2 + #.006 xMEO2 + #.109 xHCHO + #.392 xCCHO + #.351 xRCHO + #.008 xGLCHO + #.19 xACET + #.007 xPROD1 + #.273 xPROD2 + HCL + yR6OOH + #2.54 XC

3.84E-10 10

T57L M224C6 + CL = #1.75 RO2C + #.379 RO2XC + #.379 zRNO3 + #.447 xHO2 + #.175 xTBUO + #.132 xHCHO + #.216 xCCHO + #.426 xRCHO + #.007 xACET + #.071 xPROD1 + #.131 xPROD2 + HCL + yR6OOH + #3.093 XC

3.31E-10 10

T58L M26C7 + CL = #1.523 RO2C + #.383 RO2XC + #.383 zRNO3 + #.617 xHO2 + #.001 xHCHO + #.356 xRCHO + #.144 xACET + #.269 xPROD2 + HCL + yR6OOH + #3.587 XC

4.02E-10 10

T59L M25C7 + CL = #1.683 RO2C + #.389 RO2XC + #.389 zRNO3 + #.611 xHO2 + #.017 xHCHO + #.177 xCCHO + #.324 xRCHO + #.085 xACET + #.086 xPROD1 + #.297 xPROD2 + HCL + yR6OOH + #2.942 XC

4.03E-10 10

T60L M3C8 + CL = #1.462 RO2C + #.393 RO2XC + #.393 zRNO3 + #.607 xHO2 + #.002 xHCHO + #.063 xCCHO + #.166 xRCHO + #.017 xPROD1 + #.454 xPROD2 + HCL + yR6OOH + #3.224 XC

4.54E-10 10

T61L ET3C7 + CL = #1.5 RO2C + #.392 RO2XC + #.392 zRNO3 + #.608 xHO2 + #.002 xHCHO + #.106 xCCHO + #.242 xRCHO + #.042 xPROD1 + #.409 xPROD2 + HCL + yR6OOH + #3.086 XC

4.55E-10 10

T62L M123CC6 + CL = #1.732 RO2C + #.461 RO2XC + #.461 zRNO3 + #.517 xHO2 + #.012 xMECO3 + #.01 xRCO3 + #.001 xCO + #.04 xHCHO + #.125 xCCHO + #.307 xRCHO + #.225 xPROD2 + HCL + yR6OOH + #3.618 XC

4.06E-10 10

T63L M135CC6 + CL = #1.781 RO2C + #.48 RO2XC + #.48 zRNO3 + #.517 xHO2 + #.003 xMECO3 + #.019 xCO + #.117 xHCHO + #.029 xCCHO + #.46 xRCHO + #.002 xPROD1 + #.084 xPROD2 + HCL + yR6OOH + #4.028 XC

4.06E-10 10

T64L M113CC6 + CL = #2.017 RO2C + #.489 RO2XC + #.489 zRNO3 + #.509 xHO2 + #.001 xMECO3 + #.073 xCO + #.283 xHCHO + #.11 xCCHO + #.434 xRCHO + #.04 xACET + #.006 xPROD1 + #.169 xPROD2 + HCL + yR6OOH + #3.028 XC

3.86E-10 10

T65L E1M4CC6 + CL = #1.741 RO2C + #.478 RO2XC + #.478 zRNO3 + #.521 xHO2 + #.044 xHCHO + #.132 xCCHO + #.407 xRCHO + #.002 xGLCHO + #.131 xPROD2 + HCL + yR6OOH + #3.813 XC

4.57E-10 10

T66L C3CYCC6 + CL = #1.377 RO2C + #.379 RO2XC + #.379 zRNO3 + #.621 xHO2 + #.001 xRCO3 + #.284 xRCHO + #.448 xPROD2 + HCL + yR6OOH + #3.183 XC

5.07E-10 10

T67L CYCC9 + CL = #1.559 RO2C + #.429 RO2XC + #.429 zRNO3 + #.571 xHO2 + #.001 xRCO3 + #.022 xHCHO + #.066 xCCHO + #.346 xRCHO + #.001 xGLCHO + #.29 xPROD2 + HCL + yR6OOH + #3.489 XC

4.82E-10 10

T68L NC10 + CL = #1.355 RO2C + #.428 RO2XC + #.428 zRNO3 + #.572 xHO2 + #.057 xRCHO + #.515 xPROD2 + HCL + yR6OOH + #4.171 XC

5.50E-10 10

Page 188: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

176

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T69L BRC10 + CL = #1.458 RO2C + #.431 RO2XC + #.431 zRNO3 + #.57 xHO2 + #.001 xHCHO + #.037 xCCHO + #.198 xRCHO + #.03 xACET + #.019 xPROD1 + #.391 xPROD2 + HCL + yR6OOH + #4.233 XC

4.90E-10 10

T70L M24C8 + CL = #1.5 RO2C + #.435 RO2XC + #.435 zRNO3 + #.565 xHO2 + #.039 xHCHO + #.014 xCCHO + #.243 xRCHO + #.011 xACET + #.003 xPROD1 + #.406 xPROD2 + HCL + yR6OOH + #4.113 XC

4.64E-10 10

T71L M26C8 + CL = #1.507 RO2C + #.429 RO2XC + #.429 zRNO3 + #.571 xHO2 + #.001 xHCHO + #.071 xCCHO + #.262 xRCHO + #.054 xACET + #.036 xPROD1 + #.318 xPROD2 + HCL + yR6OOH + #4.283 XC

4.64E-10 10

T72L M2C9 + CL = #1.399 RO2C + #.435 RO2XC + #.435 zRNO3 + #.565 xHO2 + #.106 xRCHO + #.012 xACET + #.46 xPROD2 + HCL + yR6OOH + #4.276 XC

5.14E-10 10

T73L M3C9 + CL = #1.425 RO2C + #.436 RO2XC + #.436 zRNO3 + #.564 xHO2 + #.001 xHCHO + #.038 xCCHO + #.113 xRCHO + #.012 xPROD1 + #.457 xPROD2 + HCL + yR6OOH + #4.178 XC

5.15E-10 10

T74L M4C9 + CL = #1.418 RO2C + #.429 RO2XC + #.429 zRNO3 + #.571 xHO2 + #.001 xHCHO + #.007 xCCHO + #.161 xRCHO + #.002 xPROD1 + #.466 xPROD2 + HCL + yR6OOH + #4.124 XC

5.15E-10 10

T75L M33C8 + CL = #1.746 RO2C + #.416 RO2XC + #.416 zRNO3 + #.578 xHO2 + #.006 xMEO2 + #.086 xHCHO + #.3 xCCHO + #.393 xRCHO + #.006 xGLCHO + #.161 xACET + #.006 xPROD1 + #.247 xPROD2 + HCL + yR6OOH + #3.632 XC

4.46E-10 10

T76L M224C7 + CL = #1.613 RO2C + #.41 RO2XC + #.41 zRNO3 + #.45 xHO2 + #.141 xTBUO + #.078 xHCHO + #.002 xCCHO + #.542 xRCHO + #.004 xACET + #.045 xPROD1 + #.171 xPROD2 + HCL + yR6OOH + #4.05 XC

3.93E-10 10

T77L M225C7 + CL = #1.597 RO2C + #.382 RO2XC + #.382 zRNO3 + #.449 xHO2 + #.168 xTBUO + #.047 xHCHO + #.143 xCCHO + #.483 xRCHO + #.002 xACET + #.103 xPROD1 + #.149 xPROD2 + HCL + yR6OOH + #3.942 XC

3.93E-10 10

T78L M23C8 + CL = #1.495 RO2C + #.426 RO2XC + #.426 zRNO3 + #.574 xHO2 + #.005 xHCHO + #.032 xCCHO + #.176 xRCHO + #.134 xACET + #.001 xPROD1 + #.41 xPROD2 + HCL + yR6OOH + #3.981 XC

4.64E-10 10

T79L M25C8 + CL = #1.569 RO2C + #.444 RO2XC + #.444 zRNO3 + #.556 xHO2 + #.005 xHCHO + #.001 xCCHO + #.297 xRCHO + #.072 xACET + #.013 xPROD1 + #.374 xPROD2 + HCL + yR6OOH + #3.926 XC

4.64E-10 10

T80L M2E3C7 + CL = #1.553 RO2C + #.426 RO2XC + #.426 zRNO3 + #.574 xHO2 + #.004 xHCHO + #.042 xCCHO + #.295 xRCHO + #.188 xACET + #.002 xPROD1 + #.358 xPROD2 + HCL + yR6OOH + #3.751 XC

4.65E-10 10

T81L CYCC10 + CL = #1.521 RO2C + #.454 RO2XC + #.454 zRNO3 + #.544 xHO2 + #.002 xRCO3 + #.002 xCO + #.014 xHCHO + #.077 xCCHO + #.282 xRCHO + #.058 xACET + #.297 xPROD2 + HCL + yR6OOH + #4.298 XC

5.19E-10 10

T82L C4CYCC6 + CL = #1.328 RO2C + #.406 RO2XC + #.406 zRNO3 + #.594 xHO2 + #.007 xCCHO + #.193 xRCHO + #.479 xPROD2 + HCL + yR6OOH + #4.097 XC

5.69E-10 10

T83L NC11 + CL = #1.331 RO2C + #.448 RO2XC + #.448 zRNO3 + #.552 xHO2 + #.049 xRCHO + #.503 xPROD2 + HCL + yR6OOH + #5.147 XC

6.27E-10 10

Page 189: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

177

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T84L BRC11 + CL = #1.424 RO2C + #.458 RO2XC + #.458 zRNO3 + #.542 xHO2 + #.001 xHCHO + #.009 xCCHO + #.163 xRCHO + #.025 xACET + #.005 xPROD1 + #.413 xPROD2 + HCL + yR6OOH + #5.171 XC

5.52E-10 10

T85L M26C9 + CL = #1.455 RO2C + #.458 RO2XC + #.458 zRNO3 + #.542 xHO2 + #.001 xHCHO + #.001 xCCHO + #.219 xRCHO + #.049 xACET + #.003 xPROD1 + #.371 xPROD2 + HCL + yR6OOH + #5.207 XC

5.26E-10 10

T86L M3C10 + CL = #1.391 RO2C + #.458 RO2XC + #.458 zRNO3 + #.542 xHO2 + #.001 xHCHO + #.032 xCCHO + #.096 xRCHO + #.01 xPROD1 + #.449 xPROD2 + HCL + yR6OOH + #5.165 XC

5.77E-10 10

T87L M4C10 + CL = #1.396 RO2C + #.458 RO2XC + #.458 zRNO3 + #.542 xHO2 + #.001 xHCHO + #.001 xCCHO + #.118 xRCHO + #.002 xPROD1 + #.462 xPROD2 + HCL + yR6OOH + #5.115 XC

5.77E-10 10

T88L CYCC11 + CL = #1.469 RO2C + #.478 RO2XC + #.478 zRNO3 + #.521 xHO2 + #.003 xCO + #.012 xHCHO + #.084 xCCHO + #.209 xRCHO + #.348 xPROD2 + HCL + yR6OOH + #5.234 XC

5.82E-10 10

T89L E1P2CC6 + CL = #1.492 RO2C + #.49 RO2XC + #.49 zRNO3 + #.51 xHO2 + #.004 xHCHO + #.022 xCCHO + #.185 xRCHO + #.381 xPROD2 + HCL + yR6OOH + #5.171 XC

5.82E-10 10

T90L NC12 + CL = #1.315 RO2C + #.46 RO2XC + #.46 zRNO3 + #.54 xHO2 + #.044 xRCHO + #.497 xPROD2 + HCL + yR6OOH + #6.126 XC

6.89E-10 10

T91L BRC12 + CL = #1.413 RO2C + #.476 RO2XC + #.476 zRNO3 + #.525 xHO2 + #.001 xHCHO + #.036 xCCHO + #.128 xRCHO + #.017 xPROD1 + #.431 xPROD2 + HCL + yR6OOH + #6.033 XC

6.14E-10 10

T92L M36C10 + CL = #1.46 RO2C + #.482 RO2XC + #.482 zRNO3 + #.518 xHO2 + #.001 xHCHO + #.056 xCCHO + #.165 xRCHO + #.029 xPROD1 + #.406 xPROD2 + HCL + yR6OOH + #5.948 XC

5.89E-10 10

T93L M3C11 + CL = #1.367 RO2C + #.469 RO2XC + #.469 zRNO3 + #.531 xHO2 + #.001 xHCHO + #.029 xCCHO + #.084 xRCHO + #.009 xPROD1 + #.449 xPROD2 + HCL + yR6OOH + #6.145 XC

6.39E-10 10

T94L M5C11 + CL = #1.366 RO2C + #.469 RO2XC + #.469 zRNO3 + #.531 xHO2 + #.003 xCCHO + #.098 xRCHO + #.464 xPROD2 + HCL + yR6OOH + #6.102 XC

6.39E-10 10

T95L NC13 + CL = #1.305 RO2C + #.467 RO2XC + #.467 zRNO3 + #.533 xHO2 + #.039 xRCHO + #.494 xPROD2 + HCL + yR6OOH + #7.117 XC

7.51E-10 10

T96L NC14 + CL = #1.299 RO2C + #.471 RO2XC + #.471 zRNO3 + #.529 xHO2 + #.036 xRCHO + #.493 xPROD2 + HCL + yR6OOH + #8.108 XC

8.13E-10 10

T97L NC15 + CL = #1.294 RO2C + #.474 RO2XC + #.474 zRNO3 + #.526 xHO2 + #.033 xRCHO + #.492 xPROD2 + HCL + yR6OOH + #9.105 XC

8.74E-10 10

T98L NC16 + CL = #1.291 RO2C + #.476 RO2XC + #.476 zRNO3 + #.524 xHO2 + #.031 xRCHO + #.493 xPROD2 + HCL + yR6OOH + #10.093 XC

9.36E-10 10

T99L PROPENE + CL = #.971 RO2C + #.029 RO2XC + #.029 zRNO3 + #.971 xHO2 + #.124 xACRO + #.306 xCLCCHO + #.54 xCLACET + #.124 HCL + yROOH + #.222 XC

2.67E-10 10

Page 190: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

178

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T101L BUTENE1 + CL = #1.319 RO2C + #.083 RO2XC + #.083 zRNO3 + #.918 xHO2 + #.02 xHCHO + #.113 xCCHO + #.04 xRCHO + #.174 xACRO + #.011 xMVK + #.021 xIPRD + #.244 xCLCCHO + #.429 xCLACET + #.266 HCL + yROOH + #.69 XC

3.39E-10 10

T102L ISOBUTEN + CL = #1.744 RO2C + #.039 RO2XC + #.039 zRNO3 + #.783 xCL + #.177 xHO2 + #.783 xHCHO + #.783 xACET + #.177 xMACR + #.185 HCL + yROOH + #-.074 XC

3.25E-10 10

T103L C2BUTE + CL = #.971 RO2C + #.079 RO2XC + #.079 zRNO3 + #.919 xHO2 + #.002 xMEO2 + #.047 xHCHO + #.104 xMVK + #.08 xIPRD + #.737 xCLACET + #.199 HCL + yROOH + #.45 XC

3.88E-10 10

T104L T2BUTE + CL = #.923 RO2C + #.077 RO2XC + #.077 zRNO3 + #.921 xHO2 + #.002 xMEO2 + #.104 xMVK + #.082 xIPRD + #.737 xCLACET + #.199 HCL + yROOH + #.499 XC

3.55E-10 10

T105L BUTDE12 + CL = MACO3 + HCHO + HCL + #-1 XC 3.28E-11 10

T106L BUTDE13 + CL = #1.884 RO2C + #.069 RO2XC + #.069 zRNO3 + #.541 xCL + #.39 xHO2 + #.863 xHCHO + #.457 xACRO + #.473 xIPRD + yROOH + #-1.013 XC

4.90E-10 10

T107L PENTEN1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #1.179 XC

4.05E-10 10

T108L M1BUT3 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #1.179 XC

3.52E-10 10

T109L M1BUT2 + CL = #1.76 RO2C + #.092 RO2XC + #.092 zRNO3 + #.484 xCL + #.424 xHO2 + #.597 xHCHO + #.033 xRCHO + #.484 xPROD1 + #.067 xMACR + #.035 xMVK + #.138 xIPRD + #.151 xCLCCHO + #.31 HCL + yR6OOH + #.416 XC

3.82E-10 10

T110L M2BUT2 + CL = #.923 RO2C + #.077 RO2XC + #.077 zRNO3 + #.921 xHO2 + #.002 xMEO2 + #.104 xMVK + #.082 xIPRD + #.737 xCLACET + #.199 HCL + yR6OOH + #1.499 XC

3.23E-10 10

T111L C2PENT + CL = #1.729 RO2C + #.14 RO2XC + #.14 zRNO3 + #.577 xCL + #.282 xHO2 + #.001 xMEO2 + #.116 xHCHO + #.742 xCCHO + #.577 xRCHO + #.052 xMVK + #.231 xIPRD + #.33 HCL + yR6OOH + #-.535 XC

3.94E-10 10

T112L T2PENT + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #-.382 XC

3.94E-10 10

T113L CYCPNTE + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #-.382 XC

3.94E-10 10

T114L HEXENE1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #2.179 XC

4.05E-10 10

Page 191: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

179

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T115L M33BUT1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #2.179 XC

4.05E-10 10

T116L M3C5E1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #2.179 XC

3.78E-10 10

T117L M2C5E1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #2.179 XC

4.05E-10 10

T118L M2C5E2 + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T119L C2C6E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T120L C3C6E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T121L M3C5E2 + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T122L M4T2C5E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T123L T2C6E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T124L T3C6E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T125L C6OLE2 + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T126L M3CC5E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T127L M1CC5E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

T128L CYCHEXE + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #.618 XC

3.94E-10 10

Page 192: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

180

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T129L T2C7E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #1.618 XC

3.94E-10 10

T130L T3C7E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #1.618 XC

3.94E-10 10

T131L C7OLE1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #3.179 XC

4.05E-10 10

T132L C8COLE + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #2.618 XC

3.94E-10 10

T133L OCTENE1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #4.179 XC

4.05E-10 10

T134L M244C5E1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #4.179 XC

4.05E-10 10

T135L C9E1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #5.179 XC

4.05E-10 10

T136L T4C9E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #3.618 XC

3.94E-10 10

T137L C10E1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #6.179 XC

4.05E-10 10

T138L E34C6E2 + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #4.618 XC

3.94E-10 10

T139L C10OLE2 + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #4.618 XC

3.94E-10 10

T140L CARENE3 + CL = #2.258 RO2C + #.582 RO2XC + #.582 zRNO3 + #.068 xCL + #.252 xHO2 + #.034 xMECO3 + #.05 xRCO3 + #.016 xMACO3 + #.035 xCO + #.158 xHCHO + #.185 xRCHO + #.274 xACET + #.007 xGLY + #.003 xBACL + #.003 xMVK + #.158 xIPRD + #.006 xAFG1 + #.006 xAFG2 + #.001 xAFG4 + #.109 xCLCCHO + #.548 HCL + yR6OOH + #3.544 XC

5.46E-10 10

Page 193: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

181

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T141L APINENE + CL = #2.258 RO2C + #.582 RO2XC + #.582 zRNO3 + #.068 xCL + #.252 xHO2 + #.034 xMECO3 + #.05 xRCO3 + #.016 xMACO3 + #.035 xCO + #.158 xHCHO + #.185 xRCHO + #.274 xACET + #.007 xGLY + #.003 xBACL + #.003 xMVK + #.158 xIPRD + #.006 xAFG1 + #.006 xAFG2 + #.001 xAFG4 + #.109 xCLCCHO + #.548 HCL + yR6OOH + #3.544 XC

5.46E-10 10

T142L BPINENE + CL = #2.258 RO2C + #.582 RO2XC + #.582 zRNO3 + #.068 xCL + #.252 xHO2 + #.034 xMECO3 + #.05 xRCO3 + #.016 xMACO3 + #.035 xCO + #.158 xHCHO + #.185 xRCHO + #.274 xACET + #.007 xGLY + #.003 xBACL + #.003 xMVK + #.158 xIPRD + #.006 xAFG1 + #.006 xAFG2 + #.001 xAFG4 + #.109 xCLCCHO + #.548 HCL + yR6OOH + #3.544 XC

5.46E-10 10

T143L DLIMONE + CL = #2.258 RO2C + #.582 RO2XC + #.582 zRNO3 + #.068 xCL + #.252 xHO2 + #.034 xMECO3 + #.05 xRCO3 + #.016 xMACO3 + #.035 xCO + #.158 xHCHO + #.185 xRCHO + #.274 xACET + #.007 xGLY + #.003 xBACL + #.003 xMVK + #.158 xIPRD + #.006 xAFG1 + #.006 xAFG2 + #.001 xAFG4 + #.109 xCLCCHO + #.548 HCL + yR6OOH + #3.544 XC

5.46E-10 10

T144L SABINENE + CL = #2.258 RO2C + #.582 RO2XC + #.582 zRNO3 + #.068 xCL + #.252 xHO2 + #.034 xMECO3 + #.05 xRCO3 + #.016 xMACO3 + #.035 xCO + #.158 xHCHO + #.185 xRCHO + #.274 xACET + #.007 xGLY + #.003 xBACL + #.003 xMVK + #.158 xIPRD + #.006 xAFG1 + #.006 xAFG2 + #.001 xAFG4 + #.109 xCLCCHO + #.548 HCL + yR6OOH + #3.544 XC

5.46E-10 10

T145L C11E1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #7.179 XC

4.05E-10 10

T146L T5C11E + CL = #1.634 RO2C + #.134 RO2XC + #.134 zRNO3 + #.577 xCL + #.287 xHO2 + #.002 xMEO2 + #.078 xHCHO + #.687 xCCHO + #.577 xRCHO + #.052 xMVK + #.237 xIPRD + #.33 HCL + yR6OOH + #5.618 XC

3.94E-10 10

T147L TOLUENE + CL = #.89 RO2C + #.11 RO2XC + #.11 zRNO3 + #.89 xHO2 + #.89 xBALD + yR6OOH + #.11 XC

6.20E-11 10

T148L C2BENZ + CL = #.86 RO2C + #.14 RO2XC + #.14 zRNO3 + #.86 xHO2 + #.106 xRCHO + #.753 xPROD2 + yR6OOH + #2.324 XC

1.70E-10 10

T149L MXYLENE + CL = #.86 RO2C + #.14 RO2XC + #.14 zRNO3 + #.86 xHO2 + #.86 xBALD + yR6OOH + #1.14 XC

1.35E-10 10

T150L OXYLENE + CL = #.86 RO2C + #.14 RO2XC + #.14 zRNO3 + #.86 xHO2 + #.86 xBALD + yR6OOH + #1.14 XC

1.40E-10 10

T151L PXYLENE + CL = #.86 RO2C + #.14 RO2XC + #.14 zRNO3 + #.86 xHO2 + #.86 xBALD + yR6OOH + #1.14 XC

1.44E-10 10

T152L STYRENE + CL = #.82 RO2C + #.18 RO2XC + #.18 zRNO3 + #.82 xHO2 + #.82 xRCHO + #.82 yR6OOH + #4.46 XC

4.00E-10 10

T153L NC3BEN + CL = #.833 RO2C + #.167 RO2XC + #.167 zRNO3 + #.833 xHO2 + #.05 xRCHO + #.782 xPROD2 + yR6OOH + #3.156 XC

2.28E-10 10

T154L IC3BEN + CL = #.833 RO2C + #.167 RO2XC + #.167 zRNO3 + #.261 xHO2 + #.571 xMEO2 + #.261 xRCHO + #.571 xPROD2 + yR6OOH + #3.218 XC

1.56E-10 10

Page 194: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

182

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T155L METTOL + CL = #.833 RO2C + #.167 RO2XC + #.167 zRNO3 + #.833 xHO2 + #.077 xRCHO + #.544 xPROD2 + #.213 xBALD + yR6OOH + #3.012 XC

2.39E-10 10

T156L OETTOL + CL = #.833 RO2C + #.167 RO2XC + #.167 zRNO3 + #.833 xHO2 + #.077 xRCHO + #.544 xPROD2 + #.213 xBALD + yR6OOH + #3.012 XC

2.39E-10 10

T157L PETTOL + CL = #.833 RO2C + #.167 RO2XC + #.167 zRNO3 + #.833 xHO2 + #.077 xRCHO + #.544 xPROD2 + #.213 xBALD + yR6OOH + #3.012 XC

2.39E-10 10

T158L TMB123 + CL = #.833 RO2C + #.167 RO2XC + #.167 zRNO3 + #.833 xHO2 + #.833 xBALD + yR6OOH + #2.167 XC

2.42E-10 10

T159L TMB124 + CL = #.833 RO2C + #.167 RO2XC + #.167 zRNO3 + #.833 xHO2 + #.833 xBALD + yR6OOH + #2.167 XC

2.42E-10 10

T160L TMB135 + CL = #.833 RO2C + #.167 RO2XC + #.167 zRNO3 + #.833 xHO2 + #.833 xBALD + yR6OOH + #2.167 XC

2.42E-10 10

T161L C10BEN1 + CL = #.918 RO2C + #.187 RO2XC + #.187 zRNO3 + #.662 xHO2 + #.152 xMEO2 + #.105 xCCHO + #.072 xRCHO + #.742 xPROD2 + yR6OOH + #3.848 XC

2.48E-10 10

T162L TC4BEN + CL = #1.666 RO2C + #.167 RO2XC + #.167 zRNO3 + #.833 xMEO2 + #.833 xHCHO + #.833 xPROD2 + yR6OOH + #2.334 XC

9.82E-11 10

T163L MC10BEN2 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.716 xHO2 + #.097 xMEO2 + #.106 xRCHO + #.613 xPROD2 + #.094 xBALD + yR6OOH + #4.127 XC

3.02E-10 10

T164L OC10BEN2 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.716 xHO2 + #.097 xMEO2 + #.106 xRCHO + #.613 xPROD2 + #.094 xBALD + yR6OOH + #4.127 XC

3.02E-10 10

T165L PC10BEN2 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.716 xHO2 + #.097 xMEO2 + #.106 xRCHO + #.613 xPROD2 + #.094 xBALD + yR6OOH + #4.127 XC

3.02E-10 10

T166L PCYMENE + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.425 xHO2 + #.389 xMEO2 + #.178 xRCHO + #.389 xPROD2 + #.247 xBALD + yR6OOH + #3.892 XC

2.25E-10 10

T167L C10B123 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.813 xHO2 + #.06 xRCHO + #.423 xPROD2 + #.331 xBALD + yR6OOH + #3.843 XC

3.09E-10 10

T168L C10B124 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.813 xHO2 + #.06 xRCHO + #.423 xPROD2 + #.331 xBALD + yR6OOH + #3.843 XC

3.09E-10 10

T169L C10B135 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.813 xHO2 + #.06 xRCHO + #.423 xPROD2 + #.331 xBALD + yR6OOH + #3.843 XC

3.09E-10 10

T170L BEN1234 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.813 xHO2 + #.813 xBALD + yR6OOH + #3.187 XC

2.78E-10 10

T171L BEN1245 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.813 xHO2 + #.813 xBALD + yR6OOH + #3.187 XC

2.78E-10 10

T172L MBEN1235 + CL = #.813 RO2C + #.187 RO2XC + #.187 zRNO3 + #.813 xHO2 + #.813 xBALD + yR6OOH + #3.187 XC

2.78E-10 10

T174L C11BEN1 + CL = #.866 RO2C + #.199 RO2XC + #.199 zRNO3 + #.689 xHO2 + #.112 xMEO2 + #.065 xCCHO + #.048 xRCHO + #.753 xPROD2 + yR6OOH + #4.902 XC

3.10E-10 10

T175L MC11BEN2 + CL = #.801 RO2C + #.199 RO2XC + #.199 zRNO3 + #.583 xHO2 + #.218 xMEO2 + #.083 xRCHO + #.691 xPROD2 + #.028 xBALD + yR6OOH + #4.997 XC

3.53E-10 10

Page 195: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

183

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T176L OC11BEN2 + CL = #.801 RO2C + #.199 RO2XC + #.199 zRNO3 + #.583 xHO2 + #.218 xMEO2 + #.083 xRCHO + #.691 xPROD2 + #.028 xBALD + yR6OOH + #4.997 XC

3.53E-10 10

T177L PC11BEN2 + CL = #.801 RO2C + #.199 RO2XC + #.199 zRNO3 + #.583 xHO2 + #.218 xMEO2 + #.083 xRCHO + #.691 xPROD2 + #.028 xBALD + yR6OOH + #4.997 XC

3.53E-10 10

T178L C11B123 + CL = #.801 RO2C + #.199 RO2XC + #.199 zRNO3 + #.801 xHO2 + #.06 xRCHO + #.581 xPROD2 + #.159 xBALD + yR6OOH + #5.027 XC

3.88E-10 10

T179L C11B124 + CL = #.801 RO2C + #.199 RO2XC + #.199 zRNO3 + #.801 xHO2 + #.06 xRCHO + #.581 xPROD2 + #.159 xBALD + yR6OOH + #5.027 XC

3.88E-10 10

T180L C11B135 + CL = #.801 RO2C + #.199 RO2XC + #.199 zRNO3 + #.801 xHO2 + #.06 xRCHO + #.581 xPROD2 + #.159 xBALD + yR6OOH + #5.027 XC

3.88E-10 10

T182L C12BEN1 + CL = #.84 RO2C + #.207 RO2XC + #.207 zRNO3 + #.705 xHO2 + #.088 xMEO2 + #.047 xCCHO + #.036 xRCHO + #.757 xPROD2 + yR6OOH + #5.926 XC

3.72E-10 10

T183L MC12BEN2 + CL = #.841 RO2C + #.207 RO2XC + #.207 zRNO3 + #.678 xHO2 + #.115 xMEO2 + #.048 xCCHO + #.076 xRCHO + #.702 xPROD2 + #.015 xBALD + yR6OOH + #6.002 XC

4.00E-10 10

T184L OC12BEN2 + CL = #.841 RO2C + #.207 RO2XC + #.207 zRNO3 + #.678 xHO2 + #.115 xMEO2 + #.048 xCCHO + #.076 xRCHO + #.702 xPROD2 + #.015 xBALD + yR6OOH + #6.002 XC

4.00E-10 10

T185L PC12BEN2 + CL = #.841 RO2C + #.207 RO2XC + #.207 zRNO3 + #.678 xHO2 + #.115 xMEO2 + #.048 xCCHO + #.076 xRCHO + #.702 xPROD2 + #.015 xBALD + yR6OOH + #6.002 XC

4.00E-10 10

T186L C12B123 + CL = #.793 RO2C + #.207 RO2XC + #.207 zRNO3 + #.602 xHO2 + #.191 xMEO2 + #.082 xRCHO + #.592 xPROD2 + #.118 xBALD + yR6OOH + #5.943 XC

4.13E-10 10

T187L C12B124 + CL = #.793 RO2C + #.207 RO2XC + #.207 zRNO3 + #.602 xHO2 + #.191 xMEO2 + #.082 xRCHO + #.592 xPROD2 + #.118 xBALD + yR6OOH + #5.943 XC

4.13E-10 10

T188L C12B135 + CL = #.793 RO2C + #.207 RO2XC + #.207 zRNO3 + #.602 xHO2 + #.191 xMEO2 + #.082 xRCHO + #.592 xPROD2 + #.118 xBALD + yR6OOH + #5.943 XC

4.13E-10 10

T189L ETOX + CL = #2 RO2C + xHO2 + #.657 xCO + #.041 CO2 + #.041 xHCHO + #.657 HCOOH + HCL + yROOH + #.604 XC

1.38E-10 10

T190L ETOH + CL = #.312 RO2C + #.688 HO2 + #.312 xHO2 + #.503 xHCHO + #.688 CCHO + #.061 xGLCHO + HCL + #.312 yROOH + #-.001 XC

9.99E-11 8.60E-11 -0.09 10

T191L MEOME + CL = RO2C + xHO2 + #.079 xHCHO + HCL + yROOH + #1.921 XC

7.32E-11 10

T192L MEFORM + CL = RO2C + xHO2 + #.657 xCO + #.041 CO2 + #.041 xHCHO + #.657 HCOOH + HCL + yROOH + #.604 XC

3.66E-11 10

T193L ETGLYCL + CL = HO2 + GLCHO + HCL 1.38E-10 10

T194L PROX + CL = #2.207 RO2C + #.005 RO2XC + #.005 zRNO3 + #.591 xHO2 + #.404 xMECO3 + #.34 xCO + #.056 CO2 + #.226 xHCHO + #.047 xCCHO + #.006 xRCHO + #.547 HCOOH + #.197 CCOOH + HCL + yROOH + #.487 XC

1.47E-10 10

T195L IC3OH + CL = #.569 RO2C + #.01 RO2XC + #.01 zRNO3 + #.421 HO2 + #.569 xHO2 + #.569 xHCHO + #.569 xCCHO + #.421 ACET + HCL + #.579 yROOH + #-.03 XC

8.60E-11 10

Page 196: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

184

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T196L NC3OH + CL = #.582 RO2C + #.006 RO2XC + #.006 zRNO3 + #.414 HO2 + #.58 xHO2 + #.389 xHCHO + #.383 xCCHO + #.414 RCHO + #.194 xRCHO + HCL + #.586 yROOH + #-.015 XC

1.62E-10 2.50E-10 0.26 10

T198L MEACET + CL = #.993 RO2C + #.014 RO2XC + #.014 zRNO3 + #.986 xHO2 + #.621 xCO + #.002 xPROD1 + #.617 CCOOH + #.004 RCOOH + #.029 xMGLY + HCL + yROOH + #.954 XC

3.79E-11 10

T199L PRGLYCL + CL = #.223 RO2C + #.777 HO2 + #.223 xHO2 + #.195 xHCHO + #.469 RCHO + #.028 xRCHO + #.195 xGLCHO + #.309 PROD1 + HCL + #.223 yROOH + #-.312 XC

1.47E-10 10

T200L MEOETOH + CL = #.605 RO2C + #.395 HO2 + #.605 xHO2 + #.411 xHCHO + #.395 RCHO + #.078 xRCHO + #.001 xGLCHO + #.126 xPROD2 + HCL + #.605 yROOH + #.412 XC

1.75E-10 10

T201L GLYCERL + CL = HO2 + #.761 RCHO + #.239 PROD2 + HCL + #-.717 XC

1.81E-10 10

T203L THF + CL = #2.071 RO2C + #.085 RO2XC + #.085 zRNO3 + #.909 xHO2 + #.006 xRCO3 + #.181 xCO + #.015 xHCHO + #.726 xRCHO + #.183 xPROD2 + HCL + yROOH

2.62E-10 10

T204L MEC3AL2 + CL = #.844 RO2C + #.038 RO2XC + #.038 zRNO3 + #.53 xHO2 + #.432 RCO3 + #.415 xCO + #.314 xHCHO + #.298 xCCHO + #.115 xRCHO + #.117 xACET + HCL + #.568 yROOH + #.455 XC

1.47E-10 10

T205L C4RCHO1 + CL = #.71 RO2C + #.046 RO2XC + #.046 zRNO3 + #.446 xHO2 + #.34 RCO3 + #.169 xRCO3 + #.219 xCO + #.091 xHCHO + #.095 xCCHO + #.351 xRCHO + #.004 xGLY + HCL + #.66 yROOH + #.636 XC

1.87E-10 10

T206L IC4OH + CL = #.844 RO2C + #.043 RO2XC + #.043 zRNO3 + #.389 HO2 + #.568 xHO2 + #.766 xHCHO + #.272 xCCHO + #.389 RCHO + #.079 xRCHO + #.216 xACET + HCL + #.611 yROOH + #.38 XC

1.77E-10 10

T207L NC4OH + CL = #.788 RO2C + #.023 RO2XC + #.023 zRNO3 + #.302 HO2 + #.675 xHO2 + #.448 xHCHO + #.113 xCCHO + #.302 RCHO + #.403 xRCHO + #.022 xGLCHO + #.159 xPROD2 + HCL + #.698 yROOH + #.075 XC

2.28E-10 10

T208L SC4OH + CL = #.859 RO2C + #.032 RO2XC + #.032 zRNO3 + #.259 HO2 + #.709 xHO2 + #.178 xHCHO + #.711 xCCHO + #.354 xRCHO + #.259 PROD1 + HCL + #.741 yROOH + #.11 XC

1.76E-10 10

T209L TC4OH + CL = #.91 RO2C + #.09 RO2XC + #.09 zRNO3 + #.91 xHO2 + #.91 xHCHO + #.91 xACET + HCL + yROOH + #-.18 XC

9.83E-11 10

T210L ETOET + CL = #1.196 RO2C + #.067 RO2XC + #.067 zRNO3 + #.245 xHO2 + #.689 xMEO2 + #.081 xHCHO + #.163 xCCHO + #.089 xRCHO + #.01 xGLCHO + #.59 xPROD1 + #.148 xPROD2 + HCL + yROOH + #-1.033 XC

2.10E-10 10

T212L ETACET + CL = #.963 RO2C + #.04 RO2XC + #.04 zRNO3 + #.338 xHO2 + #.622 xMECO3 + #.296 xRCHO + #.62 CCOOH + #.003 RCOOH + #.009 xMGLY + HCL + yROOH + #.352 XC

1.06E-10 10

T213L C4OH12 + CL = #.446 RO2C + #.018 RO2XC + #.018 zRNO3 + #.536 HO2 + #.446 xHO2 + #.296 xCCHO + #.329 RCHO + #.15 xRCHO + #.296 xGLCHO + #.207 PROD1 + HCL + #.464 yROOH + #.443 XC

2.10E-10 10

Page 197: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

185

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T214L MEOC3OH + CL = #.736 RO2C + #.016 RO2XC + #.016 zRNO3 + #.247 HO2 + #.736 xHO2 + #.18 xHCHO + #.373 xCCHO + #.171 xRCHO + #.247 PROD2 + #.192 xPROD2 + HCL + #.753 yROOH + #-.169 XC

1.84E-10 10

T215L ETOETOH + CL = #.814 RO2C + #.023 RO2XC + #.023 zRNO3 + #.284 HO2 + #.552 xHO2 + #.141 xMEO2 + #.485 xHCHO + #.057 xCCHO + #.284 RCHO + #.076 xRCHO + #.011 xGLCHO + #.277 xPROD1 + #.284 xPROD2 + HCL + #.716 yROOH + #-.792 XC

2.43E-10 10

T216L DETGLCL + CL = #.48 RO2C + #.02 RO2XC + #.02 zRNO3 + #.5 HO2 + #.48 xHO2 + #.48 xHCHO + #.5 RCHO + #.48 xPROD2 + HCL + #.5 yROOH + #-.98 XC

2.76E-10 10

T217L MBUTENOL + CL = #1.174 RO2C + #.08 RO2XC + #.08 zRNO3 + #.244 xCL + #.675 xHO2 + #.255 xHCHO + #.244 xRCHO + #.474 xACET + #.202 xIPRD + #.474 xCLCCHO + #.221 HCL + yR6OOH + #.153 XC

2.96E-10 10

T218L C5RCHO1 + CL = #.913 RO2C + #.088 RO2XC + #.088 zRNO3 + #.427 xHO2 + #.255 RCO3 + #.23 xRCO3 + #.138 xCO + #.044 xHCHO + #.082 xCCHO + #.42 xRCHO + #.002 xGLY + #.006 xMGLY + HCL + #.745 yR6OOH + #1.389 XC

2.49E-10 10

T219L IAMOH + CL = #.899 RO2C + #.049 RO2XC + #.049 zRNO3 + #.289 HO2 + #.662 xHO2 + #.436 xHCHO + #.289 RCHO + #.424 xRCHO + #.102 xGLCHO + #.233 xACET + #.005 xPROD2 + HCL + #.711 yR6OOH + #1.198 XC

2.39E-10 10

T220L MTBE + CL = #1.586 RO2C + #.097 RO2XC + #.097 zRNO3 + #.329 xHO2 + #.568 xMEO2 + #.006 xTBUO + #.771 xHCHO + #.085 xACET + #.244 xPROD1 + #.002 xPROD2 + HCL + yR6OOH + #1.812 XC

1.35E-10 10

T223L IPRACET + CL = #1.482 RO2C + #.073 RO2XC + #.073 zRNO3 + #.036 xHO2 + #.395 xMEO2 + #.496 xMECO3 + #.095 CO2 + #.544 xHCHO + #.095 xACET + #.496 CCOOH + #.01 xMGLY + HCL + yR6OOH + #1.229 XC

1.14E-10 10

T224L PRACET + CL = #.973 RO2C + #.065 RO2XC + #.065 zRNO3 + #.585 xHO2 + #.35 xRCO3 + #.013 xCO + #.002 xHCHO + #.036 xCCHO + #.184 xRCHO + #.364 xPROD1 + #.363 CCOOH + HCL + yR6OOH + #.739 XC

1.68E-10 10

T225L MOEOETOH + CL = #1.282 RO2C + #.055 RO2XC + #.055 zRNO3 + #.221 HO2 + #.724 xHO2 + #.244 xHCHO + #.221 RCHO + #.077 xRCHO + #.001 xGLCHO + #.066 xPROD1 + #.641 xPROD2 + #.003 HCOOH + HCL + #.779 yR6OOH + #-.583 XC

3.12E-10 10

T226L CC6KET + CL = #1.303 RO2C + #.199 RO2XC + #.199 zRNO3 + #.681 xHO2 + #.12 xRCO3 + #.087 xHCHO + #.352 xRCHO + #.342 xPROD2 + HCL + yR6OOH + #1.251 XC

1.91E-10 10

T227L CC6OH + CL = #1.08 RO2C + #.117 RO2XC + #.117 zRNO3 + #.123 HO2 + #.76 xHO2 + #.087 xHCHO + #.524 xRCHO + #.123 PROD2 + #.248 xPROD2 + HCL + #.877 yR6OOH + #1.413 XC

3.52E-10 10

T228L C6RCHO1 + CL = #1.101 RO2C + #.159 RO2XC + #.159 zRNO3 + #.468 xHO2 + #.204 RCO3 + #.168 xRCO3 + #.037 xCO + #.008 xHCHO + #.459 xRCHO + #.042 xMGLY + HCL + #.796 yR6OOH + #2.382 XC

3.10E-10 10

T229L MIBK + CL = #1.956 RO2C + #.125 RO2XC + #.125 zRNO3 + #.178 xHO2 + #.686 xMECO3 + #.011 xRCO3 + #1.092 xHCHO + #.323 xCCHO + #.133 xRCHO + #.343 xACET + #.066 xPROD1 + HCL + yR6OOH + #.415 XC

1.12E-10 10

Page 198: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

186

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T230L MNBK + CL = #1.477 RO2C + #.121 RO2XC + #.121 zRNO3 + #.513 xHO2 + #.366 xMECO3 + #.191 xHCHO + #.229 xCCHO + #.586 xRCHO + #.084 xPROD1 + #.206 xPROD2 + HCL + yR6OOH + #.563 XC

1.63E-10 10

T231L ETBE + CL = #1.31 RO2C + #.126 RO2XC + #.126 zRNO3 + #.313 xHO2 + #.518 xMEO2 + #.043 xTBUO + #.436 xHCHO + #.168 xCCHO + #.145 xRCHO + #.125 xACET + #.518 xPROD1 + HCL + yR6OOH + #.9 XC

2.03E-10 10

T232L IBUACET + CL = #1.659 RO2C + #.13 RO2XC + #.13 zRNO3 + #.817 xHO2 + #.004 xMEO2 + #.049 xRCO3 + #.145 xCO + #.26 xHCHO + #.014 xCCHO + #.074 xRCHO + #.503 xACET + #.233 xPROD1 + #.194 CCOOH + HCL + yR6OOH + #1.585 XC

1.78E-10 10

T233L BUACET + CL = #1.26 RO2C + #.128 RO2XC + #.128 zRNO3 + #.729 xHO2 + #.143 xRCO3 + #.009 xCO + #.125 xCCHO + #.262 xRCHO + #.22 xPROD1 + #.247 xPROD2 + #.152 CCOOH + HCL + yR6OOH + #1.092 XC

2.30E-10 10

T234L DIACTALC + CL = #.902 RO2C + #.098 RO2XC + #.098 zRNO3 + #.853 xHO2 + #.032 xMECO3 + #.018 xRCO3 + #.869 xHCHO + #.032 xRCHO + #.002 xACET + #.851 xPROD1 + #.002 xMGLY + HCL + yR6OOH + #.913 XC

6.95E-11 10

T235L M24C5OH2 + CL = #.703 RO2C + #.076 RO2XC + #.076 zRNO3 + #.221 HO2 + #.703 xHO2 + #.422 xHCHO + #.009 xCCHO + #.415 xRCHO + #.262 xACET + #.221 PROD1 + #.288 xPROD2 + HCL + #.779 yR6OOH + #.461 XC

2.06E-10 10

T236L BUOETOH + CL = #1.248 RO2C + #.124 RO2XC + #.124 zRNO3 + #.188 HO2 + #.688 xHO2 + #.345 xHCHO + #.065 xCCHO + #.188 RCHO + #.244 xRCHO + #.166 xPROD1 + #.5 xPROD2 + HCL + #.812 yR6OOH + #-.179 XC

3.66E-10 10

T237L PGMEACT + CL = #1.589 RO2C + #.125 RO2XC + #.125 zRNO3 + #.495 xHO2 + #.315 xMECO3 + #.065 xRCO3 + #.117 xHCHO + #.074 xRCHO + #.078 xPROD1 + #.13 xPROD2 + #.38 CCOOH + HCL + yR6OOH + #2.234 XC

1.85E-10 10

T238L CSVACET + CL = #1.513 RO2C + #.13 RO2XC + #.13 zRNO3 + #.523 xHO2 + #.256 xMEO2 + #.091 xRCO3 + #.229 xCO + #.01 xHCHO + #.052 xCCHO + #.052 xRCHO + #.48 xPROD1 + #.242 xPROD2 + #.32 CCOOH + HCL + yR6OOH + #.18 XC

2.44E-10 10

T239L DGEE + CL = #1.162 RO2C + #.107 RO2XC + #.107 zRNO3 + #.181 HO2 + #.546 xHO2 + #.166 xMEO2 + #.183 xHCHO + #.007 xCCHO + #.181 RCHO + #.088 xRCHO + #.001 xGLCHO + #.311 xPROD1 + #.68 xPROD2 + HCL + #.819 yR6OOH + #-1.138 XC

3.81E-10 10

T240L DPRGLCL + CL = #.624 RO2C + #.067 RO2XC + #.067 zRNO3 + #.309 HO2 + #.624 xHO2 + #.201 xHCHO + #.423 xCCHO + #.201 xRCHO + #.309 PROD2 + #.423 xPROD2 + HCL + #.691 yR6OOH + #-.444 XC

2.94E-10 10

T241L ADIPACD + CL = #1.611 RO2C + #.098 RO2XC + #.098 zRNO3 + #.902 xHO2 + #1.38 xRCHO + #.194 xPROD2 + #.038 xMGLY + HCL + yR6OOH + #-.006 XC

1.24E-10 10

T243L C7RCHO1 + CL = #1.133 RO2C + #.225 RO2XC + #.225 zRNO3 + #.463 xHO2 + #.17 RCO3 + #.142 xRCO3 + #.019 xCO + #.428 xRCHO + #.035 xMGLY + HCL + #.83 yR6OOH + #3.306 XC

3.72E-10 10

T244L C7KET2 + CL = #1.506 RO2C + #.208 RO2XC + #.208 zRNO3 + #.523 xHO2 + #.269 xMECO3 + #.047 xHCHO + #.021 xCCHO + #.675 xRCHO + #.256 xPROD2 + HCL + yR6OOH + #1.564 XC

2.25E-10 10

Page 199: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

187

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T245L M3HXO2 + CL = #1.226 RO2C + #.174 RO2XC + #.174 zRNO3 + #.444 xHO2 + #.381 xRCO3 + #.319 xHCHO + #.298 xCCHO + #.277 xRCHO + #.068 xACET + #.187 xPROD1 + HCL + yR6OOH + #2.115 XC

1.67E-10 10

T246L BUOC3OH + CL = #1.253 RO2C + #.157 RO2XC + #.157 zRNO3 + #.121 HO2 + #.722 xHO2 + #.077 xHCHO + #.382 xCCHO + #.305 xRCHO + #.159 xPROD1 + #.121 PROD2 + #.469 xPROD2 + HCL + #.879 yR6OOH + #.126 XC

3.75E-10 10

T247L E3EOC3OH + CL = #1.297 RO2C + #.162 RO2XC + #.162 zRNO3 + #.39 xHO2 + #.172 xMEO2 + #.276 xMECO3 + #.036 xCCHO + #.145 xRCHO + #.405 xPROD1 + #.305 xPROD2 + #.062 RCOOH + #.215 xMGLY + HCL + yR6OOH + #.516 XC

2.81E-10 10

T248L DPGOME2 + CL = #1.34 RO2C + #.141 RO2XC + #.141 zRNO3 + #.208 HO2 + #.433 xHO2 + #.218 xMEO2 + #.291 xHCHO + #.043 xCCHO + #.208 RCHO + #.081 xRCHO + #.045 xPROD1 + #.571 xPROD2 + #.009 HCOOH + HCL + #.792 yR6OOH + #1.077 XC

3.31E-10 10

T249L C8RCHO1 + CL = #1.164 RO2C + #.287 RO2XC + #.287 zRNO3 + #.494 xHO2 + #.146 RCO3 + #.072 xRCO3 + #.015 xCO + #.466 xRCHO + #.028 xMGLY + HCL + #.854 yR6OOH + #4.127 XC

4.34E-10 10

T250L IBUIBTR + CL = #1.579 RO2C + #.248 RO2XC + #.248 zRNO3 + #.702 xHO2 + #.003 xMEO2 + #.048 xRCO3 + #.089 xCO + #.3 xHCHO + #.01 xCCHO + #.146 xRCHO + #.404 xACET + #.468 xPROD1 + #.012 xPROD2 + #.123 RCOOH + #.012 xBACL + HCL + yR6OOH + #1.945 XC

2.44E-10 10

T251L DGBE + CL = #1.266 RO2C + #.256 RO2XC + #.256 zRNO3 + #.137 HO2 + #.607 xHO2 + #.123 xHCHO + #.04 xCCHO + #.137 RCHO + #.224 xRCHO + #.001 xGLCHO + #.186 xPROD1 + #.631 xPROD2 + HCL + #.863 yR6OOH + #.646 XC

5.04E-10 10

T252L TEXANOL + CL = #1.128 RO2C + #.345 RO2XC + #.345 zRNO3 + #.16 HO2 + #.495 xHO2 + #.001 xRCO3 + #.404 xHCHO + #.007 xCCHO + #.098 RCHO + #.385 xRCHO + #.229 xACET + #.231 xPROD1 + #.062 PROD2 + #.04 xPROD2 + #.001 RCOOH + #.004 xBACL + HCL + #.841 yR6OOH + #5.818 XC

3.53E-10 10

T254L CH3CL + CL = RO2C + xCL + xHCHO + HCL + yROOH 5.02E-13 2.17E-11 2.25 10

T257L C13DCP + CL = #.949 RO2C + #.051 RO2XC + #.051 zRNO3 + #.474 xCL + #.474 xHO2 + #.474 xCLCCHO + #.474 xCLACET + yROOH + #.324 XC

8.61E-11 10

T258L C2CL + CL = #1.879 RO2C + xCL + #1.757 xHCHO + #.121 xCCHO + HCL + yROOH + #.001 XC

7.46E-12 10

T259L CHCL3 + CL = RO2C + xCL + HCL + yROOH + XC 1.07E-16 10

T260L CL212ETH + CL = RO2C + xCL + xCLCCHO + HCL + yROOH

3.46E-13 10

T262L CL2ME + CL = RO2C + xCL + HCL + yROOH + XC 1.21E-14 10

T263L CL3ETHE + CL = RO2C + xCL + yROOH + #2 XC 8.08E-11 10

T264L CL4ETHE + CL = RO2C + xCL + yROOH + #2 XC 4.13E-11 10

T266L CLETHE + CL = #1.35 RO2C + xCL + #.35 xHCHO + #.65 xCLCCHO + yROOH + #.35 XC

1.27E-10 10

T267L ETACTYL + CL = #.933 RO2C + #.067 RO2XC + #.067 zRNO3 + #.933 xHO2 + #.323 xRCHO + #.61 xIPRD + HCL + yROOH + #-.421 XC

9.74E-11 10

T272L MEACTYL + CL = RO2C + xHO2 + xIPRD + HCL + yROOH + #-2 XC

3.28E-11 10

Page 200: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

188

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

T276L T13DCP + CL = #.949 RO2C + #.051 RO2XC + #.051 zRNO3 + #.474 xCL + #.474 xHO2 + #.474 xCLCCHO + #.474 xCLACET + yROOH + #.324 XC

8.61E-11 10

T277L TCE111 + CL = #2 RO2C + xCL + xHCHO + HCL + yROOH + XC

6.56E-12 10

T279L VINACYL + CL = #1.319 RO2C + #.083 RO2XC + #.083 zRNO3 + #.918 xHO2 + #.02 xHCHO + #.113 xCCHO + #.04 xRCHO + #.174 xACRO + #.011 xMVK + #.021 xIPRD + #.244 xCLCCHO + #.429 xCLACET + #.266 HCL + yROOH + #.69 XC

3.39E-10 10

T300L PROPALD + CL = HCL + #.9 RCO3 + #.1 {RO2C + xCCHO + xCO + xHO2 + yROOH}

1.23E-10 1

T301L MEK + CL = HCL + #.975 RO2C + #.039 RO2XC + #.039 zRNO3 + #.84 xHO2 + #.085 xMECO3 + #.036 xRCO3 + #.065 xHCHO + #.07 xCCHO + #.84 xRCHO + yROOH + #.763 XC

3.60E-11 1

BC01 OTH1 + CL = #1.344 RO2C + xCL + #.344 xHCHO + #.656 xCLCCHO + HCL + yROOH + #.344 XC

2.37E-12 15

BC02 OTH2 + CL = #1.832 RO2C + #.098 RO2XC + #.098 zRNO3 + #.057 xHO2 + #.101 xMEO2 + #.031 xMECO3 + #.713 xTBUO + #.023 xCO + #.024 CO2 + #.862 xHCHO + #.019 xRCHO + #.024 xACET + #.054 RCOOH + #.001 xMGLY + HCL + yR6OOH + #.194 XC

1.12E-10 15

BC03 OTH3 + CL = #1.562 RO2C + #.049 RO2XC + #.049 zRNO3 + #.39 xCL + #.551 xHO2 + #.01 xRCO3 + #.171 xCO + #.007 xHCHO + #.001 xCCHO + #.464 xRCHO + #.064 xPROD1 + #.001 xPROD2 + #.004 RCOOH + #.012 xMGLY + #.006 xBACL + #.39 xCLCCHO + #.61 HCL + yROOH + #-.01 XC

1.18E-10 15

BC04 OTH4 + CL = #1.554 RO2C + #.2 RO2XC + #.2 zRNO3 + #.753 xHO2 + #.028 xMEO2 + #.002 xRCO3 + #.018 xTBUO + #.146 xHCHO + #.2 xCCHO + #.292 xRCHO + #.004 xGLCHO + #.095 xACET + #.026 xPROD1 + #.28 xPROD2 + #.002 CCOOH + HCL + yR6OOH + #1.191 XC

2.61E-10 15

BC05 OTH5 + CL = #1.448 RO2C + #.437 RO2XC + #.437 zRNO3 + #.012 HO2 + #.54 xHO2 + #.002 xMEO2 + #.009 xRCO3 + #.002 xCO + #.023 xHCHO + #.083 xCCHO + #.006 RCHO + #.193 xRCHO + #.006 xACET + #.033 xPROD1 + #.006 PROD2 + #.359 xPROD2 + HCL + #.988 yR6OOH + #3.221 XC

6.13E-10 15

BC06 OLE1 + CL = #1.666 RO2C + #.136 RO2XC + #.136 zRNO3 + #.864 xHO2 + #.039 xHCHO + #.225 xCCHO + #.079 xRCHO + #.223 xACRO + #.021 xMVK + #.042 xIPRD + #.181 xCLCCHO + #.318 xCLACET + #.408 HCL + yR6OOH + #5.179 XC

4.05E-10 15

BC07 OLE2 + CL = #1.573 RO2C + #.138 RO2XC + #.138 zRNO3 + #.515 xCL + #.346 xHO2 + #.002 xMEO2 + #.071 xHCHO + #.62 xCCHO + #.58 xRCHO + #.007 xACRO + #.047 xMVK + #.213 xIPRD + #.006 xCLCCHO + #.01 xCLACET + #.307 HCL + #.986 yR6OOH + #4.803 XC

3.95E-10 15

BC08 ARO1 + CL = #.904 RO2C + #.188 RO2XC + #.188 zRNO3 + #.678 xHO2 + #.135 xMEO2 + #.091 xCCHO + #.063 xRCHO + #.718 xPROD2 + #.032 xBALD + #3.834 XC

2.68E-10 15

BC09 ARO2 + CL = #.813 RO2C + #.188 RO2XC + #.188 zRNO3 + #.731 xHO2 + #.081 xMEO2 + #.001 xCCHO + #.095 xRCHO + #.579 xPROD2 + #.138 xBALD + #4.064 XC

3.12E-10 15

Page 201: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

189

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BC10 TERP + CL = #2.258 RO2C + #.582 RO2XC + #.582 zRNO3 + #.068 xCL + #.252 xHO2 + #.034 xMECO3 + #.05 xRCO3 + #.016 xMACO3 + #.035 xCO + #.158 xHCHO + #.185 xRCHO + #.274 xACET + #.007 xGLY + #.003 xBACL + #.003 xMVK + #.158 xIPRD + #.006 xAFG1 + #.006 xAFG2 + #.001 xAFG4 + #.109 xCLCCHO + #.548 HCL + yR6OOH + #3.544 XC

5.46E-10 1,17

BC11 SESQ + CL = #2.258 RO2C + #.582 RO2XC + #.582 zRNO3 + #.068 xCL + #.252 xHO2 + #.034 xMECO3 + #.05 xRCO3 + #.016 xMACO3 + #.035 xCO + #.158 xHCHO + #.185 xRCHO + #.274 xACET + #.007 xGLY + #.003 xBACL + #.003 xMVK + #.158 xIPRD + #.006 xAFG1 + #.006 xAFG2 + #.001 xAFG4 + #.109 xCLCCHO + #.548 HCL + yR6OOH + #8.544 XC

Same k as rxn BC10 1

a Format of reaction listing: "=" separates reactants from products; "#number" indicates

stoichiometric coefficient, "#coefficient {product list}" means that the stoichiometric

coefficient is applied to all the products listed. b Except as indicated, the rate constants are given by k(T) = A · (T/300)

B · e

-Ea/RT, where the units

of k and A are cm3 molec

-1 s

-1, Ea are kcal mol

-1, T is

oK, and R=0.0019872 kcal mol

-1 deg

-

1. The following special rate constant expressions are used:

Phot Set = name: The absorption cross sections and (if applicable) quantum yields for the

photolysis reaction are given in Table A-3 of Carter (2010), where "name" indicates the

photolysis set used. If a "qy=number" notation is given, the number given is the overall

quantum yield, which is assumed to be wavelength independent.

Falloff: The rate constant as a function of temperature and pressure is calculated using

k(T,M) = {k0(T)·[M]/[1 + k0(T)·[M]/kinf(T)]}· FZ, where Z = {1 +

[log10{k0(T)·[M])/kinf(T)}/N]2 }

-1, [M] is the total pressure in molecules cm

-3, F and N

are as indicated on the table, and the temperature dependences of k0 and kinf are as

indicated on the table.

k = k0+k3M(1+k3M/k2): The rate constant as a function of temperature and pressure is

calculated using k(T,M) = k0(T) + k3(T)·[M] ·(1 + k3(T)·[M]/k2(T)), where [M] is the

total bath gas (air) concentration in molecules cm-3, and the temperature dependences

for k0, k2 and k3 are as indicated on the table.

k = k1 + k2 [M]: The rate constant as a function of temperature and pressure is calculated

using k(T,M) = k1(T) + k2(T)·[M], where [M] is the total bath gas (air) concentration in

molecules cm-3, and the temperature dependences for k1, and k2 are as indicated on the

table. Same K as Rxn xx: Uses the same rate constant as the reaction in the base mechanism

with the same label. c Footnotes documenting sources of rate constants and mechanisms are as follows.

1 Same as SAPRC-07T

2 Same as SAPRC-07T, "B" version

3 Same as SAPRC-07T, "C" version

3a MEK is renamed to PROD1 when used as a lumped organic product model species, but the

mechanism is the same as in SAPRC-07T.

4 Same as SAPRC-11 as documented by Carter and Heo (2013)

Page 202: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

190

4a The peroxyacid products formed with 41% yields are represented by a separate model species

in SAPRC07T and 12T, not by the corresponding acid as in standard SAPRC-11. So CCO3H

and RCO3H are used instead of CCOOH and RCOOH, respectively.

5 See Sarwar et al (2013) for a discussion of stabilized Criegee biradical reactions and rate

constants.

6 SAPRC-07T erroneously used CCHO to represent glycolaldehyde. This was corrected.

7 Based on SAPRC-07T except Criegee biradical represented explicitly

8 Unsaturated Criegee biradical represented by RCHO2, forming RCHO when it reacts with

H2O. SAPRC-07T represented it by IPRD.

9 Criegee biradical represented by RCHO2, forming RCHO when it reacts with H2O. SAPRC-

07T represented it by PROD2.

10 Derived using the mechanism generation system. (Taken from DMSmech12.xls 7/12/13)

11 Derived from SAPRC-11 aromatics mechanism. (Taken from DMSmech12.xls using data in

AroPrm12.xls 7/12/13)

12 Derived from off-ring abstraction reactions used in the SAPRC-11 aromatics mechanism,

assuming the only reaction is off ring abstraction. Measured rate constant used for toluene,

xylenes, and trimethylbenzenes, and rate constants estimated based on these values for the

other alkylbenzenes.

13 Derived from mechanisms for compounds represented by this lumped species

14 Based on compounds in the EPA emissions inventory, with explicitly represented species

removed. In some cases compounds with non-standard mechanisms are also removed.

15 Based on compounds in the EPA emissions inventory, with explicitly represented species

removed. In some cases compounds with no chlorine mechanisms derived are removed.

16 This compound is used to derive mechansims for lumped product species but is reprsented

explicitly as a separate model species when emitted. The mechanism is the same as used for

thecorresponding lumped product species (RCHO or MEK for PROPALD and PROD1,

respectively.)

17 Same mixture as used to derive the mechanism of the TERP model species in SAPRC-07. Note

that this includes compounds that are explicitly represented, such as the pinenes.

18 Same mechanism as used for TERP

19 Same as mechanism used in the latest version of the SAPRC-07 detailed mechanism for the

relevant special mechanism compound.

20 Used to represent loss of nitrogen and formation of nitrosamines in mechanisms for amines

without alpha hydrogens. PROD2+ 2 XN used to represent nitrosamines. Used for AMP

reactions.

Page 203: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

191

Table B-3. List of model species for SAPRC-11L.

Name Description

Constant Species.

O2 Oxygen

M Air

H2O Water

H2 Hydrogen Molecules

HV Light

Active Inorganic Species.

O3 Ozone

NO Nitric Oxide

NO2 Nitrogen Dioxide

NO3 Nitrate Radical

N2O5 Nitrogen Pentoxide

HONO Nitrous Acid

HNO3 Nitric Acid

HNO4 Peroxynitric Acid

HO2H Hydrogen Peroxide

CO Carbon Monoxide

SO2 Sulfur Dioxide

Active Radical Species and Operators.

OH Hydroxyl Radicals

HO2 Hydroperoxide Radicals

MEO2 Methyl Peroxy Radicals

RO2C Peroxy Radical Operator representing NO to NO2 and NO3 to NO2 conversions, and the effects of peroxy radical reactions on acyl peroxy and other peroxy radicals.

RO2XC Peroxy Radical Operator representing NO consumption (used in conjunction with organic nitrate formation), and the effects of peroxy radical reactions on NO3, acyl peroxy radicals, and other peroxy radicals.

MECO3 Acetyl Peroxy Radicals

RCO3 Peroxy Propionyl and higher peroxy acyl Radicals

BZCO3 Peroxyacyl radical formed from Aromatic Aldehydes

MACO3 Peroxyacyl radicals formed from methacrolein and other acroleins.

Steady State Radical Species

O3P Ground State Oxygen Atoms

O1D Excited Oxygen Atoms

TBUO t-Butoxy Radicals

BZO Phenoxy Radicals

HCOCO3 HC(O)C(O)OO Radicals

PAN and PAN Analogues

PAN Peroxy Acetyl Nitrate

PAN2 PPN and other higher alkyl PAN analogues

PBZN PAN analogues formed from Aromatic Aldehydes

MAPAN PAN analogue formed from Methacrolein

Explicit and Lumped Molecule Reactive Organic Product Species

Page 204: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

192

Name Description

HCHO Formaldehyde

CCHO Acetaldehyde

RCHO Lumped C3+ Aldehydes (mechanism based on propionaldehyde)

ACET Acetone

MEK Ketones and other non-aldehyde oxygenated products which react with OH radicals faster than 5 x 10

-13 but slower than 5 x 10

-12 cm

3 molec

-2 sec

-1. (Based on mechanism

for methyl ethyl ketone). MEOH Methanol

HCOOH Formic Acid

CCOOH Acetic Acid. Also used for peroxyacetic acid.

RCOOH Higher organic acids and peroxy acids (mechanism based on propionic acid).

COOH Methyl Hydroperoxide

ROOH Lumped organic hydroperoxides with 2-4 carbons. Mechanism based on that estimated for n-propyl hydroperoxide.

R6OOH Lumped organic hydroperoxides with 5 or more carbons (other than those formed following OH addition to aromatic rings, which is reprsented separately). Mechanism based on that estimated for 3-hexyl hydroperoxide.

GLY Glyoxal

MGLY Methyl Glyoxal

BACL Biacetyl

PHEN Phenol

CRES Cresols

XYNL Xylenols and higher alkylphenols

CATL Catechols

NPHE Nitrophenols

BALD Aromatic aldehydes (e.g., benzaldehyde)

MACR Methacrolein

MVK Methyl Vinyl Ketone

IPRD Lumped isoprene product species

RAOOH Used to represent SOA formation from organic hydroperoxides formed from aromatic hydrocarbons. (Not used to represent gas-phase reactions of hydroperoxide products, which are assumed to be relatively minor. But its consumption by estimated gas-phase reactionsa are included

Aromatic unsaturated ring fragmentation products

AFG1 Monounsaturated dialdehydes or aldehyde-ketones formed from aromatics. - Most photoreactive

AFG2 Monounsaturated dialdehydes or aldehyde-ketones formed from aromatics. - Least photoreactive

AFG3 Diunsaturatred dicarbonyl aromatic fragmentation products that are assumed not to photolyze rapidly. Formed from ARO-OH + NO2 reaction only.

AFG4 3-hexene-2,5-dione and other monounsaturated diketone aromatic products.

AFG5 Unsaturated epoxy dicarbonyl aromatic fragmentation products

Lumped Parameter Products

PROD2 Ketones and other non-aldehyde oxygenated products which react with OH radicals faster than 5 x 10

-12 cm

3 molec

-2 sec

-1.

RNO3 Lumped Organic Nitrates

Steady state operators used to represent radical or product formation in peroxy radical reactions.

Page 205: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

193

Name Description

xHO2 Formation of HO2 from alkoxy radicals formed in peroxy radical reactions with NO and NO3 (100% yields) and RO2 (50% yields)

xOH As above, but for OH

xNO2 As above, but for NO2

xMEO2 As above, but for MEO2

xMECO3 As above, but for MECO3

xRCO3 As above, but for RCO3

xMACO3 As above, but for MACO3

xTBUO As above, but for TBUO

xCO As above, but for CO

xHCHO As above, but for HCHO

xCCHO As above, but for CCHO

xRCHO As above, but for RCHO

xACET As above, but for ACET

xMEK As above, but for MEK

xPROD2 As above, but for PROD2

xBALD As above, but for BALD

xGLY As above, but for GLY

xMGLY As above, but for MGLY

xBACL As above, but for BACL

xAFG1 As above, but for AFG1

xAFG2 As above, but for AFG2

xAFG4 As above, but for AFG4

xMACR As above, but for MACR

xMVK As above, but for MVK

xIPRD As above, but for IPRD

xRNO3 As above, but for RNO3

zRNO3 Formation of RNO3 in the RO2 + NO, reaction, or formation of corresponding non-nitrate products (represented by PROD2) formed from alkoxy radicals formed in RO2 + NO3 and (in 50% yields) RO2 + RO2 reactions.

yROOH Formation of ROOH following RO2 + HO2 reactions, or formation of H-shift disproportionation products (represented by MEK) in the RO2 + RCO3 and (in 50% yields) RO2 + RO2 reactions.

yR6OOH As above, but the RO2 + HO2 product is represented by R6OOH and the H-shift products are represented by PROD2.

yRAOOH Like yROOH or yR6OOH but for RAOOH

Non-Reacting Species

CO2 Carbon Dioxide

SULF Sulfates (SO3 or H2SO4)

XC Lost Carbon or carbon in unreactive products

XN Lost Nitrogen or nitrogen in unreactive products

Primary Organics Represented explicitly

CH4 Methane

ETHE Ethene

ISOP Isoprene

Page 206: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

194

Name Description

ACYL Acetylene

BENZ Benzene

Species used in Lumped Mechanisms for Base Case and Ambient Simulations

ALK1 Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 2 and 5 x 10

2 ppm-1 min-1. (Primarily ethane)

ALK2 Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 5 x 10

2 and 2.5 x 10

3 ppm-1 min-1. (Primarily propane and acetylene)

ALK3 Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 2.5 x 10

3 and 5 x 10

3 ppm-1 min-1.

ALK4 Alkanes and other non-aromatic compounds that react only with OH, and have kOH between 5 x 10

3 and 1 x 10

4 ppm-1 min-1.

ALK5 Alkanes and other non-aromatic compounds that react only with OH, and have kOH greater than 1 x 10

4 ppm-1 min-1.

OLE1 Alkenes (other than ethene) with kOH < 7x104 ppm-1 min-1.

OLE2 Alkenes with kOH > 7x104 ppm-1 min-1.

ARO1 Aromatics with kOH < 2x104 ppm-1 min-1.

ARO2 Aromatics with kOH > 2x104 ppm-1 min-1.

TERP Terpenes

Chlorine Species

Active Inorganic Species.

CL2 Chlorine molecules

CLNO ClNO

CLONO ClONO

CLNO2 ClNO2

CLONO2 ClONO2

HOCL HOCl

Active Radical Species and Operators.

CL Chlorine atoms

CLO ClO. Radicals

Active Organic Product Species

CLCCHO Chloroacetaldehyde (and other alpha-chloro aldehydes that are assumed to be similarly photoreactive)

CLACET Chloroacetone (and other alpha-chloro ketones that are assumed to be similarly photoreactive)

Steady state operators used to represent radical or product formation in peroxy radical reactions.

xCL Formation of Cl radicals from alkoxy radicals formed in peroxy radical reactions with NO and NO3 (100% yields) and RO2 (50% yields)

xCLCCHO

As above, but for CLCCHO

xCLACET As above, but for CLACET

Low Reactivity Compounds Represented as Unreactive

HCL Hydrochloric acid

CLCHO Formyl Chloride (assumed to be unreactive)

Page 207: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

195

Table B-4. List of reactions used for SAPRC-11L.

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

1 NO2 + HV = NO + O3P Phot Set= NO2-06 2,4

2 O3P + O2 + M = O3 + M 5.68E-34 5.68E-34 0.00 -2.60

3,5

3 O3P + O3 = #2 O2 8.34E-15 8.00E-12 4.09 1,2,3

4 O3P + NO = NO2 1.64E-12 Falloff, F=0.60, N=1.00 2

0: 9.00E-32 0.00 -

1.50

inf: 3.00E-11 0.00 0.00

5 O3P + NO2 = NO + O2 1.03E-11 5.50E-12 -0.37 3

6 O3P + NO2 = NO3 3.24E-12 Falloff, F=0.60, N=1.00 2

0: 2.50E-31 0.00 -

1.80

inf: 2.20E-11 0.00 -

0.70

7 O3 + NO = NO2 + O2 2.02E-14 3.00E-12 2.98 2

8 O3 + NO2 = O2 + NO3 3.72E-17 1.40E-13 4.91 1,3

9 NO + NO3 = #2 NO2 2.60E-11 1.80E-11 -0.22 1,3

10 NO + NO + O2 = #2 NO2 1.93E-38 3.30E-39 -1.05 1,3

11 NO2 + NO3 = N2O5 1.24E-12 Falloff, F=0.35, N=1.33 3

0: 3.60E-30 0.00 -

4.10

inf: 1.90E-12 0.00 0.20

12 N2O5 = NO2 + NO3 5.69E-02 Falloff, F=0.35, N=1.33 3

0: 1.30E-03 21.86 -

3.50

inf: 9.70E+14 22.02 0.10

13 N2O5 + H2O = #2 HNO3 2.50E-22 3,6

14 N2O5 + H2O + H2O = #2 HNO3 + H2O 1.80E-39 3,6

15 NO2 + NO3 = NO + NO2 + O2 6.75E-16 4.50E-14 2.50 1,3

16 NO3 + HV = NO + O2 Phot Set= NO3NO-06 2

17 NO3 + HV = NO2 + O3P Phot Set= NO3NO2-6 2

18 O3 + HV = O1D + O2 Phot Set= O3O1D-06 2,3,7

19 O3 + HV = O3P + O2 Phot Set= O3O3P-06 2,7

20 O1D + H2O = #2 OH 1.99E-10 1.63E-10 -0.12 2

21 O1D + M = O3P + M 3.28E-11 2.38E-11 -0.19 2,5

22 OH + NO = HONO 7.31E-12 Falloff, F=0.60, N=1.00 2

0: 7.00E-31 0.00 -

2.60

inf: 3.60E-11 0.00 -

0.10

23 HONO + HV = OH + NO Phot Set= HONO-06 8

24 OH + HONO = H2O + NO2 5.95E-12 2.50E-12 -0.52 3

25 OH + NO2 = HNO3 1.05E-11 Falloff, F=0.60, N=1.00 2,9

0: 1.80E-30 0.00 -

3.00

inf: 2.80E-11 0.00 0.00

26 OH + NO3 = HO2 + NO2 2.00E-11 1,3

27 OH + HNO3 = H2O + NO3 1.51E-13 k = k0+k3M/(1+k3M/k2) 2

Page 208: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

196

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

k1: 2.40E-14 -0.91 0.00

k2: 2.70E-17 -4.37 0.00

k0: 6.50E-34 -2.65 0.00

28 HNO3 + HV = OH + NO2 Phot Set= HNO3 1,2,3,10

29 OH + CO = HO2 + CO2 2.28E-13 k = k1 + k2 [M] 3

k1: 1.44E-13 0.00 0.00

k0: 3.43E-33 0.00 0.00

30 OH + O3 = HO2 + O2 7.41E-14 1.70E-12 1.87 2,3

31 HO2 + NO = OH + NO2 8.85E-12 3.60E-12 -0.54 3

32 HO2 + NO2 = HNO4 1.12E-12 Falloff, F=0.60, N=1.00 2

0: 2.00E-31 0.00 -

3.40

inf: 2.90E-12 0.00 -

1.10

33 HNO4 = HO2 + NO2 1.07E-01 Falloff, F=0.60, N=1.00 11

0: 3.72E-05 21.16 -

2.40

inf: 5.42E+15 22.20 -

2.30

34 HNO4 + HV = #.61 {HO2 + NO2} + #.39 {OH + NO3} Phot Set= HNO4-06 12

35 HNO4 + OH = H2O + NO2 + O2 4.61E-12 1.30E-12 -0.76 2

36 HO2 + O3 = OH + #2 O2 2.05E-15 2.03E-16 -1.38 4.57 3

37 HO2 + HO2 = HO2H + O2 2.84E-12 k = k1 + k2 [M] 3

k1: 2.20E-13 -1.19 0.00

k0: 1.90E-33 -1.95 0.00

38 HO2 + HO2 + H2O = HO2H + O2 + H2O 6.09E-30 k = k1 + k2 [M] 3

k1: 3.08E-34 -5.56 0.00

k0: 2.66E-54 -6.32 0.00

39 NO3 + HO2 = #.8 {OH + NO2 + O2} + #.2 {HNO3 + O2} 4.00E-12 1,3,13

40 NO3 + NO3 = #2 NO2 + O2 2.41E-16 8.50E-13 4.87 1,2

41 HO2H + HV = #2 OH Phot Set= H2O2 1,10

42 HO2H + OH = HO2 + H2O 1.80E-12 1.80E-12 0.00 2

43 OH + HO2 = H2O + O2 1.10E-10 4.80E-11 -0.50 1

44 OH + SO2 = HO2 + SULF 9.49E-13 Falloff, F=0.60, N=1.00 2

0: 3.30E-31 0.00 -

4.30

inf: 1.60E-12 0.00 0.00

45 OH + H2 = HO2 + H2O 7.02E-15 7.70E-12 4.17 1,3

BR01 MEO2 + NO = NO2 + HCHO + HO2 7.64E-12 2.30E-12 -0.72 3,14

BR02 MEO2 + HO2 = COOH + O2 4.65E-12 3.46E-13 -1.55 0.36 3,15

BR03 MEO2 + HO2 = HCHO + O2 + H2O 4.50E-13 3.34E-14 -1.55 -3.53

3,15

BR04 MEO2 + NO3 = HCHO + HO2 + NO2 1.30E-12 1,3,14

BR05 MEO2 + MEO2 = MEOH + HCHO + O2 2.16E-13 6.39E-14 -0.73 -1.80

3,16

BR06 MEO2 + MEO2 = #2 {HCHO + HO2} 1.31E-13 7.40E-13 1.03 3

BR07 RO2C + NO = NO2 9.23E-12 2.60E-12 -0.76 3,18,17

Page 209: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

197

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BR08 RO2C + HO2 = 7.63E-12 3.80E-13 -1.79 3,18,17

BR09 RO2C + NO3 = NO2 2.30E-12 3,18,17

BR10 RO2C + MEO2 = #.5 HO2 + #.75 HCHO + #.25 MEOH 2.00E-13 1,17,19

BR11 RO2C + RO2C = 3.50E-14 1,17

BR12 RO2XC + NO = XN Same k as rxn BR07 3,17,18

BR13 RO2XC + HO2 = Same k as rxn BR08 3,17,18

BR14 RO2XC + NO3 = NO2 Same k as rxn BR09 1,17

BR15 RO2XC + MEO2 = #.5 HO2 + #.75 HCHO + #.25 MEOH

Same k as rxn BR10 3,17,18

BR16 RO2XC + RO2C = Same k as rxn BR11 1,17

BR17 RO2XC + RO2XC = Same k as rxn BR11 1,17

BR18 MECO3 + NO2 = PAN 9.37E-12 Falloff, F=0.30, N=1.41 20

0: 2.70E-28 0.00 -

7.10

inf: 1.21E-11 0.00 -

0.90

BR19 PAN = MECO3 + NO2 6.27E-04 Falloff, F=0.30, N=1.41 20

0: 4.90E-03 24.05 0.00

inf: 4.00E+16 27.03 0.00

BR20 PAN + HV = #.6 {MECO3 + NO2} + #.4 {MEO2 + CO2 + NO3}

Phot Set= PAN 3

BR21 MECO3 + NO = MEO2 + CO2 + NO2 1.97E-11 7.50E-12 -0.58 3

BR22 MECO3 + HO2 = #.44 {OH + MEO2 + CO2} + #.41 CCOOH + #.15 {O3 + CCOOH}

1.36E-11 5.20E-13 -1.95 n1 (3,21)

BR23 MECO3 + NO3 = MEO2 + CO2 + NO2 + O2 Same k as rxn BR09 22

BR24 MECO3 + MEO2 = #.1 {CCOOH + HCHO + O2} + #.9 {HCHO + HO2 + MEO2 + CO2}

1.06E-11 2.00E-12 -0.99 3

BR25 MECO3 + RO2C = MEO2 + CO2 1.56E-11 4.40E-13 -2.13 3,18,23

BR26 MECO3 + RO2XC = MEO2 + CO2 Same k as rxn BR25 3,18,23

BR27 MECO3 + MECO3 = #2 {MEO2 + CO2} + O2 1.54E-11 2.90E-12 -0.99 1,3

BR28 RCO3 + NO2 = PAN2 1.21E-11 1.21E-11 0.00 -1.07

24

BR29 PAN2 = RCO3 + NO2 5.48E-04 8.30E+16 27.70 3,25

BR30 PAN2 + HV = #.6 {RCO3 + NO2} + #.4 {RO2C + xHO2 + yROOH + xCCHO + CO2 + NO3}

Phot Set= PAN 26

BR31 RCO3 + NO = NO2 + RO2C + xHO2 + yROOH + xCCHO + CO2

2.08E-11 6.70E-12 -0.68 3,27

BR32 RCO3 + HO2 = #.44 {OH + RO2C + xHO2 + xCCHO + yROOH + CO2} + #.41 RCOOH + #.15 {O3 + RCOOH}

Same k as rxn BR22 28

BR33 RCO3 + NO3 = NO2 + RO2C + xHO2 + yROOH + xCCHO + CO2 + O2

Same k as rxn BR09 1,28

BR34 RCO3 + MEO2 = HCHO + HO2 + RO2C + xHO2 + xCCHO + yROOH + CO2

Same k as rxn BR24 1,28

BR35 RCO3 + RO2C = RO2C + xHO2 + xCCHO + yROOH + CO2

Same k as rxn BR25 1,28

BR36 RCO3 + RO2XC = RO2C + xHO2 + xCCHO + yROOH + CO2

Same k as rxn BR25 1,28

BR37 RCO3 + MECO3 = #2 CO2 + MEO2 + RO2C + xHO2 + yROOH + xCCHO + O2

Same k as rxn BR27 1,28

BR38 RCO3 + RCO3 = #2 {RO2C + xHO2 + xCCHO + yROOH + CO2}

Same k as rxn BR27 1,28

BR39 BZCO3 + NO2 = PBZN 1.37E-11 1,29

Page 210: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

198

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BR40 PBZN = BZCO3 + NO2 4.27E-04 7.90E+16 27.82 1,29

BR41 PBZN + HV = #.6 {BZCO3 + NO2} + #.4 {CO2 + BZO + RO2C + NO3}

Phot Set= PAN 26

BR42 BZCO3 + NO = NO2 + CO2 + BZO + RO2C Same k as rxn BR31 1,28

BR43 BZCO3 + HO2 = #.44 {OH + BZO + RO2C + CO2} + #.41 RCOOH + #.15 {O3 + RCOOH} + #2.24 XC

Same k as rxn BR22 28

BR44 BZCO3 + NO3 = NO2 + CO2 + BZO + RO2C + O2 Same k as rxn BR09 1,28

BR45 BZCO3 + MEO2 = HCHO + HO2 + RO2C + BZO + CO2

Same k as rxn BR24 1,28

BR46 BZCO3 + RO2C = RO2C + BZO + CO2 Same k as rxn BR25 1,28

BR47 BZCO3 + RO2XC = RO2C + BZO + CO2 Same k as rxn BR25 1,28

BR48 BZCO3 + MECO3 = #2 CO2 + MEO2 + BZO + RO2C Same k as rxn BR27 1,28

BR49 BZCO3 + RCO3 = #2 CO2 + RO2C + xHO2 + yROOH + xCCHO + BZO + RO2C

Same k as rxn BR27 1,28

BR50 BZCO3 + BZCO3 = #2 {BZO + RO2C + CO2} Same k as rxn BR27 1,28

BR51 MACO3 + NO2 = MAPAN Same k as rxn BR28 1,28

BR52 MAPAN = MACO3 + NO2 4.79E-04 1.60E+16 26.80 1,30

BR53 MAPAN + HV = #.6 {MACO3 + NO2} + #.4 {CO2 + HCHO + MECO3 + NO3}

Phot Set= PAN 26

BR54 MACO3 + NO = NO2 + CO2 + HCHO + MECO3 Same k as rxn BR31 1,28

BR55 MACO3 + HO2 = #.44 {OH + HCHO + MECO3 + CO2} + #.41 RCOOH + #.15 {O3 + RCOOH} + #.56 XC

Same k as rxn BR22 28

BR56 MACO3 + NO3 = NO2 + CO2 + HCHO + MECO3 + O2 Same k as rxn BR09 1,28

BR57 MACO3 + MEO2 = #2 HCHO + HO2 + CO2 + MECO3 Same k as rxn BR24 1,28

BR58 MACO3 + RO2C = CO2 + HCHO + MECO3 Same k as rxn BR25 1,28

BR59 MACO3 + RO2XC = CO2 + HCHO + MECO3 Same k as rxn BR25 1,28

BR60 MACO3 + MECO3 = #2 CO2 + MEO2 + HCHO + MECO3 + O2

Same k as rxn BR27 1,28

BR61 MACO3 + RCO3 = HCHO + MECO3 + RO2C + xHO2 + yROOH + xCCHO + #2 CO2

Same k as rxn BR27 1,28

BR62 MACO3 + BZCO3 = HCHO + MECO3 + BZO + RO2C + #2 CO2

Same k as rxn BR27 1,28

BR63 MACO3 + MACO3 = #2 {HCHO + MECO3 + CO2} Same k as rxn BR27 1,28

BR64 TBUO + NO2 = RNO3 + #-2 XC 2.40E-11 1

BR65 TBUO = ACET + MEO2 1.18E+03 7.50E+14 16.20 1

BR66 BZO + NO2 = NPHE 3.79E-11 2.30E-11 -0.30 1

BR67 BZO + HO2 = CRES + #-1 XC Same k as rxn BR08 1

BR68 BZO = CRES + RO2C + xHO2 + #-1 XC 1.00E-03 1,31

RO01 xHO2 = HO2 k is variable parameter: RO2RO 32

RO02 xHO2 = k is variable parameter: RO2XRO 32

RO03 xOH = OH k is variable parameter: RO2RO 32

RO04 xOH = k is variable parameter: RO2XRO 32

RO05 xNO2 = NO2 k is variable parameter: RO2RO 32

RO06 xNO2 = XN k is variable parameter: RO2XRO 32

RO07 xMEO2 = MEO2 k is variable parameter: RO2RO 32

RO08 xMEO2 = XC k is variable parameter: RO2XRO 32

RO09 xMECO3 = MECO3 k is variable parameter: RO2RO 32

RO10 xMECO3 = #2 XC k is variable parameter: RO2XRO 32

Page 211: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

199

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

RO11 xRCO3 = RCO3 k is variable parameter: RO2RO 32

RO12 xRCO3 = #3 XC k is variable parameter: RO2XRO 32

RO13 xMACO3 = MACO3 k is variable parameter: RO2RO 32

RO14 xMACO3 = #4 XC k is variable parameter: RO2XRO 32

RO15 xTBUO = TBUO k is variable parameter: RO2RO 32

RO16 xTBUO = #4 XC k is variable parameter: RO2XRO 32

RO17 xCO = CO k is variable parameter: RO2RO 32

RO18 xCO = XC k is variable parameter: RO2XRO 32

BP01 HCHO + HV = #2 HO2 + CO Phot Set= HCHOR-06 3

BP02 HCHO + HV = H2 + CO Phot Set= HCHOM-06 3

BP03 HCHO + OH = HO2 + CO + H2O 8.47E-12 5.40E-12 -0.27 3

BP07 HCHO + NO3 = HNO3 + HO2 + CO 6.06E-16 2.00E-12 4.83 1,33

BP08 CCHO + OH = MECO3 + H2O 1.49E-11 4.40E-12 -0.73 3

BP09 CCHO + HV = CO + HO2 + MEO2 Phot Set= CCHO_R 1,3

BP10 CCHO + NO3 = HNO3 + MECO3 2.84E-15 1.40E-12 3.70 1,3

BP11 RCHO + OH = #.965 RCO3 + #.035 {RO2C + xHO2 + xCO + xCCHO + yROOH}

1.97E-11 5.10E-12 -0.80 36,35

BP12 RCHO + HV = RO2C + xHO2 + yROOH + xCCHO + CO + HO2

Phot Set= C2CHO 1,37

BP13 RCHO + NO3 = HNO3 + RCO3 6.74E-15 1.40E-12 3.18 38

BP14 ACET + OH = RO2C + xMECO3 + xHCHO + yROOH 1.91E-13 4.56E-14 -0.85 3.65 39

BP15 ACET + HV = #.62 MECO3 + #1.38 MEO2 + #.38 CO Phot Set= ACET-06, qy= 0.5 40

BP16 MEK + OH = #.967 RO2C + #.039 {RO2XC + zRNO3} + #.376 xHO2 + #.51 xMECO3 + #.074 xRCO3 + #.088 xHCHO + #.504 xCCHO + #.376 xRCHO + yROOH + #.3 XC

1.20E-12 1.30E-12 0.05 2.00 1,3,36

BP17 MEK + HV = MECO3 + RO2C + xHO2 + xCCHO + yROOH

Phot Set= MEK-06, qy= 0.175 41

BP18 MEOH + OH = HCHO + HO2 9.02E-13 2.85E-12 0.69 3

BP19 HCOOH + OH = HO2 + CO2 4.50E-13 3,42

BP20 CCOOH + OH = #.509 MEO2 + #.491 RO2C + #.509 CO2 + #.491 xHO2 + #.491 xMGLY + #.491 yROOH + #-0.491 XC

7.26E-13 4.20E-14 -1.70 3,36

BP21 RCOOH + OH = RO2C + xHO2 + #.143 CO2 + #.142 xCCHO + #.4 xRCHO + #.457 xBACL + yROOH + #-.455 XC

1.20E-12 3,36

BP22 COOH + OH = H2O + #.3 {HCHO + OH} + #.7 MEO2 7.40E-12 3.80E-12 -0.40 2,43

BP23 COOH + HV = HCHO + HO2 + OH Phot Set= COOH 1,3

BP24 ROOH + OH = #.744 OH + #.251 RO2C + #.004 RO2XC + #.004 zRNO3 + #.744 RCHO + #.239 xHO2 + #.012 xOH + #.012 xHCHO + #.012 xCCHO + #.205 xRCHO + #.034 xPROD2 + #.256 yROOH + #-0.111 XC

2.50E-11 36,45,44

BP25 ROOH + HV = RCHO + HO2 + OH Phot Set= COOH 1,45

BP26 R6OOH + OH = #.84 OH + #.222 RO2C + #.029 RO2XC + #.029 zRNO3 + #.84 PROD2 + #.09 xHO2 + #.041 xOH + #.02 xCCHO + #.075 xRCHO + #.084 xPROD2 + #.16 yROOH + #.017 XC

5.60E-11 36,44,46

BP27 R6OOH + HV = OH + #.142 HO2 + #.782 RO2C + #.077 RO2XC + #.077 zRNO3 + #.085 RCHO + #.142 PROD2 + #.782 xHO2 + #.026 xCCHO + #.058 xRCHO + #.698 xPROD2 + #.858 yR6OOH + #.017 XC

Phot Set= COOH 46

Page 212: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

200

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BP28 RAOOH + OH = #.139 OH + #.148 HO2 + #.589 RO2C + #.124 RO2XC + #.124 zRNO3 + #.074 PROD2 + #.147 MGLY + #.139 IPRD + #.565 xHO2 + #.024 xOH + #.448 xRCHO + #.026 xGLY + #.03 xMEK + #.252 xMGLY + #.073 xAFG1 + #.073 xAFG2 + #.713 yR6OOH + #1.674 XC

1.41E-10 47

BP29 RAOOH + HV = OH + HO2 + #.5 {GLY + MGLY + AFG1 + AFG2} + #-.5 XC

Phot Set= COOH 47

BP30 GLY + HV = #2 {CO + HO2} Phot Set= GLY-07R 48

BP31 GLY + HV = HCHO + CO Phot Set= GLY-07M 48

BP32 GLY + OH = #.7 HO2 + #1.4 CO + #.3 HCOCO3 9.63E-12 3.10E-12 -0.68 n2,n6 (1,3,49)

BP33 GLY + NO3 = HNO3 + #.7 HO2 + #1.4 CO + #.3 HCOCO3

1.02E-15 2.80E-12 4.72 n2 (1,50)

BP80 HCOCO3 + NO = HO2 + CO + CO2 + NO2 Same k as rxn BR31 n2

BP81 HCOCO3 + NO2 = HO2 + CO + CO2 + NO3 Same k as rxn BR28 n2

BP82 HCOCO3 + HO2 = #.44 {OH + HO2 + CO + CO2} + #.56 GLY + #.15 O3

Same k as rxn BR22 n2

BP34 MGLY + HV = HO2 + CO + MECO3 Phot Set= MGLY-06 3,51

BP35 MGLY + OH = CO + MECO3 1.50E-11 1,3

BP36 MGLY + NO3 = HNO3 + CO + MECO3 2.53E-15 1.40E-12 3.77 1,50

BP37 BACL + HV = #2 MECO3 Phot Set= BACL-07 52

BP83 PHEN + OH = #.700 HO2 + #.100 BZO + #.104 xHO2 + #.096 OH + #.104 RO2C + #.700 CATL + #.096 AFG3 + #.052 xAFG1 + #.052 xAFG2 + #.104 xGLY + #.104 yRAOOH + #-.200 XC

2.74E-11 4.70E-13 -2.42 see phenolics

sheet

BP84 PHEN + NO3 = #.100 HNO3 + #.900 XN + #.700 HO2 + #.100 BZO + #.104 xHO2 + #.096 OH + #.104 RO2C + #.700 CATL + #.096 AFG3 + #.052 xAFG1 + #.052 xAFG2 + #.104 xGLY + #.104 yRAOOH + #-.200 XC

3.80E-12 see phenolics

sheet

BP38 CRES + OH = #.700 HO2 + #.100 BZO + #.177 xHO2 + #.023 OH + #.177 RO2C + #.700 CATL + #.023 AFG3 + #.089 xAFG1 + #.089 xAFG2 + #.089 xGLY + #.089 xMGLY + #.177 yRAOOH + #.704 XC

4.06E-11 1.60E-12 -1.93 see phenolics

sheet

BP39 CRES + NO3 = #.100 HNO3 + #.900 XN + #.700 HO2 + #.100 BZO + #.177 xHO2 + #.023 OH + #.177 RO2C + #.700 CATL + #.023 AFG3 + #.089 xAFG1 + #.089 xAFG2 + #.089 xGLY + #.089 xMGLY + #.177 yRAOOH + #.704 XC

1.40E-11 see phenolics

sheet

BP85 XYNL + OH = #.700 HO2 + #.075 BZO + #.225 xHO2 + #.225 RO2C + #.700 CATL + #.113 xAFG1 + #.113 xAFG2 + #.113 xGLY + #.113 xMGLY + #.225 yRAOOH + #1.655 XC

7.38E-11 see phenolics

sheet

BP86 XYNL + NO3 = #.075 HNO3 + #.925 XN + #.700 HO2 + #.075 BZO + #.225 xHO2 + #.225 RO2C + #.700 CATL + #.113 xAFG1 + #.113 xAFG2 + #.113 xGLY + #.113 xMGLY + #.225 yRAOOH + #1.655 XC

3.06E-11 see phenolics

sheet

BP87 CATL + OH = #.400 HO2 + #.200 BZO + #.200 xHO2 + #.200 OH + #.200 RO2C + #.200 AFG3 + #.100 xAFG1 + #.100 xAFG2 + #.100 xGLY + #.100 xMGLY + #.200 yRAOOH + #1.900 XC

2.00E-10 see phenolics

sheet

BP88 CATL + NO3 = #.200 HNO3 + #.800 XN + #.400 HO2 + #.200 BZO + #.200 xHO2 + #.200 OH + #.200 RO2C + #.200 AFG3 + #.100 xAFG1 + #.100 xAFG2 + #.100 xGLY + #.100 xMGLY + #.200 yRAOOH + #1.900 XC

1.70E-10 see phenolics

sheet

BP40 NPHE + OH = BZO + XN 3.50E-12 55

BP41 NPHE + HV = HONO + #6 XC Phot Set= NO2-06, qy= 1.5E-3 56

Page 213: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

201

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BP42 NPHE + HV = #6 XC + XN Phot Set= NO2-06, qy= 1.5E-2 57

BP43 BALD + OH = BZCO3 1.20E-11 59,58

BP44 BALD + HV = #7 XC Phot Set= BALD-06, qy= 0.06 60

BP45 BALD + NO3 = HNO3 + BZCO3 2.73E-15 1.34E-12 3.70 1,61

BP46 AFG1 + OH = #.217 MACO3 + #.723 RO2C + #.06 {RO2XC + zRNO3} + #.521 xHO2 + #.201 xMECO3 + #.334 xCO + #.407 xRCHO + #.129 xMEK + #.107 xGLY + #.267 xMGLY + #.783 yR6OOH + #.284 XC

7.40E-11 62

BP48 AFG1 + HV = #1.023 HO2 + #.173 MEO2 + #.305 MECO3 + #.5 MACO3 + #.695 CO + #.195 GLY + #.305 MGLY + #.217 XC

Phot Set= AFG1 62,63

BP49 AFG2 + OH = #.217 MACO3 + #.723 RO2C + #.06 {RO2XC + zRNO3} + #.521 xHO2 + #.201 xMECO3 + #.334 xCO + #.407 xRCHO + #.129 xMEK + #.107 xGLY + #.267 xMGLY + #.783 yR6OOH + #.284 XC

7.40E-11 62

BP51 AFG2 + HV = PROD2 + #-1 XC Phot Set= AFG1 62,63

BP52 AFG3 + OH = #.206 MACO3 + #.733 RO2C + #.117 {RO2XC + zRNO3} + #.561 xHO2 + #.117 xMECO3 + #.114 xCO + #.274 xGLY + #.153 xMGLY + #.019 xBACL + #.195 xAFG1 + #.195 xAFG2 + #.231 xIPRD + #.794 yR6OOH + #.938 XC

9.35E-11 n11

BP53 AFG3 + O3 = #.471 OH + #.554 HO2 + #.013 MECO3 + #.258 RO2C + #.007 {RO2XC + zRNO3} + #.580 CO + #.190 CO2 + #.366 GLY + #.184 MGLY + #.350 AFG1 + #.350 AFG2 + #.139 AFG3 + #.003 MACR + #.004 MVK + #.003 IPRD + #.095 xHO2 + #.163 xRCO3 + #.163 xHCHO + #.095 xMGLY + #.264 yR6OOH + #-.575 XC

1.43E-17 n11

BP89 AFG4 + OH = #.902 RO2C + #.098 RO2XC + #.098 zRNO3 + #.902 xMECO3 + #.902 xRCHO + yROOH + #.902 XC

6.30E-11 n3

BP90 AFG5 + OH = #.197 RCO3 + #.215 MACO3 + #.817 RO2C + #.114 RO2XC + #.114 zRNO3 + #.331 xHO2 + #.124 xMECO3 + #.019 xRCO3 + #.049 xCO + #.456 xRCHO + #.118 xGLY + #.13 xMGLY + #.034 xBACL + #.588 yR6OOH + #2.381 XC

5.93E-11 n9

BP91 AFG5 + O3 = #.491 OH + #.456 HO2 + #.472 RO2C + #.017 RO2XC + #.017 zRNO3 + #.107 xHO2 + #.031 xMECO3 + #.199 xRCO3 + #.482 CO + #.17 CO2 + #.666 RCHO + #.377 GLY + #.163 MGLY + #.139 RCOOH + #.107 xCO + #.198 xHCHO + #.012 xRCHO + #.08 xBACL + #.355 yR6OOH + #1.268 XC

4.18E-18 n9,n10

BP54 MACR + OH = #.5 MACO3 + #.5 {RO2C + xHO2} + #.416 xCO + #.084 xHCHO + #.416 xMEK + #.084 xMGLY + #.5 yROOH + #-0.416 XC

2.84E-11 8.00E-12 -0.76 3,65

BP55 MACR + O3 = #.208 OH + #.108 HO2 + #.1 RO2C + #.45 CO + #.117 CO2 + #.1 HCHO + #.9 MGLY + #.333 HCOOH + #.1 xRCO3 + #.1 xHCHO + #.1 yROOH + #-0.1 XC

1.28E-18 1.40E-15 4.17 3,65

BP56 MACR + NO3 = #.5 {MACO3 + RO2C + HNO3 + xHO2 + xCO} + #.5 yROOH + #1.5 XC + #.5 XN

3.54E-15 1.50E-12 3.61 65,66

BP57 MACR + O3P = RCHO + XC 6.34E-12 1,65

BP58 MACR + HV = #.33 OH + #.67 HO2 + #.34 MECO3 + #.33 MACO3 + #.33 RO2C + #.67 CO + #.34 HCHO + #.33 xMECO3 + #.33 xHCHO + #.33 yROOH

Phot Set= MACR-06 3,65,67

BP59 MVK + OH = #.975 RO2C + #.025 {RO2XC + zRNO3} + #.3 xHO2 + #.675 xMECO3 + #.3 xHCHO + #.675 xRCHO + #.3 xMGLY + yROOH + #-0.725 XC

1.99E-11 2.60E-12 -1.21 3,65

Page 214: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

202

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BP60 MVK + O3 = #.164 OH + #.064 HO2 + #.05 {RO2C + xHO2} + #.475 CO + #.124 CO2 + #.05 HCHO + #.95 MGLY + #.351 HCOOH + #.05 xRCO3 + #.05 xHCHO + #.05 yROOH + #-0.05 XC

5.36E-18 8.50E-16 3.02 3,65

BP62 MVK + O3P = #.45 RCHO + #.55 MEK + #.45 XC 4.32E-12 1,65

BP63 MVK + HV = #.4 MEO2 + #.6 CO + #.6 PROD2 + #.4 MACO3 + #-2.2 XC

Phot Set= MVK-06 3,68

BP64 IPRD + OH = #.289 MACO3 + #.67 {RO2C + xHO2} + #.041 {RO2XC + zRNO3} + #.336 xCO + #.055 xHCHO + #.129 xCCHO + #.013 xRCHO + #.15 xMEK + #.332 xPROD2 + #.15 xGLY + #.174 xMGLY + #-0.504 XC + #.711 yR6OOH

6.19E-11 1,65

BP65 IPRD + O3 = #.285 OH + #.4 HO2 + #.048 {RO2C + xRCO3} + #.498 CO + #.14 CO2 + #.124 HCHO + #.21 MEK + #.023 GLY + #.742 MGLY + #.1 HCOOH + #.372 RCOOH + #.047 xCCHO + #.001 xHCHO + #.048 yR6OOH + #-.329 XC

4.18E-18 1,65

BP66 IPRD + NO3 = #.15 {MACO3 + HNO3} + #.799 {RO2C + xHO2} + #.051 {RO2XC + zRNO3} + #.572 xCO + #.227 xHCHO + #.218 xRCHO + #.008 xMGLY + #.572 xRNO3 + #.85 yR6OOH + #.278 XN + #-.815 XC

1.00E-13 1,65

BP67 IPRD + HV = #1.233 HO2 + #.467 MECO3 + #.3 RCO3 + #1.233 CO + #.3 HCHO + #.467 CCHO + #.233 MEK + #-.233 XC

Phot Set= MACR-06 65,69

BP68 PROD2 + OH = #.472 HO2 + #.379 xHO2 + #.029 xMECO3 + #.049 xRCO3 + #.473 RO2C + #.071 RO2XC + #.071 zRNO3 + #.002 HCHO + #.211 xHCHO + #.001 CCHO + #.083 xCCHO + #.143 RCHO + #.402 xRCHO + #.115 xMEK + #.329 PROD2 + #.007 xPROD2 + #.528 yR6OOH + #.877 XC

1.55E-11 70

BP69 PROD2 + HV = #.913 xHO2 + #.4 MECO3 + #.6 RCO3 + #1.59 RO2C + #.087 RO2XC + #.087 zRNO3 + #.303 xHCHO + #.163 xCCHO + #.78 xRCHO + yR6OOH + #-.091 XC

Phot Set= MEK-06, qy= 4.86E-3 70,71

BP70 RNO3 + OH = #.189 HO2 + #.305 xHO2 + #.019 NO2 + #.313 xNO2 + #.976 RO2C + #.175 RO2XC + #.175 zRNO3 + #.011 xHCHO + #.429 xCCHO + #.001 RCHO + #.036 xRCHO + #.004 xACET + #.01 MEK + #.17 xMEK + #.008 PROD2 + #.031 xPROD2 + #.189 RNO3 + #.305 xRNO3 + #.157 yROOH + #.636 yR6OOH + #.174 XN + #.04 XC

7.20E-12 72

BP71 RNO3 + HV = #.344 HO2 + #.554 xHO2 + NO2 + #.721 RO2C + #.102 RO2XC + #.102 zRNO3 + #.074 HCHO + #.061 xHCHO + #.214 CCHO + #.23 xCCHO + #.074 RCHO + #.063 xRCHO + #.008 xACET + #.124 MEK + #.083 xMEK + #.19 PROD2 + #.261 xPROD2 + #.066 yROOH + #.591 yR6OOH + #.396 XC

Phot Set= IC3ONO2 72,73

PO01 xHCHO = HCHO k is variable parameter: RO2RO 32

PO02 xHCHO = XC k is variable parameter: RO2XRO 32

PO03 xCCHO = CCHO k is variable parameter: RO2RO 32

PO04 xCCHO = #2 XC k is variable parameter: RO2XRO 32

PO05 xRCHO = RCHO k is variable parameter: RO2RO 32

PO06 xRCHO = #3 XC k is variable parameter: RO2XRO 32

PO07 xACET = ACET k is variable parameter: RO2RO 32

PO08 xACET = #3 XC k is variable parameter: RO2XRO 32

PO09 xMEK = MEK k is variable parameter: RO2RO 32

PO10 xMEK = #4 XC k is variable parameter: RO2XRO 32

Page 215: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

203

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

PO11 xPROD2 = PROD2 k is variable parameter: RO2RO 32

PO12 xPROD2 = #6 XC k is variable parameter: RO2XRO 32

PO13 xGLY = GLY k is variable parameter: RO2RO 32

PO14 xGLY = #2 XC k is variable parameter: RO2XRO 32

PO15 xMGLY = MGLY k is variable parameter: RO2RO 32

PO16 xMGLY = #3 XC k is variable parameter: RO2XRO 32

PO17 xBACL = BACL k is variable parameter: RO2RO 32

PO18 xBACL = #4 XC k is variable parameter: RO2XRO 32

PO19 xBALD = BALD k is variable parameter: RO2RO 32

PO20 xBALD = #7 XC k is variable parameter: RO2XRO 32

PO21 xAFG1 = AFG1 k is variable parameter: RO2RO 32

PO22 xAFG1 = #5 XC k is variable parameter: RO2XRO 32

PO23 xAFG2 = AFG2 k is variable parameter: RO2RO 32

PO24 xAFG2 = #5 XC k is variable parameter: RO2XRO 32

PO51 xAFG4 = AFG4 k is variable parameter: RO2RO

PO52 xAFG4 = #6 XC k is variable parameter: RO2XRO

PO27 xMACR = MACR k is variable parameter: RO2RO 32

PO28 xMACR = #4 XC k is variable parameter: RO2XRO 32

PO29 xMVK = MVK k is variable parameter: RO2RO 32

PO30 xMVK = #4 XC k is variable parameter: RO2XRO 32

PO31 xIPRD = IPRD k is variable parameter: RO2RO 32

PO32 xIPRD = #5 XC k is variable parameter: RO2XRO 32

PO33 xRNO3 = RNO3 k is variable parameter: RO2RO 32

PO34 xRNO3 = #6 XC + XN k is variable parameter: RO2XRO 32

PO35 zRNO3 = RNO3 + #-1 XN k is variable parameter: RO2NO 74

PO36 zRNO3 = PROD2 + HO2 k is variable parameter: RO22NN 74

PO37 zRNO3 = #6 XC k is variable parameter: RO2XRO 74

PO38 yROOH = ROOH + #-3 XC k is variable parameter: RO2HO2 75

PO39 yROOH = MEK + #-4 XC k is variable parameter: RO2RO2M 75

PO40 yROOH = k is variable parameter: RO2RO 75

PO41 yR6OOH = R6OOH + #-6 XC k is variable parameter: RO2HO2 75

PO42 yR6OOH = PROD2 + #-6 XC k is variable parameter: RO2RO2M 75

PO43 yR6OOH = k is variable parameter: RO2RO 75

PO44 yRAOOH = RAOOH + #-7 XC k is variable parameter: RO2HO2 75

PO45 yRAOOH = PROD2 + #-6 XC k is variable parameter: RO2RO2M 75

PO46 yRAOOH = k is variable parameter: RO2RO 75

BE01 CH4 + OH = H2O + MEO2 6.62E-15 1.85E-12 3.36 1,59

BE02 ETHE + OH = RO2C + xHO2 + #1.61 xHCHO + #.195 xCCHO + yROOH

8.15E-12 Falloff, F=0.60, N=1.00 2,76

0: 1.00E-28 0.00 -

4.50

inf: 8.80E-12 0.00 -

0.85

BE03 ETHE + O3 = #.16 OH + #.16 HO2 + #.51 CO + #.12 CO2 + HCHO + #.37 HCOOH

1.68E-18 9.14E-15 5.13 59,77

Page 216: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

204

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BE04 ETHE + NO3 = RO2C + xHO2 + xRCHO + yROOH + #-1 XC + XN

2.24E-16 3.30E-12 5.72 3,76,n12

BE05 ETHE + O3P = #.8 HO2 + #.51 MEO2 + #.29 RO2C + #.51 CO + #.1 CCHO + #.29 xHO2 + #.278 xCO + #.278 xHCHO + #.012 xGLY + #.29 yROOH + #.2 XC

7.43E-13 1.07E-11 1.59 59,78

BE06 ISOP + OH = #.986 RO2C + #.093 {RO2XC + zRNO3} + #.907 xHO2 + #.624 xHCHO + #.23 xMACR + #.32 xMVK + #.357 xIPRD + yR6OOH + #-0.167 XC

9.96E-11 2.54E-11 -0.81 1,65,79

BE07 ISOP + O3 = #.266 OH + #.066 HO2 + #.192 RO2C + #.008 {RO2XC + zRNO3} + #.275 CO + #.122 CO2 + #.4 HCHO + #.1 PROD2 + #.39 MACR + #.16 MVK + #.15 IPRD + #.204 HCOOH + #.192 {xMACO3 + xHCHO} + #.2 yR6OOH + #-0.559 XC

1.34E-17 7.86E-15 3.80 1,65

BE08 ISOP + NO3 = #.936 RO2C + #.064 {RO2XC + zRNO3} + #.749 xHO2 + #.187 xNO2 + #.936 xIPRD + yR6OOH + #-0.064 XC + #.813 XN

6.81E-13 3.03E-12 0.89 1,65

BE09 ISOP + O3P = #.25 MEO2 + #.24 RO2C + #.01 {RO2XC + zRNO3} + #.75 PROD2 + #.24 xMACO3 + #.24 xHCHO + #.25 yR6OOH + #-1.01 XC

3.50E-11 65,79

BE10 ACYL + OH = #.7 OH + #.3 HO2 + #.3 CO + #.7 GLY + #.3 HCOOH

7.56E-13 Falloff, F=0.60, N=1.00 2,80,81, n13

0: 5.50E-30 0.00 0.00

inf: 8.30E-13 0.00 2.00

BE11 ACYL + O3 = #.5 OH + #1.5 HO2 + #1.5 CO + #.5 CO2 1.16E-20 1.00E-14 8.15 2,80,82

CI01 CL2 + HV = #2 CL Phot Set= CL2 3

CI02 CL + NO + M = CLNO + M 7.60E-32 7.60E-32 0.00 -1.80

2

CI03 CLNO + HV = CL + NO Phot Set= CLNO-06 3

CI04 CL + NO2 = CLONO 1.60E-11 Falloff, F=0.60, N=1.00 2

0: 1.30E-30 0.00 -

2.00

inf: 1.00E-10 0.00 -

1.00

CI05 CL + NO2 = CLNO2 3.52E-12 Falloff, F=0.60, N=1.00 2

0: 1.80E-31 0.00 -

2.00

inf: 1.00E-10 0.00 -

1.00

CI06 CLONO + HV = CL + NO2 Phot Set= CLONO 3

CI07 CLNO2 + HV = CL + NO2 Phot Set= CLNO2 3

CI08 CL + HO2 = HCL + O2 3.44E-11 3.44E-11 0.00 -0.56

3,85

CI09 CL + HO2 = CLO + OH 9.41E-12 9.41E-12 0.00 2.10 85

CI10 CL + O3 = CLO + O2 1.22E-11 2.80E-11 0.50 3

CI11 CL + NO3 = CLO + NO2 2.40E-11 3

CI12 CLO + NO = CL + NO2 1.66E-11 6.20E-12 -0.59 3

CI13 CLO + NO2 = CLONO2 2.29E-12 Falloff, F=0.60, N=1.00 2

0: 1.80E-31 0.00 -

3.40

inf: 1.50E-11 0.00 -

1.90

CI14 CLONO2 + HV = CLO + NO2 Phot Set= CLONO2-1 3

CI15 CLONO2 + HV = CL + NO3 Phot Set= CLONO2-2 3

CI16 CLONO2 = CLO + NO2 4.12E-04 Falloff, F=0.60, N=1.00 86

Page 217: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

205

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

0: 4.48E-05 24.90 -

1.00

inf: 3.71E+15 24.90 3.50

CI17 CL + CLONO2 = CL2 + NO3 1.01E-11 6.20E-12 -0.29 3

CI18 CLO + HO2 = HOCL + O2 6.83E-12 2.20E-12 -0.68 3

CI19 HOCL + HV = OH + CL Phot Set= HOCL-06 3

CI20 CLO + CLO = #.29 CL2 + #1.42 CL + O2 1.82E-14 1.25E-11 3.89 87

CI21 OH + HCL = H2O + CL 7.90E-13 1.70E-12 0.46 3

CI22 CL + H2 = HCL + HO2 1.77E-14 3.90E-11 4.59 3

CP01 HCHO + CL = HCL + HO2 + CO 7.33E-11 8.10E-11 0.06 3

CP02 CCHO + CL = HCL + MECO3 8.00E-11 3

CP03 MEOH + CL = HCL + HCHO + HO2 5.50E-11 5.50E-11 0.00 3

CP04 RCHO + CL = HCL + #.9 RCO3 + #.1 {RO2C + xCCHO + xCO + xHO2 + yROOH}

1.23E-10 88

CP05 ACET + CL = HCL + RO2C + xHCHO + xMECO3 + yROOH

2.75E-12 7.70E-11 1.99 2

CP06 MEK + CL = HCL + #.975 RO2C + #.039 RO2XC + #.039 zRNO3 + #.84 xHO2 + #.085 xMECO3 + #.036 xRCO3 + #.065 xHCHO + #.07 xCCHO + #.84 xRCHO + yROOH + #.763 XC

3.60E-11 3,89

CP07 RNO3 + CL = HCL + #.038 NO2 + #.055 HO2 + #1.282 RO2C + #.202 RO2XC + #.202 zRNO3 + #.009 RCHO + #.018 MEK + #.012 PROD2 + #.055 RNO3 + #.159 xNO2 + #.547 xHO2 + #.045 xHCHO + #.3 xCCHO + #.02 xRCHO + #.003 xACET + #.041 xMEK + #.046 xPROD2 + #.547 xRNO3 + #.908 yR6OOH + #.201 XN + #-.149 XC

1.92E-10 89,90

CP08 PROD2 + CL = HCL + #.314 HO2 + #.68 RO2C + #.116 RO2XC + #.116 zRNO3 + #.198 RCHO + #.116 PROD2 + #.541 xHO2 + #.007 xMECO3 + #.022 xRCO3 + #.237 xHCHO + #.109 xCCHO + #.591 xRCHO + #.051 xMEK + #.04 xPROD2 + #.686 yR6OOH + #1.262 XC

2.00E-10 89,90

CP09 GLY + CL = HCL + #.63 HO2 + #1.26 CO + #.37 RCO3 + #-.37 XC

7.33E-11 8.10E-11 0.06 91

CP10 MGLY + CL = HCL + CO + MECO3 8.00E-11 91

CP11 CRES + CL = HCL + xHO2 + xBALD + yR6OOH 6.20E-11 92

CP12 BALD + CL = HCL + BZCO3 8.00E-11 93

CP13 ROOH + CL = HCL + #.414 OH + #.588 RO2C + #.414 RCHO + #.104 xOH + #.482 xHO2 + #.106 xHCHO + #.104 xCCHO + #.197 xRCHO + #.285 xMEK + #.586 yROOH + #-0.287 XC

1.66E-10 89

CP14 R6OOH + CL = HCL + #.145 OH + #1.078 RO2C + #.117 {RO2XC + zRNO3} + #.145 PROD2 + #.502 xOH + #.237 xHO2 + #.186 xCCHO + #.676 xRCHO + #.28 xPROD2 + #.855 yR6OOH + #.348 XC

3.00E-10 89

CP15 RAOOH + CL = #.404 HCL + #.139 OH + #.148 HO2 + #.589 RO2C + #.124 RO2XC + #.124 zRNO3 + #.074 PROD2 + #.147 MGLY + #.139 IPRD + #.565 xHO2 + #.024 xOH + #.448 xRCHO + #.026 xGLY + #.03 xMEK + #.252 xMGLY + #.073 xAFG1 + #.073 xAFG2 + #.713 yR6OOH + #1.674 XC

4.29E-10 94

CP16 MACR + CL = #.25 HCL + #.165 MACO3 + #.802 RO2C + #.033 RO2XC + #.033 zRNO3 + #.802 xHO2 + #.541 xCO + #.082 xIPRD + #.18 xCLCCHO + #.541 xCLACET + #.835 yROOH + #.208 XC

3.85E-10 89

Page 218: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

206

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

CP17 MVK + CL = #1.283 RO2C + #.053 {RO2XC + zRNO3} + #.322 xHO2 + #.625 xMECO3 + #.947 xCLCCHO + yROOH + #.538 XC

2.32E-10 89

CP18 IPRD + CL = #.401 HCL + #.084 HO2 + #.154 MACO3 + #.73 RO2C + #.051 RO2XC + #.051 zRNO3 + #.042 AFG1 + #.042 AFG2 + #.712 xHO2 + #.498 xCO + #.195 xHCHO + #.017 xMGLY + #.009 xAFG1 + #.009 xAFG2 + #.115 xIPRD + #.14 xCLCCHO + #.42 xCLACET + #.762 yR6OOH + #.709 XC

4.12E-10 89,95

CP19 CLCCHO + HV = HO2 + CO + RO2C + xCL + xHCHO + yROOH

Phot Set= CLCCHO 96

CP20 CLCCHO + OH = RCO3 + #-1 XC 3.10E-12 97

CP21 CLCCHO + CL = HCL + RCO3 + #-1 XC 1.29E-11 97

CP22 CLACET + HV = MECO3 + RO2C + xCL + xHCHO + yROOH

Phot Set= CLACET, qy= 0.50 98

CP23 xCL = CL k is variable parameter: RO2RO 32

CP24 xCL = k is variable parameter: RO2XRO 32

CP25 xCLCCHO = CLCCHO k is variable parameter: RO2RO 32

CP26 xCLCCHO = #2 XC k is variable parameter: RO2XRO 32

CP27 xCLACET = CLACET k is variable parameter: RO2RO 32

CP28 xCLACET = #3 XC k is variable parameter: RO2XRO 32

CE01 CH4 + CL = HCL + MEO2 1.02E-13 7.30E-12 2.54 3

CE02 ETHE + CL = #2 RO2C + xHO2 + xHCHO + CLCHO 1.04E-10 Falloff, F=0.60, N=1.00 2

0: 1.60E-29 0.00 -

3.30

inf: 3.10E-10 0.00 -

1.00

CE03 ISOP + CL = #.15 HCL + #1.168 RO2C + #.085 RO2XC + #.085 zRNO3 + #.738 xHO2 + #.177 xCL + #.275 xHCHO + #.177 xMVK + #.671 xIPRD + #.067 xCLCCHO + yR6OOH + #.018 XC

4.80E-10 99

CE04 ACYL + CL = HO2 + CO + XC 4.97E-11 Falloff, F=0.60, N=1.00 2,100

0: 5.20E-30 0.00 -

2.40

inf: 2.20E-10 0.00 0.00

BE12 BENZ + OH = #.027 RO2XC + #.31 RO2C + #.601 HO2 + #.31 xHO2 + #.027 zRNO3 + #.57 PHEN + #.31 xGLY + #.155 xAFG1 + #.155 xAFG2 + #.337 yRAOOH + #.062 OH + #.062 AFG3 + #.031 AFG5 + #-0.403 XC

1.22E-12 2.33E-12 0.38 From AroPrm12.xls

1/30/13

BL01 ALK1 + OH = xHO2 + RO2C + xCCHO + yROOH 2.54E-13 1.34E-12 0.992 2.00 101

BL02 ALK2 + OH = #.965 xHO2 + #.965 RO2C + #.035 RO2XC + #.035 zRNO3 + #.261 xRCHO + #.704 xACET + yROOH + #-.105 XC

1.11E-12 1.49E-12 0.173 2.00 101

BL03 ALK3 + OH = #.695 xHO2 + #.236 xTBUO + #1.253 RO2C + #.07 RO2XC + #.07 zRNO3 + #.026 xHCHO + #.445 xCCHO + #.122 xRCHO + #.024 xACET + #.332 xMEK + #.983 yROOH + #.017 yR6OOH + #-.046 XC

2.31E-12 1.51E-12 -0.251 101

BL04 ALK4 + OH = #.83 xHO2 + #.01 xMEO2 + #.011 xMECO3 + #1.763 RO2C + #.149 RO2XC + #.149 zRNO3 + #.002 xCO + #.029 xHCHO + #.438 xCCHO + #.236 xRCHO + #.426 xACET + #.106 xMEK + #.146 xPROD2 + yR6OOH + #-.119 XC

4.34E-12 3.75E-12 -0.088 101

Page 219: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

207

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BL05 ALK5 + OH = #.647 xHO2 + #1.605 RO2C + #.353 RO2XC + #.353 zRNO3 + #.04 xHCHO + #.106 xCCHO + #.209 xRCHO + #.071 xACET + #.086 xMEK + #.407 xPROD2 + yR6OOH + #2.004 XC

9.40E-12 2.70E-12 -0.744 101

BL06 OLE1 + OH = #.904 xHO2 + #.001 xMEO2 + #1.138 RO2C + #.095 RO2XC + #.095 zRNO3 + #.7 xHCHO + #.301 xCCHO + #.47 xRCHO + #.005 xACET + #.026 xMACR + #.008 xMVK + #.006 xIPRD + #.119 xPROD2 + #.413 yROOH + #.587 yR6OOH + #.822 XC

3.29E-11 6.18E-12 -0.996 101

BL07 OLE1 + O3 = #.116 HO2 + #.04 xHO2 + #.193 OH + #.104 MEO2 + #.063 RO2C + #.004 RO2XC + #.004 zRNO3 + #.368 CO + #.125 CO2 + #.5 HCHO + #.147 CCHO + #.007 xCCHO + #.353 RCHO + #.031 xRCHO + #.002 xACET + #.006 MEK + #.185 HCOOH + #.022 CCOOH + #.112 RCOOH + #.189 PROD2 + #.007 yROOH + #.037 yR6OOH + #.69 XC

1.09E-17 3.15E-15 3.379 101

BL08 OLE1 + NO3 = #.824 xHO2 + #1.312 RO2C + #.176 RO2XC + #.176 zRNO3 + #.009 xCCHO + #.002 xRCHO + #.024 xACET + #.546 xRNO3 + #.413 yROOH + #.587 yR6OOH + #.454 XN + #.572 XC

1.44E-14 4.73E-13 2.081 101

BL09 OLE1 + O3P = #.45 RCHO + #.437 MEK + #.113 PROD2 + #1.224 XC

5.02E-12 1.49E-11 0.648 101

BL10 OLE2 + OH = #.914 xHO2 + #.966 RO2C + #.086 RO2XC + #.086 zRNO3 + #.209 xHCHO + #.788 xCCHO + #.481 xRCHO + #.136 xACET + #.076 xMEK + #.027 xMACR + #.002 xMVK + #.037 xIPRD + #.022 xPROD2 + #.357 yROOH + #.643 yR6OOH + #.111 XC

6.42E-11 1.26E-11 -0.969 101

BL11 OLE2 + O3 = #.093 HO2 + #.039 xHO2 + #.423 OH + #.29 MEO2 + #.147 xMECO3 + #.008 xRCO3 + #.2 RO2C + #.003 RO2XC + #.003 zRNO3 + #.297 CO + #.162 CO2 + #.152 HCHO + #.108 xHCHO + #.428 CCHO + #.067 xCCHO + #.315 RCHO + #.018 xRCHO + #.048 ACET + #.031 MEK + #.001 xMEK + #.033 HCOOH + #.061 CCOOH + #.222 RCOOH + #.028 MACR + #.021 MVK + #.042 PROD2 + #.069 yROOH + #.128 yR6OOH + #.125 XC

1.24E-16 8.14E-15 2.494 101

BL12 OLE2 + NO3 = #.423 xHO2 + #.409 xNO2 + #.033 xMEO2 + #1.185 RO2C + #.136 RO2XC + #.136 zRNO3 + #.074 xHCHO + #.546 xCCHO + #.154 xRCHO + #.11 xACET + #.002 xMEK + #.026 xMVK + #.007 xIPRD + #.322 xRNO3 + #.357 yROOH + #.643 yR6OOH + #.269 XN + #.114 XC

7.85E-13 2.20E-13 -0.759 101

BL13 OLE2 + O3P = #.014 HO2 + #.007 xHO2 + #.007 xMACO3 + #.013 RO2C + #.001 RO2XC + #.001 zRNO3 + #.006 xCO + #.074 RCHO + #.709 MEK + #.006 xMACR + #.202 PROD2 + #.014 yROOH + #.666 XC

2.07E-11 1.43E-11 -0.220 101

BL14 ARO1 + OH = #.089 RO2XC + #.622 RO2C + #.209 HO2 + #.612 xHO2 + #.089 zRNO3 + #.14 yR6OOH + #.007 xMEO2 + #.049 xBALD + #.064 xPROD2 + #.003 xCCHO + #.006 xRCHO + #.135 CRES + #.032 XYNL + #.268 xGLY + #.231 xMGLY + #.255 xAFG1 + #.244 xAFG2 + #.567 yRAOOH + #.084 OH + #.084 AFG3 + #.042 AFG5 + #-0.099 XC

6.07E-12 1.97E-12 -0.672 From AroPrm12.xls

1/24/30

BL15 ARO2 + OH = #.126 RO2XC + #.651 RO2C + #.13 HO2 + #.649 xHO2 + #.126 zRNO3 + #.079 yR6OOH + #.002 xMEO2 + #.038 xBALD + #.025 xPROD2 + #.004 xRCHO + #.083 XYNL + #.14 xGLY + #.336 xMGLY + #.109 xBACL + #.093 xAFG4 + #.239 xAFG1 + #.253 xAFG2 + #.698 yRAOOH + #.093 OH + #.093 AFG3 + #.047 AFG5 + #1.428 XC

2.60E-11 From AroPrm12.xls

1/24/30

Page 220: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

208

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BL16 TERP + OH = #.759 xHO2 + #.042 xRCO3 + #1.147 RO2C + #.2 RO2XC + #.2 zRNO3 + #.001 xCO + #.264 xHCHO + #.533 xRCHO + #.036 xACET + #.005 xMEK + #.009 xMGLY + #.014 xBACL + #.002 xMVK + #.001 xIPRD + #.255 xPROD2 + yR6OOH + #5.056 XC

7.98E-11 1.87E-11 -0.864 101

BL17 TERP + O3 = #.052 HO2 + #.067 xHO2 + #.585 OH + #.126 xMECO3 + #.149 xRCO3 + #.875 RO2C + #.203 RO2XC + #.203 zRNO3 + #.166 CO + #.019 xCO + #.045 CO2 + #.079 HCHO + #.15 xHCHO + #.22 xRCHO + #.165 xACET + #.004 MEK + #.107 HCOOH + #.043 RCOOH + #.001 xGLY + #.002 xMGLY + #.055 xBACL + #.001 xMACR + #.001 xIPRD + #.409 PROD2 + #.545 yR6OOH + #3.526 XC

6.99E-17 9.57E-16 1.560 101

BL18 TERP + NO3 = #.162 xHO2 + #.421 xNO2 + #.019 xRCO3 + #1.509 RO2C + #.397 RO2XC + #.397 zRNO3 + #.01 xCO + #.017 xHCHO + #.001 xCCHO + #.509 xRCHO + #.175 xACET + #.001 xMGLY + #.003 xMACR + #.001 xMVK + #.002 xIPRD + #.163 xRNO3 + yR6OOH + #.416 XN + #4.473 XC

6.53E-12 1.28E-12 -0.974 101

BL19 TERP + O3P = #.147 RCHO + #.853 PROD2 + #4.441 XC

3.71E-11 101

BC01 ALK1 + CL = xHO2 + RO2C + HCL + xCCHO + yROOH 5.95E-11 8.30E-11 0.199 101

BC02 ALK2 + CL = #.97 xHO2 + #.97 RO2C + #.03 RO2XC + #.03 zRNO3 + HCL + #.482 xRCHO + #.488 xACET + yROOH + #-.09 XC

1.37E-10 1.20E-10 -0.079 101

BC03 ALK3 + CL = #.835 xHO2 + #.094 xTBUO + #1.361 RO2C + #.07 RO2XC + #.07 zRNO3 + HCL + #.078 xHCHO + #.34 xCCHO + #.343 xRCHO + #.075 xACET + #.253 xMEK + #.983 yROOH + #.017 yR6OOH + #.18 XC

1.86E-10 101

BC04 ALK4 + CL = #.827 xHO2 + #.003 xMEO2 + #.004 xMECO3 + #1.737 RO2C + #.165 RO2XC + #.165 zRNO3 + HCL + #.003 xCO + #.034 xHCHO + #.287 xCCHO + #.412 xRCHO + #.247 xACET + #.076 xMEK + #.13 xPROD2 + yR6OOH + #.327 XC

2.63E-10 101

BC05 ALK5 + CL = #.647 xHO2 + #1.541 RO2C + #.352 RO2XC + #.352 zRNO3 + HCL + #.022 xHCHO + #.08 xCCHO + #.258 xRCHO + #.044 xACET + #.041 xMEK + #.378 xPROD2 + yR6OOH + #2.368 XC

4.21E-10 101

BC06 OLE1 + CL = #.902 xHO2 + #1.42 RO2C + #.098 RO2XC + #.098 zRNO3 + #.308 HCL + #.025 xHCHO + #.146 xCCHO + #.051 xRCHO + #.188 xMACR + #.014 xMVK + #.027 xIPRD + #.225 xCLCCHO + #.396 xCLACET + #.413 yROOH + #.587 yR6OOH + #1.361 XC

3.55E-10 101

BC07 OLE2 + CL = #.447 xHO2 + #.448 xCL + #.001 xMEO2 + #1.514 RO2C + #.104 RO2XC + #.104 zRNO3 + #.263 HCL + #.228 xHCHO + #.361 xCCHO + #.3 xRCHO + #.081 xACET + #.04 xMEK + #.049 xMACR + #.055 xMVK + #.179 xIPRD + #.012 xCLCCHO + #.18 xCLACET + #.357 yROOH + #.643 yR6OOH + #.247 XC

3.83E-10 101

BC10 TERP + CL = #.252 xHO2 + #.068 xCL + #.034 xMECO3 + #.05 xRCO3 + #.016 xMACO3 + #2.258 RO2C + #.582 RO2XC + #.582 zRNO3 + #.548 HCL + #.035 xCO + #.158 xHCHO + #.185 xRCHO + #.274 xACET + #.007 xGLY + #.003 xBACL + #.003 xMVK + #.158 xIPRD + #.006 xAFG1 + #.006 xAFG2 + #.001 xAFG4 + #.109 xCLCCHO + yR6OOH + #3.544 XC

5.46E-10 n5, 101

BC08 ARO1 + CL = #.88 xHO2 + #.88 RO2C + #.12 RO2XC + #.12 zRNO3 + #.671 xBALD + #.21 xPROD2 + #.323 XC

1.00E-10 n14

Page 221: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

209

Label Reaction and Products [a]

Rate Parameters [b]

Refs & k(300) A Ea B Notes

[c]

BC09 ARO2 + CL = #.842 xHO2 + #.842 RO2C + #.158 RO2XC + #.158 zRNO3 + #.618 xBALD + #.224 xPROD2 + #2.382 XC

2.18E-10 n14

a Format of reaction listing: "=" separates reactants from products; "#number" indicates

stoichiometric coefficient, "#coefficient {product list}" means that the stoichiometric coefficient is

applied to all the products listed. b Except as indicated, the rate constants are given by k(T) = A · (T/300)

B · e

-Ea/RT, where the units of

k and A are cm3 molec

-1 s

-1, Ea are kcal mol

-1, T is

oK, and R=0.0019872 kcal mol

-1 deg

-1. The

following special rate constant expressions are used:

Phot Set = name: The absorption cross sections and (if applicable) quantum yields for the

photolysis reaction are given in Table A-3 of Carter (2010), where "name" indicates the

photolysis set used. If a "qy=number" notation is given, the number given is the overall

quantum yield, which is assumed to be wavelength independent.

Falloff: The rate constant as a function of temperature and pressure is calculated using k(T,M)

= {k0(T)·[M]/[1 + k0(T)·[M]/kinf(T)]}· FZ, where Z = {1 + [log10{k0(T)·[M])/kinf(T)}/N]

2

}-1

, [M] is the total pressure in molecules cm-3

, F and N are as indicated on the table, and the

temperature dependences of k0 and kinf are as indicated on the table.

k = k0+k3M(1+k3M/k2): The rate constant as a function of temperature and pressure is

calculated using k(T,M) = k0(T) + k3(T)·[M] ·(1 + k3(T)·[M]/k2(T)), where [M] is the total

bath gas (air) concentration in molecules cm-3, and the temperature dependences for k0, k2

and k3 are as indicated on the table.

k = k1 + k2 [M]: The rate constant as a function of temperature and pressure is calculated

using k(T,M) = k1(T) + k2(T)·[M], where [M] is the total bath gas (air) concentration in

molecules cm-3, and the temperature dependences for k1, and k2 are as indicated on the

table. Same K as Rxn xx: Uses the same rate constant as the reaction in the base mechanism with

the same label. c Footnotes documenting sources of rate constants and mechanisms are as follows. For the citations

of the references cited, refer to Carter (2010). 1 Same as used or assumed in the SAPRC-99 mechanism (Carter, 2000a).

2 Rate constant or absorption coefficients and quantum yields based on NASA (2006) recommendation. Mechanism is also as recommended unless indicated by other footnotes.

3 Rate constant or absorption coefficients and quantum yields based on IUPAC (2006) recommendation. Mechanism is also as recommended unless indicated by other footnotes.

4 Absorption cross sections and quantum yields as recommended for 294-298K. This gives an 8% higher NO2 photolysis rate for direct overhead sunlight than the action spectrum used in SAPRC-99. Note that the net effect is to decrease rate constants for all other photolysis reactions by the same amount in environmental chamber simulations.

5 Separate recommendations are made for reactions with O2 and N2. Rate parameters used are derived to fit those calculated for a mixture of 20.95% O2 and 69.05% N2 over the temperature range of 250 - 350

o K.

6 See also Wahner et al (1998).

Page 222: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

210

7 Absorption cross sections recommended by NASA (2006) used, which are generally consistent with the IUPAC (2006) recommendations. The quantum yields for O

1D formation are from the

IUPAC (2006) recommendation; the NASA (2006) recommendations are consistent with these at the <306 and 329-340 nm range, but the parameterization for deriving quantum yields between these ranges did not give reasonable values. The quantum yield for O

1D production is assumed to

be zero in the high wavelength ration (wavelength > 390 nm. The O3P quantum yields in the low

wavelength regions are derived from the O1D quantum yields assuming unit total quantum yield for

both processes. The O3P quantum yields are assumed to be unity in the high wavelength region.

8 NASA (2006) absorption cross sections used, which give much greater resolution than those recommended by IUPAC (2005). IUPAC data sheet recommends assuming unit quantum yield for NO + OH formation throughout the relevant wavelength range. The absorption cross sections are essentially the same as used in SAPRC-99, but SAPRC-99 has some formation of NO2 + H as well.

9 Rate expression from Golden et al (2003) and NASA (2006) for the reaction forming HNO3, using the NASA parameterization. The reaction forming HOONO is ignored, based on the assumption that it either decomposes or photolyzes back to the reactants. This expression is only slightly different than that given in the NASA (2003) recommendation, but gives a rate constant that is ~18% larger than that used in SAPRC-99 for ambient conditions.

10 Absorption cross sections used in SAPRC-99 are essentially the same as the NASA (2006) and IUPAC (2005) recommendations, so are not changed. Unit quantum yields are assumed.

11 Parameters derived to predict rate constants calculated from the temperature dependence expressions for the rate constants from the reverse reaction and the equilibrium constant as recommended by NASA (2006).

12 Absorption cross sections from NASA (2006), and are essentially the same as used in SAPRC-99. Unit quantum yield assumed, as is also the case for SAPRC-99.

13 Measurements of the branching ratios vary, so the mechanism is uncertain. The SAPRC-99 assignment is based on assuming the branching ratio is approximately in the middle of the range given in various evaluations, which is 0.6 - 1.0 for the OH-forming channel.

14 Methoxy radicals formed in the reaction assumed to react primarily with O2, forming HO2 + formaldehyde.

15 Recommendations are given for the total rate constant and the temperature dependence of the two competing processes. The kinetic parameters are derived so the calculated rate constants for the reactions agree with those derived from the recommended total rate constant and rate constant ratio over the temperature range of 270 - 330 K.

16 Recommendations are given for total rate constant and the competing process only. The kinetic parameters for this process were adjusted to minimize the sum of squares difference in rate constants between the rate constants calculated using the difference between the recommended rate constants and the calculated value, over the temperature range 270 - 330 K.

17 The species RO2C and RO2XC are used to represent the effects of peroxy radical reactions on NO, NO2, NO3, HO2, acyl peroxy radicals, and other peroxy radicals. RO2C is used to represent effects peroxy radicals that react with NO to form NO2 (and the corresponding alkoxy radical, whose ultimate products re represented by separate xPROD species discussed below), while RO2XC represents effects of peroxy radicals that react with NO but do not form NO (i.e, to form organic nitrates that are represented by a separate zRNO3 species discussed below). Separate xPROD, yROOH, and zRNO3 species are used to represent the other radical and product species formed in peroxy radical reactions, which vary depending on the reactant and radicals formed. See separate footnotes given in conjunction with the reactions of these species, and the discussion in the text concerning the general method used to represent peroxy radical reactions.

Page 223: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

211

18 Rate constants used for generic peroxy radicals are based on recommendations for ethyl peroxy. See SAPRC-99 mechanism documentation (Carter, 2000) for a discussion of these peroxy radical operators.

19 Peroxy + peroxy reactions are assumed to proceed 1/2 the time forming two alkoxy radicals + O2, and the other half of the time by H-shift disproportionation reactions.

20 Rate expression from Bridier et al (1991), based on both NASA (2006) and IUPAC (2006) recommendations. Note that althugh this was intended to be the source of the rate constant used in the SAPRC-99 mechanism (Carter, 2000a), it was incorrectly implemented using N=1 rather than N=1.61, as used by Brider et al (1991). This amounts to about an 11% difference in the rate constants calculated for 298K and 1 atm. total pressure, but does not affect the equilibrium constant.

21 The branching ratio is based on an average of the values cited by IUPAC (2006). A third channel forming OH + O2 + CH3CO2 is assumed not to be important, though the data do not completely rule this out (IUPAC, 2005). Peroxyacetic acid (the co-product with O2) is represented by acetic acid to avoid the necessity of adding a new species in the mechanism for this reaction.

22 No recommendations available for this rate constant. Use the same rate constant as used for generic peroxy + NO3 reactions.

23 No recommendations available concerning the branching ratio. We assume that the major route is alkoxy radical formation, analogous to the route recommended to occur 90% of the time in the case of the reaction of acetyl peroxy with methyl peroxy.

24 Estimated assuming that the ratio of the rate constant ratio for the reaction with NO2 relative to reaction with NO is the same as for acetyl peroxy radicals at the high pressure limit. Temperature dependence parameters derived to fit rate constants calculated using k(RCO3+NO) x kinf(CCO3+NO2)/k(CCO3+NO) over the temperature range 270-330 K.

25 The high pressure limit for the recommended PPN decomposition rate expression is used. This is to be consistent with the assumption that the formation reaction is at the high pressure limit, and also because this model species is used to represent higher PAN analogues in addition to PPN. The recommended rate expression for PPN gives a 1 atm rate constant that is about 90% the high pressure limit.

26 Photolyses of higher PAN analogues are assumed to occur with same action spectrum and analogous mechanism as the photolysis of PAN.

27 Rate constants used for generic acyl peroxy radicals and generic higher PAN analogues based on those for R=C2H5. See SAPRC-99 documentation (Carter, 2000).

28 Reaction is assumed to be analogous to that for MECO3. Where applicable, the peroxy acid is represented by the corresponding acid to avoid adding a separate species to the mechanism to represent these products. Reaction with peroxy radicals is assumed to proceed primarily via alkoxy radical formation, the major (90%) pathway for the MECO3 + MEO2 reaction.

29 Rate constant expression based on the data of Kirchner et al (1992).

30 Rate parameters from Roberts and Bertman (1992), as used by Carter and Atkinson (1996).

31 This is added to avoid problems in the (generally unlikely) conditions where phenoxy radicals are formed when concentrations of both NO2 and HO2 are low. The rate constant used is that used in the SAPRC-99 mechanism, which is arbitrary and is such that this process becomes significant only if [NO2] < ~3x10-6 ppm and [HO2] < 1x10

-5 ppm. The likely process is reaction with some VOC

forming phenol and radicals, with the latter represented by RO2R.

Page 224: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

212

32 The xPROD chemical operator species are used to represent the formation of radicals and products from alkoxy radicals formed in the reactions of peroxy radicals with NO, NO3, acyl peroxy radicals, and, in ~50% yields, with other peroxy radicals. These products are not formed when peroxy radicals react with HO2, and, in ~50% yields, with other peroxy radicals, since those reactions are assumed not form alkoxy radicals, but instead form hydroperoxides or H-shift disproportion products that are represented by separate yROOH chemical operator species, discussed in a separate footnote. The reactions of peroxy radicals with other peroxy radicals are assumed to form alkoxy radicals 50% of the time, so the products from alkoxy radical reactions are represented as being formed in 50% yields in these reactions. The consumption and products formed from these species can be represented in several ways. The most straightforward method is to include a reaction for each of the types of peroxy radical reactions, as follows:

xPROD + NO ® NO + PROD

xPROD + HO2 ® HO2

xPROD + NO3 ® NO3 + PROD

xPROD + MECO3 ® MECO3 + PROD (& similar reactions for RCO3, BZCO3, and MACO3)

xPROD + MEO2 ® MEO2 + 1/2 PROD

xPROD + RO2C ® RO2C + 1/2 PROD (& a similar reaction for RO2XC)

where "PROD" represents the product species for the operator (e.g, HO2 for xHO2). The rate constants for these reactions should be the same as the rate constant for the corresponding reactions of RO2C or RO2XC. This is a somewhat cumbersome method because it requires 9 reactions for each of the many xPROD species. An alternative method, implemented in this table, uses the coefficient "RO2RO" to determine the rate of formation of the product species and "RO2XRO" to represent processes where the product is not formed. These are calculated as follows, where the k(RO2+..)'s refer to the rate constants for the reactions of RO2C or RO2XC with the indicated reactant.

RO2RO = k(RO2+NO)[NO] + k(RO2+NO3)[NO3] + k(RO2+MECO3){[MECO3]+[RCO3]+ [BZCO3]+[MACO3]) + 0.5 k(RO2+MEO2)[MEO2] + 0.5 k(RO2+RO2) {[RO2C]+[RO2XC])

RO2XRO = k(RO2+HO2)[HO2] + 0.5 k(RO2+MEO2)[MEO2] + 0.5 k(RO2+RO2){[RO2C]+ [RO2XC])

The steady state approximation must be used for these operators when this representation is used, and the operators must not be allowed to be diluted or transported.

33 The 298K rate constant is as estimated by IUPAC (2006). The temperature dependence used in the SAPRC-99 mechanism is consistent with this, so is retained here.

34 This reaction is not believed to be important under atmospheric conditions or in the conditions of the chamber experiments used for mechanism evaluation. The adduct is believed to rapidly rearrange to HOCH2OO·, which can react with NO to ultimately form NO2 and formic acid, or decompose back to formaldehyde + HO2, resulting in no net reaction. Based on the rate constants for the HOCH2OO· decomposition recommended by IUPAC (2006) and the expected peroxy + NO rate constant, the reaction with NO is expected to be negligible unless NO is so high that HO2 levels are suppressed, so the decomposition, resulting in no net reaction, is expected to dominate. Sensitivity calculations with versions of the mechanism incorporating this reaction confirmed the negligible impact of this process.

35 Mechanism of propionaldehde used for RCHO. IUPAC (2006) recommendation used for total rate constant. No useful recommendation given for mechanism.

36 Mechanism based on estimated relative rates of reactions at various positions and estimated rate constants or rate constant ratios for reactions of the various radicals formed, derived using current SAPRC mechanism generation system.

Page 225: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

213

37 The absorption cross sections recommended by IUPAC (2006) are the same as used in the SAPRC-99 mechanism. There is a discrepancy in the quantum yields at higher wavelengths from recent measurements from Chen and Ziu (2001), which indicate no falloff at the higher wavelengths, and earlier measurements from Heicklen et al (1986) that indicated a falloff in quantum yields and was the basis of previous recommendation and the propionaldehyde photolysis rates used in the SAPRC-99 mechanism (Carter, 2000a). IUPAC (2006) and NASA (2006) make no recommendations in this regard. We assume that the earlier values are more representative of atmospheric conditions because they were based on measurements made in air while the more recent measurements were in N2, and the possibility that the falloff could be due to quenching by O2, and because the photolysis rates obtained are more consistent with those measured in the Euphore chamber (Wirtz et al, 1999). Therefore, the earlier quantum yields, as used in the SAPRC-99 mechanism, are retained.

38 298K rate constant is that recommended by IUPAC (2006) for propionaldehyde. Temperature dependence estimated by assuming this reaction has same A factor as reaction of NO3 with acetaldehyde.

39 Temperature-dependent parameters derived to give best fits to the IUPAC (2006)-recommended temperature dependence expression for the temperature range 270-330 K. These parameters give a good estimate of the recommended rate constant at ~300

o K, but underestimate the

recommended rate constants by about 2% at both ends of this temperature range.

40 Absorption cross sections are for T=298oK. Quantum yields are calculated for 1 atm and T=298

oK

using the complex expression recommended by IUPAC (2006) and NASA (2006). Separate recommendations are given for temperature, pressure, and wavelength-dependent quantum yields for formation of CO and formation of CH3CO, and the calculated fraction of the CO formation process relative to total fragmentation to radicals ranges from 35% to 52% for zenith angle of 0 to 80, respectively. The ratios for the indoor light sources used in the chamber experiments used for evaluating the mechanism are in this range. Rather than have two separate photolysis processes in the mechanism, a wavelength-independent ratio of 48% is assumed, which represents the weighed average of these values. However, using the quantum yields derived in this way gives photolysis rates that are about 1.6 times higher than used in SAPRC-99 and significantly overpredicts reactivity in acetone incremental reactivity experiments. In order to remove this bias, it is necessary to reduce the photolysis rates by about a factor of 2, i.e., assume the quantum yields are 1/2 the values derived using the recommended method. This inconsistency between the laboratory data and the chamber experiments need to be evaluated. However, the quantum yields that give the better fits to the chamber data are used because they are a better approximation of atmospheric conditions.

41 Absorption cross-sections from IUPAC (2006) recommendation, but are essentially the same as used in SAPRC-99. The IUPAC (2006)-recommended overall quantum yield is 0.24 (with no recommendation given for wavelength dependence of quantum yields), but this results in a bias towards overpredicting reactivity in MEK incremental reactivity experiments. The data are better fit using an overall quantum yield of 0.175, which is slightly higher than the 0.15 value used in the SAPRC-99 mechanism, based on simulations of the same experiments.

42 The reaction would involve the eventual formation of HO2 + CO2 regardless of which hydrogen were abstracted in the initial reaction.

43 Branching ratio used for formation of ·CH2OOH vs. CH3OO· is as recommended by NASA (2006). ·CH2OOH is assumed to rapidly decompose to formaldehyde + OH.

44 Mechanism generation system updated to predict the NASA (2006) recommended rate constant and branching ratio for the reaction of OH with methyl hydroperoxide. The generated mechanism for n-propyl hydroperoxide incorporates the substituent effects for the -OOH group derived from this rate constant and branching ratio.

45 Mechanism for ROOH based on estimated reactions for n-propyl hydroperoxide. Photolysis and rate of reaction of OH at OOH assumed to occur at same rate as for methyl hydroperoxide.

Page 226: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

214

46 Mechanism for R6OOH based on estimated reactions for 3-hexyl hydroperoxide. Photolysis and rate of reaction of OH at OOH assumed to occur at same rate as for methyl hydroperoxide.

47 Mechanism for RAOOH is based on estimated reactions of two isomers expected to be formed in the m-xylene system. Mechanism derived using the mechanism generation system based on estimated reactions at various positions, and assumptions for the major process for some alkoxy radical reactions that could not be estimated using the current system. Photolysis and rates of reaction of OH at OOH assumed to occur at the same rate as for methyl hydroperoxide.

48 Absorption cross sections used are those given by Volkamer et al (2005), which supercede the values of Plum et al (1983) used in previous recommendations. For wavelengths up to 350 nm, the quantum yields for radical production are based on those of Zhu et al (1996), which are consistent with the data of Langford and Moore (1984). The quantum yields for formaldehyde + H2 production are derived based on assuming a total quantum yield of 1 in this wavelength region. For the higher wavelength region, the decline in quantum yields as a function of wavelength are derived to give photolysis rates, relative to those for NO2, that are consistent with the data of Klotz et al (2000) based on assuming solar spectral distributions with zenith angles between 0 and 40 degrees, and that are also consistent with the formaldehyde yields, relative to total photolysis, of 13%, as given by Plum et al (1983). In both cases, the quantum yield is assumed to decline exponentially as a function of wavelength below 350 nm, with the decay rate adjusted to give the photolysis rate consistent with the data referenced above.

49 Mechanism based on branching ratios for subsequent reactions of the radicals formed as given by IUPAC (2005) for 1 atm air at 298

oK.

50 No data available for the kinetics of this reaction. Rate parameters used in SAPRC-99 used. See Carter (2000) for method used to estimte rate constant. HCO(CO)OO. and RCO(CO)OO are represented by the lumped higher acyl peroxy species RCO3.

51 Recommended cross sections are essentially the same as used in SAPRC-99. Quantum yields calculated using the temperature- and wavelength-dependence expression recommended by IUPAC (2005) for 760 torr N2 give an overall photolysis rate, relative to NO2, for ambient photolysis which are lower than those reported by Klotz et al (2003) for the Euphore outdoor chamber. However, if the quantum yields are calculated for a presssure of 472 torr, the calculated photolysis rate relative to NO2 for ambient conditions agree with the data of Klotz et al (2003). Therefore, this adjustment is adopted for the quantum yields used for this mechanism.

52 The evaluations give no recommendations for the photolysis of biacetyl. The absorption cross sections used are those from Plum et al (1983), as used in the SAPRC-99 mechanism. Quantum yields calculated using the IUPAC (2006)-recommended expression for the pressure and wavelength-dependence quantum yields for methyl glyoxal, but with the effective presssure adjusted so the photolysis rate, relative to that for NO2, under ambient conditions is consistent with that measured by Klotz et al (2000) in the Euphore outdoor chamber.

53 Rate constant expression as recommended by Calvert et al (2002) for o-cresol.

Page 227: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

215

54 "CRES" is used to represent phenol and cresols. (Phenol was represented separately in SAPRC-99 but is lumped with cresols in this mechanism because the lumping had no significant effect on model simulations and the mechanisms of both are highly uncertain and approximate.) Available data (Berndt and Boge, 2003 and Olariu et al 2002) indicate that dihydroxy phenol or cresol formation occurs ~60-80% of the time, and kinetic data cited by Berndt and Boge (2003) suggest that in the case of phenol under atmospheric conditions OH addition occurs ~75-80% of the time, with phenoxy formation occurring the remainder of the time. This suggests that dihydroxybenzene formation (with HO2 as the co-product) is the major fate of the OH addition reaction. However, this mechanism cannot simulate results of the cresol - NOx air chamber experiments. In order to simulate the reactivity in those experiments, it is necessary to assume additional NO to NO2 conversions occur, and it is also necessary to some photoreactive product, such as methyl glyoxal, is also formed. In view of the inconsistency between chamber and laboratory data concerning this reaction, we retain the parameterization used in the SAPRC-99 mechanism (Carter, 2000), which was found to perform the best in simulating the chamber data, after some minor adjustments to optimize fits to the data with the current mechanism. This is consistent with the laboratory data in assuming ~20% phenoxy radical formation, but does not appear to be consistent with other laboratory data in assuming an additional NO to NO2 conversion is occurring. The photoreactive product(s) are represented by methyl glyoxal, which gives reasonable simulations of the observed PAN yields in the cresol experiments (Carter, 2000).

55 Rate constant is in the range cited by Barnes (2006) for various nitrocresols. Reaction is assumed to occur via abstraction of H from OH, analogous to pathway in the phenol and cresol + OH reactions that occur with similar rates.

56 Photolyis rate forming HONO, relative to the photolysis rate of NO2, based on the data of Bejan et al (2006) for 2-nitrophenol and various methyl substituted 2-nitrophenols. The co-products are unknown, and are assumed to go mainly into the particle phase and its gas-phase reactivity is assumed not to be significant. Loss by other photolysis processes might be significant, but are ignored.

57 Nitrophenols were found to have lifetimes relative to photolysis in the Euphore chamber of 1-2 hours (Barnes, private communication, 2007). A photolysis rate relative to NO2 of 0.015 corresponds approximately to this range. The products formed are unknown, but based on the data of Bejan et al (2006) it is apparent that NO2 formation is not important and that HONO formation represents only about 10% of this process. We assume that the products are unreactive.

58 As with SAPRC-99, is is assumed that all the reaction is at the -CHO group, and that addition to the ring is negligible.

59 Rate constant is as recommended or tabulated by Atkinson and Arey (2003).

60 Absorption cross sections recommended by Calvert et al (2002). Overall quantum yield based on that of SAPRC-99 mechanism, which was adjusted to approximately fit the rate of consumption of benzaldehyde measured in chamber experiments. However, the new absorption cross sections result in a ~17% decrease in the solar photolysis rate for benzaldehyde, so the overall quantum yield is adjusted upward by the same factor to yield the same overall photodecomposition rate. The mechanism is the same as in SAPRC-99, which is based on the fact that the products are unknown but are apparently unreactive, and not benzene.

61 The 298oK rate constant recommended by Atkinson (1994). Temperature dependence estimated

by assuming the reaction has the same A factor as the reaction of NO3 with acetaldehyde. This gives the same 298

oK rate constant but a slightly different temperature dependence than used in

SAPRC-99.

Page 228: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

216

62 AFG1 and AFG2 are used to represent the photoreactive monounsaturated dialdehyde or aldekyde-ketone aromatic ring fragmentation products. Their mechanistic parameters are based on those for 2-butene 1,4-dial (10%), 2-methyl-2-butene-1,4-dial (21%), 4-oxo-2-petenal (37%), and 2-methyl-4-oxo-2-pentenal (32%). The action spectrum for the photolysis reactions of both species is also based on weighted averages of action spectra assigned to those species. The weighting factors used for each are based on the relative yields monounsaturated dialdehydes or aldehyde-ketones estimated for toluene and the di- and tri-methylbenzene isomers, each weighed equally, with 2,3-dimethyl-2-butene-1,4-dial represented by 2-methyl-2-butene-1,4-dial, and 3-methyl-4-oxo-2-penetnal and 2,3-dimethyl-4-oxo-2-pentenal represented by 2-methyl-4-oxo-2-pentenal. AFG1 is used to represent those compounds (or portions of the mechanisms) that photolyze to form radicals, while AFG2 is used to represent those which photolyze to form non-radical products, and each have the same OH and O3 mechanism and overall action spectrum.

63 The mechanisms for the radical formation photolysis for AFG1 is based on that derived for the radical formation photolysis of the species used to derive the mechanistic parameters for the OH and O3 reactions. The stable species formed in the photolysis of AFG2 are represented by PROD2.

65 Except as indicated in other footnotes, the mechanism is as given by Carter (1996), based on the detailed mechanism of Carter and Atkinson (1996). (The rate constant and mechanism is unchanged from SAPRC-99 if footnote "1" is also given).

66 IUPAC (2006) recommendation of rate constant at 298oK used. Temperature dependence is

estimated using the estimated A factor given used in the SAPRC-99 mechanism, based on the estimate of Carter and Atkinson (1996).

67 Absorption cross sections recommended by IUPAC (2006) used. No recommendations given for quantum yield. The quantum yields were derived using the pressure and wavelength-dependent expression given by IUPAC (2006) for MVK, with the total pressure adjusted so that the radical forming photolysis rates for the chamber experiments are the same as those derived by Carter and Atkinson (1996) to fit the chamber experiments with methacrolein.

68 Absorption cross sections recommended by IUPAC (2006) used. IUPAC (2006) also gives recommendations for quantum yields for total photodecomposition as a function of wavelength and pressure, and recommend assuming 60% forms propene + CO and the remainder involves radical formation. However, this recommendation gives photolysis rates for radical formation that are significantly higher than those found to fit chamber data for MVK (Carter and Atkinson, 1996). Using an effective pressure of 5 atmospheres gives radical formation photolysis that is consistent with modeling the chamber data, and is used in this mechanism. This is not inconsistent with the IUPAC (2006) recommendations because they stated that their recommended quantum yields should be considered to be upper limits. It is assumed that the radical formation process involves formation of CH3 + CH2=CHCO·, as was assumed in the SAPRC-99 mechanism.

69 Consistent with the assumption in the SAPRC-99 mechanism, all species represented by ISOPROD are assumed to have the same action spectrum for photolysis as used for acrolein. As indicated in the footnotes for the methacrolein photolysis reaction, some modifications were made to the methacrolein action spectrum but the photolysis rates for conditions of chamber experiments are essentially the same as used in SAPRC-99. The other aspects of this reaction are not changed.

Page 229: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

217

70 PROD2 is used to represent the more reactive non-aldehyde organic products formed in the photooxidations of various VOCs. As with SAPRC-99, its mechanism is based on those derived for representative product compounds that are represented by PROD2, which were chosen to be CH3C(O)CH2CH2CH2OH, CH3C(O)CH2CH(CH3)CH2OH, CH3CH2C(O)CH2-CH2CH(CH3)OH, CH3CH2C(O)CH2CH2CH(OH)CH2CH3, and CH3CH2CH2CH(OH)CH2-CH2C(O)CH2CH3 (Carter, 2000a). The rate constants and mechanisms for these compounds (designated PROD2-1 through 5, respectively) were derived using the mechanism generation system, and are given in Table B-4 in Appendix B. The mechanisms for PROD2 were derived by weighing those for each of these representative compounds equally.

71 Absorption cross sections for methyl ethyl ketone used for general ketone photolysis, with quantum yields declining monotonically with carbon number (see discussion of general ketone photolysis elsewhere in this report). Overall quantum yields and mechanisms averages for the compounds used to derive the mechanism for PROD2.

72 As with SAPRC-99, the mechanism for the lumped organic nitrate product species is based on those derived for 6 compounds chosen to be representative of thee compounds, specifically CH3CH2CH(CH3)ONO2, CH3CH(OH)CH2CH2CH2ONO2, CH3CH2CH(CH3)CH(CH3)ONO2, CH3CH2CH2CH2CH2CH(ONO2)CH2OH, CH3CH2C(CH3)(ONO2)CH2CH(CH3)CH3, and CH3-CH2CH2CH2CH2CH2CH2CH(ONO2)CH2CH3 (RNO3-1 through 6) (Carter, 2000a). The rate constants and mechanisms for these compounds were derived using the current mechanism generation system, which should be similar to those predicted using the SAPRC-99 mechanism generation system documented by Carter (2000a). The mechanisms for RNO3 were derived by weighing those for each of these representative compounds equally.

73 Absorption cross section for isopropyl nitrate as given by IUPAC (2006) used, assuming unit quantum yields. This is the same as used for RNO3 in SAPRC-99.

74 The zRNO3 chemical operator species is used to represent the formation organic nitrates formed when peroxy radicals react with NO, or formation of of radicals and products from alkoxy radicals formed in the reactions of peroxy radicals with NO3, acyl peroxy radicals, and (in ~50% yields) with other peroxy radicals. These products are not formed when peroxy radicals react with HO2 and (in the other ~50% of the time) with other peroxy radicals, since those reactions are assumed not form organic nitrates or alkoxy radicals, but instead form hydroperoxides or H-shift disproportion products that are represented by separate yROOH chemical operator species, discussed in a separate footnote. At present the mechanism has only one zRNO3 operator to correspond to the single lumped organic nitrate model species, but other such operators can be added if it is desired to have separate organic nitrate model species, such as, for example, those to represent semi-volatile organic nitrates that may contribute to SOA. In the case of zRNO3, the products resulting if alkoxy radicals are formed in the RCO3 or RO2 reactions would depend on reactant and individual radicals, and are approximated by PROD2 and HO2 (as might occur following the reaction of a peroxy radical with O2 to form HO2 and a ketone species). As with the xPROD species, the consumption and products formed from these species can be represented in several ways, with the most straightforward method being to include a reaction for each of the types of peroxy radical reactions, as follows:

zRNO3 + NO ® NO + RNO3

zRNO3 + HO2 ® HO2

zRNO3 + NO3 ® NO3 + PROD2 + HO2

zRNO3 + MECO3 ® MECO3 + PROD2 + HO2 (& similar reactions for RCO3, BZCO3, and MACO3)

zRNO3 + MEO2 ® MEO2 + 1/2 {PROD2 + HO2}

zRNO3 + RO2C ® RO2C + 1/2 {PROD2 + HO2} (& a similar reaction for RO2XC)

Page 230: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

218

The rate constants for these reactions should be the same as the rate constant for the corresponding reactions of RO2C or RO2XC. As with xPROD, an alternative method, requiring fewer reactions, is implemented in this table. In this case, the coefficient "RO2NO" is used to determine the rate of formation of organic nitrates, "RO22NN" is used to determine the rate of formation of the alkoxy radical products, and "RO2XRO" is used to represent processes where these products are is not formed, and is the same as used for xPROD. These are calculated as follows, where the k(RO2+..)'s refer to the rate constants for the reactions of RO2C or RO2XC with the indicated reactant.

RO2NO = k(RO2+NO)[NO]

RO22NN = k(RO2+NO3)[NO3] + k(RO2+MECO3){[MECO3]+[RCO3]+[BZCO3]+ [MACO3]) + 0.5 k(RO2+MEO2)[MEO2] + 0.5 k(RO2+RO2){[RO2C]+ [RO2XC])

RO2XRO = k(RO2+HO2)[HO2] + 0.5 k(RO2+MEO2)[MEO2] + 0.5 k(RO2+RO2){[RO2C]+ [RO2XC]) (same as used for xPROD)

The steady state approximation must be used for these operators when this representation is used, and the operators must not be allowed to be diluted or transported.

75 The yROOH chemical operator species is used to represent the formation of organic hydroperoxides formed with peroxy radicals react with HO2, or of H-shift disproportionation products formed when peroxy radicals react (in 50% yields) with other peroxy radicals. Note that the products formed when peroxy radicals react to form alkoxy radicals or organic nitrates (in the NO reaction) are represented using separate xPROD or zRNO3 species, and together these three types of operators represent all the products and radicals formed. Separate such yROOH species are used to represent formation of hydroperoxides or H-shift disproportion products in different molecular weight ranges or volatilities, and more can be added as needed for appropriate predictions of SOA formation. The hydroperoxide formed in the HO2 reaction is represented by either ROOH, R6OOH, or RAOOH, and the H-shift disproportion products are represented by either MEK (for yROOH) or PROD2 (for the others). As with the xPROD and zRNO3 species, the consumption and products formed from these species can be represented in several ways, with the most straightforward method being to include a reaction for each of the types of peroxy radical reactions, as follows for yROOH (the reactions for the other two are analogous).

yROOH + NO ® NO

yROOH + HO2 ® HO2 + ROOH

yROOH + NO3 ® NO3

yROOH + MECO3 ® MECO3 (& similar reactions for RCO3, BZCO3, and MACO3)

yROOH + MEO2 ® MEO2 + 1/2 MEK

yROOH + RO2C ® RO2C + 1/2 MEK (& a similar reaction for RO2XC)

The rate constants for these reactions should be the same as the rate constant for the corresponding reactions of RO2C or RO2XC. As with the other operators, an alternative method, requiring fewer reactions, is implemented in this table. In this case, the coefficient "RO2HO2" is used to determine the rate of formation of organic hydroperoxides, "RO2RO2M" to determine the rate of formation of H-shift disproportion products, and "RO2RO" is used to represent processes where these products are is not formed. Note that the latter is the same as the coefficient that is used to represent the formation products from the xPROD species. These are calculated as follows, where the k(RO2+..)'s refer to the rate constants for the reactions of RO2C or RO2XC with the indicated reactant.

RO2HO2 = k(RO2+HO2)[HO2]

RO2RO2M = 0.5 k(RO2+RO2){[RO2C]+ [RO2XC])

RO2RO = k(RO2+NO)[NO] + k(RO2+NO3)[NO3] + k(RO2+MECO3){[MECO3]+[RCO3]+ [BZCO3]+[MACO3]) + 0.5 k(RO2+MEO2) [MEO2] + 0.5 k(RO2+RO2) {[RO2C]+[RO2XC])

The steady state approximation must be used for these operators when this representation is used, and the operators must not be allowed to be diluted or transported.

Page 231: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

219

76 The mechanism is the same as used in SAPRC-99, but the rate constant was updated based on a more recent evaluation.

77 Criegee biradical stabilization yield as recommended by Atkinson (1997a) and IUPAC (2006). OH yield of 16% used based on recommendation of IUPAC (2006), which is higher than the 12% yield recommended by Atkinson (1997a). The yields of the other decomposition pathways based on Atkinson (1997a) recommendations except they were reduced by 8% to account for the higher OH yield of the IUPAC (2006) recommendation.

78 Radical fragmentation distribution as recommended by Calvert (2000), ignoring H2 + ketene route. Although Calvert (2000) recommends assuming 95% fragmentation, it is necessary to assume ~20% stabilization to remove biases in model simulations of ethene. This is consistent with the need to assume more-than-recommended stabilization in the analogous reaction of propene to remove biases in model simulations of propene experiments. However, this is somewhat lower than the ~50% stabilization used in the SAPRC-99 mechanism to remove biases in simulations of the ethene experiments.

79 Rate constant expression as recommended by Calvert et al (2000)

80 Acetylene is added as an explicitly-represented compound in the current base mechanism because of its relatively large emissions and the fact that it is not well represented by other lumped species in the mechanism.

81 The mechanism is derived as discussed by Carter et al (1997c), based in part on the data of Hatakeyama et al (1986) and in part of adjustments to fit chamber data, except that in order to fit chamber data with the current mechanism it is necessary to assume that all of the initial reaction with OH results in the formation of HOCH=CH. radicals.

82 The mechanism is based on assuming the initially formed adduct rearranges to form excited HCOCHOO Crigiee biradicals. The subsequent reaction of this excited biradical is unknown, but it is assumed that decomposition is dominant, forming CO + HCO + OH half the time and HCO2· + HCO the other half.

83 Benzene is added as an explicitly-represented compound in the current base mechanism because of its non-negligible emissions and the fact that it is not well represented by the other lumped aromatic species in the mechanism. The rate constant expression is as recommended by Atkinson and Arey (2003). The mechanism employs the general mechanism formulation used for aromatics in this version of the mechanism. The yield of phenol (represented by CRES) is the average of values of Berndt and Boge (2006) and Volkammer et al (2002). This is significantly higher than the values used in the SAPRC-99 mechanism (Carter, 2000a). The glyoxal yield is as determined by Berndt and Boge (2006), which is reasonably consistent with previous studies. AFG1 and AFG2 represent the co-product(s) formed with the alpha-dicarbonyls, which react with the same mechanism except that AFG1 is highly photoreactive and AFG2 is not, and with their relative yields adjusted to fit ozone reactivity reseults in the benzene - NOx chamber experiments. AFG3 is used to represent ring fragmentation products not involving alpha-dicarbonyl formation, which is assumed to involve formation of OH without NO to NO2 conversions. The yields of OH, HO2, and RO2R are derived as used for general aromatics mechanisms, and are equal to the yields of AFG3, phenol, and total alpha-dicarbonyls, respectively.

84 Reaction is rapidly reversed and can be ignored.

85 IUPAC (2006) gives a recommendation for the total CL + HO2 rate constant and for the temperature dependence of the rate constant ratio. Temperature-dependent parameters derived to give best fits to the recommended temperature dependence expression for the temperature range 270-330

oK.

Page 232: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

220

86 No information could be found concerning the kinetics of this reaction. The temperature- and pressure-dependence expression for the rate constant was estimated from that for the reverse reaction and the equilibrium constant obtained from the thermochemical data given by NASA (2006) for 298

oK. The falloff parameters were derived by fitting the falloff expression to the rate

constant derived from the rate constant calculated for the reverse reaction and the equilibrium constant as a function of temperature and pressure.

87 This reaction is not important under most atmospheric conditions, but may be non-negligible under certain situations near Cl2 emissions sources. The reaction can form either Cl2 + O2, Cl + ClOO, or Cl + OClO. To avoid introducing new species into the mechanism for this relatively unimportant reaction, OClO is represented by Cl. ClOO is also represented by Cl because it is expected to rapidly decompose to Cl. The rate expression for the total reaction is derived by fitting an Arrhenius expression to the sum of the temperature-dependent rate constants recommended by IUPAC (2006). The relative product yields are the IUPAC (2006) recommended values for 298K; the temperature dependence of the relative product yields is ignored.

88 The rate constant used for the reaction of Cl with propionaldehyde is the average of values listed by Le Crane et al (2005), who also obtained data indicating that abstraction from -CHO occurs ~88% of the time. The rest of the reaction is assumed to occur at the CH2 group, resulting in ultimate formation of the corresponding alkoxy radical, which is estimated to decompose primarily to acetaldehyde and HCO (Carter, 2000a).

89 Mechanism estimated using the current mechanism generation system, with rates of initial reactions determined by estimated rates of Cl reactions at various positions. In most cases the reactions of the radicals formed are the same as derived for the SAPRC-99 mechanism generation system documented by Carter (2000a). The total rate constant also estimated, unless another footnote indicates otherwise.

90 Mechanism derived using the mechanism generation system based on the mixture of organic nitrate or higher ketone product compounds used to derive the other mechanistic parameters for the RNO3 or PROD2 model species.

91 Same rate constant as used for formaldehyde (for glyoxal) or acetaldehyde (for methyl glyoxal). Same mechanism as for OH reaction, except HCl formed.

92 Assumed to have same rate constant as used for toluene, which is average of values tabulated by Wang et al (2005). Mechanism based on assuming reaction only involves abstraction from CH3.

93 Same rate constant as used for acetaldehyde. Reaction is assumed to proceed only by abstraction from -CHO.

94 Mechanism could not be generated completely. The mechanism estimation system was used to estimate the total rate constant and the HCL yield. The set of products formed in the OH reaction are used to approximate the reminder of the products radicals formed.

95 Mechanism derived for HCOC(CH3)=CHCH2OH, which is taken as representative of the compounds represented by this model species. 0.5 AFG1 + 0.5 AFG2 are used to represent the CH3-C(CHO)=CH-CHO product predicted to be formed.

96 This is used to represent alpha-chloro aldehydes, which need to be represented separately because of their significantly higher photolysis rates (see Carter and Malkina, 2007). Absorption cross sections from NASA (2006), and are given in Table A-3. Unit quantum yields assumed. See Carter and Malkina (2007) for a discussion of the mechanism.

97 Rate constants from Scollard et al (1993). Represented as forming same products as corresponding reaction of propionaldehyde.

98 Absorption cross sections from NASA (2006) evaluation. Overall quantum yield of 0.5 assumed, based on quantum yields measured at 308 and 351 nm (NASA, 2006).

Page 233: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

221

99 Rate constant is Atkinson (1997) recommendation. Mechanism derived using the mechanism generation system, with assignments for the formation and reactions of the initially formed radicals based on the mechanism of Fan and Zhang (2004). Note that if it is desired to represent CMBO and CMBA explicitly, the "IPRD" yield should be reduced to 0.272 and the CMBO and CMBA should be added with yields of 0.221 and 0.178, respectively. Their subsequent reactions can be approximated by the mechanism of IPRD.

100 Mechanism based on assuming that reaction involves formation of ClCH=CH· radicals, which react with O2 to form HCO and ClCHO. The latter is assumed to be relatively unreactive and is not represented.

101 See discussion of development of lumped mechanisms for airshed models.

n1 The SAPRC-07 mechanism represented the reactions of HO2 with acyl peroxy radicals was based on the IUPAC (2006) recommendation for acyl peroxy radicals, which has ~70% of the reaction forming (1) O2 + peroxyacetic acid, and ~30% of the reaction forming (2) O3 + acetic acid. However, the most recent IUPAC (2009) recommendation recommends assuming these two pathways occur respectively 41% and 15% of the time, with a third pathway, forming (3) OH + O2 + CH3C(O)O occurring 44% of the time. The mechanisms for all the acyl peroxy radical reactions in the mechanism were modified accordingly, with the model species used for the acid (CCOOH in the case of the acetic acid formed from MECO3) still being used to represent the peroxy acid formed in the first pathway.

n2 The reaction of glyoxal with OH and NO3 radicals is assumed to involve a hydrogen abstraction reaction forming the intermediate HC(O)C(O)·. The SAPRC-07 mechanism assumed that this intermediate decomposes to CO + HCO and reacts with O2 to form HC(O)C(O)OO· respectively 63% and 37% of the time. The HC(O)C(O)OO· is assumed to react analogously to other acyl peroxy radicals to form primarily PAN analogues in the presence of NO2, and it is represented in mechanism using the generic lumped acyl peroxy radical species RCO3. However, the discussion in the updated IUPAC (2008) evaluation implies that the decomposition of HC(O)C(O)· is negligible, and that its reaction with O2 forms approximately equal amounts of HC(O)C(O)OO· and 2 CO + HO2. Furthermore, they point out that the data of Orlando and Tyndall (2001) indicate that reaction of HC(O)C(O)OO· with NO2 does not form a PAN analogue, but instead probably forms HCO + CO + NO3,, presumably following the initial formation of HC(O)O· + NO3. The rate constants for the HCOCO3 reactions were the same as used for the lumped acyl peroxy radical RCO3. The mechanism for the HO2 reaction was derived by analogy with the acyl peroxy + HO2 reactions as discussed above, with GLY being used to represent the dicarbonyl acids and peroxy acids formed.

n3 Mechanisms for aromatic hydrocarbons and phenolic compounds updated as described in the SAPRC-11 aromatics mechanism documentation report

n4 Minor errors in product yields in the SAPRC-07 mechanism were corrected. Derived from the mechanisms for the individual aromatics in the mixture, based on estimated abstraction mechanisms, as described in the SAPRC-07 mechanism documentation

n5 AFG4 replaced AFG3 to be consistent with lumping in the SAPRC-11 aromatics mechanism. See SAPRC-11 aromatics mechanism documentation report.

n6 The rate constant for the glyoxal + OH reaction was updated based on the IUPAC (2008) recommendation, but the change in the room temperature rate constant was small.

n7 Added to reprepsent aromatic SOA formation as discussed by Carter et al (2012) (Aromatic SOA report)

n8 A separate species (RAO2H) is used to represent aromatic ring-opening hydroperoxides from phenolic products for the purposes of representing SOA mechanism. Uses the same gas-phase mechanism as RAOOH.

Page 234: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

222

n9 AFG5 is used to represent the epoxy unsaturated dicarbonyl product, which are assumed to have relatively low photoreactivity. There mechanisms are based on those derived for 3-methyl, 2,3-epoxy-4-hexene-1,6-dial (20.25%), 3-methyl, 4,5-epoxy-2-hexene-1,6-dial (20.25%), 6-oxo, 2,3-epoxy, 4-hepteneal (26.85%), 6-oxy, 4,5-epoxy, 2-pepteneal, (26.85%) and 3,4-epoxy, 5-octene-2,7-dione (5.8%). The weighting factors used are based on those estimated for the SAPRC-07 mechanism for the corresponding diunsaturated dicarbonyls for toluene and the di- and tri-methylbenzene isomers, each weighed equally, with epoxides from 2,4-hexene-1,6-dial representing all dialdehydes, those from 3,5-octadien-2,7-dione representing aldehyde-ketones, and that from 3,5-octadien-2,7-dione representing the diketones. The mechanisms and rate constants for the OH and O3 reaction are derived from the mechanism generation system.

n10 Assumed to have same rate constant as used for ISOPROD

n11 This represdent lumped diunsaturated dicarbonyls as used in the SAPRC-07 and SAPRC-11 mechanisms. These are based on derived mechanisms for the diunsatured dicarbonyls corresponding to the epoxides discussed in note n9, as also discussed in the SAPRC-07 mechanism documentation. The mechanisms were derived using the mechanism generation system. Note that the O3 rate constants were assinged manualy for each compound, as discussed in the comments output by MechGen. Reactions and rate constants are the same as used for SAPRC-11.

n12 Temperature dependence parameter B corrected by removing 2.0 used for SPARC-07. From IUPAC (2006), but unchanged in IUPAC (2007).

n13 Temperature dependence parameters used for SAPRC-07 corrected by removing -2.0 used for parameter B of k0 and setting parameter B of kinf at 2.0. From NASA (2006), but unchanged in NASA (2011).

n14 As used in SAPRC-07 (Carter, 2010a)

Page 235: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

223

Appendix C. Additional Information on Implementing Mechanisms for CMAQ Simulations

C-1. List of SAPRC-11L mechanism definition file

! S12D Mechanism

! Created from Mech12.xls 22-Jul-2013 16:30

SAPRC11L

SPECIAL =

RO2NO = K<BR07>*C<NO>;

RO2HO2 = K<BR08>*C<HO2>;

RO2NO3 = K<BR09>*C<NO3>;

RO2RO2 = K<BR10>*C<MEO2> + K<BR11>*C<RO2C> + K<BR11>*C<RO2XC>;

RO2RO3 = K<BR25>*C<MECO3> + K<BR25>*C<RCO3> + K<BR25>*C<BZCO3> +

K<BR25>*C<MACO3>;

RO2RO = RO2NO + RO2NO3 + RO2RO3 + 0.5*RO2RO2;

RO2XRO = RO2HO2 + 0.5*RO2RO2;

RO2RO2M = 0.5*RO2RO2;

RO22NN = RO2NO3 + RO2RO3 + 0.5*RO2RO2;

end special

ELIMINATE =

XN;

XC;

END ELIMINATE

REACTIONS[CM]=

<1> NO2 = NO + O3P # 1.0/<NO2_06>;

<2> O3P + O2 + M = O3 # 5.68e-34^-2.60;

<3> O3P + O3 = # 8.00e-12@2060;

<4> O3P + NO = NO2 # 9.00e-32^-1.50&3.00e-11&0.60&1.00;

<5> O3P + NO2 = NO # 5.50e-12@-188;

<6> O3P + NO2 = NO3 # 2.50e-31^-1.80&2.20e-11^-0.70&0.60&1.00;

<7> O3 + NO = NO2 # 3.00e-12@1500;

<8> O3 + NO2 = NO3 # 1.40e-13@2470;

<9> NO + NO3 = 2*NO2 # 1.80e-11@-110;

<10> NO + NO + O2 = 2*NO2 # 3.30e-39@-530;

<11> NO2 + NO3 = N2O5 # 3.60e-30^-4.10&1.90e-12^0.20&0.35&1.33;

<12> N2O5 = NO2 + NO3 # 1.30e-03^-3.50@11000&9.70e+14^0.10@11080&0.35&1.33;

<13> N2O5 + H2O = 2*HNO3 # 2.50e-22;

<14> N2O5 + H2O + H2O = 2*HNO3 # 1.80e-39;

<15> NO2 + NO3 = NO + NO2 # 4.50e-14@1260;

<16> NO3 = NO # 1.0/<NO3NO_06>;

<17> NO3 = NO2 + O3P # 1.0/<NO3NO2_6>;

<18> O3 = O1D # 1.0/<O3O1D_06>;

<19> O3 = O3P # 1.0/<O3O3P_06>;

<20> O1D + H2O = 2*OH # 1.63e-10@-60;

<21> O1D + M = O3P # 2.38e-11@-96;

<22> OH + NO = HONO # 7.00e-31^-2.60&3.60e-11^-0.10&0.60&1.00;

<23> HONO = OH + NO # 1.0/<HONO_06>;

<24> OH + HONO = NO2 # 2.50e-12@-260;

<25> OH + NO2 = HNO3 # 1.80e-30^-3.00&2.80e-11&0.60&1.00;

<26> OH + NO3 = HO2 + NO2 # 2.00e-11;

<27> OH + HNO3 = NO3 %2 # 2.40e-14@-460&2.70e-17@-2199&6.50e-34@-1335;

<28> HNO3 = OH + NO2 # 1.0/<HNO3>;

<29> OH + CO = HO2 + CO2 %3 # 1.44e-13@0&3.43e-33@0;

<30> OH + O3 = HO2 # 1.70e-12@940;

<31> HO2 + NO = OH + NO2 # 3.60e-12@-270;

Page 236: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

224

<32> HO2 + NO2 = HNO4 # 2.00e-31^-3.40&2.90e-12^-1.10&0.60&1.00;

<33> HNO4 = HO2 + NO2 # 3.72e-05^-2.40@10650&5.42e+15^-2.30@11170&0.60&1.00;

<34> HNO4 = 0.61*HO2 + 0.61*NO2 + 0.39*OH + 0.39*NO3 # 1.0/<HNO4_06>;

<35> HNO4 + OH = NO2 # 1.30e-12@-380;

<36> HO2 + O3 = OH # 2.03e-16^4.57@-693;

<37> HO2 + HO2 = HO2H %3 # 2.20e-13@-600&1.90e-33@-980;

<38> HO2 + HO2 + H2O = HO2H %3 # 3.08e-34@-2800&2.66e-54@-3180;

<39> NO3 + HO2 = 0.8*OH + 0.8*NO2 + 0.2*HNO3 # 4.00e-12;

<40> NO3 + NO3 = 2*NO2 # 8.50e-13@2450;

<41> HO2H = 2*OH # 1.0/<H2O2>;

<42> HO2H + OH = HO2 # 1.80e-12;

<43> OH + HO2 = # 4.80e-11@-250;

<44> OH + SO2 = HO2 + SULF # 3.30e-31^-4.30&1.60e-12&0.60&1.00;

<45> OH + H2 = HO2 # 7.70e-12@2100;

<EX1> NO2 = NO2EX # 0.0/<NO2EX>;

<EX2> NO2EX + M = NO2 # 2.76e-11;

<EX3> NO2EX + H2O = NO2 # 1.70e-10;

<EXOH> NO2EX + H2O = OH + HONO # 0.0e+00;

<EXOH> NO2EX + H2O = OH + HONO # 1.7e-13;

<BR01> MEO2 + NO = NO2 + HCHO + HO2 # 2.30e-12@-360;

<BR02> MEO2 + HO2 = COOH # 3.46e-13^0.36@-780;

<BR03> MEO2 + HO2 = HCHO # 3.34e-14^-3.53@-780;

<BR04> MEO2 + NO3 = HCHO + HO2 + NO2 # 1.30e-12;

<BR05> MEO2 + MEO2 = MEOH + HCHO # 6.39e-14^-1.80@-365;

<BR06> MEO2 + MEO2 = 2*HCHO + 2*HO2 # 7.40e-13@520;

<BR07> RO2C + NO = NO2 # 2.60e-12@-380;

<BR08> RO2C + HO2 = # 3.80e-13@-900;

<BR09> RO2C + NO3 = NO2 # 2.30e-12;

<BR10> RO2C + MEO2 = 0.5*HO2 + 0.75*HCHO + 0.25*MEOH # 2.00e-13;

<BR11> RO2C + RO2C = # 3.50e-14;

<BR12> RO2XC + NO = XN # 1.0*K<BR07>;

<BR13> RO2XC + HO2 = # 1.0*K<BR08>;

<BR14> RO2XC + NO3 = NO2 # 1.0*K<BR09>;

<BR15> RO2XC + MEO2 = 0.5*HO2 + 0.75*HCHO + 0.25*MEOH # 1.0*K<BR10>;

<BR16> RO2XC + RO2C = # 1.0*K<BR11>;

<BR17> RO2XC + RO2XC = # 1.0*K<BR11>;

<BR18> MECO3 + NO2 = PAN # 2.70e-28^-7.10&1.21e-11^-0.90&0.30&1.41;

<BR19> PAN = MECO3 + NO2 # 4.90e-03@12100&4.00e+16@13600&0.30&1.41;

<BR20> PAN = 0.6*MECO3 + 0.6*NO2 + 0.4*MEO2 + 0.4*CO2 + 0.4*NO3

# 1.0/<PAN>;

<BR21> MECO3 + NO = MEO2 + CO2 + NO2 # 7.50e-12@-290;

<BR22> MECO3 + HO2 = 0.44*OH + 0.44*MEO2 + 0.44*CO2 + 0.41*CCOOH + 0.15*O3 +

0.15*CCOOH # 5.20e-13@-980;

<BR23> MECO3 + NO3 = MEO2 + CO2 + NO2 # 1.0*K<BR09>;

<BR24> MECO3 + MEO2 = 0.1*CCOOH + 0.1*HCHO + 0.9*HCHO + 0.9*HO2 + 0.9*MEO2 +

0.9*CO2 # 2.00e-12@-500;

<BR25> MECO3 + RO2C = MEO2 + CO2 # 4.40e-13@-1070;

<BR26> MECO3 + RO2XC = MEO2 + CO2 # 1.0*K<BR25>;

<BR27> MECO3 + MECO3 = 2*MEO2 + 2*CO2 # 2.90e-12@-500;

<BR28> RCO3 + NO2 = PAN2 # 1.21e-11^-1.07@0;

<BR29> PAN2 = RCO3 + NO2 # 8.30e+16@13940;

<BR30> PAN2 = 0.6*RCO3 + 0.6*NO2 + 0.4*RO2C + 0.4*xHO2 + 0.4*yROOH +

0.4*xCCHO + 0.4*CO2 + 0.4*NO3 # 1.0/<PAN>;

<BR31> RCO3 + NO = NO2 + RO2C + xHO2 + yROOH + xCCHO + CO2 # 6.70e-12@-340;

<BR32> RCO3 + HO2 = 0.44*OH + 0.44*RO2C + 0.44*xHO2 + 0.44*xCCHO + 0.44*yROOH +

0.44*CO2 + 0.41*RCOOH + 0.15*O3 + 0.15*RCOOH # 1.0*K<BR22>;

<BR33> RCO3 + NO3 = NO2 + RO2C + xHO2 + yROOH + xCCHO + CO2 # 1.0*K<BR09>;

<BR34> RCO3 + MEO2 = HCHO + HO2 + RO2C + xHO2 + xCCHO + yROOH + CO2

# 1.0*K<BR24>;

<BR35> RCO3 + RO2C = RO2C + xHO2 + xCCHO + yROOH + CO2 # 1.0*K<BR25>;

<BR36> RCO3 + RO2XC = RO2C + xHO2 + xCCHO + yROOH + CO2 # 1.0*K<BR25>;

<BR37> RCO3 + MECO3 = 2*CO2 + MEO2 + RO2C + xHO2 + yROOH + xCCHO # 1.0*K<BR27>;

<BR38> RCO3 + RCO3 = 2*RO2C + 2*xHO2 + 2*xCCHO + 2*yROOH + 2*CO2 # 1.0*K<BR27>;

Page 237: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

225

<BR39> BZCO3 + NO2 = PBZN # 1.37e-11;

<BR40> PBZN = BZCO3 + NO2 # 7.90e+16@14000;

<BR41> PBZN = 0.6*BZCO3 + 0.6*NO2 + 0.4*CO2 + 0.4*BZO + 0.4*RO2C + 0.4*NO3

# 1.0/<PAN>;

<BR42> BZCO3 + NO = NO2 + CO2 + BZO + RO2C # 1.0*K<BR31>;

<BR43> BZCO3 + HO2 = 0.44*OH + 0.44*BZO + 0.44*RO2C + 0.44*CO2 + 0.41*RCOOH +

0.15*O3 + 0.15*RCOOH + 2.24*XC # 1.0*K<BR22>;

<BR44> BZCO3 + NO3 = NO2 + CO2 + BZO + RO2C # 1.0*K<BR09>;

<BR45> BZCO3 + MEO2 = HCHO + HO2 + RO2C + BZO + CO2 # 1.0*K<BR24>;

<BR46> BZCO3 + RO2C = RO2C + BZO + CO2 # 1.0*K<BR25>;

<BR47> BZCO3 + RO2XC = RO2C + BZO + CO2 # 1.0*K<BR25>;

<BR48> BZCO3 + MECO3 = 2*CO2 + MEO2 + BZO + RO2C # 1.0*K<BR27>;

<BR49> BZCO3 + RCO3 = 2*CO2 + RO2C + xHO2 + yROOH + xCCHO + BZO + RO2C

# 1.0*K<BR27>;

<BR50> BZCO3 + BZCO3 = 2*BZO + 2*RO2C + 2*CO2 # 1.0*K<BR27>;

<BR51> MACO3 + NO2 = MAPAN # 1.0*K<BR28>;

<BR52> MAPAN = MACO3 + NO2 # 1.60e+16@13486;

<BR53> MAPAN = 0.6*MACO3 + 0.6*NO2 + 0.4*CO2 + 0.4*HCHO + 0.4*MECO3 +

0.4*NO3 # 1.0/<PAN>;

<BR54> MACO3 + NO = NO2 + CO2 + HCHO + MECO3 # 1.0*K<BR31>;

<BR55> MACO3 + HO2 = 0.44*OH + 0.44*HCHO + 0.44*MECO3 + 0.44*CO2 + 0.41*RCOOH +

0.15*O3 + 0.15*RCOOH + 0.56*XC # 1.0*K<BR22>;

<BR56> MACO3 + NO3 = NO2 + CO2 + HCHO + MECO3 # 1.0*K<BR09>;

<BR57> MACO3 + MEO2 = 2*HCHO + HO2 + CO2 + MECO3 # 1.0*K<BR24>;

<BR58> MACO3 + RO2C = CO2 + HCHO + MECO3 # 1.0*K<BR25>;

<BR59> MACO3 + RO2XC = CO2 + HCHO + MECO3 # 1.0*K<BR25>;

<BR60> MACO3 + MECO3 = 2*CO2 + MEO2 + HCHO + MECO3 # 1.0*K<BR27>;

<BR61> MACO3 + RCO3 = HCHO + MECO3 + RO2C + xHO2 + yROOH + xCCHO + 2*CO2

# 1.0*K<BR27>;

<BR62> MACO3 + BZCO3 = HCHO + MECO3 + BZO + RO2C + 2*CO2 # 1.0*K<BR27>;

<BR63> MACO3 + MACO3 = 2*HCHO + 2*MECO3 + 2*CO2 # 1.0*K<BR27>;

<BR64> TBUO + NO2 = RNO3 - 2*XC # 2.40e-11;

<BR65> TBUO = ACET + MEO2 # 7.50e+14@8152;

<BR66> BZO + NO2 = NPHE # 2.30e-11@-150;

<BR67> BZO + HO2 = CRES - XC # 1.0*K<BR08>;

<BR68> BZO = CRES + RO2C + xHO2 - 1*XC # 1.00e-03;

<RO01> xHO2 = HO2 # 1.0?RO2RO;

<RO02> xHO2 = # 1.0?RO2XRO;

<RO03> xOH = OH # 1.0?RO2RO;

<RO04> xOH = # 1.0?RO2XRO;

<RO05> xNO2 = NO2 # 1.0?RO2RO;

<RO06> xNO2 = XN # 1.0?RO2XRO;

<RO07> xMEO2 = MEO2 # 1.0?RO2RO;

<RO08> xMEO2 = XC # 1.0?RO2XRO;

<RO09> xMECO3 = MECO3 # 1.0?RO2RO;

<RO10> xMECO3 = 2*XC # 1.0?RO2XRO;

<RO11> xRCO3 = RCO3 # 1.0?RO2RO;

<RO12> xRCO3 = 3*XC # 1.0?RO2XRO;

<RO13> xMACO3 = MACO3 # 1.0?RO2RO;

<RO14> xMACO3 = 4*XC # 1.0?RO2XRO;

<RO15> xTBUO = TBUO # 1.0?RO2RO;

<RO16> xTBUO = 4*XC # 1.0?RO2XRO;

<RO17> xCO = CO # 1.0?RO2RO;

<RO18> xCO = XC # 1.0?RO2XRO;

<BP01> HCHO = 2*HO2 + CO # 1.0/<HCHOR_06>;

<BP02> HCHO = CO # 1.0/<HCHOM_06>;

<BP03> HCHO + OH = HO2 + CO # 5.40e-12@-135;

<BP07> HCHO + NO3 = HNO3 + HO2 + CO # 2.00e-12@2431;

<BP08> CCHO + OH = MECO3 # 4.40e-12@-365;

<BP09> CCHO = CO + HO2 + MEO2 # 1.0/<CCHO_R>;

<BP10> CCHO + NO3 = HNO3 + MECO3 # 1.40e-12@1860;

<BP11> RCHO + OH = 0.965*RCO3 + 0.035*RO2C + 0.035*xHO2 + 0.035*xCO +

0.035*xCCHO + 0.035*yROOH # 5.10e-12@-405;

Page 238: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

226

<BP12> RCHO = RO2C + xHO2 + yROOH + xCCHO + CO + HO2 # 1.0/<C2CHO>;

<BP13> RCHO + NO3 = HNO3 + RCO3 # 1.40e-12@1601;

<BP14> ACET + OH = RO2C + xMECO3 + xHCHO + yROOH # 4.56e-14^3.65@-429;

<BP15> ACET = 0.62*MECO3 + 1.38*MEO2 + 0.38*CO # 5.00e-1/<ACET_06>;

<BP16> MEK + OH = 0.967*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.376*xHO2 +

0.51*xMECO3 + 0.074*xRCO3 + 0.088*xHCHO + 0.504*xCCHO + 0.376*xRCHO +

yROOH + 0.3*XC # 1.30e-12^2.00@25;

<BP17> MEK = MECO3 + RO2C + xHO2 + xCCHO + yROOH # 1.75e-1/<MEK_06>;

<BP18> MEOH + OH = HCHO + HO2 # 2.85e-12@345;

<BP19> HCOOH + OH = HO2 + CO2 # 4.50e-13;

<BP20> CCOOH + OH = 0.509*MEO2 + 0.491*RO2C + 0.509*CO2 + 0.491*xHO2 +

0.491*xMGLY + 0.491*yROOH - 0.491*XC # 4.20e-14@-855;

<BP21> RCOOH + OH = RO2C + xHO2 + 0.143*CO2 + 0.142*xCCHO + 0.4*xRCHO +

0.457*xBACL + yROOH - 0.455*XC # 1.20e-12;

<BP22> COOH + OH = 0.3*HCHO + 0.3*OH + 0.7*MEO2 # 3.80e-12@-200;

<BP23> COOH = HCHO + HO2 + OH # 1.0/<COOH>;

<BP24> ROOH + OH = 0.744*OH + 0.251*RO2C + 0.004*RO2XC + 0.004*zRNO3 +

0.744*RCHO + 0.239*xHO2 + 0.012*xOH + 0.012*xHCHO + 0.012*xCCHO +

0.205*xRCHO + 0.034*xPROD2 + 0.256*yROOH - 0.111*XC # 2.50e-11;

<BP25> ROOH = RCHO + HO2 + OH # 1.0/<COOH>;

<BP26> R6OOH + OH = 0.84*OH + 0.222*RO2C + 0.029*RO2XC + 0.029*zRNO3 +

0.84*PROD2 + 0.09*xHO2 + 0.041*xOH + 0.02*xCCHO + 0.075*xRCHO +

0.084*xPROD2 + 0.16*yROOH + 0.017*XC # 5.60e-11;

<BP27> R6OOH = OH + 0.142*HO2 + 0.782*RO2C + 0.077*RO2XC + 0.077*zRNO3 +

0.085*RCHO + 0.142*PROD2 + 0.782*xHO2 + 0.026*xCCHO + 0.058*xRCHO +

0.698*xPROD2 + 0.858*yR6OOH + 0.017*XC # 1.0/<COOH>;

<BP28> RAOOH + OH = 0.139*OH + 0.148*HO2 + 0.589*RO2C + 0.124*RO2XC +

0.124*zRNO3 + 0.074*PROD2 + 0.147*MGLY + 0.139*IPRD + 0.565*xHO2 +

0.024*xOH + 0.448*xRCHO + 0.026*xGLY + 0.03*xMEK + 0.252*xMGLY +

0.073*xAFG1 + 0.073*xAFG2 + 0.713*yR6OOH + 1.674*XC # 1.41e-10;

<BP29> RAOOH = OH + HO2 + 0.5*GLY + 0.5*MGLY + 0.5*AFG1 + 0.5*AFG2 -

0.5*XC # 1.0/<COOH>;

<BP30> GLY = 2*CO + 2*HO2 # 1.0/<GLY_07R>;

<BP31> GLY = HCHO + CO # 1.0/<GLY_07M>;

<BP32> GLY + OH = 0.7*HO2 + 1.4*CO + 0.3*HCOCO3 # 3.10e-12@-340;

<BP33> GLY + NO3 = HNO3 + 0.7*HO2 + 1.4*CO + 0.3*HCOCO3 # 2.80e-12@2376;

<BP80> HCOCO3 + NO = HO2 + CO + CO2 + NO2 # 1.0*K<BR31>;

<BP81> HCOCO3 + NO2 = HO2 + CO + CO2 + NO3 # 1.0*K<BR28>;

<BP82> HCOCO3 + HO2 = 0.44*OH + 0.44*HO2 + 0.44*CO + 0.44*CO2 + 0.56*GLY +

0.15*O3 # 1.0*K<BR22>;

<BP34> MGLY = HO2 + CO + MECO3 # 1.0/<MGLY_06>;

<BP35> MGLY + OH = CO + MECO3 # 1.50e-11;

<BP36> MGLY + NO3 = HNO3 + CO + MECO3 # 1.40e-12@1895;

<BP37> BACL = 2*MECO3 # 1.0/<BACL_07>;

<BP83> PHEN + OH = 0.7*HO2 + 0.1*BZO + 0.104*xHO2 + 0.096*OH + 0.104*RO2C +

0.7*CATL + 0.096*AFG3 + 0.052*xAFG1 + 0.052*xAFG2 + 0.104*xGLY +

0.104*yRAOOH + 0.03*yRAOOHp - 0.2*XC # 4.70e-13@-1220;

<BP84> PHEN + NO3 = 0.1*HNO3 + 0.9*XN + 0.7*HO2 + 0.1*BZO + 0.104*xHO2 +

0.096*OH + 0.104*RO2C + 0.7*CATL + 0.096*AFG3 + 0.052*xAFG1 +

0.052*xAFG2 + 0.104*xGLY + 0.104*yRAOOH - 0.2*XC # 3.80e-12;

<BP38> CRES + OH = 0.7*HO2 + 0.1*BZO + 0.177*xHO2 + 0.023*OH + 0.177*RO2C +

0.7*CATL + 0.023*AFG3 + 0.089*xAFG1 + 0.089*xAFG2 + 0.089*xGLY +

0.089*xMGLY + 0.177*yRAOOH + 0.1*xCNDp2p + 0.04*yRAOOHp + 0.704*XC

# 1.60e-12@-970;

<BP39> CRES + NO3 = 0.1*HNO3 + 0.9*XN + 0.7*HO2 + 0.1*BZO + 0.177*xHO2 +

0.023*OH + 0.177*RO2C + 0.7*CATL + 0.023*AFG3 + 0.089*xAFG1 +

0.089*xAFG2 + 0.089*xGLY + 0.089*xMGLY + 0.177*yRAOOH + 0.704*XC

# 1.40e-11;

<BP85> XYNL + OH = 0.7*HO2 + 0.075*BZO + 0.225*xHO2 + 0.225*RO2C + 0.7*CATL +

0.113*xAFG1 + 0.113*xAFG2 + 0.113*xGLY + 0.113*xMGLY + 0.225*yRAOOH +

0.11*xCNDp2p + 0.21*yRAOOHp + 1.655*XC # 7.38e-11;

<BP86> XYNL + NO3 = 0.075*HNO3 + 0.925*XN + 0.7*HO2 + 0.075*BZO + 0.225*xHO2 +

0.225*RO2C + 0.7*CATL + 0.113*xAFG1 + 0.113*xAFG2 + 0.113*xGLY +

Page 239: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

227

0.113*xMGLY + 0.225*yRAOOH + 1.655*XC # 3.06e-11;

<BP87> CATL + OH = 0.4*HO2 + 0.2*BZO + 0.2*xHO2 + 0.2*OH + 0.2*RO2C + 0.2*AFG3 +

0.1*xAFG1 + 0.1*xAFG2 + 0.1*xGLY + 0.1*xMGLY + 0.2*yRAOOH +

0.33*CNDp2p + 1.9*XC # 2.00e-10;

<BP88> CATL + NO3 = 0.2*HNO3 + 0.8*XN + 0.4*HO2 + 0.2*BZO + 0.2*xHO2 + 0.2*OH +

0.2*RO2C + 0.2*AFG3 + 0.1*xAFG1 + 0.1*xAFG2 + 0.1*xGLY + 0.1*xMGLY +

0.2*yRAOOH + 1.9*XC # 1.70e-10;

<BP40> NPHE + OH = BZO + XN # 3.50e-12;

<BP41> NPHE = HONO + 6*XC # 1.50e-3/<NO2_06>;

<BP42> NPHE = 6*XC + XN # 1.50e-2/<NO2_06>;

<BP43> BALD + OH = BZCO3 # 1.20e-11;

<BP44> BALD = 7*XC # 6.00e-2/<BALD_06>;

<BP45> BALD + NO3 = HNO3 + BZCO3 # 1.34e-12@1860;

<BP46> AFG1 + OH = 0.217*MACO3 + 0.723*RO2C + 0.06*RO2XC + 0.06*zRNO3 +

0.521*xHO2 + 0.201*xMECO3 + 0.334*xCO + 0.407*xRCHO + 0.129*xMEK +

0.107*xGLY + 0.267*xMGLY + 0.783*yR6OOH + 0.284*XC # 7.40e-11;

<BP48> AFG1 = 1.023*HO2 + 0.173*MEO2 + 0.305*MECO3 + 0.5*MACO3 + 0.695*CO +

0.195*GLY + 0.305*MGLY + 0.217*XC # 1.0/<AFG1>;

<BP49> AFG2 + OH = 0.217*MACO3 + 0.723*RO2C + 0.06*RO2XC + 0.06*zRNO3 +

0.521*xHO2 + 0.201*xMECO3 + 0.334*xCO + 0.407*xRCHO + 0.129*xMEK +

0.107*xGLY + 0.267*xMGLY + 0.783*yR6OOH + 0.284*XC # 7.40e-11;

<BP51> AFG2 = PROD2 - 1*XC # 1.0/<AFG1>;

<BP52> AFG3 + OH = 0.206*MACO3 + 0.733*RO2C + 0.117*RO2XC + 0.117*zRNO3 +

0.561*xHO2 + 0.117*xMECO3 + 0.114*xCO + 0.274*xGLY + 0.153*xMGLY +

0.019*xBACL + 0.195*xAFG1 + 0.195*xAFG2 + 0.231*xIPRD + 0.794*yR6OOH +

0.938*XC # 9.35e-11;

<BP53> AFG3 + O3 = 0.471*OH + 0.554*HO2 + 0.013*MECO3 + 0.258*RO2C +

0.007*RO2XC + 0.007*zRNO3 + 0.58*CO + 0.19*CO2 + 0.366*GLY +

0.184*MGLY + 0.35*AFG1 + 0.35*AFG2 + 0.139*AFG3 + 0.003*MACR +

0.004*MVK + 0.003*IPRD + 0.095*xHO2 + 0.163*xRCO3 + 0.163*xHCHO +

0.095*xMGLY + 0.264*yR6OOH - 0.575*XC # 1.43e-17;

<BP89> AFG4 + OH = 0.902*RO2C + 0.098*RO2XC + 0.098*zRNO3 + 0.902*xMECO3 +

0.902*xRCHO + yROOH + 0.902*XC # 6.30e-11;

<BP90> AFG5 + OH = 0.197*RCO3 + 0.215*MACO3 + 0.817*RO2C + 0.114*RO2XC +

0.114*zRNO3 + 0.331*xHO2 + 0.124*xMECO3 + 0.019*xRCO3 + 0.049*xCO +

0.456*xRCHO + 0.118*xGLY + 0.13*xMGLY + 0.034*xBACL + 0.588*yR6OOH +

2.381*XC # 5.93e-11;

<BP91> AFG5 + O3 = 0.491*OH + 0.456*HO2 + 0.472*RO2C + 0.017*RO2XC +

0.017*zRNO3 + 0.107*xHO2 + 0.031*xMECO3 + 0.199*xRCO3 + 0.482*CO +

0.17*CO2 + 0.666*RCHO + 0.377*GLY + 0.163*MGLY + 0.139*RCOOH +

0.107*xCO + 0.198*xHCHO + 0.012*xRCHO + 0.08*xBACL + 0.355*yR6OOH +

1.268*XC # 4.18e-18;

<BP54> MACR + OH = 0.5*MACO3 + 0.5*RO2C + 0.5*xHO2 + 0.416*xCO + 0.084*xHCHO +

0.416*xMEK + 0.084*xMGLY + 0.5*yROOH - 0.416*XC # 8.00e-12@-380;

<BP55> MACR + O3 = 0.208*OH + 0.108*HO2 + 0.1*RO2C + 0.45*CO + 0.117*CO2 +

0.1*HCHO + 0.9*MGLY + 0.333*HCOOH + 0.1*xRCO3 + 0.1*xHCHO + 0.1*yROOH -

0.1*XC # 1.40e-15@2100;

<BP56> MACR + NO3 = 0.5*MACO3 + 0.5*RO2C + 0.5*HNO3 + 0.5*xHO2 + 0.5*xCO +

0.5*yROOH + 1.5*XC + 0.5*XN # 1.50e-12@1815;

<BP57> MACR + O3P = RCHO + XC # 6.34e-12;

<BP58> MACR = 0.33*OH + 0.67*HO2 + 0.34*MECO3 + 0.33*MACO3 + 0.33*RO2C +

0.67*CO + 0.34*HCHO + 0.33*xMECO3 + 0.33*xHCHO + 0.33*yROOH

# 1.0/<MACR_06>;

<BP59> MVK + OH = 0.975*RO2C + 0.025*RO2XC + 0.025*zRNO3 + 0.3*xHO2 +

0.675*xMECO3 + 0.3*xHCHO + 0.675*xRCHO + 0.3*xMGLY + yROOH - 0.725*XC

# 2.60e-12@-610;

<BP60> MVK + O3 = 0.164*OH + 0.064*HO2 + 0.05*RO2C + 0.05*xHO2 + 0.475*CO +

0.124*CO2 + 0.05*HCHO + 0.95*MGLY + 0.351*HCOOH + 0.05*xRCO3 +

0.05*xHCHO + 0.05*yROOH - 0.05*XC # 8.50e-16@1520;

<BP62> MVK + O3P = 0.45*RCHO + 0.55*MEK + 0.45*XC # 4.32e-12;

<BP63> MVK = 0.4*MEO2 + 0.6*CO + 0.6*PROD2 + 0.4*MACO3 - 2.2*XC

# 1.0/<MVK_06>;

<BP64> IPRD + OH = 0.289*MACO3 + 0.67*RO2C + 0.67*xHO2 + 0.041*RO2XC +

Page 240: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

228

0.041*zRNO3 + 0.336*xCO + 0.055*xHCHO + 0.129*xCCHO + 0.013*xRCHO +

0.15*xMEK + 0.332*xPROD2 + 0.15*xGLY + 0.174*xMGLY - 0.504*XC +

0.711*yR6OOH # 6.19e-11;

<BP65> IPRD + O3 = 0.285*OH + 0.4*HO2 + 0.048*RO2C + 0.048*xRCO3 + 0.498*CO +

0.14*CO2 + 0.124*HCHO + 0.21*MEK + 0.023*GLY + 0.742*MGLY + 0.1*HCOOH +

0.372*RCOOH + 0.047*xCCHO + 0.001*xHCHO + 0.048*yR6OOH - 0.329*XC

# 4.18e-18;

<BP66> IPRD + NO3 = 0.15*MACO3 + 0.15*HNO3 + 0.799*RO2C + 0.799*xHO2 +

0.051*RO2XC + 0.051*zRNO3 + 0.572*xCO + 0.227*xHCHO + 0.218*xRCHO +

0.008*xMGLY + 0.572*xRNO3 + 0.85*yR6OOH + 0.278*XN - 0.815*XC

# 1.00e-13;

<BP67> IPRD = 1.233*HO2 + 0.467*MECO3 + 0.3*RCO3 + 1.233*CO + 0.3*HCHO +

0.467*CCHO + 0.233*MEK - 0.233*XC # 1.0/<MACR_06>;

<BP68> PROD2 + OH = 0.472*HO2 + 0.379*xHO2 + 0.029*xMECO3 + 0.049*xRCO3 +

0.473*RO2C + 0.071*RO2XC + 0.071*zRNO3 + 0.002*HCHO + 0.211*xHCHO +

0.001*CCHO + 0.083*xCCHO + 0.143*RCHO + 0.402*xRCHO + 0.115*xMEK +

0.329*PROD2 + 0.007*xPROD2 + 0.528*yR6OOH + 0.877*XC # 1.55e-11;

<BP69> PROD2 = 0.913*xHO2 + 0.4*MECO3 + 0.6*RCO3 + 1.59*RO2C +

0.087*RO2XC + 0.087*zRNO3 + 0.303*xHCHO + 0.163*xCCHO + 0.78*xRCHO +

yR6OOH - 0.091*XC # 4.86e-3/<MEK_06>;

<BP70> RNO3 + OH = 0.189*HO2 + 0.305*xHO2 + 0.019*NO2 + 0.313*xNO2 +

0.976*RO2C + 0.175*RO2XC + 0.175*zRNO3 + 0.011*xHCHO + 0.429*xCCHO +

0.001*RCHO + 0.036*xRCHO + 0.004*xACET + 0.01*MEK + 0.17*xMEK +

0.008*PROD2 + 0.031*xPROD2 + 0.189*RNO3 + 0.305*xRNO3 + 0.157*yROOH +

0.636*yR6OOH + 0.174*XN + 0.04*XC # 7.20e-12;

<BP71> RNO3 = 0.344*HO2 + 0.554*xHO2 + NO2 + 0.721*RO2C + 0.102*RO2XC +

0.102*zRNO3 + 0.074*HCHO + 0.061*xHCHO + 0.214*CCHO + 0.23*xCCHO +

0.074*RCHO + 0.063*xRCHO + 0.008*xACET + 0.124*MEK + 0.083*xMEK +

0.19*PROD2 + 0.261*xPROD2 + 0.066*yROOH + 0.591*yR6OOH + 0.396*XC

# 1.0/<IC3ONO2>;

<PO01> xHCHO = HCHO # 1.0?RO2RO;

<PO02> xHCHO = XC # 1.0?RO2XRO;

<PO03> xCCHO = CCHO # 1.0?RO2RO;

<PO04> xCCHO = 2*XC # 1.0?RO2XRO;

<PO05> xRCHO = RCHO # 1.0?RO2RO;

<PO06> xRCHO = 3*XC # 1.0?RO2XRO;

<PO07> xACET = ACET # 1.0?RO2RO;

<PO08> xACET = 3*XC # 1.0?RO2XRO;

<PO09> xMEK = MEK # 1.0?RO2RO;

<PO10> xMEK = 4*XC # 1.0?RO2XRO;

<PO11> xPROD2 = PROD2 # 1.0?RO2RO;

<PO12> xPROD2 = 6*XC # 1.0?RO2XRO;

<PO13> xGLY = GLY # 1.0?RO2RO;

<PO14> xGLY = 2*XC # 1.0?RO2XRO;

<PO15> xMGLY = MGLY # 1.0?RO2RO;

<PO16> xMGLY = 3*XC # 1.0?RO2XRO;

<PO17> xBACL = BACL # 1.0?RO2RO;

<PO18> xBACL = 4*XC # 1.0?RO2XRO;

<PO19> xBALD = BALD # 1.0?RO2RO;

<PO20> xBALD = 7*XC # 1.0?RO2XRO;

<PO21> xAFG1 = AFG1 # 1.0?RO2RO;

<PO22> xAFG1 = 5*XC # 1.0?RO2XRO;

<PO23> xAFG2 = AFG2 # 1.0?RO2RO;

<PO24> xAFG2 = 5*XC # 1.0?RO2XRO;

<PO51> xAFG4 = AFG4 # 1.0?RO2RO;

<PO52> xAFG4 = 6*XC # 1.0?RO2XRO;

<PO27> xMACR = MACR # 1.0?RO2RO;

<PO28> xMACR = 4*XC # 1.0?RO2XRO;

<PO29> xMVK = MVK # 1.0?RO2RO;

<PO30> xMVK = 4*XC # 1.0?RO2XRO;

<PO31> xIPRD = IPRD # 1.0?RO2RO;

<PO32> xIPRD = 5*XC # 1.0?RO2XRO;

<PO33> xRNO3 = RNO3 # 1.0?RO2RO;

Page 241: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

229

<PO34> xRNO3 = 6*XC + XN # 1.0?RO2XRO;

<PO35> zRNO3 = RNO3 - 1*XN # 1.0?RO2NO;

<PO36> zRNO3 = PROD2 + HO2 # 1.0?RO22NN;

<PO37> zRNO3 = 6*XC # 1.0?RO2XRO;

<PO38> yROOH = ROOH - 3*XC # 1.0?RO2HO2;

<PO39> yROOH = MEK - 4*XC # 1.0?RO2RO2M;

<PO40> yROOH = # 1.0?RO2RO;

<PO41> yR6OOH = R6OOH - 6*XC # 1.0?RO2HO2;

<PO42> yR6OOH = PROD2 - 6*XC # 1.0?RO2RO2M;

<PO43> yR6OOH = # 1.0?RO2RO;

<PO44> yRAOOH = RAOOH - 7*XC # 1.0?RO2HO2;

<PO45> yRAOOH = PROD2 - 6*XC # 1.0?RO2RO2M;

<PO46> yRAOOH = # 1.0?RO2RO;

<BE01> CH4 + OH = MEO2 # 1.85e-12@1690;

<BE02> ETHE + OH = RO2C + xHO2 + 1.61*xHCHO + 0.195*xCCHO + yROOH

# 1.00e-28^-4.50&8.80e-12^-0.85&0.60&1.00;

<BE03> ETHE + O3 = 0.16*OH + 0.16*HO2 + 0.51*CO + 0.12*CO2 + HCHO + 0.37*HCOOH

# 9.14e-15@2580;

<BE04> ETHE + NO3 = RO2C + xHO2 + xRCHO + yROOH - 1*XC + XN # 3.30e-12@2880;

<BE05> ETHE + O3P = 0.8*HO2 + 0.51*MEO2 + 0.29*RO2C + 0.51*CO + 0.1*CCHO +

0.29*xHO2 + 0.278*xCO + 0.278*xHCHO + 0.012*xGLY + 0.29*yROOH + 0.2*XC

# 1.07e-11@800;

<BE06> ISOP + OH = 0.986*RO2C + 0.093*RO2XC + 0.093*zRNO3 + 0.907*xHO2 +

0.624*xHCHO + 0.23*xMACR + 0.32*xMVK + 0.357*xIPRD + yR6OOH -

0.167*XC # 2.54e-11@-410;

<BE07> ISOP + O3 = 0.266*OH + 0.066*HO2 + 0.192*RO2C + 0.008*RO2XC +

0.008*zRNO3 + 0.275*CO + 0.122*CO2 + 0.4*HCHO + 0.1*PROD2 + 0.39*MACR +

0.16*MVK + 0.15*IPRD + 0.204*HCOOH + 0.192*xMACO3 + 0.192*xHCHO +

0.2*yR6OOH - 0.559*XC # 7.86e-15@1912;

<BE08> ISOP + NO3 = 0.936*RO2C + 0.064*RO2XC + 0.064*zRNO3 + 0.749*xHO2 +

0.187*xNO2 + 0.936*xIPRD + yR6OOH - 0.064*XC + 0.813*XN

# 3.03e-12@448;

<BE09> ISOP + O3P = 0.25*MEO2 + 0.24*RO2C + 0.01*RO2XC + 0.01*zRNO3 +

0.75*PROD2 + 0.24*xMACO3 + 0.24*xHCHO + 0.25*yR6OOH - 1.01*XC

# 3.50e-11;

<BE10> ACYL + OH = 0.7*OH + 0.3*HO2 + 0.3*CO + 0.7*GLY + 0.3*HCOOH

# 5.50e-30&8.30e-13^2.00&0.60&1.00;

<BE11> ACYL + O3 = 0.5*OH + 1.5*HO2 + 1.5*CO + 0.5*CO2 # 1.00e-14@4100;

<CI01> CL2 = 2*CL # 1.0/<CL2>;

<CI02> CL + NO + M = CLNO # 7.60e-32^-1.80;

<CI03> CLNO = CL + NO # 1.0/<CLNO_06>;

<CI04> CL + NO2 = CLONO # 1.30e-30^-2.00&1.00e-10^-1.00&0.60&1.00;

<CI05> CL + NO2 = CLNO2 # 1.80e-31^-2.00&1.00e-10^-1.00&0.60&1.00;

<CI06> CLONO = CL + NO2 # 1.0/<CLONO>;

<CI07> CLNO2 = CL + NO2 # 1.0/<CLNO2>;

<CI08> CL + HO2 = HCL # 3.44e-11^-0.56;

<CI09> CL + HO2 = CLO + OH # 9.41e-12^2.10;

<CI10> CL + O3 = CLO # 2.80e-11@250;

<CI11> CL + NO3 = CLO + NO2 # 2.40e-11;

<CI12> CLO + NO = CL + NO2 # 6.20e-12@-295;

<CI13> CLO + NO2 = CLONO2 # 1.80e-31^-3.40&1.50e-11^-1.90&0.60&1.00;

<CI14> CLONO2 = CLO + NO2 # 1.0/<CLONO2_1>;

<CI15> CLONO2 = CL + NO3 # 1.0/<CLONO2_2>;

<CI16> CLONO2 = CLO + NO2 # 4.48e-05^-1.00@12530&3.71e+15^3.50@12530&0.60&1.00;

<CI17> CL + CLONO2 = CL2 + NO3 # 6.20e-12@-145;

<CI18> CLO + HO2 = HOCL # 2.20e-12@-340;

<CI19> HOCL = OH + CL # 1.0/<HOCL_06>;

<CI20> CLO + CLO = 0.29*CL2 + 1.42*CL # 1.25e-11@1960;

<CI21> OH + HCL = CL # 1.70e-12@230;

<CI22> CL + H2 = HCL + HO2 # 3.90e-11@2310;

<CP01> HCHO + CL = HCL + HO2 + CO # 8.10e-11@30;

<CP02> CCHO + CL = HCL + MECO3 # 8.00e-11;

<CP03> MEOH + CL = HCL + HCHO + HO2 # 5.50e-11;

Page 242: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

230

<CP04> RCHO + CL = HCL + 0.9*RCO3 + 0.1*RO2C + 0.1*xCCHO + 0.1*xCO + 0.1*xHO2 +

0.1*yROOH # 1.23e-10;

<CP05> ACET + CL = HCL + RO2C + xHCHO + xMECO3 + yROOH # 7.70e-11@1000;

<CP06> MEK + CL = HCL + 0.975*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.84*xHO2 +

0.085*xMECO3 + 0.036*xRCO3 + 0.065*xHCHO + 0.07*xCCHO + 0.84*xRCHO +

yROOH + 0.763*XC # 3.60e-11;

<CP07> RNO3 + CL = HCL + 0.038*NO2 + 0.055*HO2 + 1.282*RO2C + 0.202*RO2XC +

0.202*zRNO3 + 0.009*RCHO + 0.018*MEK + 0.012*PROD2 + 0.055*RNO3 +

0.159*xNO2 + 0.547*xHO2 + 0.045*xHCHO + 0.3*xCCHO + 0.02*xRCHO +

0.003*xACET + 0.041*xMEK + 0.046*xPROD2 + 0.547*xRNO3 + 0.908*yR6OOH +

0.201*XN - 0.149*XC # 1.92e-10;

<CP08> PROD2 + CL = HCL + 0.314*HO2 + 0.68*RO2C + 0.116*RO2XC + 0.116*zRNO3 +

0.198*RCHO + 0.116*PROD2 + 0.541*xHO2 + 0.007*xMECO3 + 0.022*xRCO3 +

0.237*xHCHO + 0.109*xCCHO + 0.591*xRCHO + 0.051*xMEK + 0.04*xPROD2 +

0.686*yR6OOH + 1.262*XC # 2.00e-10;

<CP09> GLY + CL = HCL + 0.63*HO2 + 1.26*CO + 0.37*RCO3 - 0.37*XC

# 8.10e-11@30;

<CP10> MGLY + CL = HCL + CO + MECO3 # 8.00e-11;

<CP11> CRES + CL = HCL + xHO2 + xBALD + yR6OOH # 6.20e-11;

<CP12> BALD + CL = HCL + BZCO3 # 8.00e-11;

<CP13> ROOH + CL = HCL + 0.414*OH + 0.588*RO2C + 0.414*RCHO + 0.104*xOH +

0.482*xHO2 + 0.106*xHCHO + 0.104*xCCHO + 0.197*xRCHO + 0.285*xMEK +

0.586*yROOH - 0.287*XC # 1.66e-10;

<CP14> R6OOH + CL = HCL + 0.145*OH + 1.078*RO2C + 0.117*RO2XC + 0.117*zRNO3 +

0.145*PROD2 + 0.502*xOH + 0.237*xHO2 + 0.186*xCCHO + 0.676*xRCHO +

0.28*xPROD2 + 0.855*yR6OOH + 0.348*XC # 3.00e-10;

<CP15> RAOOH + CL = 0.404*HCL + 0.139*OH + 0.148*HO2 + 0.589*RO2C +

0.124*RO2XC + 0.124*zRNO3 + 0.074*PROD2 + 0.147*MGLY + 0.139*IPRD +

0.565*xHO2 + 0.024*xOH + 0.448*xRCHO + 0.026*xGLY + 0.03*xMEK +

0.252*xMGLY + 0.073*xAFG1 + 0.073*xAFG2 + 0.713*yR6OOH + 1.674*XC

# 4.29e-10;

<CP16> MACR + CL = 0.25*HCL + 0.165*MACO3 + 0.802*RO2C + 0.033*RO2XC +

0.033*zRNO3 + 0.802*xHO2 + 0.541*xCO + 0.082*xIPRD + 0.18*xCLCCHO +

0.541*xCLACET + 0.835*yROOH + 0.208*XC # 3.85e-10;

<CP17> MVK + CL = 1.283*RO2C + 0.053*RO2XC + 0.053*zRNO3 + 0.322*xHO2 +

0.625*xMECO3 + 0.947*xCLCCHO + yROOH + 0.538*XC # 2.32e-10;

<CP18> IPRD + CL = 0.401*HCL + 0.084*HO2 + 0.154*MACO3 + 0.73*RO2C +

0.051*RO2XC + 0.051*zRNO3 + 0.042*AFG1 + 0.042*AFG2 + 0.712*xHO2 +

0.498*xCO + 0.195*xHCHO + 0.017*xMGLY + 0.009*xAFG1 + 0.009*xAFG2 +

0.115*xIPRD + 0.14*xCLCCHO + 0.42*xCLACET + 0.762*yR6OOH + 0.709*XC

# 4.12e-10;

<CP19> CLCCHO = HO2 + CO + RO2C + xCL + xHCHO + yROOH # 1.0/<CLCCHO>;

<CP20> CLCCHO + OH = RCO3 - 1*XC # 3.10e-12;

<CP21> CLCCHO + CL = HCL + RCO3 - 1*XC # 1.29e-11;

<CP22> CLACET = MECO3 + RO2C + xCL + xHCHO + yROOH # 5.00e-1/<CLACET>;

<CP23> xCL = CL # 1.0?RO2RO;

<CP24> xCL = # 1.0?RO2XRO;

<CP25> xCLCCHO = CLCCHO # 1.0?RO2RO;

<CP26> xCLCCHO = 2*XC # 1.0?RO2XRO;

<CP27> xCLACET = CLACET # 1.0?RO2RO;

<CP28> xCLACET = 3*XC # 1.0?RO2XRO;

<CE01> CH4 + CL = HCL + MEO2 # 7.30e-12@1280;

<CE02> ETHE + CL = 2*RO2C + xHO2 + xHCHO + CLCHO

# 1.60e-29^-3.30&3.10e-10^-1.00&0.60&1.00;

<CE03> ISOP + CL = 0.15*HCL + 1.168*RO2C + 0.085*RO2XC + 0.085*zRNO3 +

0.738*xHO2 + 0.177*xCL + 0.275*xHCHO + 0.177*xMVK + 0.671*xIPRD +

0.067*xCLCCHO + yR6OOH + 0.018*XC # 4.80e-10;

<CE04> ACYL + CL = HO2 + CO + XC # 5.20e-30^-2.40&2.20e-10&0.60&1.00;

<BE12> BENZ + OH = 0.027*RO2XC + 0.31*RO2C + 0.601*HO2 + 0.31*xHO2 +

0.027*zRNO3 + 0.57*PHEN + 0.31*xGLY + 0.155*xAFG1 + 0.155*xAFG2 +

0.337*yRAOOH + 0.062*OH + 0.062*AFG3 + 0.031*AFG5 - 0.403*XC

# 2.33e-12@193;

<BL01> ALK1 + OH = xHO2 + RO2C + xCCHO + yROOH # 1.34e-12^2.00@499;

Page 243: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

231

<BL02> ALK2 + OH = 0.965*xHO2 + 0.965*RO2C + 0.035*RO2XC + 0.035*zRNO3 +

0.261*xRCHO + 0.704*xACET + yROOH - 0.105*XC # 1.49e-12^2.00@87;

<BL03> ALK3 + OH = 0.695*xHO2 + 0.236*xTBUO + 1.253*RO2C + 0.07*RO2XC +

0.07*zRNO3 + 0.026*xHCHO + 0.445*xCCHO + 0.122*xRCHO + 0.024*xACET +

0.332*xMEK + 0.983*yROOH + 0.017*yR6OOH - 0.046*XC # 1.51e-12@-126;

<BL04> ALK4 + OH = 0.83*xHO2 + 0.01*xMEO2 + 0.011*xMECO3 + 1.763*RO2C +

0.149*RO2XC + 0.149*zRNO3 + 0.002*xCO + 0.029*xHCHO + 0.438*xCCHO +

0.236*xRCHO + 0.426*xACET + 0.106*xMEK + 0.146*xPROD2 + yR6OOH -

0.119*XC # 3.75e-12@-44;

<BL05> ALK5 + OH = 0.647*xHO2 + 1.605*RO2C + 0.353*RO2XC + 0.353*zRNO3 +

0.04*xHCHO + 0.106*xCCHO + 0.209*xRCHO + 0.071*xACET + 0.086*xMEK +

0.407*xPROD2 + yR6OOH + 2.004*XC # 2.70e-12@-374;

<BL06> OLE1 + OH = 0.904*xHO2 + 0.001*xMEO2 + 1.138*RO2C + 0.095*RO2XC +

0.095*zRNO3 + 0.7*xHCHO + 0.301*xCCHO + 0.47*xRCHO + 0.005*xACET +

0.026*xMACR + 0.008*xMVK + 0.006*xIPRD + 0.119*xPROD2 + 0.413*yROOH +

0.587*yR6OOH + 0.822*XC # 6.18e-12@-501;

<BL07> OLE1 + O3 = 0.116*HO2 + 0.04*xHO2 + 0.193*OH + 0.104*MEO2 + 0.063*RO2C +

0.004*RO2XC + 0.004*zRNO3 + 0.368*CO + 0.125*CO2 + 0.5*HCHO +

0.147*CCHO + 0.007*xCCHO + 0.353*RCHO + 0.031*xRCHO + 0.002*xACET +

0.006*MEK + 0.185*HCOOH + 0.022*CCOOH + 0.112*RCOOH + 0.189*PROD2 +

0.007*yROOH + 0.037*yR6OOH + 0.69*XC # 3.15e-15@1701;

<BL08> OLE1 + NO3 = 0.824*xHO2 + 1.312*RO2C + 0.176*RO2XC + 0.176*zRNO3 +

0.009*xCCHO + 0.002*xRCHO + 0.024*xACET + 0.546*xRNO3 + 0.413*yROOH +

0.587*yR6OOH + 0.454*XN + 0.572*XC # 4.73e-13@1047;

<BL09> OLE1 + O3P = 0.45*RCHO + 0.437*MEK + 0.113*PROD2 + 1.224*XC

# 1.49e-11@326;

<BL10> OLE2 + OH = 0.914*xHO2 + 0.966*RO2C + 0.086*RO2XC + 0.086*zRNO3 +

0.209*xHCHO + 0.788*xCCHO + 0.481*xRCHO + 0.136*xACET + 0.076*xMEK +

0.027*xMACR + 0.002*xMVK + 0.037*xIPRD + 0.022*xPROD2 + 0.357*yROOH +

0.643*yR6OOH + 0.111*XC # 1.26e-11@-488;

<BL11> OLE2 + O3 = 0.093*HO2 + 0.039*xHO2 + 0.423*OH + 0.29*MEO2 +

0.147*xMECO3 + 0.008*xRCO3 + 0.2*RO2C + 0.003*RO2XC + 0.003*zRNO3 +

0.297*CO + 0.162*CO2 + 0.152*HCHO + 0.108*xHCHO + 0.428*CCHO +

0.067*xCCHO + 0.315*RCHO + 0.018*xRCHO + 0.048*ACET + 0.031*MEK +

0.001*xMEK + 0.033*HCOOH + 0.061*CCOOH + 0.222*RCOOH + 0.028*MACR +

0.021*MVK + 0.042*PROD2 + 0.069*yROOH + 0.128*yR6OOH + 0.125*XC

# 8.14e-15@1255;

<BL12> OLE2 + NO3 = 0.423*xHO2 + 0.409*xNO2 + 0.033*xMEO2 + 1.185*RO2C +

0.136*RO2XC + 0.136*zRNO3 + 0.074*xHCHO + 0.546*xCCHO + 0.154*xRCHO +

0.11*xACET + 0.002*xMEK + 0.026*xMVK + 0.007*xIPRD + 0.322*xRNO3 +

0.357*yROOH + 0.643*yR6OOH + 0.269*XN + 0.114*XC # 2.20e-13@-382;

<BL13> OLE2 + O3P = 0.014*HO2 + 0.007*xHO2 + 0.007*xMACO3 + 0.013*RO2C +

0.001*RO2XC + 0.001*zRNO3 + 0.006*xCO + 0.074*RCHO + 0.709*MEK +

0.006*xMACR + 0.202*PROD2 + 0.014*yROOH + 0.666*XC # 1.43e-11@-111;

<BL14> ARO1 + OH = 0.089*RO2XC + 0.622*RO2C + 0.209*HO2 + 0.612*xHO2 +

0.089*zRNO3 + 0.14*yR6OOH + 0.007*xMEO2 + 0.049*xBALD + 0.064*xPROD2 +

0.003*xCCHO + 0.006*xRCHO + 0.135*CRES + 0.032*XYNL + 0.268*xGLY +

0.231*xMGLY + 0.255*xAFG1 + 0.244*xAFG2 + 0.567*yRAOOH + 0.084*OH +

0.084*AFG3 + 0.042*AFG5 - 0.099*XC # 1.97e-12@-338;

<BL15> ARO2 + OH = 0.126*RO2XC + 0.651*RO2C + 0.13*HO2 + 0.649*xHO2 +

0.126*zRNO3 + 0.079*yR6OOH + 0.002*xMEO2 + 0.038*xBALD + 0.025*xPROD2 +

0.004*xRCHO + 0.083*XYNL + 0.14*xGLY + 0.336*xMGLY + 0.109*xBACL +

0.093*xAFG4 + 0.239*xAFG1 + 0.253*xAFG2 + 0.698*yRAOOH + 0.093*OH +

0.093*AFG3 + 0.047*AFG5 + 1.428*XC # 2.60e-11;

<BL16> TERP + OH = 0.759*xHO2 + 0.042*xRCO3 + 1.147*RO2C + 0.2*RO2XC +

0.2*zRNO3 + 0.001*xCO + 0.264*xHCHO + 0.533*xRCHO + 0.036*xACET +

0.005*xMEK + 0.009*xMGLY + 0.014*xBACL + 0.002*xMVK + 0.001*xIPRD +

0.255*xPROD2 + yR6OOH + 5.056*XC # 1.87e-11@-435;

<BL17> TERP + O3 = 0.052*HO2 + 0.067*xHO2 + 0.585*OH + 0.126*xMECO3 +

0.149*xRCO3 + 0.875*RO2C + 0.203*RO2XC + 0.203*zRNO3 + 0.166*CO +

0.019*xCO + 0.045*CO2 + 0.079*HCHO + 0.15*xHCHO + 0.22*xRCHO +

0.165*xACET + 0.004*MEK + 0.107*HCOOH + 0.043*RCOOH + 0.001*xGLY +

0.002*xMGLY + 0.055*xBACL + 0.001*xMACR + 0.001*xIPRD + 0.409*PROD2 +

Page 244: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

232

0.545*yR6OOH + 3.526*XC # 9.57e-16@785;

<BL18> TERP + NO3 = 0.162*xHO2 + 0.421*xNO2 + 0.019*xRCO3 + 1.509*RO2C +

0.397*RO2XC + 0.397*zRNO3 + 0.01*xCO + 0.017*xHCHO + 0.001*xCCHO +

0.509*xRCHO + 0.175*xACET + 0.001*xMGLY + 0.003*xMACR + 0.001*xMVK +

0.002*xIPRD + 0.163*xRNO3 + yR6OOH + 0.416*XN + 4.473*XC

# 1.28e-12@-490;

<BL19> TERP + O3P = 0.147*RCHO + 0.853*PROD2 + 4.441*XC # 3.71e-11;

<BC01> ALK1 + CL = xHO2 + RO2C + HCL + xCCHO + yROOH # 8.30e-11@100;

<BC02> ALK2 + CL = 0.97*xHO2 + 0.97*RO2C + 0.03*RO2XC + 0.03*zRNO3 + HCL +

0.482*xRCHO + 0.488*xACET + yROOH - 0.09*XC # 1.20e-10@-40;

<BC03> ALK3 + CL = 0.835*xHO2 + 0.094*xTBUO + 1.361*RO2C + 0.07*RO2XC +

0.07*zRNO3 + HCL + 0.078*xHCHO + 0.34*xCCHO + 0.343*xRCHO +

0.075*xACET + 0.253*xMEK + 0.983*yROOH + 0.017*yR6OOH + 0.18*XC

# 1.86e-10;

<BC04> ALK4 + CL = 0.827*xHO2 + 0.003*xMEO2 + 0.004*xMECO3 + 1.737*RO2C +

0.165*RO2XC + 0.165*zRNO3 + HCL + 0.003*xCO + 0.034*xHCHO +

0.287*xCCHO + 0.412*xRCHO + 0.247*xACET + 0.076*xMEK + 0.13*xPROD2 +

yR6OOH + 0.327*XC # 2.63e-10;

<BC05> ALK5 + CL = 0.647*xHO2 + 1.541*RO2C + 0.352*RO2XC + 0.352*zRNO3 + HCL +

0.022*xHCHO + 0.08*xCCHO + 0.258*xRCHO + 0.044*xACET + 0.041*xMEK +

0.378*xPROD2 + yR6OOH + 2.368*XC # 4.21e-10;

<BC06> OLE1 + CL = 0.902*xHO2 + 1.42*RO2C + 0.098*RO2XC + 0.098*zRNO3 +

0.308*HCL + 0.025*xHCHO + 0.146*xCCHO + 0.051*xRCHO + 0.188*xMACR +

0.014*xMVK + 0.027*xIPRD + 0.225*xCLCCHO + 0.396*xCLACET +

0.413*yROOH + 0.587*yR6OOH + 1.361*XC # 3.55e-10;

<BC07> OLE2 + CL = 0.447*xHO2 + 0.448*xCL + 0.001*xMEO2 + 1.514*RO2C +

0.104*RO2XC + 0.104*zRNO3 + 0.263*HCL + 0.228*xHCHO + 0.361*xCCHO +

0.3*xRCHO + 0.081*xACET + 0.04*xMEK + 0.049*xMACR + 0.055*xMVK +

0.179*xIPRD + 0.012*xCLCCHO + 0.18*xCLACET + 0.357*yROOH +

0.643*yR6OOH + 0.247*XC # 3.83e-10;

<BC10> TERP + CL = 0.252*xHO2 + 0.068*xCL + 0.034*xMECO3 + 0.05*xRCO3 +

0.016*xMACO3 + 2.258*RO2C + 0.582*RO2XC + 0.582*zRNO3 + 0.548*HCL +

0.035*xCO + 0.158*xHCHO + 0.185*xRCHO + 0.274*xACET + 0.007*xGLY +

0.003*xBACL + 0.003*xMVK + 0.158*xIPRD + 0.006*xAFG1 + 0.006*xAFG2 +

0.001*xAFG4 + 0.109*xCLCCHO + yR6OOH + 3.544*XC # 5.46e-10;

<BC08> ARO1 + CL = 0.88*xHO2 + 0.88*RO2C + 0.12*RO2XC + 0.12*zRNO3 +

0.671*xBALD + 0.21*xPROD2 + 0.323*XC # 1.00e-10;

<BC09> ARO2 + CL = 0.842*xHO2 + 0.842*RO2C + 0.158*RO2XC + 0.158*zRNO3 +

0.618*xBALD + 0.224*xPROD2 + 2.382*XC # 2.18e-10;

endmech

constants

< C1> ATM_AIR = 1.0E+06

< C2> ATM_H2 = 0.56

< C3> ATM_N2 = 0.7808E+06

< C4> ATM_O2 = 0.2095E+06

< C5> ATM_CH4 = 1.85

end constants

Page 245: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

233

C-2. List of SAPRC-11D mechanism definition file

! SAPRC12D Mechanism, version "B"

! Created from Mech12D.xls 3-Aug-2013 11:30

!

SAPRC11D

SPECIAL =

RO2NO = K<BR07>*C<NO>;

RO2HO2 = K<BR08>*C<HO2>;

RO2NO3 = K<BR09>*C<NO3>;

RO2RO2 = K<BR10>*C<MEO2> + K<BR11>*C<RO2C> + K<BR11>*C<RO2XC>;

RO2RO3 = K<BR25>*C<MECO3> + K<BR25>*C<RCO3> + K<BR25>*C<BZCO3> +

K<BR25>*C<MACO3>;

RO2RO = RO2NO + RO2NO3 + RO2RO3 + 0.5*RO2RO2;

RO2XRO = RO2HO2 + 0.5*RO2RO2;

RO2RO2M = 0.5*RO2RO2;

RO22NN = RO2NO3 + RO2RO3 + 0.5*RO2RO2;

end special

ELIMINATE =

XN;

XC;

END ELIMINATE

REACTIONS[CM] =

<1> NO2 = NO + O3P # 1.0/<NO2_06>;

<2> O3P + O2 + M = O3 # 5.68e-34^-2.60;

<3> O3P + O3 = # 8.00e-12@2060;

<4> O3P + NO = NO2 # 9.00e-32^-1.50&3.00e-11&0.60&1.00;

<5> O3P + NO2 = NO # 5.50e-12@-188;

<6> O3P + NO2 = NO3 # 2.50e-31^-1.80&2.20e-11^-0.70&0.60&1.00;

<7> O3 + NO = NO2 # 3.00e-12@1500;

<8> O3 + NO2 = NO3 # 1.40e-13@2470;

<9> NO + NO3 = 2*NO2 # 1.80e-11@-110;

<10> NO + NO + O2 = 2*NO2 # 3.30e-39@-530;

<11> NO2 + NO3 = N2O5 # 3.60e-30^-4.10&1.90e-12^0.20&0.35&1.33;

<12> N2O5 = NO2 + NO3 # 1.30e-03^-3.50@11000&9.70e+14^0.10@11080&0.35&1.33;

<13> N2O5 + H2O = 2*HNO3 # 2.50e-22;

<14> N2O5 + H2O + H2O = 2*HNO3 # 1.80e-39;

<15> NO2 + NO3 = NO + NO2 # 4.50e-14@1260;

<16> NO3 = NO # 1.0/<NO3NO_06>;

<17> NO3 = NO2 + O3P # 1.0/<NO3NO2_6>;

<18> O3 = O1D # 1.0/<O3O1D_06>;

<19> O3 = O3P # 1.0/<O3O3P_06>;

<20> O1D + H2O = 2*OH # 1.63e-10@-60;

<21> O1D + M = O3P # 2.38e-11@-96;

<22> OH + NO = HONO # 7.00e-31^-2.60&3.60e-11^-0.10&0.60&1.00;

<23> HONO = OH + NO # 1.0/<HONO_06>;

<24> OH + HONO = NO2 # 2.50e-12@-260;

<25> OH + NO2 = HNO3 # 1.80e-30^-3.00&2.80e-11&0.60&1.00;

<26> OH + NO3 = HO2 + NO2 # 2.00e-11;

<27> OH + HNO3 = NO3 %2 # 2.40e-14@-460&2.70e-17@-2199&6.50e-34@-1335;

<28> HNO3 = OH + NO2 # 1.0/<HNO3>;

<29> OH + CO = HO2 + CO2 %3 # 1.44e-13@0&3.43e-33@0;

<30> OH + O3 = HO2 # 1.70e-12@940;

<31> HO2 + NO = OH + NO2 # 3.60e-12@-270;

<32> HO2 + NO2 = HNO4 # 2.00e-31^-3.40&2.90e-12^-1.10&0.60&1.00;

<33> HNO4 = HO2 + NO2 # 3.72e-05^-2.40@10650&5.42e+15^-2.30@11170&0.60&1.00;

<34> HNO4 = 0.61*HO2 + 0.61*NO2 + 0.39*OH + 0.39*NO3 # 1.0/<HNO4_06>;

<35> HNO4 + OH = NO2 # 1.30e-12@-380;

<36> HO2 + O3 = OH # 2.03e-16^4.57@-693;

<37> HO2 + HO2 = HO2H %3 # 2.20e-13@-600&1.90e-33@-980;

Page 246: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

234

<38> HO2 + HO2 + H2O = HO2H %3 # 3.08e-34@-2800&2.66e-54@-3180;

<39> NO3 + HO2 = 0.8*OH + 0.8*NO2 + 0.2*HNO3 # 4.00e-12;

<40> NO3 + NO3 = 2*NO2 # 8.50e-13@2450;

<41> HO2H = 2*OH # 1.0/<H2O2>;

<42> HO2H + OH = HO2 # 1.80e-12;

<43> OH + HO2 = # 4.80e-11@-250;

<44> OH + SO2 = HO2 + SULF # 3.30e-31^-4.30&1.60e-12&0.60&1.00;

<45> OH + H2 = HO2 # 7.70e-12@2100;

<EX1> NO2 = NO2EX # 1.0/<NO2EX>;

<EX2> NO2EX + M = NO2 # 2.76e-11;

<EX3> NO2EX + H2O = NO2 # 1.70e-10;

<EXOH> NO2EX + H2O = OH + HONO # ;

<OL01> HCHO2 + SO2 = SULF + HCHO # 3.90e-11;

<OL02> HCHO2 + NO2 = HCHO + NO3 # 7.00e-12;

<OL03> HCHO2 + H2O = HCOOH # 2.40e-15;

<OL04> CCHO2 + SO2 = SULF + CCHO # 3.90e-11;

<OL05> CCHO2 + NO2 = CCHO + NO3 # 7.00e-12;

<OL06> CCHO2 + H2O = CCOOH # 2.40e-15;

<OL07> RCHO2 + SO2 = SULF + RCHO # 3.90e-11;

<OL08> RCHO2 + NO2 = RCHO + NO3 # 7.00e-12;

<OL09> RCHO2 + H2O = RCOOH # 2.40e-15;

<BR01> MEO2 + NO = NO2 + HCHO + HO2 # 2.30e-12@-360;

<BR02> MEO2 + HO2 = COOH # 3.46e-13^0.36@-780;

<BR03> MEO2 + HO2 = HCHO # 3.34e-14^-3.53@-780;

<BR04> MEO2 + NO3 = HCHO + HO2 + NO2 # 1.30e-12;

<BR05> MEO2 + MEO2 = MEOH + HCHO # 6.39e-14^-1.80@-365;

<BR06> MEO2 + MEO2 = 2*HCHO + 2*HO2 # 7.40e-13@520;

<BR07> RO2C + NO = NO2 # 2.60e-12@-380;

<BR08> RO2C + HO2 = # 3.80e-13@-900;

<BR09> RO2C + NO3 = NO2 # 2.30e-12;

<BR10> RO2C + MEO2 = 0.5*HO2 + 0.75*HCHO + 0.25*MEOH # 2.00e-13;

<BR11> RO2C + RO2C = # 3.50e-14;

<BR12> RO2XC + NO = XN # 1.0*K<BR07>;

<BR13> RO2XC + HO2 = # 1.0*K<BR08>;

<BR14> RO2XC + NO3 = NO2 # 1.0*K<BR09>;

<BR15> RO2XC + MEO2 = 0.5*HO2 + 0.75*HCHO + 0.25*MEOH # 1.0*K<BR10>;

<BR16> RO2XC + RO2C = # 1.0*K<BR11>;

<BR17> RO2XC + RO2XC = # 1.0*K<BR11>;

<BR18> MECO3 + NO2 = PAN # 2.70e-28^-7.10&1.21e-11^-0.90&0.30&1.41;

<BR19> PAN = MECO3 + NO2 # 4.90e-03@12100&4.00e+16@13600&0.30&1.41;

<BR20> PAN = 0.6*MECO3 + 0.6*NO2 + 0.4*MEO2 + 0.4*CO2 + 0.4*NO3

# 1.0/<PAN>;

<BR21> MECO3 + NO = MEO2 + CO2 + NO2 # 7.50e-12@-290;

<BR22> MECO3 + HO2 = 0.44*OH + 0.44*MEO2 + 0.44*CO2 + 0.41*CCO3H + 0.15*O3 +

0.15*CCOOH # 5.20e-13@-980;

<BR23> MECO3 + NO3 = MEO2 + CO2 + NO2 # 1.0*K<BR09>;

<BR24> MECO3 + MEO2 = 0.1*CCOOH + 0.1*HCHO + 0.9*HCHO + 0.9*HO2 + 0.9*MEO2 +

0.9*CO2 # 2.00e-12@-500;

<BR25> MECO3 + RO2C = MEO2 + CO2 # 4.40e-13@-1070;

<BR26> MECO3 + RO2XC = MEO2 + CO2 # 1.0*K<BR25>;

<BR27> MECO3 + MECO3 = 2*MEO2 + 2*CO2 # 2.90e-12@-500;

<BR28> RCO3 + NO2 = PAN2 # 1.21e-11^-1.07@0;

<BR29> PAN2 = RCO3 + NO2 # 8.30e+16@13940;

<BR30> PAN2 = 0.6*RCO3 + 0.6*NO2 + 0.4*RO2C + 0.4*xHO2 + 0.4*yROOH +

0.4*xCCHO + 0.4*CO2 + 0.4*NO3 # 1.0/<PAN>;

<BR31> RCO3 + NO = NO2 + RO2C + xHO2 + yROOH + xCCHO + CO2 # 6.70e-12@-340;

<BR32> RCO3 + HO2 = 0.44*OH + 0.44*RO2C + 0.44*xHO2 + 0.44*xCCHO + 0.44*yROOH +

0.44*CO2 + 0.41*RCO3H + 0.15*O3 + 0.15*RCOOH # 1.0*K<BR22>;

<BR33> RCO3 + NO3 = NO2 + RO2C + xHO2 + yROOH + xCCHO + CO2 # 1.0*K<BR09>;

<BR34> RCO3 + MEO2 = HCHO + HO2 + RO2C + xHO2 + xCCHO + yROOH + CO2

# 1.0*K<BR24>;

<BR35> RCO3 + RO2C = RO2C + xHO2 + xCCHO + yROOH + CO2 # 1.0*K<BR25>;

<BR36> RCO3 + RO2XC = RO2C + xHO2 + xCCHO + yROOH + CO2 # 1.0*K<BR25>;

Page 247: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

235

<BR37> RCO3 + MECO3 = 2*CO2 + MEO2 + RO2C + xHO2 + yROOH + xCCHO # 1.0*K<BR27>;

<BR38> RCO3 + RCO3 = 2*RO2C + 2*xHO2 + 2*xCCHO + 2*yROOH + 2*CO2 # 1.0*K<BR27>;

<BR39> BZCO3 + NO2 = PBZN # 1.37e-11;

<BR40> PBZN = BZCO3 + NO2 # 7.90e+16@14000;

<BR41> PBZN = 0.6*BZCO3 + 0.6*NO2 + 0.4*CO2 + 0.4*BZO + 0.4*RO2C + 0.4*NO3

# 1.0/<PAN>;

<BR42> BZCO3 + NO = NO2 + CO2 + BZO + RO2C # 1.0*K<BR31>;

<BR43> BZCO3 + HO2 = 0.44*OH + 0.44*BZO + 0.44*RO2C + 0.44*CO2 + 0.41*RCO3H +

0.15*O3 + 0.15*RCOOH + 2.24*XC # 1.0*K<BR22>;

<BR44> BZCO3 + NO3 = NO2 + CO2 + BZO + RO2C # 1.0*K<BR09>;

<BR45> BZCO3 + MEO2 = HCHO + HO2 + RO2C + BZO + CO2 # 1.0*K<BR24>;

<BR46> BZCO3 + RO2C = RO2C + BZO + CO2 # 1.0*K<BR25>;

<BR47> BZCO3 + RO2XC = RO2C + BZO + CO2 # 1.0*K<BR25>;

<BR48> BZCO3 + MECO3 = 2*CO2 + MEO2 + BZO + RO2C # 1.0*K<BR27>;

<BR49> BZCO3 + RCO3 = 2*CO2 + RO2C + xHO2 + yROOH + xCCHO + BZO + RO2C

# 1.0*K<BR27>;

<BR50> BZCO3 + BZCO3 = 2*BZO + 2*RO2C + 2*CO2 # 1.0*K<BR27>;

<BR51> MACO3 + NO2 = MAPAN # 1.0*K<BR28>;

<BR52> MAPAN = MACO3 + NO2 # 1.60e+16@13486;

<BR53> MAPAN = 0.6*MACO3 + 0.6*NO2 + 0.4*CO2 + 0.4*HCHO + 0.4*MECO3 +

0.4*NO3 # 1.0/<PAN>;

<BR54> MACO3 + NO = NO2 + CO2 + HCHO + MECO3 # 1.0*K<BR31>;

<BR55> MACO3 + HO2 = 0.44*OH + 0.44*HCHO + 0.44*MECO3 + 0.44*CO2 + 0.41*RCO3H +

0.15*O3 + 0.15*RCOOH + 0.56*XC # 1.0*K<BR22>;

<BR56> MACO3 + NO3 = NO2 + CO2 + HCHO + MECO3 # 1.0*K<BR09>;

<BR57> MACO3 + MEO2 = 2*HCHO + HO2 + CO2 + MECO3 # 1.0*K<BR24>;

<BR58> MACO3 + RO2C = CO2 + HCHO + MECO3 # 1.0*K<BR25>;

<BR59> MACO3 + RO2XC = CO2 + HCHO + MECO3 # 1.0*K<BR25>;

<BR60> MACO3 + MECO3 = 2*CO2 + MEO2 + HCHO + MECO3 # 1.0*K<BR27>;

<BR61> MACO3 + RCO3 = HCHO + MECO3 + RO2C + xHO2 + yROOH + xCCHO + 2*CO2

# 1.0*K<BR27>;

<BR62> MACO3 + BZCO3 = HCHO + MECO3 + BZO + RO2C + 2*CO2 # 1.0*K<BR27>;

<BR63> MACO3 + MACO3 = 2*HCHO + 2*MECO3 + 2*CO2 # 1.0*K<BR27>;

<BR64> TBUO + NO2 = RNO3 - 2*XC # 2.40e-11;

<BR65> TBUO = ACET + MEO2 # 7.50e+14@8152;

<BR66> BZO + NO2 = NPHE # 2.30e-11@-150;

<BR67> BZO + HO2 = CRES - 1*XC # 1.0*K<BR08>;

<BR68> BZO = CRES + RO2C + xHO2 - 1*XC # 1.00e-03;

<RO01> xHO2 = HO2 # 1.0?RO2RO;

<RO02> xHO2 = # 1.0?RO2XRO;

<RO03> xOH = OH # 1.0?RO2RO;

<RO04> xOH = # 1.0?RO2XRO;

<RO05> xNO2 = NO2 # 1.0?RO2RO;

<RO06> xNO2 = XN # 1.0?RO2XRO;

<RO07> xMEO2 = MEO2 # 1.0?RO2RO;

<RO08> xMEO2 = XC # 1.0?RO2XRO;

<RO09> xMECO3 = MECO3 # 1.0?RO2RO;

<RO10> xMECO3 = 2*XC # 1.0?RO2XRO;

<RO11> xRCO3 = RCO3 # 1.0?RO2RO;

<RO12> xRCO3 = 3*XC # 1.0?RO2XRO;

<RO13> xMACO3 = MACO3 # 1.0?RO2RO;

<RO14> xMACO3 = 4*XC # 1.0?RO2XRO;

<RO15> xTBUO = TBUO # 1.0?RO2RO;

<RO16> xTBUO = 4*XC # 1.0?RO2XRO;

<RO17> xCO = CO # 1.0?RO2RO;

<RO18> xCO = XC # 1.0?RO2XRO;

<BP01> HCHO = 2*HO2 + CO # 1.0/<HCHOR_06>;

<BP02> HCHO = CO # 1.0/<HCHOM_06>;

<BP03> HCHO + OH = HO2 + CO # 5.40e-12@-135;

<BP07> HCHO + NO3 = HNO3 + HO2 + CO # 2.00e-12@2431;

<BP08> CCHO + OH = MECO3 # 4.40e-12@-365;

<BP09> CCHO = CO + HO2 + MEO2 # 1.0/<CCHO_R>;

<BP10> CCHO + NO3 = HNO3 + MECO3 # 1.40e-12@1860;

Page 248: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

236

<BP11> RCHO + OH = 0.965*RCO3 + 0.035*RO2C + 0.035*xHO2 + 0.035*xCO +

0.035*xCCHO + 0.035*yROOH # 5.10e-12@-405;

<BP12> RCHO = RO2C + xHO2 + yROOH + xCCHO + CO + HO2 # 1.0/<C2CHO>;

<BP13> RCHO + NO3 = HNO3 + RCO3 # 1.40e-12@1601;

<BP14> ACET + OH = RO2C + xMECO3 + xHCHO + yROOH # 4.56e-14^3.65@-429;

<BP15> ACET = 0.62*MECO3 + 1.38*MEO2 + 0.38*CO # 5.00e-1/<ACET_06>;

<BP16> PROD1 + OH = 0.967*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.376*xHO2 +

0.51*xMECO3 + 0.074*xRCO3 + 0.088*xHCHO + 0.504*xCCHO + 0.376*xRCHO +

yROOH + 0.3*XC # 1.30e-12^2.00@25;

<BP17> PROD1 = MECO3 + RO2C + xHO2 + xCCHO + yROOH # 1.75e-1/<MEK_06>;

<BP18> MEOH + OH = HCHO + HO2 # 2.85e-12@345;

<BP19> HCOOH + OH = HO2 + CO2 # 4.50e-13;

<BP20> CCOOH + OH = 0.509*MEO2 + 0.491*RO2C + 0.509*CO2 + 0.491*xHO2 +

0.491*xMGLY + 0.491*yROOH - 0.491*XC # 4.20e-14@-855;

<BP21> RCOOH + OH = RO2C + xHO2 + 0.143*CO2 + 0.142*xCCHO + 0.4*xRCHO +

0.457*xBACL + yROOH - 0.455*XC # 1.20e-12;

<BP22> COOH + OH = 0.3*HCHO + 0.3*OH + 0.7*MEO2 # 3.80e-12@-200;

<BP23> COOH = HCHO + HO2 + OH # 1.0/<COOH>;

<BP24> ROOH + OH = 0.744*OH + 0.251*RO2C + 0.004*RO2XC + 0.004*zRNO3 +

0.744*RCHO + 0.239*xHO2 + 0.012*xOH + 0.012*xHCHO + 0.012*xCCHO +

0.205*xRCHO + 0.034*xPROD2 + 0.256*yROOH - 0.111*XC # 2.50e-11;

<BP25> ROOH = RCHO + HO2 + OH # 1.0/<COOH>;

<BP26> R6OOH + OH = 0.84*OH + 0.222*RO2C + 0.029*RO2XC + 0.029*zRNO3 +

0.84*PROD2 + 0.09*xHO2 + 0.041*xOH + 0.02*xCCHO + 0.075*xRCHO +

0.084*xPROD2 + 0.16*yROOH + 0.017*XC # 5.60e-11;

<BP27> R6OOH = OH + 0.142*HO2 + 0.782*RO2C + 0.077*RO2XC + 0.077*zRNO3 +

0.085*RCHO + 0.142*PROD2 + 0.782*xHO2 + 0.026*xCCHO + 0.058*xRCHO +

0.698*xPROD2 + 0.858*yR6OOH + 0.017*XC # 1.0/<COOH>;

<BP28> RAOOH + OH = 0.139*OH + 0.148*HO2 + 0.589*RO2C + 0.124*RO2XC +

0.124*zRNO3 + 0.074*PROD2 + 0.147*MGLY + 0.139*IPRD + 0.565*xHO2 +

0.024*xOH + 0.448*xRCHO + 0.026*xGLY + 0.03*xPROD1 + 0.252*xMGLY +

0.073*xAFG1 + 0.073*xAFG2 + 0.713*yR6OOH + 1.674*XC # 1.41e-10;

<BP29> RAOOH = OH + HO2 + 0.5*GLY + 0.5*MGLY + 0.5*AFG1 + 0.5*AFG2 +

0.5*XC # 1.0/<COOH>;

<BP30> GLY = 2*CO + 2*HO2 # 1.0/<GLY_07R>;

<BP31> GLY = HCHO + CO # 1.0/<GLY_07M>;

<BP32> GLY + OH = 0.7*HO2 + 1.4*CO + 0.3*HCOCO3 # 3.10e-12@-340;

<BP33> GLY + NO3 = HNO3 + 0.7*HO2 + 1.4*CO + 0.3*HCOCO3 # 2.80e-12@2376;

<BP80> HCOCO3 + NO = HO2 + CO + CO2 + NO2 # 1.0*K<BR31>;

<BP81> HCOCO3 + NO2 = HO2 + CO + CO2 + NO3 # 1.0*K<BR28>;

<BP82> HCOCO3 + HO2 = 0.44*OH + 0.44*HO2 + 0.44*CO + 0.44*CO2 + 0.56*GLY +

0.15*O3 # 1.0*K<BR22>;

<BP34> MGLY = HO2 + CO + MECO3 # 1.0/<MGLY_06>;

<BP35> MGLY + OH = CO + MECO3 # 1.50e-11;

<BP36> MGLY + NO3 = HNO3 + CO + MECO3 # 1.40e-12@1895;

<BP37> BACL = 2*MECO3 # 1.0/<BACL_07>;

<BP83> PHEN + OH = 0.7*HO2 + 0.1*BZO + 0.104*xHO2 + 0.096*OH + 0.104*RO2C +

0.7*CATL + 0.096*AFG3 + 0.052*xAFG1 + 0.052*xAFG2 + 0.104*xGLY +

0.104*yRAOOH - 0.2*XC # 4.70e-13@-1220;

<BP84> PHEN + NO3 = 0.1*HNO3 + 0.9*XN + 0.7*HO2 + 0.1*BZO + 0.104*xHO2 +

0.096*OH + 0.104*RO2C + 0.7*CATL + 0.096*AFG3 + 0.052*xAFG1 +

0.052*xAFG2 + 0.104*xGLY + 0.104*yRAOOH - 0.2*XC # 3.80e-12;

<BP38> CRES + OH = 0.7*HO2 + 0.1*BZO + 0.177*xHO2 + 0.023*OH + 0.177*RO2C +

0.7*CATL + 0.023*AFG3 + 0.089*xAFG1 + 0.089*xAFG2 + 0.089*xGLY +

0.089*xMGLY + 0.177*yRAOOH + 0.704*XC # 1.60e-12@-970;

<BP39> CRES + NO3 = 0.1*HNO3 + 0.9*XN + 0.7*HO2 + 0.1*BZO + 0.177*xHO2 +

0.023*OH + 0.177*RO2C + 0.7*CATL + 0.023*AFG3 + 0.089*xAFG1 +

0.089*xAFG2 + 0.089*xGLY + 0.089*xMGLY + 0.177*yRAOOH + 0.704*XC

# 1.40e-11;

<BP85> XYNL + OH = 0.7*HO2 + 0.075*BZO + 0.225*xHO2 + 0.225*RO2C + 0.7*CATL +

0.113*xAFG1 + 0.113*xAFG2 + 0.113*xGLY + 0.113*xMGLY + 0.225*yRAOOH +

1.655*XC # 7.38e-11;

<BP86> XYNL + NO3 = 0.075*HNO3 + 0.925*XN + 0.7*HO2 + 0.075*BZO + 0.225*xHO2 +

Page 249: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

237

0.225*RO2C + 0.7*CATL + 0.113*xAFG1 + 0.113*xAFG2 + 0.113*xGLY +

0.113*xMGLY + 0.225*yRAOOH + 1.655*XC # 3.06e-11;

<BP87> CATL + OH = 0.4*HO2 + 0.2*BZO + 0.2*xHO2 + 0.2*OH + 0.2*RO2C + 0.2*AFG3 +

0.1*xAFG1 + 0.1*xAFG2 + 0.1*xGLY + 0.1*xMGLY + 0.2*yRAOOH + 1.9*XC

# 2.00e-10;

<BP88> CATL + NO3 = 0.2*HNO3 + 0.8*XN + 0.4*HO2 + 0.2*BZO + 0.2*xHO2 + 0.2*OH +

0.2*RO2C + 0.2*AFG3 + 0.1*xAFG1 + 0.1*xAFG2 + 0.1*xGLY + 0.1*xMGLY +

0.2*yRAOOH + 1.9*XC # 1.70e-10;

<BP40> NPHE + OH = BZO + XN # 3.50e-12;

<BP41> NPHE = HONO + 6*XC # 1.50e-3/<NO2_06>;

<BP42> NPHE = 6*XC + XN # 1.50e-2/<NO2_06>;

<BP43> BALD + OH = BZCO3 # 1.20e-11;

<BP44> BALD = 7*XC # 6.00e-2/<BALD_06>;

<BP45> BALD + NO3 = HNO3 + BZCO3 # 1.34e-12@1860;

<BP46> AFG1 + OH = 0.217*MACO3 + 0.723*RO2C + 0.06*RO2XC + 0.06*zRNO3 +

0.521*xHO2 + 0.201*xMECO3 + 0.334*xCO + 0.407*xRCHO + 0.129*xPROD1 +

0.107*xGLY + 0.267*xMGLY + 0.783*yR6OOH + 0.284*XC # 7.40e-11;

<BP48> AFG1 = 1.023*HO2 + 0.173*MEO2 + 0.305*MECO3 + 0.5*MACO3 + 0.695*CO +

0.195*GLY + 0.305*MGLY + 0.217*XC # 1.0/<AFG1>;

<BP49> AFG2 + OH = 0.217*MACO3 + 0.723*RO2C + 0.06*RO2XC + 0.06*zRNO3 +

0.521*xHO2 + 0.201*xMECO3 + 0.334*xCO + 0.407*xRCHO + 0.129*xPROD1 +

0.107*xGLY + 0.267*xMGLY + 0.783*yR6OOH + 0.284*XC # 7.40e-11;

<BP51> AFG2 = PROD2 - 1*XC # 1.0/<AFG1>;

<BP52> AFG3 + OH = 0.206*MACO3 + 0.733*RO2C + 0.117*RO2XC + 0.117*zRNO3 +

0.561*xHO2 + 0.117*xMECO3 + 0.114*xCO + 0.274*xGLY + 0.153*xMGLY +

0.019*xBACL + 0.195*xAFG1 + 0.195*xAFG2 + 0.231*xIPRD + 0.794*yR6OOH +

0.938*XC # 9.35e-11;

<BP53> AFG3 + O3 = 0.471*OH + 0.554*HO2 + 0.013*MECO3 + 0.258*RO2C +

0.007*RO2XC + 0.007*zRNO3 + 0.58*CO + 0.19*CO2 + 0.366*GLY +

0.184*MGLY + 0.35*AFG1 + 0.35*AFG2 + 0.139*AFG3 + 0.003*MACR +

0.004*MVK + 0.003*IPRD + 0.095*xHO2 + 0.163*xRCO3 + 0.163*xHCHO +

0.095*xMGLY + 0.264*yR6OOH - 0.575*XC # 1.43e-17;

<BP89> AFG4 + OH = 0.902*RO2C + 0.098*RO2XC + 0.098*zRNO3 + 0.902*xMECO3 +

0.902*xRCHO + yROOH + 0.902*XC # 6.30e-11;

<BP90> AFG5 + OH = 0.197*RCO3 + 0.215*MACO3 + 0.817*RO2C + 0.114*RO2XC +

0.114*zRNO3 + 0.331*xHO2 + 0.124*xMECO3 + 0.019*xRCO3 + 0.049*xCO +

0.456*xRCHO + 0.118*xGLY + 0.13*xMGLY + 0.034*xBACL + 0.588*yR6OOH +

2.381*XC # 5.93e-11;

<BP91> AFG5 + O3 = 0.491*OH + 0.456*HO2 + 0.472*RO2C + 0.017*RO2XC +

0.017*zRNO3 + 0.107*xHO2 + 0.031*xMECO3 + 0.199*xRCO3 + 0.482*CO +

0.17*CO2 + 0.666*RCHO + 0.377*GLY + 0.163*MGLY + 0.139*RCOOH +

0.107*xCO + 0.198*xHCHO + 0.012*xRCHO + 0.08*xBACL + 0.355*yR6OOH +

1.268*XC # 4.18e-18;

<BP54> MACR + OH = 0.5*MACO3 + 0.5*RO2C + 0.5*xHO2 + 0.416*xCO + 0.084*xHCHO +

0.416*xPROD1 + 0.084*xMGLY + 0.5*yROOH - 0.416*XC # 8.00e-12@-380;

<BP55> MACR + O3 = 0.208*OH + 0.108*HO2 + 0.1*RO2C + 0.45*CO + 0.117*CO2 +

0.1*HCHO + 0.9*MGLY + 0.333*HCOOH + 0.1*xRCO3 + 0.1*xHCHO + 0.1*yROOH +

0.1*XC # 1.40e-15@2100;

<BP56> MACR + NO3 = 0.5*MACO3 + 0.5*RO2C + 0.5*HNO3 + 0.5*xHO2 + 0.5*xCO +

0.5*yROOH + 1.5*XC + 0.5*XN # 1.50e-12@1815;

<BP57> MACR + O3P = RCHO + XC # 6.34e-12;

<BP58> MACR = 0.33*OH + 0.67*HO2 + 0.34*MECO3 + 0.33*MACO3 + 0.33*RO2C +

0.67*CO + 0.34*HCHO + 0.33*xMECO3 + 0.33*xHCHO + 0.33*yROOH

# 1.0/<MACR_06>;

<BP59> MVK + OH = 0.975*RO2C + 0.025*RO2XC + 0.025*zRNO3 + 0.3*xHO2 +

0.675*xMECO3 + 0.3*xHCHO + 0.675*xGLCHO + 0.3*xMGLY + yROOH - 0.05*XC

# 2.60e-12@-610;

<BP60> MVK + O3 = 0.164*OH + 0.064*HO2 + 0.05*RO2C + 0.05*xHO2 + 0.475*CO +

0.124*CO2 + 0.05*HCHO + 0.95*MGLY + 0.351*HCOOH + 0.05*xRCO3 +

0.05*xHCHO + 0.05*yROOH - 0.05*XC # 8.50e-16@1520;

<BP62> MVK + O3P = 0.45*RCHO + 0.55*PROD1 + 0.45*XC # 4.32e-12;

<BP63> MVK = 0.4*MEO2 + 0.6*CO + 0.6*PROD2 + 0.4*MACO3 - 2.2*XC

# 1.0/<MVK_06>;

Page 250: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

238

<BP64> IPRD + OH = 0.289*MACO3 + 0.67*RO2C + 0.67*xHO2 + 0.041*RO2XC +

0.041*zRNO3 + 0.336*xCO + 0.055*xHCHO + 0.129*xGLCHO + 0.013*xRCHO +

0.15*xPROD1 + 0.332*xPROD2 + 0.15*xGLY + 0.174*xMGLY - 0.504*XC +

0.711*yR6OOH # 6.19e-11;

<BP65> IPRD + O3 = 0.285*OH + 0.4*HO2 + 0.048*RO2C + 0.048*xRCO3 + 0.498*CO +

0.14*CO2 + 0.124*HCHO + 0.21*PROD1 + 0.023*GLY + 0.742*MGLY +

0.1*HCOOH + 0.372*RCOOH + 0.047*xGLCHO + 0.001*xHCHO + 0.048*yR6OOH +

0.329*XC # 4.18e-18;

<BP66> IPRD + NO3 = 0.15*MACO3 + 0.15*HNO3 + 0.799*RO2C + 0.799*xHO2 +

0.051*RO2XC + 0.051*zRNO3 + 0.572*xCO + 0.227*xHCHO + 0.218*xRCHO +

0.008*xMGLY + 0.572*xRNO3 + 0.85*yR6OOH + 0.278*XN - 0.815*XC

# 1.00e-13;

<BP67> IPRD = 1.233*HO2 + 0.467*MECO3 + 0.3*RCO3 + 1.233*CO + 0.3*HCHO +

0.467*GLCHO + 0.233*PROD1 - 0.233*XC # 1.0/<MACR_06>;

<BP68> PROD2 + OH = 0.472*HO2 + 0.379*xHO2 + 0.029*xMECO3 + 0.049*xRCO3 +

0.473*RO2C + 0.071*RO2XC + 0.071*zRNO3 + 0.002*HCHO + 0.211*xHCHO +

0.001*CCHO + 0.083*xCCHO + 0.143*RCHO + 0.402*xRCHO + 0.115*xPROD1 +

0.329*PROD2 + 0.007*xPROD2 + 0.528*yR6OOH + 0.877*XC # 1.55e-11;

<BP69> PROD2 = 0.913*xHO2 + 0.4*MECO3 + 0.6*RCO3 + 1.59*RO2C +

0.087*RO2XC + 0.087*zRNO3 + 0.303*xHCHO + 0.163*xCCHO + 0.78*xRCHO +

yR6OOH - 0.091*XC # 4.86e-3/<MEK_06>;

<BP70> RNO3 + OH = 0.189*HO2 + 0.305*xHO2 + 0.019*NO2 + 0.313*xNO2 +

0.976*RO2C + 0.175*RO2XC + 0.175*zRNO3 + 0.011*xHCHO + 0.429*xCCHO +

0.001*RCHO + 0.036*xRCHO + 0.004*xACET + 0.01*PROD1 + 0.17*xPROD1 +

0.008*PROD2 + 0.031*xPROD2 + 0.189*RNO3 + 0.305*xRNO3 + 0.157*yROOH +

0.636*yR6OOH + 0.174*XN + 0.04*XC # 7.20e-12;

<BP71> RNO3 = 0.344*HO2 + 0.554*xHO2 + NO2 + 0.721*RO2C + 0.102*RO2XC +

0.102*zRNO3 + 0.074*HCHO + 0.061*xHCHO + 0.214*CCHO + 0.23*xCCHO +

0.074*RCHO + 0.063*xRCHO + 0.008*xACET + 0.124*PROD1 + 0.083*xPROD1 +

0.19*PROD2 + 0.261*xPROD2 + 0.066*yROOH + 0.591*yR6OOH + 0.396*XC

# 1.0/<IC3ONO2>;

<BP72> GLCHO + OH = MECO3 # 1.0*K<BP08>;

<BP73> GLCHO = CO + 2*HO2 + HCHO # 1.0/<HOCCHO_IUPAC>;

<BP74> GLCHO + NO3 = HNO3 + MECO3 # 1.0*K<BP10>;

<BP75> ACRO + OH = 0.25*RO2C + 0.25*xHO2 + 0.75*MACO3 + 0.167*xCO +

0.083*xHCHO + 0.167*xGLCHO + 0.083*xGLY + 0.25*yROOH - 0.75*XC

# 1.99e-11;

<BP76> ACRO + O3 = 0.33*OH + 0.83*HO2 + 1.005*CO + 0.31*CO2 + 0.5*HCHO +

0.5*GLY + 0.185*HCHO2 # 1.40e-15@2528;

<BP77> ACRO + NO3 = 0.031*xHO2 + 0.967*MACO3 + 0.031*RO2C + 0.002*RO2XC +

0.002*zRNO3 + 0.967*HNO3 + 0.031*xCO + 0.031*xRNO3 + 0.033*yROOH +

0.002*XN - 1.097*XC # 1.18e-15;

<BP78> ACRO + O3P = RCHO # 2.37e-12;

<BP79> ACRO = 0.178*OH + 1.066*HO2 + 0.234*MEO2 + 0.33*MACO3 + 1.188*CO +

0.102*CO2 + 0.34*HCHO + 0.05*CCHO2 - 0.284*XC # 1.0/<ACRO_09>;

<BT80> CCO3H + OH = 0.98*MECO3 + 0.02*RO2C + 0.02*CO2 + 0.02*xOH + 0.02*xHCHO +

0.02*yROOH # 5.28e-12;

<BT81> CCO3H = MEO2 + CO2 + OH # 1.0/<PAA>;

<BT82> RCO3H + OH = 0.806*RCO3 + 0.194*RO2C + 0.194*yROOH + 0.11*CO2 +

0.11*xOH + 0.11*xCCHO + 0.084*xHO2 + 0.084*xRCHO # 6.42e-12;

<BT83> RCO3H = xHO2 + xCCHO + yROOH + CO2 + OH # 1.0/<PAA>;

<PO01> xHCHO = HCHO # 1.0?RO2RO;

<PO02> xHCHO = XC # 1.0?RO2XRO;

<PO03> xCCHO = CCHO # 1.0?RO2RO;

<PO04> xCCHO = 2*XC # 1.0?RO2XRO;

<PO05> xRCHO = RCHO # 1.0?RO2RO;

<PO06> xRCHO = 3*XC # 1.0?RO2XRO;

<PO07> xACET = ACET # 1.0?RO2RO;

<PO08> xACET = 3*XC # 1.0?RO2XRO;

<PO09> xPROD1 = PROD1 # 1.0?RO2RO;

<PO10> xPROD1 = 4*XC # 1.0?RO2XRO;

<PO11> xPROD2 = PROD2 # 1.0?RO2RO;

<PO12> xPROD2 = 6*XC # 1.0?RO2XRO;

Page 251: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

239

<PO13> xGLY = GLY # 1.0?RO2RO;

<PO14> xGLY = 2*XC # 1.0?RO2XRO;

<PO15> xMGLY = MGLY # 1.0?RO2RO;

<PO16> xMGLY = 3*XC # 1.0?RO2XRO;

<PO17> xBACL = BACL # 1.0?RO2RO;

<PO18> xBACL = 4*XC # 1.0?RO2XRO;

<PO19> xBALD = BALD # 1.0?RO2RO;

<PO20> xBALD = 7*XC # 1.0?RO2XRO;

<PO21> xAFG1 = AFG1 # 1.0?RO2RO;

<PO22> xAFG1 = 5*XC # 1.0?RO2XRO;

<PO23> xAFG2 = AFG2 # 1.0?RO2RO;

<PO24> xAFG2 = 5*XC # 1.0?RO2XRO;

<PO51> xAFG4 = AFG4 # 1.0?RO2RO;

<PO52> xAFG4 = 6*XC # 1.0?RO2XRO;

<PO27> xMACR = MACR # 1.0?RO2RO;

<PO28> xMACR = 4*XC # 1.0?RO2XRO;

<PO29> xMVK = MVK # 1.0?RO2RO;

<PO30> xMVK = 4*XC # 1.0?RO2XRO;

<PO31> xIPRD = IPRD # 1.0?RO2RO;

<PO32> xIPRD = 5*XC # 1.0?RO2XRO;

<PO33> xRNO3 = RNO3 # 1.0?RO2RO;

<PO34> xRNO3 = 6*XC + XN # 1.0?RO2XRO;

<PO35> zRNO3 = RNO3 - 1*XN # 1.0?RO2NO;

<PO36> zRNO3 = PROD2 + HO2 # 1.0?RO22NN;

<PO37> zRNO3 = 6*XC # 1.0?RO2XRO;

<PO38> yROOH = ROOH - 3*XC # 1.0?RO2HO2;

<PO39> yROOH = PROD1 - 4*XC # 1.0?RO2RO2M;

<PO40> yROOH = # 1.0?RO2RO;

<PO41> yR6OOH = R6OOH - 6*XC # 1.0?RO2HO2;

<PO42> yR6OOH = PROD2 - 6*XC # 1.0?RO2RO2M;

<PO43> yR6OOH = # 1.0?RO2RO;

<PO44> yRAOOH = RAOOH - 7*XC # 1.0?RO2HO2;

<PO45> yRAOOH = PROD2 - 6*XC # 1.0?RO2RO2M;

<PO46> yRAOOH = # 1.0?RO2RO;

<PO47> xGLCHO = GLCHO # 1.0?RO2RO;

<PO48> xGLCHO = 2*XC # 1.0?RO2XRO;

<PO49> xACRO = ACRO # 1.0?RO2RO;

<PO50> xACRO = 3*XC # 1.0?RO2XRO;

<BE01> CH4 + OH = MEO2 # 1.85e-12@1690;

<BE02> ETHE + OH = xHO2 + RO2C + 1.61*xHCHO + 0.195*xGLCHO + yROOH

# 1.00e-28^-4.50&8.80e-12^-0.85&0.60&1.00;

<BE03> ETHE + O3 = 0.16*HO2 + 0.16*OH + 0.51*CO + 0.12*CO2 + HCHO + 0.37*HCHO2

# 9.14e-15@2580;

<BE04> ETHE + NO3 = xHO2 + RO2C + xRCHO + yROOH + XN - 1*XC

# 3.30e-12@2880;

<BE05> ETHE + O3P = 0.8*HO2 + 0.29*xHO2 + 0.51*MEO2 + 0.29*RO2C + 0.51*CO +

0.278*xCO + 0.278*xHCHO + 0.1*CCHO + 0.012*xGLY + 0.29*yROOH + 0.2*XC

# 1.07e-11@800;

<BE06> ISOP + OH = 0.907*xHO2 + 0.986*RO2C + 0.093*RO2XC + 0.093*zRNO3 +

0.624*xHCHO + 0.23*xMACR + 0.32*xMVK + 0.357*xIPRD + yR6OOH +

0.167*XC # 2.54e-11@-410;

<BE07> ISOP + O3 = 0.066*HO2 + 0.266*OH + 0.192*xMACO3 + 0.192*RO2C +

0.008*RO2XC + 0.008*zRNO3 + 0.275*CO + 0.122*CO2 + 0.4*HCHO +

0.192*xHCHO + 0.204*HCHO2 + 0.39*MACR + 0.16*MVK + 0.15*RCHO2 +

0.1*PROD2 + 0.2*yR6OOH - 0.259*XC # 7.86e-15@1912;

<BE08> ISOP + NO3 = 0.749*xHO2 + 0.187*xNO2 + 0.936*RO2C + 0.064*RO2XC +

0.064*zRNO3 + 0.936*xIPRD + yR6OOH + 0.813*XN - 0.064*XC

# 3.03e-12@448;

<BE09> ISOP + O3P = 0.25*MEO2 + 0.24*xMACO3 + 0.24*RO2C + 0.01*RO2XC +

0.01*zRNO3 + 0.24*xHCHO + 0.75*PROD2 + 0.25*yR6OOH - 1.01*XC

# 3.50e-11;

<BE10> ACYL + OH = 0.3*HO2 + 0.7*OH + 0.3*CO + 0.3*HCOOH + 0.7*GLY

# 5.50e-30&8.30e-13^2.00&0.60&1.00;

Page 252: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

240

<BE11> ACYL + O3 = 1.5*HO2 + 0.5*OH + 1.5*CO + 0.5*CO2 # 1.00e-14@4100;

<BE12> BENZ + OH = 0.31*RO2C + 0.027*RO2XC + 0.027*zRNO3 + 0.062*OH +

0.601*HO2 + 0.31*xHO2 + 0.31*xGLY + 0.57*PHEN + 0.155*xAFG1 +

0.155*xAFG2 + 0.062*AFG3 + 0.031*AFG5 + 0.337*yRAOOH - 0.403*XC

# 2.33e-12@193;

<T00H> ETHANE + OH = RO2C + xHO2 + xCCHO + yROOH # 1.34e-12^2.00@499;

<T01H> PROPANE + OH = 0.965*RO2C + 0.035*RO2XC + 0.035*zRNO3 + 0.965*xHO2 +

0.261*xRCHO + 0.704*xACET + yROOH - 0.105*XC # 1.49e-12^2.00@87;

<T02H> NC4 + OH = 1.334*RO2C + 0.079*RO2XC + 0.079*zRNO3 + 0.921*xHO2 +

0.632*xCCHO + 0.12*xRCHO + 0.485*xPROD1 + yROOH - 0.038*XC

# 1.63e-12^2.00@-114;

<T03H> M2C3 + OH = 1.03*RO2C + 0.042*RO2XC + 0.042*zRNO3 + 0.198*xHO2 +

0.76*xTBUO + 0.073*xHCHO + 0.128*xRCHO + 0.07*xACET + yROOH + 0.041*XC

# 1.05e-12^2.00@-213;

<T04H> NC5 + OH = 1.505*RO2C + 0.145*RO2XC + 0.145*zRNO3 + 0.855*xHO2 +

0.147*xCCHO + 0.22*xRCHO + 0.238*xPROD1 + 0.397*xPROD2 + yR6OOH +

0.158*XC # 2.27e-12^2.00@-158;

<T05H> M2C4 + OH = 1.783*RO2C + 0.095*RO2XC + 0.095*zRNO3 + 0.881*xHO2 +

0.024*xMEO2 + 0.012*xHCHO + 0.78*xCCHO + 0.101*xRCHO + 0.762*xACET +

0.038*xPROD1 + yR6OOH + 0.093*XC # 3.60e-12;

<T06H> CYCC5 + OH = 2.438*RO2C + 0.224*RO2XC + 0.224*zRNO3 + 0.776*xHO2 +

0.054*xCO + 0.756*xRCHO + 0.02*xPROD1 + yR6OOH + 1.254*XC

# 2.46e-12^2.00@-214;

<T07H> NC6 + OH = 1.562*RO2C + 0.225*RO2XC + 0.225*zRNO3 + 0.775*xHO2 +

0.011*xCCHO + 0.113*xRCHO + 0.688*xPROD2 + yR6OOH + 0.161*XC

# 7.62e-12^1.00@112;

<T08H> M22C4 + OH = 1.885*RO2C + 0.176*RO2XC + 0.176*zRNO3 + 0.304*xHO2 +

0.009*xMEO2 + 0.51*xTBUO + 0.227*xHCHO + 0.73*xCCHO + 0.103*xRCHO +

0.001*xGLCHO + 0.202*xACET + 0.009*xPROD1 + yR6OOH + 0.255*XC

# 3.37e-11@809;

<T09H> M23C4 + OH = 1.761*RO2C + 0.14*RO2XC + 0.14*zRNO3 + 0.86*xHO2 +

0.01*xHCHO + 0.008*xCCHO + 0.094*xRCHO + 1.555*xACET + yR6OOH +

0.187*XC # 1.49e-12^2.00@-407;

<T10H> M2C5 + OH = 1.671*RO2C + 0.185*RO2XC + 0.185*zRNO3 + 0.815*xHO2 +

0.001*xHCHO + 0.003*xCCHO + 0.657*xRCHO + 0.343*xACET + 0.006*xPROD1 +

0.16*xPROD2 + yR6OOH + 0.899*XC # 5.20e-12;

<T11H> M3C5 + OH = 1.833*RO2C + 0.156*RO2XC + 0.156*zRNO3 + 0.844*xHO2 +

0.005*xHCHO + 0.986*xCCHO + 0.069*xRCHO + 0.629*xPROD1 + 0.036*xPROD2 +

yR6OOH + 0.148*XC # 5.20e-12;

<T12H> CYCC6 + OH = 1.272*RO2C + 0.201*RO2XC + 0.201*zRNO3 + 0.799*xHO2 +

0.203*xRCHO + 0.597*xPROD2 + yR6OOH + 0.603*XC # 2.93e-12^2.00@-262;

<T13H> MECYCC5 + OH = 2.294*RO2C + 0.305*RO2XC + 0.305*zRNO3 + 0.453*xHO2 +

0.239*xMECO3 + 0.002*xRCO3 + 0.021*xCO + 0.016*xHCHO + 0.686*xRCHO +

0.006*xPROD2 + yR6OOH + 1.555*XC # 5.68e-12;

<T14H> NC7 + OH = 1.504*RO2C + 0.295*RO2XC + 0.295*zRNO3 + 0.705*xHO2 +

0.055*xRCHO + 0.659*xPROD2 + yR6OOH + 1.111*XC # 1.76e-12^2.00@-406;

<T15H> M223C4 + OH = 1.772*RO2C + 0.19*RO2XC + 0.19*zRNO3 + 0.196*xHO2 +

0.614*xTBUO + 0.116*xHCHO + 0.005*xCCHO + 0.1*xRCHO + 0.828*xACET +

yR6OOH + 0.494*XC # 8.28e-13^2.00@-459;

<T16H> M22C5 + OH = 1.619*RO2C + 0.209*RO2XC + 0.209*zRNO3 + 0.453*xHO2 +

0.339*xTBUO + 0.045*xHCHO + 0.004*xCCHO + 0.516*xRCHO + 0.014*xACET +

0.018*xPROD1 + 0.268*xPROD2 + yR6OOH + 1.067*XC # 3.40e-12;

<T17H> M23C5 + OH = 1.848*RO2C + 0.215*RO2XC + 0.215*zRNO3 + 0.785*xHO2 +

0.008*xHCHO + 0.409*xCCHO + 0.066*xRCHO + 0.001*xGLCHO + 0.717*xACET +

0.516*xPROD1 + 0.025*xPROD2 + yR6OOH + 0.319*XC # 7.15e-12;

<T18H> M24C5 + OH = 2.178*RO2C + 0.221*RO2XC + 0.221*zRNO3 + 0.779*xHO2 +

0.483*xHCHO + 0.021*xCCHO + 0.537*xRCHO + 0.297*xACET + 0.018*xPROD1 +

0.181*xPROD2 + yR6OOH + 1.489*XC # 4.77e-12;

<T19H> M2C6 + OH = 1.634*RO2C + 0.269*RO2XC + 0.269*zRNO3 + 0.731*xHO2 +

0.019*xHCHO + 0.048*xCCHO + 0.223*xRCHO + 0.134*xACET + 0.515*xPROD2 +

yR6OOH + 1.11*XC # 6.89e-12;

<T20H> M33C5 + OH = 2.33*RO2C + 0.238*RO2XC + 0.238*zRNO3 + 0.737*xHO2 +

0.025*xMEO2 + 0.163*xHCHO + 1.318*xCCHO + 0.046*xRCHO + 0.01*xGLCHO +

Page 253: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

241

0.618*xACET + 0.096*xPROD1 + 0.002*xPROD2 + yR6OOH + 0.34*XC

# 3.00e-12;

<T21H> M3C6 + OH = 1.674*RO2C + 0.25*RO2XC + 0.25*zRNO3 + 0.75*xHO2 +

0.002*xHCHO + 0.207*xCCHO + 0.463*xRCHO + 0.256*xPROD1 + 0.235*xPROD2 +

yR6OOH + 1.261*XC # 7.17e-12;

<T22H> ET3C5 + OH = 1.746*RO2C + 0.213*RO2XC + 0.213*zRNO3 + 0.787*xHO2 +

0.002*xHCHO + 0.837*xCCHO + 0.167*xRCHO + 0.567*xPROD1 + 0.053*xPROD2 +

yR6OOH + 0.959*XC # 7.58e-12;

<T23H> M11CC5 + OH = 2.173*RO2C + 0.387*RO2XC + 0.387*zRNO3 + 0.523*xHO2 +

0.053*xMECO3 + 0.037*xRCO3 + 0.281*xCO + 0.112*xHCHO + 0.564*xRCHO +

0.007*xACET + 0.011*xPROD1 + 0.001*xMGLY + yR6OOH + 2.308*XC

# 3.98e-12;

<T24H> M12CC5 + OH = 2.144*RO2C + 0.373*RO2XC + 0.373*zRNO3 + 0.217*xHO2 +

0.352*xMECO3 + 0.058*xRCO3 + 0.008*xCO + 0.008*xHCHO + 0.065*xCCHO +

0.562*xRCHO + 0.007*xPROD2 + yR6OOH + 2.01*XC # 6.82e-12;

<T25H> CYCC7 + OH = 1.737*RO2C + 0.33*RO2XC + 0.33*zRNO3 + 0.67*xHO2 +

0.011*xHCHO + 0.002*xCCHO + 0.423*xRCHO + 0.251*xPROD2 + yR6OOH +

2.23*XC # 9.64e-12;

<T26H> M13CYC5 + OH = 2.146*RO2C + 0.381*RO2XC + 0.381*zRNO3 + 0.279*xHO2 +

0.339*xMECO3 + 0.001*xRCO3 + 0.036*xCO + 0.026*xHCHO + 0.001*xCCHO +

0.585*xRCHO + 0.033*xPROD2 + yR6OOH + 2.016*XC # 6.82e-12;

<T27H> ETCYCC5 + OH = 2.262*RO2C + 0.387*RO2XC + 0.387*zRNO3 + 0.402*xHO2 +

0.21*xRCO3 + 0.018*xCO + 0.01*xHCHO + 0.135*xCCHO + 0.589*xRCHO +

0.001*xGLCHO + 0.003*xPROD1 + 0.007*xPROD2 + 0.006*xMGLY + yR6OOH +

1.909*XC # 7.27e-12;

<T28H> NC8 + OH = 1.432*RO2C + 0.354*RO2XC + 0.354*zRNO3 + 0.646*xHO2 +

0.024*xRCHO + 0.622*xPROD2 + yR6OOH + 2.072*XC # 2.45e-12^2.00@-361;

<T29H> BRC8 + OH = 1.778*RO2C + 0.347*RO2XC + 0.347*zRNO3 + 0.653*xHO2 +

0.123*xHCHO + 0.188*xCCHO + 0.274*xRCHO + 0.04*xACET + 0.075*xPROD1 +

0.393*xPROD2 + yR6OOH + 1.819*XC # 8.51e-12;

<T30H> M224C5 + OH = 2.426*RO2C + 0.245*RO2XC + 0.245*zRNO3 + 0.479*xHO2 +

0.275*xTBUO + 0.789*xHCHO + 0.001*xCCHO + 0.387*xRCHO + 0.346*xACET +

0.175*xPROD1 + 0.029*xPROD2 + yR6OOH + 1.566*XC # 2.12e-12^2.00@-140;

<T31H> M22C6 + OH = 1.398*RO2C + 0.291*RO2XC + 0.291*zRNO3 + 0.466*xHO2 +

0.243*xTBUO + 0.024*xHCHO + 0.041*xCCHO + 0.355*xRCHO + 0.002*xACET +

0.013*xPROD1 + 0.349*xPROD2 + yR6OOH + 1.959*XC # 4.80e-12;

<T32H> M234C5 + OH = 1.966*RO2C + 0.283*RO2XC + 0.283*zRNO3 + 0.717*xHO2 +

0.02*xHCHO + 0.409*xCCHO + 0.057*xRCHO + 0.001*xGLCHO + 1.101*xACET +

0.295*xPROD1 + yR6OOH + 0.808*XC # 6.60e-12;

<T33H> M23C6 + OH = 1.819*RO2C + 0.299*RO2XC + 0.299*zRNO3 + 0.701*xHO2 +

0.008*xHCHO + 0.105*xCCHO + 0.169*xRCHO + 0.548*xACET + 0.298*xPROD1 +

0.264*xPROD2 + yR6OOH + 1.061*XC # 8.57e-12;

<T34H> M24C6 + OH = 2.01*RO2C + 0.362*RO2XC + 0.362*zRNO3 + 0.638*xHO2 +

0.237*xHCHO + 0.362*xCCHO + 0.284*xRCHO + 0.068*xACET + 0.093*xPROD1 +

0.324*xPROD2 + yR6OOH + 1.495*XC # 8.57e-12;

<T35H> M25C6 + OH = 2.178*RO2C + 0.351*RO2XC + 0.351*zRNO3 + 0.649*xHO2 +

0.155*xHCHO + 0.43*xRCHO + 0.571*xACET + 0.226*xPROD2 + yR6OOH +

1.38*XC # 8.29e-12;

<T36H> M2C7 + OH = 1.54*RO2C + 0.341*RO2XC + 0.341*zRNO3 + 0.659*xHO2 +

0.014*xHCHO + 0.025*xCCHO + 0.149*xRCHO + 0.022*xACET + 0.549*xPROD2 +

yR6OOH + 2.083*XC # 8.31e-12;

<T37H> M3C7 + OH = 1.604*RO2C + 0.338*RO2XC + 0.338*zRNO3 + 0.662*xHO2 +

0.001*xHCHO + 0.177*xCCHO + 0.148*xRCHO + 0.062*xPROD1 + 0.522*xPROD2 +

yR6OOH + 1.793*XC # 8.59e-12;

<T38H> M4C7 + OH = 1.551*RO2C + 0.324*RO2XC + 0.324*zRNO3 + 0.676*xHO2 +

0.002*xHCHO + 0.004*xCCHO + 0.377*xRCHO + 0.115*xPROD1 + 0.376*xPROD2 +

yR6OOH + 2.199*XC # 8.59e-12;

<T39H> M233C5 + OH = 2.292*RO2C + 0.27*RO2XC + 0.27*zRNO3 + 0.712*xHO2 +

0.018*xMEO2 + 0.115*xHCHO + 0.677*xCCHO + 0.034*xRCHO + 0.004*xGLCHO +

1.336*xACET + 0.059*xPROD1 + 0.001*xPROD2 + yR6OOH + 0.533*XC

# 4.40e-12;

<T40H> M34C6 + OH = 1.819*RO2C + 0.282*RO2XC + 0.282*zRNO3 + 0.718*xHO2 +

0.007*xHCHO + 0.535*xCCHO + 0.044*xRCHO + 0.001*xGLCHO + 0.874*xPROD1 +

Page 254: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

242

0.133*xPROD2 + yR6OOH + 0.803*XC # 8.85e-12;

<T41H> E3M2C5 + OH = 1.768*RO2C + 0.274*RO2XC + 0.274*zRNO3 + 0.726*xHO2 +

0.005*xHCHO + 0.241*xCCHO + 0.261*xRCHO + 0.662*xACET + 0.444*xPROD1 +

0.039*xPROD2 + yR6OOH + 1.09*XC # 8.98e-12;

<T42H> M112CC5 + OH = 2.038*RO2C + 0.439*RO2XC + 0.439*zRNO3 + 0.15*xHO2 +

0.234*xMECO3 + 0.177*xRCO3 + 0.021*xCO + 0.066*xHCHO + 0.107*xCCHO +

0.376*xRCHO + 0.112*xACET + 0.005*xPROD2 + 0.001*xMGLY + yR6OOH +

2.569*XC # 5.11e-12;

<T43H> M113CC5 + OH = 2.055*RO2C + 0.455*RO2XC + 0.455*zRNO3 + 0.331*xHO2 +

0.203*xMECO3 + 0.01*xRCO3 + 0.182*xCO + 0.104*xHCHO + 0.001*xCCHO +

0.439*xRCHO + 0.026*xACET + 0.002*xPROD1 + 0.093*xPROD2 + yR6OOH +

2.585*XC # 5.11e-12;

<T44H> M11CC6 + OH = 1.687*RO2C + 0.366*RO2XC + 0.366*zRNO3 + 0.634*xHO2 +

0.035*xCO + 0.146*xHCHO + 0.353*xRCHO + 0.005*xGLCHO + 0.024*xACET +

0.367*xPROD2 + 0.001*xGLY + yR6OOH + 2.278*XC # 7.44e-12;

<T45H> M14CC6 + OH = 2.038*RO2C + 0.46*RO2XC + 0.46*zRNO3 + 0.54*xHO2 +

0.051*xHCHO + 0.024*xCCHO + 0.528*xRCHO + 0.005*xGLCHO + 0.048*xPROD2 +

yR6OOH + 3.259*XC # 1.19e-11;

<T46H> CYCC8 + OH = 1.613*RO2C + 0.364*RO2XC + 0.364*zRNO3 + 0.635*xHO2 +

0.002*xHCHO + 0.151*xCCHO + 0.305*xRCHO + 0.334*xPROD2 + yR6OOH +

2.593*XC # 1.20e-11;

<T47H> M13CYC6 + OH = 1.906*RO2C + 0.436*RO2XC + 0.436*zRNO3 + 0.561*xHO2 +

0.003*xMECO3 + 0.009*xCO + 0.019*xHCHO + 0.013*xCCHO + 0.486*xRCHO +

0.002*xPROD1 + 0.09*xPROD2 + yR6OOH + 3.318*XC # 1.19e-11;

<T48H> NC9 + OH = 1.379*RO2C + 0.398*RO2XC + 0.398*zRNO3 + 0.602*xHO2 +

0.018*xRCHO + 0.584*xPROD2 + yR6OOH + 3.054*XC # 2.28e-12^2.00@-436;

<T49H> BRC9 + OH = 1.635*RO2C + 0.408*RO2XC + 0.408*zRNO3 + 0.593*xHO2 +

0.082*xHCHO + 0.015*xCCHO + 0.255*xRCHO + 0.018*xACET + 0.019*xPROD1 +

0.474*xPROD2 + yR6OOH + 2.701*XC # 9.95e-12;

<T50H> M225C6 + OH = 1.78*RO2C + 0.33*RO2XC + 0.33*zRNO3 + 0.477*xHO2 +

0.193*xTBUO + 0.044*xHCHO + 0.612*xRCHO + 0.002*xGLCHO + 0.434*xACET +

0.004*xPROD1 + 0.056*xPROD2 + yR6OOH + 2.71*XC # 6.08e-12;

<T51H> M235C6 + OH = 1.943*RO2C + 0.379*RO2XC + 0.379*zRNO3 + 0.621*xHO2 +

0.154*xHCHO + 0.067*xCCHO + 0.157*xRCHO + 0.605*xACET + 0.012*xPROD1 +

0.459*xPROD2 + yR6OOH + 1.35*XC # 7.90e-12;

<T52H> M24C7 + OH = 1.771*RO2C + 0.411*RO2XC + 0.411*zRNO3 + 0.589*xHO2 +

0.162*xHCHO + 0.013*xCCHO + 0.414*xRCHO + 0.029*xACET + 0.034*xPROD1 +

0.398*xPROD2 + yR6OOH + 2.493*XC # 9.99e-12;

<T53H> M2C8 + OH = 1.501*RO2C + 0.413*RO2XC + 0.413*zRNO3 + 0.587*xHO2 +

0.002*xHCHO + 0.064*xRCHO + 0.014*xACET + 0.536*xPROD2 + yR6OOH +

3.07*XC # 1.01e-11;

<T54H> M35C7 + OH = 2.02*RO2C + 0.455*RO2XC + 0.455*zRNO3 + 0.545*xHO2 +

0.008*xHCHO + 0.656*xCCHO + 0.144*xRCHO + 0.058*xPROD1 + 0.407*xPROD2 +

yR6OOH + 1.844*XC # 1.03e-11;

<T55H> M4C8 + OH = 1.496*RO2C + 0.395*RO2XC + 0.395*zRNO3 + 0.605*xHO2 +

0.001*xHCHO + 0.032*xCCHO + 0.126*xRCHO + 0.006*xPROD1 + 0.563*xPROD2 +

yR6OOH + 2.785*XC # 9.70e-12;

<T56H> M33C7 + OH = 1.821*RO2C + 0.368*RO2XC + 0.368*zRNO3 + 0.624*xHO2 +

0.008*xMEO2 + 0.059*xHCHO + 0.483*xCCHO + 0.311*xRCHO + 0.005*xGLCHO +

0.208*xACET + 0.008*xPROD1 + 0.32*xPROD2 + yR6OOH + 2.24*XC

# 5.84e-12;

<T57H> M224C6 + OH = 1.969*RO2C + 0.417*RO2XC + 0.417*zRNO3 + 0.396*xHO2 +

0.187*xTBUO + 0.297*xHCHO + 0.328*xCCHO + 0.253*xRCHO + 0.015*xACET +

0.23*xPROD1 + 0.11*xPROD2 + yR6OOH + 2.413*XC # 6.36e-12;

<T58H> M26C7 + OH = 1.685*RO2C + 0.389*RO2XC + 0.389*zRNO3 + 0.611*xHO2 +

0.001*xHCHO + 0.365*xRCHO + 0.306*xACET + 0.26*xPROD2 + yR6OOH +

3.092*XC # 9.71e-12;

<T59H> M25C7 + OH = 1.986*RO2C + 0.414*RO2XC + 0.414*zRNO3 + 0.586*xHO2 +

0.035*xHCHO + 0.292*xCCHO + 0.185*xRCHO + 0.203*xACET + 0.125*xPROD1 +

0.409*xPROD2 + yR6OOH + 1.779*XC # 9.99e-12;

<T60H> M3C8 + OH = 1.504*RO2C + 0.393*RO2XC + 0.393*zRNO3 + 0.607*xHO2 +

0.001*xHCHO + 0.091*xCCHO + 0.118*xRCHO + 0.019*xPROD1 + 0.525*xPROD2 +

yR6OOH + 2.879*XC # 1.00e-11;

Page 255: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

243

<T61H> ET3C7 + OH = 1.532*RO2C + 0.392*RO2XC + 0.392*zRNO3 + 0.608*xHO2 +

0.147*xCCHO + 0.145*xRCHO + 0.045*xPROD1 + 0.503*xPROD2 + yR6OOH +

2.721*XC # 1.04e-11;

<T62H> M123CC6 + OH = 1.867*RO2C + 0.489*RO2XC + 0.489*zRNO3 + 0.478*xHO2 +

0.026*xMECO3 + 0.007*xRCO3 + 0.001*xCO + 0.014*xHCHO + 0.104*xCCHO +

0.15*xRCHO + 0.357*xPROD2 + yR6OOH + 3.178*XC # 1.36e-11;

<T63H> M135CC6 + OH = 1.917*RO2C + 0.508*RO2XC + 0.508*zRNO3 + 0.485*xHO2 +

0.006*xMECO3 + 0.013*xCO + 0.033*xHCHO + 0.021*xCCHO + 0.476*xRCHO +

0.004*xPROD1 + 0.032*xPROD2 + yR6OOH + 4.216*XC # 1.36e-11;

<T64H> M113CC6 + OH = 1.924*RO2C + 0.476*RO2XC + 0.476*zRNO3 + 0.522*xHO2 +

0.002*xMECO3 + 0.071*xCO + 0.149*xHCHO + 0.107*xCCHO + 0.465*xRCHO +

0.038*xACET + 0.005*xPROD1 + 0.148*xPROD2 + yR6OOH + 3.289*XC

# 8.70e-12;

<T65H> E1M4CC6 + OH = 1.857*RO2C + 0.481*RO2XC + 0.481*zRNO3 + 0.518*xHO2 +

0.001*xMECO3 + 0.033*xHCHO + 0.139*xCCHO + 0.412*xRCHO + 0.003*xGLCHO +

0.143*xPROD2 + yR6OOH + 3.701*XC # 1.37e-11;

<T66H> C3CYCC6 + OH = 1.427*RO2C + 0.377*RO2XC + 0.377*zRNO3 + 0.622*xHO2 +

0.001*xRCO3 + 0.345*xRCHO + 0.419*xPROD2 + yR6OOH + 3.186*XC

# 1.34e-11;

<T67H> CYCC9 + OH = 1.642*RO2C + 0.429*RO2XC + 0.429*zRNO3 + 0.57*xHO2 +

0.001*xMECO3 + 0.001*xRCO3 + 0.017*xHCHO + 0.07*xCCHO + 0.379*xRCHO +

0.002*xGLCHO + 0.281*xPROD2 + yR6OOH + 3.437*XC # 1.36e-11;

<T68H> NC10 + OH = 1.345*RO2C + 0.428*RO2XC + 0.428*zRNO3 + 0.572*xHO2 +

0.015*xRCHO + 0.557*xPROD2 + yR6OOH + 4.045*XC # 2.85e-12^2.00@-406;

<T69H> BRC10 + OH = 1.555*RO2C + 0.436*RO2XC + 0.436*zRNO3 + 0.564*xHO2 +

0.059*xCCHO + 0.197*xRCHO + 0.076*xACET + 0.037*xPROD1 + 0.398*xPROD2 +

yR6OOH + 3.911*XC # 1.25e-11;

<T70H> M24C8 + OH = 1.615*RO2C + 0.447*RO2XC + 0.447*zRNO3 + 0.553*xHO2 +

0.085*xHCHO + 0.034*xCCHO + 0.206*xRCHO + 0.016*xACET + 0.007*xPROD1 +

0.492*xPROD2 + yR6OOH + 3.519*XC # 1.14e-11;

<T71H> M26C8 + OH = 1.663*RO2C + 0.433*RO2XC + 0.433*zRNO3 + 0.567*xHO2 +

0.108*xCCHO + 0.307*xRCHO + 0.145*xACET + 0.071*xPROD1 + 0.277*xPROD2 +

yR6OOH + 3.884*XC # 1.29e-11;

<T72H> M2C9 + OH = 1.446*RO2C + 0.449*RO2XC + 0.449*zRNO3 + 0.551*xHO2 +

0.035*xRCHO + 0.012*xACET + 0.516*xPROD2 + yR6OOH + 4.069*XC

# 1.28e-11;

<T73H> M3C9 + OH = 1.479*RO2C + 0.449*RO2XC + 0.449*zRNO3 + 0.551*xHO2 +

0.036*xCCHO + 0.062*xRCHO + 0.014*xPROD1 + 0.503*xPROD2 + yR6OOH +

3.974*XC # 1.14e-11;

<T74H> M4C9 + OH = 1.447*RO2C + 0.428*RO2XC + 0.428*zRNO3 + 0.572*xHO2 +

0.001*xHCHO + 0.019*xCCHO + 0.138*xRCHO + 0.004*xPROD1 + 0.522*xPROD2 +

yR6OOH + 3.831*XC # 1.14e-11;

<T75H> M33C8 + OH = 1.749*RO2C + 0.402*RO2XC + 0.402*zRNO3 + 0.59*xHO2 +

0.007*xMEO2 + 0.047*xHCHO + 0.365*xCCHO + 0.373*xRCHO + 0.004*xGLCHO +

0.188*xACET + 0.008*xPROD1 + 0.294*xPROD2 + yR6OOH + 3.317*XC

# 7.26e-12;

<T76H> M224C7 + OH = 1.751*RO2C + 0.43*RO2XC + 0.43*zRNO3 + 0.412*xHO2 +

0.158*xTBUO + 0.167*xHCHO + 0.002*xCCHO + 0.52*xRCHO + 0.007*xACET +

0.14*xPROD1 + 0.173*xPROD2 + yR6OOH + 3.438*XC # 7.78e-12;

<T77H> M225C7 + OH = 1.657*RO2C + 0.342*RO2XC + 0.342*zRNO3 + 0.497*xHO2 +

0.16*xTBUO + 0.025*xHCHO + 0.236*xCCHO + 0.434*xRCHO + 0.001*xGLCHO +

0.005*xACET + 0.21*xPROD1 + 0.233*xPROD2 + yR6OOH + 3.254*XC

# 7.78e-12;

<T78H> M23C8 + OH = 1.559*RO2C + 0.415*RO2XC + 0.415*zRNO3 + 0.585*xHO2 +

0.002*xHCHO + 0.03*xCCHO + 0.078*xRCHO + 0.27*xACET + 0.001*xPROD1 +

0.53*xPROD2 + yR6OOH + 3.22*XC # 1.14e-11;

<T79H> M25C8 + OH = 1.763*RO2C + 0.47*RO2XC + 0.47*zRNO3 + 0.53*xHO2 +

0.011*xHCHO + 0.001*xCCHO + 0.305*xRCHO + 0.162*xACET + 0.026*xPROD1 +

0.42*xPROD2 + yR6OOH + 3.142*XC # 1.14e-11;

<T80H> M2E3C7 + OH = 1.605*RO2C + 0.407*RO2XC + 0.407*zRNO3 + 0.593*xHO2 +

0.001*xHCHO + 0.04*xCCHO + 0.16*xRCHO + 0.349*xACET + 0.002*xPROD1 +

0.506*xPROD2 + yR6OOH + 2.906*XC # 1.18e-11;

<T81H> CYCC10 + OH = 1.585*RO2C + 0.447*RO2XC + 0.447*zRNO3 + 0.551*xHO2 +

Page 256: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

244

0.002*xRCO3 + 0.002*xCO + 0.009*xHCHO + 0.083*xCCHO + 0.236*xRCHO +

0.001*xGLCHO + 0.115*xACET + 0.355*xPROD2 + yR6OOH + 3.95*XC

# 1.51e-11;

<T82H> C4CYCC6 + OH = 1.364*RO2C + 0.412*RO2XC + 0.412*zRNO3 + 0.588*xHO2 +

0.025*xCCHO + 0.164*xRCHO + 0.494*xPROD2 + yR6OOH + 4.022*XC

# 1.47e-11;

<T83H> NC11 + OH = 1.324*RO2C + 0.447*RO2XC + 0.447*zRNO3 + 0.553*xHO2 +

0.013*xRCHO + 0.54*xPROD2 + yR6OOH + 5.039*XC # 1.23e-11;

<T84H> BRC11 + OH = 1.505*RO2C + 0.469*RO2XC + 0.469*zRNO3 + 0.531*xHO2 +

0.008*xCCHO + 0.139*xRCHO + 0.06*xACET + 0.007*xPROD1 + 0.436*xPROD2 +

yR6OOH + 4.929*XC # 1.28e-11;

<T85H> M26C9 + OH = 1.569*RO2C + 0.467*RO2XC + 0.467*zRNO3 + 0.533*xHO2 +

0.001*xCCHO + 0.22*xRCHO + 0.12*xACET + 0.006*xPROD1 + 0.377*xPROD2 +

yR6OOH + 4.89*XC # 1.28e-11;

<T86H> M3C10 + OH = 1.443*RO2C + 0.474*RO2XC + 0.474*zRNO3 + 0.526*xHO2 +

0.029*xCCHO + 0.038*xRCHO + 0.012*xPROD1 + 0.49*xPROD2 + yR6OOH +

4.996*XC # 1.29e-11;

<T87H> M4C10 + OH = 1.439*RO2C + 0.469*RO2XC + 0.469*zRNO3 + 0.531*xHO2 +

0.001*xCCHO + 0.079*xRCHO + 0.003*xPROD1 + 0.501*xPROD2 + yR6OOH +

4.929*XC # 1.29e-11;

<T88H> CYCC11 + OH = 1.539*RO2C + 0.49*RO2XC + 0.49*zRNO3 + 0.508*xHO2 +

0.001*xMECO3 + 0.001*xRCO3 + 0.002*xCO + 0.004*xHCHO + 0.083*xCCHO +

0.188*xRCHO + 0.001*xPROD1 + 0.356*xPROD2 + yR6OOH + 5.179*XC

# 1.68e-11;

<T89H> E1P2CC6 + OH = 1.57*RO2C + 0.514*RO2XC + 0.514*zRNO3 + 0.486*xHO2 +

0.003*xHCHO + 0.014*xCCHO + 0.123*xRCHO + 0.408*xPROD2 + yR6OOH +

5.068*XC # 1.70e-11;

<T90H> NC12 + OH = 1.31*RO2C + 0.458*RO2XC + 0.458*zRNO3 + 0.542*xHO2 +

0.011*xRCHO + 0.53*xPROD2 + yR6OOH + 6.039*XC # 1.32e-11;

<T91H> BRC12 + OH = 1.487*RO2C + 0.493*RO2XC + 0.493*zRNO3 + 0.507*xHO2 +

0.001*xHCHO + 0.052*xCCHO + 0.077*xRCHO + 0.03*xPROD1 + 0.477*xPROD2 +

yR6OOH + 5.724*XC # 1.44e-11;

<T92H> M36C10 + OH = 1.573*RO2C + 0.506*RO2XC + 0.506*zRNO3 + 0.494*xHO2 +

0.001*xHCHO + 0.087*xCCHO + 0.109*xRCHO + 0.055*xPROD1 + 0.459*xPROD2 +

yR6OOH + 5.488*XC # 1.45e-11;

<T93H> M3C11 + OH = 1.412*RO2C + 0.484*RO2XC + 0.484*zRNO3 + 0.516*xHO2 +

0.025*xCCHO + 0.033*xRCHO + 0.011*xPROD1 + 0.484*xPROD2 + yR6OOH +

5.999*XC # 1.43e-11;

<T94H> M5C11 + OH = 1.391*RO2C + 0.476*RO2XC + 0.476*zRNO3 + 0.524*xHO2 +

0.009*xCCHO + 0.057*xRCHO + 0.505*xPROD2 + yR6OOH + 5.925*XC

# 1.43e-11;

<T95H> NC13 + OH = 1.301*RO2C + 0.465*RO2XC + 0.465*zRNO3 + 0.535*xHO2 +

0.01*xRCHO + 0.525*xPROD2 + yR6OOH + 7.03*XC # 1.51e-11;

<T96H> NC14 + OH = 1.295*RO2C + 0.47*RO2XC + 0.47*zRNO3 + 0.53*xHO2 +

0.009*xRCHO + 0.521*xPROD2 + yR6OOH + 8.027*XC # 1.79e-11;

<T97H> NC15 + OH = 1.291*RO2C + 0.473*RO2XC + 0.473*zRNO3 + 0.527*xHO2 +

0.008*xRCHO + 0.519*xPROD2 + yR6OOH + 9.024*XC # 2.07e-11;

<T98H> NC16 + OH = 1.288*RO2C + 0.475*RO2XC + 0.475*zRNO3 + 0.525*xHO2 +

0.008*xRCHO + 0.517*xPROD2 + yR6OOH + 10.024*XC # 2.32e-11;

<T99H> PROPENE + OH = 0.984*RO2C + 0.016*RO2XC + 0.016*zRNO3 + 0.984*xHO2 +

0.984*xHCHO + 0.984*xCCHO + yROOH - 0.048*XC # 4.85e-12@-504;

<T99O> PROPENE + O3 = 0.35*OH + 0.165*HO2 + 0.355*MEO2 + 0.525*CO + 0.215*CO2 +

0.5*HCHO + 0.5*CCHO + 0.185*HCHO2 + 0.075*CCHO2 + 0.07*XC

# 5.51e-15@1878;

<T99N> PROPENE + NO3 = 0.949*RO2C + 0.051*RO2XC + 0.051*zRNO3 + 0.949*xHO2 +

yROOH + XN + 2.694*XC # 4.59e-13@1156;

<T99P> PROPENE + O3P = 0.45*RCHO + 0.55*PROD1 - 0.55*XC # 1.02e-11@280;

<T100H> ALLENE + OH = RO2C + xHO2 + xIPRD + yROOH - 2*XC # 7.66e-12@-74;

<T101H> BUTENE1 + OH = 0.986*RO2C + 0.027*RO2XC + 0.027*zRNO3 + 0.973*xHO2 +

0.948*xHCHO + 0.946*xRCHO + 0.007*xACRO + 0.015*xMVK + 0.005*xIPRD +

yROOH - 0.054*XC # 6.55e-12@-467;

<T101O> BUTENE1 + O3 = 0.063*RO2C + 0.128*OH + 0.095*HO2 + 0.063*xHO2 +

0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.063*xCCHO + 0.5*RCHO +

Page 257: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

245

0.185*HCHO2 + 0.425*RCHO2 + 0.063*yROOH + 0.023*XC # 3.36e-15@1774;

<T101N> BUTENE1 + NO3 = 0.995*RO2C + 0.08*RO2XC + 0.08*zRNO3 + 0.92*xHO2 +

0.075*xCCHO + 0.92*xRNO3 + yROOH + 0.08*XN - 2.15*XC # 3.14e-13@938;

<T101P> BUTENE1 + O3P = 0.45*RCHO + 0.55*PROD1 + 0.45*XC # 1.34e-11@350;

<T102H> ISOBUTEN + OH = 0.9*RO2C + 0.1*RO2XC + 0.1*zRNO3 + 0.9*xHO2 +

0.9*xHCHO + 0.9*xACET + yROOH - 0.2*XC # 9.47e-12@-504;

<T102O> ISOBUTEN + O3 = 0.667*RO2C + 0.72*OH + 0.053*HO2 + 0.667*xMECO3 +

0.17*CO + 0.04*CO2 + 0.667*HCHO + 0.667*xHCHO + 0.333*ACET +

0.123*HCHO2 + 0.667*yROOH # 2.70e-15@1632;

<T102N> ISOBUTEN + NO3 = 0.961*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.644*xNO2 +

0.316*xMEO2 + 0.644*xHCHO + 0.644*xACET + yROOH + 0.356*XN + 0.874*XC

# 3.44e-13;

<T102P> ISOBUTEN + O3P = 0.4*RCHO + 0.6*PROD1 + 0.4*XC # 1.14e-11@-117;

<T103H> C2BUTE + OH = 0.965*RO2C + 0.035*RO2XC + 0.035*zRNO3 + 0.965*xHO2 +

1.93*xCCHO + yROOH - 0.07*XC # 1.10e-11@-487;

<T103O> C2BUTE + O3 = 0.54*OH + 0.17*HO2 + 0.71*MEO2 + 0.54*CO + 0.31*CO2 +

CCHO + 0.15*CCHO2 + 0.14*XC # 3.22e-15@968;

<T103N> C2BUTE + NO3 = 0.92*RO2C + 0.08*RO2XC + 0.08*zRNO3 + 0.705*xNO2 +

0.215*xHO2 + 1.41*xCCHO + 0.215*xRNO3 + yROOH + 0.08*XN - 0.59*XC

# 3.52e-13;

<T103P> C2BUTE + O3P = PROD1 # 1.10e-11@-140;

<T104H> T2BUTE + OH = 0.965*RO2C + 0.035*RO2XC + 0.035*zRNO3 + 0.965*xHO2 +

1.93*xCCHO + yROOH - 0.07*XC # 1.01e-11@-550;

<T104O> T2BUTE + O3 = 0.54*OH + 0.17*HO2 + 0.71*MEO2 + 0.54*CO + 0.31*CO2 +

CCHO + 0.15*CCHO2 + 0.14*XC # 6.64e-15@1059;

<T104N> T2BUTE + NO3 = 0.92*RO2C + 0.08*RO2XC + 0.08*zRNO3 + 0.705*xNO2 +

0.215*xHO2 + 1.41*xCCHO + 0.215*xRNO3 + yROOH + 0.08*XN - 0.59*XC

# 1.10e-13^2.00@-382;

<T104P> T2BUTE + O3P = PROD1 # 1.09e-11@-180;

<T105H> BUTDE12 + OH = 0.961*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.961*xHO2 +

0.42*xMVK + 0.541*xIPRD + yROOH - 0.619*XC # 2.60e-11;

<T106H> BUTDE13 + OH = 1.189*RO2C + 0.049*RO2XC + 0.049*zRNO3 + 0.951*xHO2 +

0.708*xHCHO + 0.48*xACRO + 0.471*xIPRD + yROOH - 0.797*XC

# 1.48e-11@-448;

<T106O> BUTDE13 + O3 = 0.08*OH + 0.08*HO2 + 0.255*CO + 0.185*CO2 + 0.5*HCHO +

0.125*PROD2 + 0.5*ACRO + 0.185*HCHO2 + 0.375*RCHO2 - 0.5*XC

# 1.34e-14@2283;

<T106N> BUTDE13 + NO3 = 1.055*RO2C + 0.065*RO2XC + 0.065*zRNO3 + 0.12*xNO2 +

0.815*xHO2 + 0.115*xHCHO + 0.46*xMVK + 0.12*xIPRD + 0.355*xRNO3 +

yROOH + 0.524*XN - 1.075*XC # 1.00e-13;

<T106P> BUTDE13 + O3P = 0.235*RO2C + 0.015*RO2XC + 0.015*zRNO3 + 0.25*HO2 +

0.117*xHO2 + 0.118*xMACO3 + 0.115*xCO + 0.75*PROD2 + 0.115*xACRO +

0.001*xAFG1 + 0.001*xAFG2 + 0.25*yROOH - 1.532*XC # 2.26e-11@40;

<T107H> PENTEN1 + OH = 1.093*RO2C + 0.076*RO2XC + 0.076*zRNO3 + 0.924*xHO2 +

0.767*xHCHO + 0.047*xCCHO + 0.845*xRCHO + 0.019*xPROD2 + 0.047*xACRO +

0.005*xMVK + 0.009*xIPRD + yR6OOH + 0.828*XC # 3.14e-11;

<T107O> PENTEN1 + O3 = 0.061*RO2C + 0.001*RO2XC + 0.001*zRNO3 + 0.128*OH +

0.095*HO2 + 0.061*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.061*xRCHO + 0.013*PROD1 + 0.185*HCHO2 + 0.425*RCHO2 + 0.063*yR6OOH +

0.908*XC # 2.13e-15@1580;

<T107N> PENTEN1 + NO3 = 1.615*RO2C + 0.166*RO2XC + 0.166*zRNO3 + 0.834*xHO2 +

0.016*xRCHO + 0.834*xRNO3 + yR6OOH + 0.166*XN - 1.048*XC # 1.50e-14;

<T107P> PENTEN1 + O3P = 0.45*RCHO + 0.55*PROD1 + 1.45*XC # 1.78e-11@400;

<T108H> M1BUT3 + OH = 1.132*RO2C + 0.075*RO2XC + 0.075*zRNO3 + 0.9*xHO2 +

0.025*xMEO2 + 0.719*xHCHO + 0.698*xRCHO + 0.162*xGLCHO + 0.156*xACET +

0.011*xPROD2 + 0.002*xACRO + 0.019*xMACR + 0.03*xMVK + 0.009*xIPRD +

yR6OOH + 0.607*XC # 5.32e-12@-533;

<T108O> M1BUT3 + O3 = 0.06*RO2C + 0.003*RO2XC + 0.003*zRNO3 + 0.128*OH +

0.095*HO2 + 0.06*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.06*xACET + 0.013*PROD1 + 0.185*HCHO2 + 0.425*RCHO2 + 0.063*yR6OOH +

0.899*XC # 3.36e-15@1749;

<T108N> M1BUT3 + NO3 = 1.678*RO2C + 0.149*RO2XC + 0.149*zRNO3 + 0.851*xHO2 +

0.794*xACET + 0.884*xRNO3 + yR6OOH + 0.116*XN - 3.58*XC # 1.39e-14;

Page 258: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

246

<T108P> M1BUT3 + O3P = 0.45*RCHO + 0.55*PROD1 + 1.45*XC # 1.03e-11@270;

<T109H> M1BUT2 + OH = 0.939*RO2C + 0.066*RO2XC + 0.066*zRNO3 + 0.934*xHO2 +

0.924*xHCHO + 0.92*xPROD1 + 0.004*xMVK + 0.011*xIPRD + yR6OOH +

0.071*XC # 6.10e-11;

<T109O> M1BUT2 + O3 = 0.64*RO2C + 0.026*RO2XC + 0.026*zRNO3 + 0.72*OH +

0.053*HO2 + 0.558*xMECO3 + 0.082*xRCO3 + 0.17*CO + 0.04*CO2 +

0.667*HCHO + 0.082*xHCHO + 0.558*xCCHO + 0.333*PROD1 + 0.123*HCHO2 +

0.667*yR6OOH - 0.048*XC # 4.90e-15@1741;

<T109N> M1BUT2 + NO3 = 1.851*RO2C + 0.065*RO2XC + 0.065*zRNO3 + 0.019*xNO2 +

0.916*xHO2 + 0.019*xHCHO + 0.916*xCCHO + 0.019*xPROD1 + yR6OOH +

0.981*XN + 2.683*XC # 3.32e-13;

<T109P> M1BUT2 + O3P = 0.4*RCHO + 0.6*PROD1 + 1.4*XC # 1.80e-11;

<T110H> M2BUT2 + OH = 0.935*RO2C + 0.065*RO2XC + 0.065*zRNO3 + 0.935*xHO2 +

0.935*xCCHO + 0.935*xACET + yR6OOH - 0.065*XC # 1.92e-11@-450;

<T110O> M2BUT2 + O3 = 0.7*RO2C + 0.862*OH + 0.051*HO2 + 0.213*MEO2 +

0.7*xMECO3 + 0.162*CO + 0.093*CO2 + 0.7*xHCHO + 0.7*CCHO + 0.3*ACET +

0.045*CCHO2 + 0.7*yR6OOH + 0.042*XC # 6.51e-15@829;

<T110N> M2BUT2 + NO3 = 0.935*RO2C + 0.065*RO2XC + 0.065*zRNO3 + 0.935*xNO2 +

0.935*xCCHO + 0.935*xACET + yR6OOH + 0.065*XN - 0.065*XC # 9.37e-12;

<T110P> M2BUT2 + O3P = PROD1 + XC # 2.44e-11@-220;

<T111H> C2PENT + OH = 0.944*RO2C + 0.066*RO2XC + 0.066*zRNO3 + 0.934*xHO2 +

0.931*xCCHO + 0.921*xRCHO + 0.012*xIPRD + yR6OOH - 0.081*XC

# 6.50e-11;

<T111O> C2PENT + O3 = 0.063*RO2C + 0.318*OH + 0.1*HO2 + 0.063*xHO2 +

0.355*MEO2 + 0.318*CO + 0.183*CO2 + 0.5*CCHO + 0.063*xCCHO + 0.5*RCHO +

0.075*CCHO2 + 0.425*RCHO2 + 0.063*yR6OOH + 0.093*XC # 3.70e-15@1002;

<T111N> C2PENT + NO3 = 1.148*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.471*xNO2 +

0.395*xHO2 + 0.481*xCCHO + 0.471*xRCHO + 0.395*xRNO3 + yR6OOH +

0.134*XN - 0.549*XC # 3.70e-13;

<T111P> C2PENT + O3P = PROD1 + XC # 1.14e-11@-120;

<T112H> T2PENT + OH = 0.939*RO2C + 0.066*RO2XC + 0.066*zRNO3 + 0.934*xHO2 +

0.926*xCCHO + 0.921*xRCHO + 0.013*xIPRD + yR6OOH - 0.076*XC

# 6.70e-11;

<T112O> T2PENT + O3 = 0.063*RO2C + 0.318*OH + 0.1*HO2 + 0.063*xHO2 +

0.355*MEO2 + 0.318*CO + 0.183*CO2 + 0.5*CCHO + 0.063*xCCHO + 0.5*RCHO +

0.075*CCHO2 + 0.425*RCHO2 + 0.063*yR6OOH + 0.093*XC # 7.10e-15@1132;

<T112N> T2PENT + NO3 = 1.148*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.471*xNO2 +

0.395*xHO2 + 0.481*xCCHO + 0.471*xRCHO + 0.395*xRNO3 + yR6OOH +

0.134*XN - 0.549*XC # 3.70e-13;

<T112P> T2PENT + O3P = PROD1 + XC # 1.15e-11@-180;

<T113H> CYCPNTE + OH = 0.99*RO2C + 0.071*RO2XC + 0.071*zRNO3 + 0.921*xHO2 +

0.009*xMACO3 + 0.018*xCO + 0.028*xHCHO + 0.901*xRCHO + 0.018*xACRO +

0.001*xMVK + yR6OOH + 1.731*XC # 6.70e-11;

<T113O> CYCPNTE + O3 = 0.12*RO2C + 0.005*RO2XC + 0.005*zRNO3 + 0.095*OH +

0.03*HO2 + 0.12*xRCO3 + 0.095*CO + 0.055*CO2 + 0.875*RCHO +

0.125*yR6OOH + 1.835*XC # 1.80e-15@350;

<T113N> CYCPNTE + NO3 = 1.013*RO2C + 0.125*RO2XC + 0.125*zRNO3 + 0.812*xNO2 +

0.064*xHO2 + 0.735*xRCHO + 0.077*xMGLY + 0.064*xRNO3 + yR6OOH +

0.125*XN + 1.43*XC # 4.20e-13;

<T113P> CYCPNTE + O3P = 0.24*PROD1 + 0.76*PROD2 - 0.52*XC # 2.40e-11@40;

<T114H> HEXENE1 + OH = 1.342*RO2C + 0.104*RO2XC + 0.104*zRNO3 + 0.896*xHO2 +

0.483*xHCHO + 0.005*xCCHO + 0.612*xRCHO + 0.263*xPROD2 + 0.048*xACRO +

0.009*xMVK + 0.008*xIPRD + yR6OOH + 1.249*XC # 3.70e-11;

<T114O> HEXENE1 + O3 = 0.105*RO2C + 0.004*RO2XC + 0.004*zRNO3 + 0.128*OH +

0.095*HO2 + 0.058*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.058*xRCHO + 0.013*PROD1 + 0.185*HCHO2 + 0.425*RCHO2 + 0.063*yR6OOH +

1.899*XC # 1.62e-15@1480;

<T114N> HEXENE1 + NO3 = 1.608*RO2C + 0.237*RO2XC + 0.237*zRNO3 + 0.763*xHO2 +

0.763*xRNO3 + yR6OOH + 0.237*XN # 1.80e-14;

<T114P> HEXENE1 + O3P = 0.45*RCHO + 0.55*PROD1 + 2.45*XC # 1.51e-11@330;

<T115H> M33BUT1 + OH = 1.455*RO2C + 0.123*RO2XC + 0.123*zRNO3 + 0.37*xHO2 +

0.006*xMEO2 + 0.501*xTBUO + 0.361*xHCHO + 0.358*xRCHO + 0.527*xGLCHO +

0.005*xACET + 0.005*xMACR + 0.006*xMVK + 0.002*xIPRD + yR6OOH +

Page 259: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

247

0.694*XC # 2.80e-11;

<T115O> M33BUT1 + O3 = 0.06*RO2C + 0.002*RO2XC + 0.002*zRNO3 + 0.128*OH +

0.095*HO2 + 0.06*xTBUO + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.013*PROD1 + 0.185*HCHO2 + 0.425*RCHO2 + 0.063*yR6OOH + 1.845*XC

# 3.36e-15@2014;

<T115N> M33BUT1 + NO3 = 1.658*RO2C + 0.188*RO2XC + 0.188*zRNO3 + 0.812*xTBUO +

0.845*xRNO3 + yR6OOH + 0.155*XN - 3.446*XC # 1.38e-14;

<T115P> M33BUT1 + O3P = 0.45*RCHO + 0.55*PROD1 + 2.45*XC # 4.80e-12;

<T116H> M3C5E1 + OH = 1.204*RO2C + 0.121*RO2XC + 0.121*zRNO3 + 0.878*xHO2 +

0.654*xHCHO + 0.154*xCCHO + 0.689*xRCHO + 0.09*xGLCHO + 0.04*xPROD1 +

0.021*xPROD2 + 0.007*xACRO + 0.051*xMVK + 0.027*xIPRD + yR6OOH +

1.419*XC # 3.55e-11;

<T116O> M3C5E1 + O3 = 0.08*RO2C + 0.005*RO2XC + 0.005*zRNO3 + 0.128*OH +

0.095*HO2 + 0.057*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO +

0.045*xCCHO + 0.5*RCHO + 0.013*PROD1 + 0.035*xPROD1 + 0.185*HCHO2 +

0.425*RCHO2 + 0.063*yR6OOH + 1.837*XC # 3.36e-15@2022;

<T116N> M3C5E1 + NO3 = 1.825*RO2C + 0.224*RO2XC + 0.224*zRNO3 + 0.776*xHO2 +

0.454*xCCHO + 0.348*xPROD1 + 0.826*xRNO3 + yR6OOH + 0.174*XN - 2.6*XC

# 1.39e-14;

<T116P> M3C5E1 + O3P = 0.45*RCHO + 0.55*PROD2 + 1.35*XC # 5.60e-12;

<T117H> M2C5E1 + OH = 0.929*RO2C + 0.101*RO2XC + 0.101*zRNO3 + 0.899*xHO2 +

0.872*xHCHO + 0.024*xCCHO + 0.868*xPROD1 + 0.023*xMACR + 0.008*xIPRD +

yR6OOH + 0.87*XC # 6.30e-11;

<T117O> M2C5E1 + O3 = 0.623*RO2C + 0.043*RO2XC + 0.043*zRNO3 + 0.72*OH +

0.053*HO2 + 0.556*xMECO3 + 0.067*xRCO3 + 0.17*CO + 0.04*CO2 +

0.667*HCHO + 0.067*xHCHO + 0.556*xRCHO + 0.333*PROD1 + 0.123*HCHO2 +

0.667*yR6OOH + 0.362*XC # 4.90e-15@1706;

<T117N> M2C5E1 + NO3 = 1.729*RO2C + 0.173*RO2XC + 0.173*zRNO3 + 0.827*xHO2 +

0.156*xRCHO + 0.67*xRNO3 + yR6OOH + 0.33*XN + 0.474*XC # 3.32e-13;

<T117P> M2C5E1 + O3P = 0.4*RCHO + 0.6*PROD1 + 2.4*XC # 2.03e-11;

<T118H> M2C5E2 + OH = 0.909*RO2C + 0.099*RO2XC + 0.099*zRNO3 + 0.9*xHO2 +

0.001*xMEO2 + 0.004*xCCHO + 0.893*xRCHO + 0.895*xACET + 0.002*xACRO +

0.004*xMACR + 0.002*xIPRD + yR6OOH + 0.001*XC # 8.90e-11;

<T118O> M2C5E2 + O3 = 0.737*RO2C + 0.728*OH + 0.009*HO2 + 0.038*xHO2 +

0.7*xMECO3 + 0.029*CO + 0.017*CO2 + 0.7*xHCHO + 0.038*xCCHO +

0.7*RCHO + 0.3*ACET + 0.255*RCHO2 + 0.737*yR6OOH + 0.013*XC

# 3.48e-16;

<T118N> M2C5E2 + NO3 = 1.068*RO2C + 0.115*RO2XC + 0.115*zRNO3 + 0.725*xNO2 +

0.159*xHO2 + 0.006*xHCHO + 0.725*xRCHO + 0.725*xACET + 0.159*xRNO3 +

yR6OOH + 0.115*XN # 9.37e-12;

<T118P> M2C5E2 + O3P = PROD1 + 2*XC # 3.86e-11;

<T119H> C2C6E + OH = 0.931*RO2C + 0.102*RO2XC + 0.102*zRNO3 + 0.898*xHO2 +

0.004*xHCHO + 0.894*xCCHO + 0.875*xRCHO + 0.008*xMVK + 0.02*xIPRD +

yR6OOH + 0.839*XC # 6.60e-11;

<T119O> C2C6E + O3 = 0.061*RO2C + 0.001*RO2XC + 0.001*zRNO3 + 0.318*OH +

0.1*HO2 + 0.061*xHO2 + 0.355*MEO2 + 0.318*CO + 0.183*CO2 + 0.5*CCHO +

0.5*RCHO + 0.061*xRCHO + 0.013*PROD1 + 0.075*CCHO2 + 0.425*RCHO2 +

0.063*yR6OOH + 0.978*XC # 3.20e-15@1017;

<T119N> C2C6E + NO3 = 1.466*RO2C + 0.221*RO2XC + 0.221*zRNO3 + 0.12*xNO2 +

0.659*xHO2 + 0.12*xCCHO + 0.127*xRCHO + 0.659*xRNO3 + yR6OOH +

0.221*XN + 0.099*XC # 3.70e-13;

<T119P> C2C6E + O3P = 0.76*PROD1 + 0.24*PROD2 + 1.52*XC # 2.05e-11;

<T120H> C3C6E + OH = 0.963*RO2C + 0.105*RO2XC + 0.105*zRNO3 + 0.895*xHO2 +

0.015*xCCHO + 1.668*xRCHO + 0.041*xPROD2 + 0.023*xIPRD + yR6OOH +

0.025*XC # 6.56e-11;

<T120O> C3C6E + O3 = 0.125*RO2C + 0.095*OH + 0.03*HO2 + 0.125*xHO2 + 0.095*CO +

0.055*CO2 + 0.125*xCCHO + RCHO + 0.85*RCHO2 + 0.125*yR6OOH + 0.05*XC

# 3.22e-15@934;

<T120N> C3C6E + NO3 = 1.457*RO2C + 0.22*RO2XC + 0.22*zRNO3 + 0.072*xNO2 +

0.708*xHO2 + 0.01*xCCHO + 0.144*xRCHO + 0.708*xRNO3 + yR6OOH +

0.22*XN - 0.02*XC # 3.70e-13;

<T120P> C3C6E + O3P = 0.76*PROD1 + 0.24*PROD2 + 1.52*XC # 2.05e-11;

<T121H> M3C5E2 + OH = 0.908*RO2C + 0.099*RO2XC + 0.099*zRNO3 + 0.901*xHO2 +

Page 260: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

248

0.899*xCCHO + 0.893*xPROD1 + 0.007*xMVK + 0.002*xIPRD + yR6OOH +

0.002*XC # 8.85e-11;

<T121O> M3C5E2 + O3 = 0.672*RO2C + 0.028*RO2XC + 0.028*zRNO3 + 0.862*OH +

0.051*HO2 + 0.213*MEO2 + 0.586*xMECO3 + 0.087*xRCO3 + 0.162*CO +

0.093*CO2 + 0.087*xHCHO + 0.7*CCHO + 0.586*xCCHO + 0.3*PROD1 +

0.045*CCHO2 + 0.7*yR6OOH - 0.018*XC # 6.51e-15@796;

<T121N> M3C5E2 + NO3 = 0.932*RO2C + 0.098*RO2XC + 0.098*zRNO3 + 0.872*xNO2 +

0.03*xHO2 + 0.902*xCCHO + 0.872*xPROD1 + 0.03*xRNO3 + yR6OOH +

0.098*XN - 0.06*XC # 9.37e-12;

<T121P> M3C5E2 + O3P = 0.6*PROD1 + 0.4*PROD2 + 1.2*XC # 3.71e-11;

<T122H> M4T2C5E + OH = 0.96*RO2C + 0.105*RO2XC + 0.105*zRNO3 + 0.885*xHO2 +

0.01*xMEO2 + 0.837*xCCHO + 0.825*xRCHO + 0.046*xPROD2 + 0.024*xIPRD +

yR6OOH + 0.815*XC # 1.13e-11@-500;

<T122O> M4T2C5E + O3 = 0.06*RO2C + 0.003*RO2XC + 0.003*zRNO3 + 0.318*OH +

0.1*HO2 + 0.06*xHO2 + 0.355*MEO2 + 0.318*CO + 0.183*CO2 + 0.5*CCHO +

0.5*RCHO + 0.06*xACET + 0.013*PROD1 + 0.075*CCHO2 + 0.425*RCHO2 +

0.063*yR6OOH + 0.969*XC # 1.15e-16;

<T122N> M4T2C5E + NO3 = 1.525*RO2C + 0.206*RO2XC + 0.206*zRNO3 + 0.068*xNO2 +

0.726*xHO2 + 0.068*xCCHO + 0.068*xRCHO + 0.336*xACET + 0.74*xRNO3 +

yR6OOH + 0.192*XN - 1.024*XC # 3.70e-13;

<T122P> M4T2C5E + O3P = 0.88*PROD1 + 0.12*PROD2 + 1.76*XC # 1.84e-11;

<T123H> T2C6E + OH = 0.927*RO2C + 0.101*RO2XC + 0.101*zRNO3 + 0.899*xHO2 +

0.898*xCCHO + 0.871*xRCHO + 0.008*xMVK + 0.02*xIPRD + yR6OOH +

0.853*XC # 6.60e-11;

<T123O> T2C6E + O3 = 0.061*RO2C + 0.001*RO2XC + 0.001*zRNO3 + 0.318*OH +

0.1*HO2 + 0.061*xHO2 + 0.355*MEO2 + 0.318*CO + 0.183*CO2 + 0.5*CCHO +

0.5*RCHO + 0.061*xRCHO + 0.013*PROD1 + 0.075*CCHO2 + 0.425*RCHO2 +

0.063*yR6OOH + 0.978*XC # 7.60e-15@1163;

<T123N> T2C6E + NO3 = 1.466*RO2C + 0.221*RO2XC + 0.221*zRNO3 + 0.12*xNO2 +

0.659*xHO2 + 0.12*xCCHO + 0.127*xRCHO + 0.659*xRNO3 + yR6OOH +

0.221*XN + 0.099*XC # 3.70e-13;

<T123P> T2C6E + O3P = 0.76*PROD1 + 0.24*PROD2 + 1.52*XC # 2.05e-11;

<T124H> T3C6E + OH = 0.955*RO2C + 0.104*RO2XC + 0.104*zRNO3 + 0.895*xHO2 +

0.006*xCCHO + 1.668*xRCHO + 0.041*xPROD2 + 0.024*xIPRD + yR6OOH +

0.006*XC # 6.56e-11;

<T124O> T3C6E + O3 = 0.125*RO2C + 0.095*OH + 0.03*HO2 + 0.125*xHO2 + 0.095*CO +

0.055*CO2 + 0.125*xCCHO + RCHO + 0.85*RCHO2 + 0.125*yR6OOH + 0.05*XC

# 6.64e-15@1110;

<T124N> T3C6E + NO3 = 1.457*RO2C + 0.22*RO2XC + 0.22*zRNO3 + 0.072*xNO2 +

0.708*xHO2 + 0.01*xCCHO + 0.144*xRCHO + 0.708*xRNO3 + yR6OOH +

0.22*XN - 0.02*XC # 3.70e-13;

<T124P> T3C6E + O3P = 0.76*PROD1 + 0.24*PROD2 + 1.52*XC # 2.05e-11;

<T125H> C6OLE2 + OH = 0.929*RO2C + 0.102*RO2XC + 0.102*zRNO3 + 0.899*xHO2 +

0.002*xHCHO + 0.896*xCCHO + 0.873*xRCHO + 0.008*xMVK + 0.02*xIPRD +

yR6OOH + 0.843*XC # 6.60e-11;

<T125P> C6OLE2 + O3P = 0.76*PROD1 + 0.24*PROD2 + 1.52*XC # 2.05e-11;

<T126H> M3CC5E + OH = 0.969*RO2C + 0.107*RO2XC + 0.107*zRNO3 + 0.881*xHO2 +

0.003*xMECO3 + 0.009*xMACO3 + 0.014*xCO + 0.027*xHCHO + 0.005*xCCHO +

0.862*xRCHO + 0.008*xACRO + 0.005*xMACR + 0.008*xIPRD + 0.002*xAFG1 +

0.002*xAFG2 + yR6OOH + 2.575*XC # 6.67e-11;

<T126O> M3CC5E + O3 = 0.115*RO2C + 0.011*RO2XC + 0.011*zRNO3 + 0.095*OH +

0.03*HO2 + 0.002*xHO2 + 0.112*xRCO3 + 0.095*CO + 0.055*CO2 +

0.875*RCHO + 0.002*xRCHO + 0.125*yR6OOH + 2.817*XC # 1.15e-16;

<T126N> M3CC5E + NO3 = 1.218*RO2C + 0.218*RO2XC + 0.218*zRNO3 + 0.641*xNO2 +

0.117*xHO2 + 0.024*xRCO3 + 0.024*xCCHO + 0.442*xRCHO + 0.199*xMGLY +

0.117*xRNO3 + yR6OOH + 0.242*XN + 1.947*XC # 3.70e-13;

<T126P> M3CC5E + O3P = PROD2 # 2.05e-11;

<T127H> M1CC5E + OH = 0.916*RO2C + 0.099*RO2XC + 0.099*zRNO3 + 0.901*xHO2 +

0.007*xCO + 0.007*xHCHO + 0.893*xRCHO + 0.003*xMACR + 0.004*xMVK +

0.001*xIPRD + yR6OOH + 2.68*XC # 8.96e-11;

<T127O> M1CC5E + O3 = 0.667*RO2C + 0.071*RO2XC + 0.071*zRNO3 + 0.728*OH +

0.009*HO2 + 0.035*xHO2 + 0.564*xMECO3 + 0.068*xRCO3 + 0.029*CO +

0.017*CO2 + 0.068*xHCHO + 0.599*xRCHO + 0.008*PROD1 + 0.255*RCHO2 +

Page 261: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

249

0.737*yR6OOH + 1.534*XC # 1.08e-14@829;

<T127N> M1CC5E + NO3 = 0.93*RO2C + 0.101*RO2XC + 0.101*zRNO3 + 0.888*xNO2 +

0.011*xHO2 + 0.872*xRCHO + 0.016*xBACL + 0.011*xRNO3 + yR6OOH +

0.101*XN + 2.648*XC # 9.37e-12;

<T127P> M1CC5E + O3P = PROD2 # 3.71e-11;

<T128H> CYCHEXE + OH = 0.966*RO2C + 0.111*RO2XC + 0.111*zRNO3 + 0.87*xHO2 +

0.019*xRCO3 + 0.001*xHCHO + 0.843*xRCHO + 0.001*xACRO + 0.034*xIPRD +

yR6OOH + 2.574*XC # 6.77e-11;

<T128O> CYCHEXE + O3 = 0.225*RO2C + 0.016*RO2XC + 0.016*zRNO3 + 0.095*OH +

0.03*HO2 + 0.109*xHO2 + 0.095*CO + 0.008*xCO + 0.055*CO2 + 0.875*RCHO +

0.109*xRCHO + 0.125*yR6OOH + 2.794*XC # 2.87e-15@1063;

<T128N> CYCHEXE + NO3 = 0.941*RO2C + 0.165*RO2XC + 0.165*zRNO3 + 0.296*xNO2 +

0.539*xHO2 + 0.296*xRCHO + 0.539*xRNO3 + yR6OOH + 0.165*XN + 0.888*XC

# 5.10e-13;

<T128P> CYCHEXE + O3P = PROD2 # 2.21e-11@30;

<T129H> T2C7E + OH = 0.899*RO2C + 0.142*RO2XC + 0.142*zRNO3 + 0.858*xHO2 +

0.002*xHCHO + 0.819*xCCHO + 0.833*xRCHO + 0.016*xPROD2 + 0.01*xMVK +

0.021*xIPRD + yR6OOH + 1.768*XC # 6.80e-11;

<T129O> T2C7E + O3 = 0.105*RO2C + 0.004*RO2XC + 0.004*zRNO3 + 0.318*OH +

0.1*HO2 + 0.058*xHO2 + 0.355*MEO2 + 0.318*CO + 0.183*CO2 + 0.5*CCHO +

0.5*RCHO + 0.058*xRCHO + 0.013*PROD1 + 0.075*CCHO2 + 0.425*RCHO2 +

0.063*yR6OOH + 1.969*XC # 1.15e-16;

<T129N> T2C7E + NO3 = 1.498*RO2C + 0.299*RO2XC + 0.299*zRNO3 + 0.013*xNO2 +

0.689*xHO2 + 0.013*xCCHO + 0.013*xRCHO + 0.689*xRNO3 + yR6OOH +

0.299*XN + 1.007*XC # 3.70e-13;

<T129P> T2C7E + O3P = PROD2 + XC # 2.34e-11;

<T130H> T3C7E + OH = 0.942*RO2C + 0.147*RO2XC + 0.147*zRNO3 + 0.853*xHO2 +

0.027*xCCHO + 1.557*xRCHO + 0.042*xPROD2 + 0.002*xMVK + 0.035*xIPRD +

yR6OOH + 0.958*XC # 6.70e-11;

<T130O> T3C7E + O3 = 0.124*RO2C + 0.001*RO2XC + 0.001*zRNO3 + 0.095*OH +

0.03*HO2 + 0.124*xHO2 + 0.095*CO + 0.055*CO2 + 0.063*xCCHO + RCHO +

0.061*xRCHO + 0.013*PROD1 + 0.85*RCHO2 + 0.125*yR6OOH + 0.933*XC

# 1.15e-16;

<T130N> T3C7E + NO3 = 1.465*RO2C + 0.293*RO2XC + 0.293*zRNO3 + 0.025*xNO2 +

0.682*xHO2 + 0.055*xRCHO + 0.682*xRNO3 + yR6OOH + 0.293*XN + 0.985*XC

# 3.70e-13;

<T130P> T3C7E + O3P = PROD2 + XC # 2.05e-11;

<T131H> C7OLE1 + OH = 1.272*RO2C + 0.2*RO2XC + 0.2*zRNO3 + 0.8*xHO2 +

0.394*xHCHO + 0.004*xCCHO + 0.504*xRCHO + 0.27*xPROD2 + 0.037*xACRO +

0.015*xMVK + 0.013*xIPRD + yR6OOH + 2.03*XC # 4.00e-11;

<T131O> C7OLE1 + O3 = 0.113*RO2C + 0.008*RO2XC + 0.008*zRNO3 + 0.128*OH +

0.095*HO2 + 0.055*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.055*xRCHO + 0.013*PROD1 + 0.185*HCHO2 + 0.425*RCHO2 + 0.063*yR6OOH +

2.884*XC # 4.20e-15@1756;

<T131N> C7OLE1 + NO3 = 1.509*RO2C + 0.3*RO2XC + 0.3*zRNO3 + 0.7*xHO2 +

0.7*xRNO3 + yR6OOH + 0.3*XN + XC # 2.00e-14;

<T131P> C7OLE1 + O3P = 0.45*RCHO + 0.55*PROD2 + 2.35*XC # 8.70e-12;

<T132H> C8COLE + OH = 1.287*RO2C + 0.268*RO2XC + 0.268*zRNO3 + 0.732*xHO2 +

0.037*xCCHO + 0.578*xRCHO + 0.405*xPROD2 + 0.007*xMVK + 0.039*xIPRD +

yR6OOH + 1.931*XC # 6.90e-11;

<T132O> C8COLE + O3 = 0.123*RO2C + 0.003*RO2XC + 0.003*zRNO3 + 0.095*OH +

0.03*HO2 + 0.123*xHO2 + 0.095*CO + 0.055*CO2 + RCHO + 0.123*xRCHO +

0.025*PROD1 + 0.85*RCHO2 + 0.125*yR6OOH + 1.813*XC # 6.64e-15@1172;

<T132N> C8COLE + NO3 = 1.426*RO2C + 0.355*RO2XC + 0.355*zRNO3 + 0.645*xHO2 +

0.645*xRNO3 + yR6OOH + 0.355*XN + 2*XC # 3.70e-13;

<T132P> C8COLE + O3P = PROD2 + 2*XC # 2.40e-11;

<T133H> OCTENE1 + OH = 1.241*RO2C + 0.26*RO2XC + 0.26*zRNO3 + 0.74*xHO2 +

0.359*xHCHO + 0.457*xRCHO + 0.259*xPROD2 + 0.043*xACRO + 0.013*xMVK +

0.012*xIPRD + yR6OOH + 2.915*XC # 3.83e-11;

<T133O> OCTENE1 + O3 = 0.107*RO2C + 0.012*RO2XC + 0.012*zRNO3 + 0.128*OH +

0.095*HO2 + 0.051*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.051*xRCHO + 0.013*PROD2 + 0.185*HCHO2 + 0.425*RCHO2 + 0.063*yR6OOH +

3.846*XC # 3.36e-15@1633;

Page 262: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

250

<T133N> OCTENE1 + NO3 = 1.426*RO2C + 0.355*RO2XC + 0.355*zRNO3 + 0.645*xHO2 +

0.645*xRNO3 + yR6OOH + 0.355*XN + 2*XC # 1.39e-14;

<T133P> OCTENE1 + O3P = 0.45*RCHO + 0.55*PROD2 + 3.35*XC # 5.60e-12;

<T134H> M244C5E1 + OH = 0.85*RO2C + 0.177*RO2XC + 0.177*zRNO3 + 0.813*xHO2 +

0.01*xTBUO + 0.809*xHCHO + 0.007*xRCHO + 0.801*xPROD1 + 0.011*xMACR +

0.005*xIPRD + yR6OOH + 2.795*XC # 5.97e-11;

<T134O> M244C5E1 + O3 = 0.577*RO2C + 0.09*RO2XC + 0.09*zRNO3 + 0.72*OH +

0.053*HO2 + 0.515*xMECO3 + 0.062*xRCO3 + 0.17*CO + 0.04*CO2 +

0.667*HCHO + 0.062*xHCHO + 0.515*xRCHO + 0.333*PROD1 + 0.123*HCHO2 +

0.667*yR6OOH + 2.305*XC # 1.18e-17;

<T134N> M244C5E1 + NO3 = 2.576*RO2C + 0.442*RO2XC + 0.442*zRNO3 + 0.047*xNO2 +

0.495*xHO2 + 0.015*xTBUO + 1.153*xHCHO + 0.048*xRCHO + 0.334*xACET +

0.174*xRNO3 + yR6OOH + 0.779*XN + 1.945*XC # 3.32e-13;

<T134P> M244C5E1 + O3P = 0.4*RCHO + 0.6*PROD1 + 4.4*XC # 1.73e-11;

<T135H> C9E1 + OH = 1.199*RO2C + 0.309*RO2XC + 0.309*zRNO3 + 0.691*xHO2 +

0.331*xHCHO + 0.417*xRCHO + 0.252*xPROD2 + 0.041*xACRO + 0.012*xMVK +

0.01*xIPRD + yR6OOH + 3.831*XC # 3.98e-11;

<T135O> C9E1 + O3 = 0.101*RO2C + 0.016*RO2XC + 0.016*zRNO3 + 0.128*OH +

0.095*HO2 + 0.047*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.047*xRCHO + 0.013*PROD2 + 0.185*HCHO2 + 0.425*RCHO2 + 0.063*yR6OOH +

4.834*XC # 1.01e-17;

<T135N> C9E1 + NO3 = 1.392*RO2C + 0.403*RO2XC + 0.403*zRNO3 + 0.597*xHO2 +

0.597*xRNO3 + yR6OOH + 0.403*XN + 3*XC # 1.39e-14;

<T135P> C9E1 + O3P = 0.45*RCHO + 0.55*PROD2 + 4.35*XC # 5.60e-12;

<T136H> T4C9E + OH = 1.08*RO2C + 0.277*RO2XC + 0.277*zRNO3 + 0.723*xHO2 +

0.002*xHCHO + 0.02*xCCHO + 0.912*xRCHO + 0.236*xPROD2 + 0.011*xMVK +

0.036*xIPRD + yR6OOH + 2.92*XC # 6.98e-11;

<T136O> T4C9E + O3 = 0.167*RO2C + 0.006*RO2XC + 0.006*zRNO3 + 0.095*OH +

0.03*HO2 + 0.119*xHO2 + 0.095*CO + 0.055*CO2 + RCHO + 0.119*xRCHO +

0.025*PROD1 + 0.85*RCHO2 + 0.125*yR6OOH + 2.807*XC # 1.15e-16;

<T136N> T4C9E + NO3 = 1.362*RO2C + 0.395*RO2XC + 0.395*zRNO3 + 0.005*xNO2 +

0.6*xHO2 + 0.01*xRCHO + 0.6*xRNO3 + yR6OOH + 0.395*XN + 3*XC

# 3.70e-13;

<T136P> T4C9E + O3P = PROD2 + 3*XC # 2.05e-11;

<T137H> C10E1 + OH = 1.163*RO2C + 0.342*RO2XC + 0.342*zRNO3 + 0.658*xHO2 +

0.308*xHCHO + 0.388*xRCHO + 0.252*xPROD2 + 0.038*xACRO + 0.01*xMVK +

0.007*xIPRD + yR6OOH + 4.775*XC # 4.12e-11;

<T137O> C10E1 + O3 = 0.099*RO2C + 0.021*RO2XC + 0.021*zRNO3 + 0.128*OH +

0.095*HO2 + 0.042*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.037*xRCHO + 0.013*PROD2 + 0.005*xPROD2 + 0.185*HCHO2 + 0.425*RCHO2 +

0.063*yR6OOH + 5.804*XC # 3.36e-15@1755;

<T137N> C10E1 + NO3 = 1.358*RO2C + 0.433*RO2XC + 0.433*zRNO3 + 0.567*xHO2 +

0.567*xRNO3 + yR6OOH + 0.433*XN + 4*XC # 1.40e-14;

<T137P> C10E1 + O3P = 0.45*RCHO + 0.55*PROD2 + 5.35*XC # 5.60e-12;

<T138H> E34C6E2 + OH = 0.834*RO2C + 0.243*RO2XC + 0.243*zRNO3 + 0.757*xHO2 +

0.002*xHCHO + 0.774*xCCHO + 0.002*xRCHO + 0.719*xPROD2 + 0.003*xMVK +

0.035*xIPRD + yR6OOH + 2.485*XC # 9.39e-11;

<T138O> E34C6E2 + O3 = 0.579*RO2C + 0.121*RO2XC + 0.121*zRNO3 + 0.862*OH +

0.051*HO2 + 0.213*MEO2 + 0.579*xRCO3 + 0.162*CO + 0.093*CO2 +

0.7*CCHO + 0.141*xCCHO + 0.438*xPROD1 + 0.3*PROD2 + 0.045*CCHO2 +

0.7*yR6OOH + 1.745*XC # 6.78e-17@829;

<T138N> E34C6E2 + NO3 = 1.685*RO2C + 0.323*RO2XC + 0.323*zRNO3 + 0.048*xNO2 +

0.629*xHO2 + 0.314*xCCHO + 0.263*xRCHO + 0.354*xPROD1 + 0.048*xPROD2 +

0.709*xRNO3 + yR6OOH + 0.242*XN + 0.687*XC # 9.37e-12;

<T138P> E34C6E2 + O3P = PROD2 + 4*XC # 3.71e-11;

<T139H> C10OLE2 + OH = 1.059*RO2C + 0.312*RO2XC + 0.312*zRNO3 + 0.688*xHO2 +

0.002*xHCHO + 0.019*xCCHO + 0.853*xRCHO + 0.23*xPROD2 + 0.01*xMVK +

0.037*xIPRD + yR6OOH + 3.924*XC # 7.12e-11;

<T139O> C10OLE2 + O3 = 0.174*RO2C + 0.009*RO2XC + 0.009*zRNO3 + 0.095*OH +

0.03*HO2 + 0.116*xHO2 + 0.095*CO + 0.055*CO2 + RCHO + 0.116*xRCHO +

0.025*PROD1 + 0.85*RCHO2 + 0.125*yR6OOH + 3.798*XC # 1.15e-16;

<T139N> C10OLE2 + NO3 = 1.322*RO2C + 0.422*RO2XC + 0.422*zRNO3 + 0.005*xNO2 +

0.573*xHO2 + 0.01*xRCHO + 0.573*xRNO3 + yR6OOH + 0.422*XN + 4*XC

Page 263: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

251

# 3.70e-13;

<T139P> C10OLE2 + O3P = PROD2 + 4*XC # 2.05e-11;

<T140H> CARENE3 + OH = 0.85*RO2C + 0.15*RO2XC + 0.15*zRNO3 + 0.85*xHO2 +

0.85*xRCHO + yR6OOH + 6.55*XC # 8.80e-11;

<T140O> CARENE3 + O3 = 0.592*RO2C + 0.175*RO2XC + 0.175*zRNO3 + 0.728*OH +

0.009*HO2 + 0.003*xHO2 + 0.502*xMECO3 + 0.058*xRCO3 + 0.029*CO +

0.017*CO2 + 0.058*xHCHO + 0.505*xRCHO + 0.008*PROD1 + 0.255*RCHO2 +

0.737*yR6OOH + 5.356*XC # 5.00e-16@776;

<T140N> CARENE3 + NO3 = 0.811*RO2C + 0.241*RO2XC + 0.241*zRNO3 + 0.744*xNO2 +

0.015*xHO2 + 0.002*xCO + 0.744*xRCHO + 0.002*xGLCHO + 0.002*xACET +

0.015*xRNO3 + yR6OOH + 0.241*XN + 6.22*XC # 9.10e-12;

<T140P> CARENE3 + O3P = PROD2 + 4*XC # 3.20e-11;

<T141H> APINENE + OH = 1.042*RO2C + 0.197*RO2XC + 0.197*zRNO3 + 0.799*xHO2 +

0.004*xRCO3 + 0.002*xCO + 0.022*xHCHO + 0.776*xRCHO + 0.034*xACET +

0.02*xMGLY + 0.023*xBACL + yR6OOH + 6.2*XC # 1.21e-11@-436;

<T141O> APINENE + O3 = 1.511*RO2C + 0.337*RO2XC + 0.337*zRNO3 + 0.728*OH +

0.009*HO2 + 0.102*xHO2 + 0.001*xMECO3 + 0.297*xRCO3 + 0.029*CO +

0.051*xCO + 0.017*CO2 + 0.344*xHCHO + 0.24*xRCHO + 0.345*xACET +

0.008*PROD1 + 0.002*xGLY + 0.081*xBACL + 0.255*RCHO2 + 0.737*yR6OOH +

3.764*XC # 5.00e-16@530;

<T141N> APINENE + NO3 = 1.05*RO2C + 0.293*RO2XC + 0.293*zRNO3 + 0.643*xNO2 +

0.056*xHO2 + 0.007*xRCO3 + 0.005*xCO + 0.007*xHCHO + 0.684*xRCHO +

0.069*xACET + 0.002*xMGLY + 0.056*xRNO3 + yR6OOH + 0.301*XN + 5.608*XC

# 1.19e-12@-490;

<T141P> APINENE + O3P = PROD2 + 4*XC # 3.20e-11;

<T142H> BPINENE + OH = 0.999*RO2C + 0.184*RO2XC + 0.184*zRNO3 + 0.811*xHO2 +

0.005*xRCO3 + 0.002*xCO + 0.784*xHCHO + 0.046*xRCHO + 0.035*xACET +

0.781*xPROD2 + 0.007*xMGLY + yR6OOH + 3.145*XC # 1.55e-11@-467;

<T142O> BPINENE + O3 = 0.458*RO2C + 0.093*RO2XC + 0.093*zRNO3 + 0.353*OH +

0.123*HO2 + 0.07*xHO2 + 0.067*xRCO3 + 0.393*CO + 0.092*CO2 +

0.23*HCHO + 0.011*xHCHO + 0.006*xRCHO + 0.104*xACET + 0.77*PROD2 +

0.007*xMGLY + 0.063*xBACL + 0.285*HCHO2 + 0.23*yR6OOH + 3.007*XC

# 1.20e-15@1300;

<T142N> BPINENE + NO3 = 2.435*RO2C + 0.611*RO2XC + 0.611*zRNO3 + 0.33*xHO2 +

0.059*xRCO3 + 0.027*xCO + 0.027*xHCHO + 0.258*xRCHO + 0.393*xACET +

0.001*xGLY + 0.33*xRNO3 + yR6OOH + 0.67*XN + 2.168*XC # 2.51e-12;

<T142P> BPINENE + O3P = 0.4*RCHO + 0.6*PROD2 + 5.2*XC # 2.70e-11;

<T143H> DLIMONE + OH = 0.972*RO2C + 0.17*RO2XC + 0.17*zRNO3 + 0.827*xHO2 +

0.003*xRCO3 + 0.288*xHCHO + 0.539*xRCHO + 0.053*xPROD1 + 0.287*xPROD2 +

0.019*xMVK + 0.012*xIPRD + yR6OOH + 4.996*XC # 4.28e-11@-401;

<T143O> DLIMONE + O3 = 0.619*RO2C + 0.177*RO2XC + 0.177*zRNO3 + 0.729*OH +

0.009*HO2 + 0.021*xHO2 + 0.482*xMECO3 + 0.058*xRCO3 + 0.029*CO +

0.017*CO2 + 0.089*xHCHO + 0.5*xRCHO + 0.008*PROD2 + 0.015*xMACR +

0.007*xIPRD + 0.255*RCHO2 + 0.738*yR6OOH + 5.257*XC # 2.95e-15@783;

<T143N> DLIMONE + NO3 = 1.11*RO2C + 0.296*RO2XC + 0.296*zRNO3 + 0.626*xNO2 +

0.076*xHO2 + 0.002*xRCO3 + 0.078*xHCHO + 0.641*xRCHO + 0.009*xGLCHO +

0.039*xMACR + 0.009*xMVK + 0.028*xIPRD + 0.069*xRNO3 + yR6OOH +

0.304*XN + 5.453*XC # 1.22e-11;

<T143P> DLIMONE + O3P = PROD2 + 4*XC # 7.20e-11;

<T144H> SABINENE + OH = 2.649*RO2C + 0.366*RO2XC + 0.366*zRNO3 + 0.235*xHO2 +

0.399*xRCO3 + 0.18*xHCHO + 0.4*xRCHO + 0.139*xACET + 0.178*xPROD2 +

0.058*xBACL + yR6OOH + 3.51*XC # 1.17e-10;

<T144O> SABINENE + O3 = 0.285*RO2C + 0.058*RO2XC + 0.058*zRNO3 + 0.303*OH +

0.133*HO2 + 0.073*xHO2 + 0.038*xRCO3 + 0.423*CO + 0.1*CO2 + 0.17*HCHO +

0.072*xACET + 0.83*PROD2 + 0.076*xBACL + 0.307*HCHO2 + 0.17*yR6OOH +

3.038*XC # 5.00e-16@535;

<T144N> SABINENE + NO3 = 2.257*RO2C + 0.562*RO2XC + 0.562*zRNO3 + 0.438*xHO2 +

0.009*xRCHO + 0.43*xACET + 0.456*xRNO3 + yR6OOH + 0.544*XN + 2.575*XC

# 1.00e-11;

<T144P> SABINENE + O3P = 0.4*RCHO + 0.6*PROD2 + 5.2*XC # 6.27e-11;

<T145H> C11E1 + OH = 1.138*RO2C + 0.364*RO2XC + 0.364*zRNO3 + 0.636*xHO2 +

0.291*xHCHO + 0.363*xRCHO + 0.258*xPROD2 + 0.032*xACRO + 0.009*xMVK +

0.007*xIPRD + yR6OOH + 5.721*XC # 4.26e-11;

Page 264: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

252

<T145O> C11E1 + O3 = 0.094*RO2C + 0.025*RO2XC + 0.025*zRNO3 + 0.128*OH +

0.095*HO2 + 0.038*xHO2 + 0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.5*RCHO +

0.033*xRCHO + 0.013*PROD2 + 0.005*xPROD2 + 0.185*HCHO2 + 0.425*RCHO2 +

0.063*yR6OOH + 6.792*XC # 1.01e-17;

<T145N> C11E1 + NO3 = 1.332*RO2C + 0.45*RO2XC + 0.45*zRNO3 + 0.55*xHO2 +

0.55*xRNO3 + yR6OOH + 0.45*XN + 5*XC # 1.40e-14;

<T145P> C11E1 + O3P = 0.45*RCHO + 0.55*PROD2 + 6.35*XC # 5.60e-12;

<T146H> T5C11E + OH = 1.041*RO2C + 0.334*RO2XC + 0.334*zRNO3 + 0.666*xHO2 +

0.004*xHCHO + 0.004*xCCHO + 0.815*xRCHO + 0.232*xPROD2 + 0.015*xMVK +

0.031*xIPRD + yR6OOH + 4.932*XC # 7.26e-11;

<T146O> T5C11E + O3 = 0.218*RO2C + 0.012*RO2XC + 0.012*zRNO3 + 0.095*OH +

0.03*HO2 + 0.113*xHO2 + 0.095*CO + 0.055*CO2 + RCHO + 0.113*xRCHO +

0.025*PROD1 + 0.85*RCHO2 + 0.125*yR6OOH + 4.789*XC # 1.15e-16;

<T146N> T5C11E + NO3 = 1.302*RO2C + 0.44*RO2XC + 0.44*zRNO3 + 0.56*xHO2 +

0.56*xRNO3 + yR6OOH + 0.44*XN + 5*XC # 3.70e-13;

<T146P> T5C11E + O3P = PROD2 + 5*XC # 2.05e-11;

<T147H> TOLUENE + OH = 0.605*RO2C + 0.074*RO2XC + 0.074*zRNO3 + 0.094*OH +

0.227*HO2 + 0.605*xHO2 + 0.29*xGLY + 0.25*xMGLY + 0.18*CRES +

0.065*xBALD + 0.292*xAFG1 + 0.248*xAFG2 + 0.094*AFG3 + 0.047*AFG5 +

0.073*yR6OOH + 0.606*yRAOOH - 0.176*XC # 1.81e-12@-338;

<T148H> C2BENZ + OH = 0.642*RO2C + 0.105*RO2XC + 0.105*zRNO3 + 0.067*OH +

0.186*HO2 + 0.642*xHO2 + 0.023*xRCHO + 0.161*xPROD2 + 0.246*xGLY +

0.212*xMGLY + 0.153*XYNL + 0.165*xAFG1 + 0.293*xAFG2 + 0.067*AFG3 +

0.034*AFG5 + 0.213*yR6OOH + 0.533*yRAOOH + 0.986*XC # 6.50e-12;

<T149H> MXYLENE + OH = 0.6*RO2C + 0.098*RO2XC + 0.098*zRNO3 + 0.128*OH +

0.174*HO2 + 0.6*xHO2 + 0.11*xGLY + 0.45*xMGLY + 0.11*XYNL +

0.04*xBALD + 0.308*xAFG1 + 0.252*xAFG2 + 0.128*AFG3 + 0.064*AFG5 +

0.046*yR6OOH + 0.651*yRAOOH + 0.538*XC # 2.31e-11;

<T150H> OXYLENE + OH = 0.695*RO2C + 0.114*RO2XC + 0.114*zRNO3 + 0.054*OH +

0.137*HO2 + 0.695*xHO2 + 0.13*xGLY + 0.33*xMGLY + 0.19*xBACL +

0.11*XYNL + 0.045*xBALD + 0.273*xAFG1 + 0.377*xAFG2 + 0.054*AFG3 +

0.027*AFG5 + 0.053*yR6OOH + 0.756*yRAOOH + 0.294*XC # 1.36e-11;

<T151H> PXYLENE + OH = 0.655*RO2C + 0.107*RO2XC + 0.107*zRNO3 + 0.072*OH +

0.166*HO2 + 0.655*xHO2 + 0.37*xGLY + 0.2*xMGLY + 0.13*XYNL +

0.085*xBALD + 0.164*xAFG1 + 0.036*xAFG2 + 0.072*AFG3 + 0.37*xAFG4 +

0.036*AFG5 + 0.099*yR6OOH + 0.663*yRAOOH + 0.407*XC # 1.43e-11;

<T152H> STYRENE + OH = 0.82*RO2C + 0.18*RO2XC + 0.18*zRNO3 + 0.82*xHO2 +

0.82*xHCHO + 0.82*xBALD + yR6OOH + 0.36*XC # 5.80e-11;

<T152O> STYRENE + O3 = 0.4*HCHO + 0.6*HCOOH + 0.4*RCOOH + 0.6*BALD + 1.6*XC

# 3.36e-15@1575;

<T152N> STYRENE + NO3 = 0.87*RO2C + 0.13*RO2XC + 0.13*zRNO3 + 0.65*xHO2 +

0.22*xHCHO + 0.22*xBALD + 0.65*xRNO3 + yR6OOH + 0.35*XN + 1.56*XC

# 1.50e-13;

<T152P> STYRENE + O3P = PROD2 + 2*XC # 1.10e-11@-140;

<T153H> NC3BEN + OH = 0.698*RO2C + 0.14*RO2XC + 0.14*zRNO3 + 0.038*OH +

0.124*HO2 + 0.698*xHO2 + 0.023*xRCHO + 0.36*xPROD2 + 0.169*xGLY +

0.146*xMGLY + 0.105*XYNL + 0.17*xAFG1 + 0.145*xAFG2 + 0.038*AFG3 +

0.019*AFG5 + 0.46*yR6OOH + 0.377*yRAOOH + 2.341*XC # 6.13e-12;

<T154H> IC3BEN + OH = 0.627*RO2C + 0.126*RO2XC + 0.126*zRNO3 + 0.058*OH +

0.189*HO2 + 0.526*xHO2 + 0.1*xMEO2 + 0.046*xRCHO + 0.1*xPROD2 +

0.258*xGLY + 0.222*xMGLY + 0.16*XYNL + 0.168*xAFG1 + 0.312*xAFG2 +

0.058*AFG3 + 0.029*AFG5 + 0.176*yR6OOH + 0.577*yRAOOH + 1.935*XC

# 6.20e-12;

<T155H> METTOL + OH = 0.612*RO2C + 0.123*RO2XC + 0.123*zRNO3 + 0.108*OH +

0.158*HO2 + 0.612*xHO2 + 0.008*xRCHO + 0.054*xPROD2 + 0.104*xGLY +

0.425*xMGLY + 0.104*XYNL + 0.021*xBALD + 0.343*xAFG1 + 0.185*xAFG2 +

0.108*AFG3 + 0.054*AFG5 + 0.1*yR6OOH + 0.634*yRAOOH + 1.678*XC

# 1.86e-11;

<T156H> OETTOL + OH = 0.709*RO2C + 0.142*RO2XC + 0.142*zRNO3 + 0.034*OH +

0.115*HO2 + 0.709*xHO2 + 0.012*xRCHO + 0.085*xPROD2 + 0.116*xGLY +

0.294*xMGLY + 0.169*xBACL + 0.098*XYNL + 0.033*xBALD + 0.278*xAFG1 +

0.301*xAFG2 + 0.034*AFG3 + 0.017*AFG5 + 0.156*yR6OOH + 0.695*yRAOOH +

1.545*XC # 1.19e-11;

Page 265: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

253

<T157H> PETTOL + OH = 0.664*RO2C + 0.133*RO2XC + 0.133*zRNO3 + 0.054*OH +

0.149*HO2 + 0.664*xHO2 + 0.012*xRCHO + 0.086*xPROD2 + 0.346*xGLY +

0.187*xMGLY + 0.122*XYNL + 0.033*xBALD + 0.187*xAFG1 + 0.054*AFG3 +

0.346*xAFG4 + 0.027*AFG5 + 0.158*yR6OOH + 0.64*yRAOOH + 1.612*XC

# 1.18e-11;

<T158H> TMB123 + OH = 0.736*RO2C + 0.148*RO2XC + 0.148*zRNO3 + 0.057*OH +

0.059*HO2 + 0.736*xHO2 + 0.06*xGLY + 0.17*xMGLY + 0.47*xBACL +

0.031*XYNL + 0.036*xBALD + 0.266*xAFG1 + 0.434*xAFG2 + 0.057*AFG3 +

0.028*AFG5 + 0.044*yR6OOH + 0.841*yRAOOH + 1.007*XC # 3.27e-11;

<T159H> TMB124 + OH = 0.581*RO2C + 0.117*RO2XC + 0.117*zRNO3 + 0.187*OH +

0.116*HO2 + 0.581*xHO2 + 0.077*xGLY + 0.36*xMGLY + 0.11*xBACL +

0.022*XYNL + 0.034*xBALD + 0.182*xAFG1 + 0.198*xAFG2 + 0.187*AFG3 +

0.167*xAFG4 + 0.094*AFG5 + 0.04*yR6OOH + 0.657*yRAOOH + 1.341*XC

# 3.25e-11;

<T160H> TMB135 + OH = 0.638*RO2C + 0.128*RO2XC + 0.128*zRNO3 + 0.129*OH +

0.105*HO2 + 0.638*xHO2 + 0.61*xMGLY + 0.04*XYNL + 0.028*xBALD +

0.226*xAFG1 + 0.384*xAFG2 + 0.129*AFG3 + 0.065*AFG5 + 0.034*yR6OOH +

0.732*yRAOOH + 1.478*XC # 5.67e-11;

<T161H> C10BEN1 + OH = 0.703*RO2C + 0.151*RO2XC + 0.151*zRNO3 + 0.05*OH +

0.139*HO2 + 0.597*xHO2 + 0.063*xMEO2 + 0.044*xCCHO + 0.03*xRCHO +

0.307*xPROD2 + 0.173*xGLY + 0.149*xMGLY + 0.114*XYNL + 0.116*xAFG1 +

0.207*xAFG2 + 0.05*AFG3 + 0.025*AFG5 + 0.414*yR6OOH + 0.397*yRAOOH +

3.166*XC # 8.73e-12;

<T162H> TC4BEN + OH = 0.69*RO2C + 0.119*RO2XC + 0.119*zRNO3 + 0.076*OH +

0.21*HO2 + 0.5*xHO2 + 0.095*xMEO2 + 0.095*xHCHO + 0.095*xPROD2 +

0.269*xGLY + 0.231*xMGLY + 0.172*XYNL + 0.18*xAFG1 + 0.32*xAFG2 +

0.076*AFG3 + 0.038*AFG5 + 0.114*yR6OOH + 0.6*yRAOOH + 2.621*XC

# 4.50e-12;

<T163H> MC10BEN2 + OH = 0.582*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.121*OH +

0.164*HO2 + 0.572*xHO2 + 0.01*xMEO2 + 0.011*xRCHO + 0.063*xPROD2 +

0.098*xGLY + 0.401*xMGLY + 0.103*XYNL + 0.01*xBALD + 0.274*xAFG1 +

0.224*xAFG2 + 0.121*AFG3 + 0.06*AFG5 + 0.103*yR6OOH + 0.613*yRAOOH +

2.725*XC # 2.47e-11;

<T164H> OC10BEN2 + OH = 0.677*RO2C + 0.155*RO2XC + 0.155*zRNO3 + 0.048*OH +

0.121*HO2 + 0.66*xHO2 + 0.016*xMEO2 + 0.018*xRCHO + 0.102*xPROD2 +

0.108*xGLY + 0.275*xMGLY + 0.158*xBACL + 0.097*XYNL + 0.016*xBALD +

0.227*xAFG1 + 0.314*xAFG2 + 0.048*AFG3 + 0.024*AFG5 + 0.167*yR6OOH +

0.665*yRAOOH + 2.618*XC # 1.52e-11;

<T165H> PC10BEN2 + OH = 0.633*RO2C + 0.145*RO2XC + 0.145*zRNO3 + 0.067*OH +

0.155*HO2 + 0.617*xHO2 + 0.015*xMEO2 + 0.017*xRCHO + 0.098*xPROD2 +

0.327*xGLY + 0.177*xMGLY + 0.121*XYNL + 0.015*xBALD + 0.145*xAFG1 +

0.032*xAFG2 + 0.067*AFG3 + 0.327*xAFG4 + 0.034*AFG5 + 0.159*yR6OOH +

0.619*yRAOOH + 2.664*XC # 1.59e-11;

<T166H> PCYMENE + OH = 0.622*RO2C + 0.143*RO2XC + 0.143*zRNO3 + 0.071*OH +

0.164*HO2 + 0.58*xHO2 + 0.042*xMEO2 + 0.019*xRCHO + 0.042*xPROD2 +

0.347*xGLY + 0.187*xMGLY + 0.129*XYNL + 0.027*xBALD + 0.154*xAFG1 +

0.034*xAFG2 + 0.071*AFG3 + 0.347*xAFG4 + 0.036*AFG5 + 0.108*yR6OOH +

0.656*yRAOOH + 2.544*XC # 1.45e-11;

<T167H> C10B123 + OH = 0.722*RO2C + 0.166*RO2XC + 0.166*zRNO3 + 0.055*OH +

0.058*HO2 + 0.722*xHO2 + 0.004*xRCHO + 0.03*xPROD2 + 0.057*xGLY +

0.161*xMGLY + 0.446*xBACL + 0.03*XYNL + 0.023*xBALD + 0.253*xAFG1 +

0.412*xAFG2 + 0.055*AFG3 + 0.028*AFG5 + 0.07*yR6OOH + 0.817*yRAOOH +

2.124*XC # 3.34e-11;

<T168H> C10B124 + OH = 0.575*RO2C + 0.132*RO2XC + 0.132*zRNO3 + 0.181*OH +

0.112*HO2 + 0.575*xHO2 + 0.004*xRCHO + 0.03*xPROD2 + 0.073*xGLY +

0.341*xMGLY + 0.104*xBACL + 0.021*XYNL + 0.023*xBALD + 0.173*xAFG1 +

0.187*xAFG2 + 0.181*AFG3 + 0.158*xAFG4 + 0.091*AFG5 + 0.07*yR6OOH +

0.637*yRAOOH + 2.45*XC # 3.34e-11;

<T169H> C10B135 + OH = 0.624*RO2C + 0.143*RO2XC + 0.143*zRNO3 + 0.128*OH +

0.104*HO2 + 0.624*xHO2 + 0.002*xRCHO + 0.017*xPROD2 + 0.592*xMGLY +

0.04*XYNL + 0.013*xBALD + 0.219*xAFG1 + 0.373*xAFG2 + 0.128*AFG3 +

0.064*AFG5 + 0.041*yR6OOH + 0.727*yRAOOH + 2.543*XC # 5.76e-11;

<T170H> BEN1234 + OH = 0.623*RO2C + 0.143*RO2XC + 0.143*zRNO3 + 0.129*OH +

Page 266: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

254

0.105*HO2 + 0.623*xHO2 + 0.597*xMGLY + 0.04*XYNL + 0.026*xBALD +

0.221*xAFG1 + 0.376*xAFG2 + 0.129*AFG3 + 0.065*AFG5 + 0.032*yR6OOH +

0.734*yRAOOH + 2.506*XC # 5.94e-11;

<T171H> BEN1245 + OH = 0.623*RO2C + 0.143*RO2XC + 0.143*zRNO3 + 0.129*OH +

0.105*HO2 + 0.623*xHO2 + 0.597*xMGLY + 0.04*XYNL + 0.026*xBALD +

0.221*xAFG1 + 0.376*xAFG2 + 0.129*AFG3 + 0.065*AFG5 + 0.032*yR6OOH +

0.734*yRAOOH + 2.506*XC # 5.94e-11;

<T172H> MBEN1235 + OH = 0.621*RO2C + 0.143*RO2XC + 0.143*zRNO3 + 0.13*OH +

0.106*HO2 + 0.621*xHO2 + 0.601*xMGLY + 0.04*XYNL + 0.021*xBALD +

0.222*xAFG1 + 0.379*xAFG2 + 0.13*AFG3 + 0.065*AFG5 + 0.025*yR6OOH +

0.739*yRAOOH + 2.502*XC # 7.51e-11;

<T173H> NAPHTHAL + OH = 0.244*RO2C + 0.056*RO2XC + 0.056*zRNO3 + 0.05*HO2 +

0.244*xHO2 + 0.5*RCO3 + 0.15*BZO + 0.244*xGLY + 0.05*XYNL +

0.122*xAFG1 + 0.122*xAFG2 + 0.3*yRAOOH + 5.156*XC # 1.56e-11@-117;

<T174H> C11BEN1 + OH = 0.703*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.043*OH +

0.119*HO2 + 0.616*xHO2 + 0.055*xMEO2 + 0.032*xCCHO + 0.024*xRCHO +

0.374*xPROD2 + 0.147*xGLY + 0.127*xMGLY + 0.098*XYNL + 0.098*xAFG1 +

0.175*xAFG2 + 0.043*AFG3 + 0.021*AFG5 + 0.497*yR6OOH + 0.341*yRAOOH +

4.291*XC # 1.02e-11;

<T175H> MC11BEN2 + OH = 0.588*RO2C + 0.146*RO2XC + 0.146*zRNO3 + 0.113*OH +

0.153*HO2 + 0.553*xHO2 + 0.035*xMEO2 + 0.013*xRCHO + 0.11*xPROD2 +

0.09*xGLY + 0.369*xMGLY + 0.097*XYNL + 0.004*xBALD + 0.253*xAFG1 +

0.207*xAFG2 + 0.113*AFG3 + 0.056*AFG5 + 0.16*yR6OOH + 0.574*yRAOOH +

3.816*XC # 2.64e-11;

<T176H> OC11BEN2 + OH = 0.68*RO2C + 0.169*RO2XC + 0.169*zRNO3 + 0.043*OH +

0.108*HO2 + 0.625*xHO2 + 0.055*xMEO2 + 0.021*xRCHO + 0.173*xPROD2 +

0.096*xGLY + 0.244*xMGLY + 0.14*xBACL + 0.087*XYNL + 0.007*xBALD +

0.201*xAFG1 + 0.278*xAFG2 + 0.043*AFG3 + 0.021*AFG5 + 0.25*yR6OOH +

0.599*yRAOOH + 3.758*XC # 1.69e-11;

<T177H> PC11BEN2 + OH = 0.64*RO2C + 0.159*RO2XC + 0.159*zRNO3 + 0.061*OH +

0.14*HO2 + 0.588*xHO2 + 0.052*xMEO2 + 0.02*xRCHO + 0.166*xPROD2 +

0.291*xGLY + 0.157*xMGLY + 0.11*XYNL + 0.007*xBALD + 0.129*xAFG1 +

0.028*xAFG2 + 0.061*AFG3 + 0.291*xAFG4 + 0.03*AFG5 + 0.24*yR6OOH +

0.559*yRAOOH + 3.788*XC # 1.76e-11;

<T178H> C11B123 + OH = 0.714*RO2C + 0.177*RO2XC + 0.177*zRNO3 + 0.053*OH +

0.056*HO2 + 0.714*xHO2 + 0.006*xRCHO + 0.059*xPROD2 + 0.054*xGLY +

0.154*xMGLY + 0.425*xBACL + 0.029*XYNL + 0.016*xBALD + 0.24*xAFG1 +

0.392*xAFG2 + 0.053*AFG3 + 0.027*AFG5 + 0.101*yR6OOH + 0.79*yRAOOH +

3.232*XC # 3.46e-11;

<T179H> C11B124 + OH = 0.574*RO2C + 0.143*RO2XC + 0.143*zRNO3 + 0.175*OH +

0.108*HO2 + 0.574*xHO2 + 0.006*xRCHO + 0.059*xPROD2 + 0.069*xGLY +

0.324*xMGLY + 0.099*xBACL + 0.021*XYNL + 0.016*xBALD + 0.164*xAFG1 +

0.178*xAFG2 + 0.175*AFG3 + 0.15*xAFG4 + 0.088*AFG5 + 0.101*yR6OOH +

0.615*yRAOOH + 3.533*XC # 3.46e-11;

<T180H> C11B135 + OH = 0.619*RO2C + 0.154*RO2XC + 0.154*zRNO3 + 0.126*OH +

0.102*HO2 + 0.619*xHO2 + 0.004*xRCHO + 0.035*xPROD2 + 0.571*xMGLY +

0.039*XYNL + 0.01*xBALD + 0.211*xAFG1 + 0.36*xAFG2 + 0.126*AFG3 +

0.063*AFG5 + 0.06*yR6OOH + 0.713*yRAOOH + 3.581*XC # 5.88e-11;

<T181H> NAPH1 + OH = 0.272*RO2C + 0.068*RO2XC + 0.068*zRNO3 + 0.05*HO2 +

0.272*xHO2 + 0.5*RCO3 + 0.11*BZO + 0.151*xGLY + 0.121*xMGLY +

0.05*XYNL + 0.136*xAFG1 + 0.136*xAFG2 + 0.34*yRAOOH + 6.007*XC

# 1.59e-11;

<T182H> C12BEN1 + OH = 0.706*RO2C + 0.178*RO2XC + 0.178*zRNO3 + 0.038*OH +

0.105*HO2 + 0.631*xHO2 + 0.049*xMEO2 + 0.026*xCCHO + 0.02*xRCHO +

0.423*xPROD2 + 0.127*xGLY + 0.11*xMGLY + 0.086*XYNL + 0.085*xAFG1 +

0.152*xAFG2 + 0.038*AFG3 + 0.019*AFG5 + 0.559*yR6OOH + 0.299*yRAOOH +

5.377*XC # 1.16e-11;

<T183H> MC12BEN2 + OH = 0.595*RO2C + 0.153*RO2XC + 0.153*zRNO3 + 0.11*OH +

0.15*HO2 + 0.566*xHO2 + 0.021*xMEO2 + 0.009*xCCHO + 0.014*xRCHO +

0.126*xPROD2 + 0.087*xGLY + 0.357*xMGLY + 0.095*XYNL + 0.003*xBALD +

0.244*xAFG1 + 0.2*xAFG2 + 0.11*AFG3 + 0.055*AFG5 + 0.18*yR6OOH +

0.56*yRAOOH + 4.844*XC # 2.70e-11;

<T184H> OC12BEN2 + OH = 0.691*RO2C + 0.177*RO2XC + 0.177*zRNO3 + 0.041*OH +

Page 267: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

255

0.104*HO2 + 0.646*xHO2 + 0.032*xMEO2 + 0.013*xCCHO + 0.021*xRCHO +

0.195*xPROD2 + 0.091*xGLY + 0.232*xMGLY + 0.134*xBACL + 0.084*XYNL +

0.004*xBALD + 0.192*xAFG1 + 0.265*xAFG2 + 0.041*AFG3 + 0.021*AFG5 +

0.278*yR6OOH + 0.577*yRAOOH + 4.814*XC # 1.75e-11;

<T185H> PC12BEN2 + OH = 0.652*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.059*OH +

0.135*HO2 + 0.609*xHO2 + 0.031*xMEO2 + 0.013*xCCHO + 0.02*xRCHO +

0.187*xPROD2 + 0.278*xGLY + 0.15*xMGLY + 0.106*XYNL + 0.004*xBALD +

0.123*xAFG1 + 0.027*xAFG2 + 0.059*AFG3 + 0.278*xAFG4 + 0.029*AFG5 +

0.267*yR6OOH + 0.539*yRAOOH + 4.843*XC # 1.82e-11;

<T186H> C12B123 + OH = 0.709*RO2C + 0.185*RO2XC + 0.185*zRNO3 + 0.052*OH +

0.054*HO2 + 0.685*xHO2 + 0.023*xMEO2 + 0.01*xRCHO + 0.072*xPROD2 +

0.053*xGLY + 0.149*xMGLY + 0.411*xBACL + 0.028*XYNL + 0.014*xBALD +

0.233*xAFG1 + 0.38*xAFG2 + 0.052*AFG3 + 0.026*AFG5 + 0.121*yR6OOH +

0.773*yRAOOH + 4.275*XC # 3.54e-11;

<T187H> C12B124 + OH = 0.573*RO2C + 0.15*RO2XC + 0.15*zRNO3 + 0.171*OH +

0.106*HO2 + 0.55*xHO2 + 0.023*xMEO2 + 0.01*xRCHO + 0.072*xPROD2 +

0.067*xGLY + 0.314*xMGLY + 0.096*xBACL + 0.02*XYNL + 0.014*xBALD +

0.159*xAFG1 + 0.172*xAFG2 + 0.171*AFG3 + 0.146*xAFG4 + 0.086*AFG5 +

0.121*yR6OOH + 0.602*yRAOOH + 4.567*XC # 3.54e-11;

<T188H> C12B135 + OH = 0.615*RO2C + 0.161*RO2XC + 0.161*zRNO3 + 0.124*OH +

0.1*HO2 + 0.601*xHO2 + 0.014*xMEO2 + 0.006*xRCHO + 0.043*xPROD2 +

0.558*xMGLY + 0.038*XYNL + 0.008*xBALD + 0.206*xAFG1 + 0.352*xAFG2 +

0.124*AFG3 + 0.062*AFG5 + 0.072*yR6OOH + 0.704*yRAOOH + 4.618*XC

# 5.96e-11;

<T189H> ETOX + OH = 2*RO2C + xHO2 + 0.657*xCO + 0.041*CO2 + 0.041*xHCHO +

0.657*HCOOH + yROOH + 0.604*XC # 7.60e-14;

<T190H> ETOH + OH = 0.05*RO2C + 0.95*HO2 + 0.05*xHO2 + 0.081*xHCHO + 0.95*CCHO +

0.01*xGLCHO + 0.05*yROOH - 0.001*XC # 5.49e-13^2.00@-530;

<T191H> MEOME + OH = RO2C + xHO2 + 0.079*xHCHO + yROOH + 1.921*XC

# 1.03e-12^2.00@-303;

<T192H> MEFORM + OH = RO2C + xHO2 + 0.657*xCO + 0.041*CO2 + 0.041*xHCHO +

0.657*HCOOH + yROOH + 0.604*XC # 2.27e-13;

<T193H> ETGLYCL + OH = HO2 + 0.067*HCHO + 0.966*GLCHO + 0.001*XC # 1.47e-11;

<T194H> PROX + OH = 2.206*RO2C + 0.008*RO2XC + 0.008*zRNO3 + 0.774*xHO2 +

0.218*xMECO3 + 0.478*xCO + 0.034*CO2 + 0.229*xHCHO + 0.025*xCCHO +

0.006*xRCHO + 0.362*HCOOH + 0.334*CCOOH + yROOH + 0.677*XC # 5.20e-13;

<T195H> IC3OH + OH = 0.046*RO2C + 0.001*RO2XC + 0.001*zRNO3 + 0.953*HO2 +

0.046*xHO2 + 0.046*xHCHO + 0.046*xCCHO + 0.953*ACET + 0.047*yROOH +

0.003*XC # 3.63e-13^2.00@-792;

<T196H> NC3OH + OH = 0.238*RO2C + 0.003*RO2XC + 0.003*zRNO3 + 0.759*HO2 +

0.237*xHO2 + 0.208*xHCHO + 0.207*xCCHO + 0.759*RCHO + 0.031*xRCHO +

0.241*yROOH - 0.01*XC # 4.60e-12@-70;

<T197H> ACYRACID + OH = RO2C + xHO2 + 0.015*CO2 + 0.548*xHCHO + 0.208*xRCHO +

0.015*xGLCHO + 0.548*xMGLY + 0.229*xBACL + yROOH - 0.777*XC

# 2.85e-11;

<T197O> ACYRACID + O3 = 0.13*OH + 0.13*HO2 + 0.305*CO + 0.11*CO2 + 0.5*HCHO +

0.5*MGLY + 0.185*HCHO2 + 0.4*XC # 1.01e-17;

<T197N> ACYRACID + NO3 = RO2C + xHO2 + 0.062*CO2 + 0.938*xBACL + 0.062*xRNO3 +

yROOH + 0.938*XN - 1.186*XC # 2.76e-18;

<T197P> ACYRACID + O3P = 0.45*RCHO + 0.55*RCOOH # 4.60e-12;

<T198H> MEACET + OH = 0.985*RO2C + 0.015*RO2XC + 0.015*zRNO3 + 0.985*xHO2 +

0.64*xCO + 0.64*CCOOH + yROOH + 0.99*XC # 8.30e-13@260;

<T199H> PRGLYCL + OH = 0.013*RO2C + 0.987*HO2 + 0.013*xHO2 + 0.027*HCHO +

0.012*xHCHO + 0.027*CCHO + 0.313*RCHO + 0.002*xRCHO + 0.012*xGLCHO +

0.646*PROD1 + 0.013*yROOH - 0.646*XC # 2.15e-11;

<T200H> MEOETOH + OH = 0.722*RO2C + 0.278*HO2 + 0.722*xHO2 + 0.648*xHCHO +

0.278*RCHO + 0.03*xRCHO + 0.048*xPROD2 + 0.722*yROOH + 1.14*XC

# 4.50e-12@-325;

<T201H> GLYCERL + OH = HO2 + 0.017*HCHO + 0.435*RCHO + 0.017*GLCHO +

0.548*PROD2 - 1.644*XC # 1.87e-11;

<T202H> CROTALD + OH = 0.557*RO2C + 0.023*RO2XC + 0.023*zRNO3 + 0.557*xHO2 +

0.421*MACO3 + 0.033*xCO + 0.523*xCCHO + 0.033*xRCHO + 0.523*xGLY +

0.579*yROOH - 0.046*XC # 3.64e-11;

Page 268: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

256

<T202O> CROTALD + O3 = 0.52*OH + 0.835*HO2 + 0.355*MEO2 + 1.02*CO + 0.405*CO2 +

0.5*CCHO + 0.5*GLY + 0.075*CCHO2 + 0.07*XC # 1.58e-18;

<T202N> CROTALD + NO3 = 0.438*RO2C + 0.038*RO2XC + 0.038*zRNO3 + 0.186*xNO2 +

0.252*xHO2 + 0.523*MACO3 + 0.523*HNO3 + 0.219*xCO + 0.186*xCCHO +

0.186*xGLY + 0.252*xRNO3 + 0.477*yROOH + 0.038*XN - 0.795*XC

# 5.12e-15;

<T202P> CROTALD + O3P = 0.88*RCHO + 0.12*MGLY + XC # 7.29e-12;

<T203H> THF + OH = 1.943*RO2C + 0.079*RO2XC + 0.079*zRNO3 + 0.911*xHO2 +

0.009*xRCO3 + 0.049*xCO + 0.013*xHCHO + 0.861*xRCHO + 0.05*xPROD2 +

yROOH + 0.554*XC # 1.61e-11;

<T204H> MEC3AL2 + OH = 0.093*RO2C + 0.004*RO2XC + 0.004*zRNO3 + 0.082*xHO2 +

0.914*RCO3 + 0.078*xCO + 0.011*xHCHO + 0.011*xCCHO + 0.004*xRCHO +

0.067*xACET + 0.086*yROOH + 0.91*XC # 7.30e-12@-390;

<T204N> MEC3AL2 + NO3 = RCO3 + HNO3 + XC # 3.60e-12@1724;

<T205H> C4RCHO1 + OH = 0.103*RO2C + 0.008*RO2XC + 0.008*zRNO3 + 0.088*xHO2 +

0.905*RCO3 + 0.052*xCO + 0.014*xHCHO + 0.015*xCCHO + 0.073*xRCHO +

0.001*xGLY + 0.095*yROOH + 0.92*XC # 6.00e-12@-410;

<T205N> C4RCHO1 + NO3 = RCO3 + HNO3 + XC # 1.70e-12@1500;

<T206H> IC4OH + OH = 0.403*RO2C + 0.037*RO2XC + 0.037*zRNO3 + 0.597*HO2 +

0.366*xHO2 + 0.009*HCHO + 0.384*xHCHO + 0.036*xCCHO + 0.597*RCHO +

0.011*xRCHO + 0.319*xACET + 0.403*yROOH + 0.532*XC # 9.30e-12;

<T207H> NC4OH + OH = 0.47*RO2C + 0.013*RO2XC + 0.013*zRNO3 + 0.584*HO2 +

0.403*xHO2 + 0.308*xHCHO + 0.067*xCCHO + 0.584*RCHO + 0.243*xRCHO +

0.013*xGLCHO + 0.093*xPROD2 + 0.416*yROOH + 0.415*XC # 5.30e-12@-140;

<T208H> SC4OH + OH = 0.165*RO2C + 0.006*RO2XC + 0.006*zRNO3 + 0.843*HO2 +

0.152*xHO2 + 0.016*xHCHO + 0.007*CCHO + 0.231*xCCHO + 0.032*xRCHO +

0.843*PROD1 + 0.157*yROOH + 0.004*XC # 8.70e-12;

<T209H> TC4OH + OH = 0.678*RO2C + 0.067*RO2XC + 0.067*zRNO3 + 0.678*xHO2 +

0.254*TBUO + 0.678*xHCHO + 0.678*xACET + 0.746*yROOH - 0.13*XC

# 3.66e-13^2.00@-321;

<T210H> ETOET + OH = 0.958*RO2C + 0.06*RO2XC + 0.06*zRNO3 + 0.128*xHO2 +

0.811*xMEO2 + 0.006*xHCHO + 0.163*xCCHO + 0.006*xRCHO + 0.001*xGLCHO +

0.84*xPROD1 + 0.01*xPROD2 + yROOH - 0.943*XC # 8.02e-13^2.00@-837;

<T211H> VINACET + OH = 0.961*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.951*xHO2 +

0.01*xRCO3 + 0.872*xHCHO + 0.079*xRCHO + 0.01*CCOOH + yROOH + 2.607*XC

# 3.16e-11;

<T211O> VINACET + O3 = 0.08*OH + 0.08*HO2 + 0.255*CO + 0.06*CO2 + 0.5*HCHO +

0.185*HCHO2 + 3*XC # 1.01e-17;

<T211N> VINACET + NO3 = 0.961*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.063*xHO2 +

0.897*xRCO3 + 0.897*CCOOH + yROOH + XN - 0.719*XC # 1.38e-14;

<T211P> VINACET + O3P = 0.45*RCHO + 0.55*PROD1 + 0.45*XC # 5.60e-12;

<T212H> ETACET + OH = 0.966*RO2C + 0.04*RO2XC + 0.04*zRNO3 + 0.156*xHO2 +

0.804*xMECO3 + 0.096*xRCHO + 0.799*CCOOH + 0.005*RCOOH + 0.018*xMGLY +

yROOH + 0.197*XC # 1.60e-12;

<T213H> C4OH12 + OH = 0.081*RO2C + 0.003*RO2XC + 0.003*zRNO3 + 0.916*HO2 +

0.081*xHO2 + 0.022*HCHO + 0.07*xCCHO + 0.275*RCHO + 0.011*xRCHO +

0.07*xGLCHO + 0.641*PROD1 + 0.084*yROOH + 0.258*XC # 2.70e-11;

<T214H> MEOC3OH + OH = 0.6*RO2C + 0.01*RO2XC + 0.01*zRNO3 + 0.39*HO2 +

0.6*xHO2 + 0.001*xHCHO + 0.571*xCCHO + 0.39*PROD2 + 0.029*xPROD2 +

0.61*yROOH + 0.283*XC # 2.00e-11;

<T215H> ETOETOH + OH = 0.792*RO2C + 0.02*RO2XC + 0.02*zRNO3 + 0.188*HO2 +

0.619*xHO2 + 0.173*xMEO2 + 0.549*xHCHO + 0.07*xCCHO + 0.188*RCHO +

0.08*xRCHO + 0.014*xGLCHO + 0.437*xPROD1 + 0.206*xPROD2 + 0.812*yROOH +

0.798*XC # 1.87e-11;

<T216H> DETGLCL + OH = 0.679*RO2C + 0.028*RO2XC + 0.028*zRNO3 + 0.293*HO2 +

0.679*xHO2 + 0.679*xHCHO + 0.293*RCHO + 0.679*xPROD2 + 0.707*yROOH +

1.8*XC # 2.75e-11;

<T217H> MBUTENOL + OH = 0.935*RO2C + 0.065*RO2XC + 0.065*zRNO3 + 0.935*xHO2 +

0.311*xHCHO + 0.311*xRCHO + 0.624*xGLCHO + 0.624*xACET + yR6OOH +

0.246*XC # 8.20e-12@-610;

<T217O> MBUTENOL + O3 = 0.141*OH + 0.159*HO2 + 0.386*CO + 0.101*CO2 + 0.3*HCHO +

0.7*RCHO + 0.038*ACET + 0.008*PROD2 + 0.259*HCHO2 + 0.255*RCHO2 +

0.927*XC # 3.36e-15@1755;

Page 269: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

257

<T217N> MBUTENOL + NO3 = 0.935*RO2C + 0.065*RO2XC + 0.065*zRNO3 + 0.935*xHO2 +

0.935*xACET + 0.935*xRNO3 + yR6OOH + 0.065*XN - 3.805*XC

# 4.60e-14@400;

<T217P> MBUTENOL + O3P = 0.45*RCHO + 0.55*PROD1 + 1.45*XC # 2.01e-11;

<T218H> C5RCHO1 + OH = 0.169*RO2C + 0.018*RO2XC + 0.018*zRNO3 + 0.089*xHO2 +

0.848*RCO3 + 0.045*xRCO3 + 0.043*xCO + 0.011*xHCHO + 0.021*xCCHO +

0.087*xRCHO + 0.002*xMGLY + 0.152*yR6OOH + 1.85*XC # 9.90e-12@-310;

<T218N> C5RCHO1 + NO3 = RCO3 + HNO3 + 2*XC # 1.50e-14;

<T219H> IAMOH + OH = 0.794*RO2C + 0.035*RO2XC + 0.035*zRNO3 + 0.484*HO2 +

0.481*xHO2 + 0.541*xHCHO + 0.484*RCHO + 0.166*xRCHO + 0.098*xGLCHO +

0.311*xACET + 0.003*xPROD2 + 0.516*yR6OOH + 1.152*XC # 1.30e-11;

<T220H> MTBE + OH = 1.124*RO2C + 0.078*RO2XC + 0.078*zRNO3 + 0.743*xHO2 +

0.162*xMEO2 + 0.016*xTBUO + 0.234*xHCHO + 0.024*xACET + 0.719*xPROD1 +

0.007*xPROD2 + yR6OOH + 1.082*XC # 5.89e-13^2.00@-483;

<T221H> ETACRYL + OH = 1.353*RO2C + 0.094*RO2XC + 0.094*zRNO3 + 0.497*xHO2 +

0.409*xMECO3 + 0.395*xHCHO + 0.38*xPROD2 + 0.395*xMGLY + 0.084*xBACL +

0.047*xMVK + yR6OOH - 0.766*XC # 3.01e-11;

<T221O> ETACRYL + O3 = 0.08*OH + 0.08*HO2 + 0.255*CO + 0.06*CO2 + 0.5*HCHO +

0.5*MGLY + 0.185*HCHO2 + 2.5*XC # 1.01e-17;

<T221N> ETACRYL + NO3 = 1.526*RO2C + 0.106*RO2XC + 0.106*zRNO3 + 0.382*xHO2 +

0.513*xMECO3 + 0.253*HNO3 + 0.119*xBACL + 0.237*xMVK + 0.538*xRNO3 +

yR6OOH + 0.209*XN - 1.314*XC # 3.70e-18;

<T221P> ETACRYL + O3P = 0.45*RCHO + 0.55*PROD1 + 1.45*XC # 4.60e-12;

<T222H> MEMACRT + OH = 0.935*RO2C + 0.065*RO2XC + 0.065*zRNO3 + 0.935*xHO2 +

0.935*xHCHO + 0.935*xBACL + yR6OOH - 0.065*XC # 5.25e-11;

<T222O> MEMACRT + O3 = 0.64*RO2C + 0.026*RO2XC + 0.026*zRNO3 + 0.72*OH +

0.053*HO2 + 0.273*xHO2 + 0.367*xRCO3 + 0.17*CO + 0.04*CO2 +

0.667*HCHO + 0.367*xHCHO + 0.273*xMGLY + 0.333*BACL + 0.123*HCHO2 +

0.667*yR6OOH + 0.225*XC # 1.18e-17;

<T222N> MEMACRT + NO3 = 1.189*RO2C + 0.083*RO2XC + 0.083*zRNO3 + 0.263*xHO2 +

0.654*xRCO3 + 0.01*HNO3 + 0.167*xCO + 0.01*xIPRD + 0.167*xRNO3 +

yR6OOH + 0.822*XN + 1.321*XC # 6.71e-17;

<T222P> MEMACRT + O3P = 0.4*RCHO + 0.6*PROD1 + 1.4*XC # 1.42e-11;

<T223H> IPRACET + OH = 1.049*RO2C + 0.055*RO2XC + 0.055*zRNO3 + 0.015*xHO2 +

0.845*xMEO2 + 0.085*xMECO3 + 0.203*CO2 + 0.093*xHCHO + 0.203*xACET +

0.085*CCOOH + 0.011*xMGLY + yR6OOH + 2.547*XC # 3.40e-12;

<T224H> PRACET + OH = 0.988*RO2C + 0.066*RO2XC + 0.066*zRNO3 + 0.44*xHO2 +

0.494*xRCO3 + 0.012*xCO + 0.001*xHCHO + 0.041*xCCHO + 0.05*xRCHO +

0.348*xPROD1 + 0.497*CCOOH + 0.009*RCOOH + 0.002*xMGLY + yR6OOH +

0.458*XC # 3.40e-12;

<T225H> MOEOETOH + OH = 1.394*RO2C + 0.059*RO2XC + 0.059*zRNO3 + 0.118*HO2 +

0.823*xHO2 + 0.307*xHCHO + 0.118*RCHO + 0.098*xRCHO + 0.001*xGLCHO +

0.019*xPROD1 + 0.717*xPROD2 + 0.001*HCOOH + 0.882*yR6OOH - 0.69*XC

# 3.41e-11;

<T226H> CC6KET + OH = 1.108*RO2C + 0.178*RO2XC + 0.178*zRNO3 + 0.386*xHO2 +

0.436*xRCO3 + 0.059*xHCHO + 0.194*xRCHO + 0.197*xPROD2 + yR6OOH +

1.801*XC # 6.40e-12;

<T227H> CC6OH + OH = 0.506*RO2C + 0.055*RO2XC + 0.055*zRNO3 + 0.59*HO2 +

0.355*xHO2 + 0.04*xHCHO + 0.246*xRCHO + 0.59*PROD2 + 0.115*xPROD2 +

0.41*yR6OOH + 0.662*XC # 1.90e-11;

<T228H> C6RCHO1 + OH = 0.266*RO2C + 0.04*RO2XC + 0.04*zRNO3 + 0.112*xHO2 +

0.798*RCO3 + 0.05*xRCO3 + 0.014*xCO + 0.002*xHCHO + 0.103*xRCHO +

0.018*xMGLY + 0.202*yR6OOH + 2.837*XC # 3.00e-11;

<T228N> C6RCHO1 + NO3 = RCO3 + HNO3 + 3*XC # 1.60e-14;

<T229H> MIBK + OH = 1.717*RO2C + 0.099*RO2XC + 0.099*zRNO3 + 0.012*xHO2 +

0.878*xMECO3 + 0.011*xRCO3 + 0.827*xHCHO + 0.021*xCCHO + 0.096*xRCHO +

0.768*xACET + 0.004*xPROD1 + yR6OOH + 0.14*XC # 7.90e-13@-834;

<T230H> MNBK + OH = 1.438*RO2C + 0.102*RO2XC + 0.102*zRNO3 + 0.424*xHO2 +

0.459*xMECO3 + 0.014*xRCO3 + 0.338*xHCHO + 0.195*xCCHO + 0.65*xRCHO +

0.145*xPROD1 + 0.088*xPROD2 + yR6OOH + 0.642*XC # 9.10e-12;

<T231H> ETBE + OH = 0.953*RO2C + 0.101*RO2XC + 0.101*zRNO3 + 0.143*xHO2 +

0.644*xMEO2 + 0.112*xTBUO + 0.055*xHCHO + 0.127*xCCHO + 0.018*xRCHO +

0.016*xACET + 0.644*xPROD1 + yR6OOH + 1.315*XC # 6.03e-13^2.00@-800;

Page 270: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

258

<T232H> IBUACET + OH = 1.711*RO2C + 0.12*RO2XC + 0.12*zRNO3 + 0.82*xHO2 +

0.008*xMEO2 + 0.051*xRCO3 + 0.298*xCO + 0.052*xHCHO + 0.003*xCCHO +

0.015*xRCHO + 0.763*xACET + 0.054*xPROD1 + 0.349*CCOOH + yR6OOH +

1.515*XC # 4.61e-12;

<T233H> BUACET + OH = 1.203*RO2C + 0.122*RO2XC + 0.122*zRNO3 + 0.688*xHO2 +

0.19*xRCO3 + 0.01*xCO + 0.116*xCCHO + 0.173*xRCHO + 0.253*xPROD1 +

0.262*xPROD2 + 0.2*CCOOH + yR6OOH + 0.953*XC # 4.20e-12;

<T234H> DIACTALC + OH = 0.914*RO2C + 0.086*RO2XC + 0.086*zRNO3 + 0.233*xHO2 +

0.618*xMECO3 + 0.063*xRCO3 + 0.388*xHCHO + 0.5*xRCHO + 0.117*ACET +

0.026*xACET + 0.207*xPROD1 + 0.026*xMGLY + yR6OOH + 0.836*XC

# 1.49e-12;

<T235H> M24C5OH2 + OH = 0.195*RO2C + 0.02*RO2XC + 0.02*zRNO3 + 0.785*HO2 +

0.195*xHO2 + 0.072*xHCHO + 0.001*CCHO + 0.015*xCCHO + 0.141*xRCHO +

0.011*ACET + 0.119*xACET + 0.785*PROD1 + 0.042*xPROD2 + 0.215*yR6OOH +

1.571*XC # 2.77e-11;

<T236H> BUOETOH + OH = 1.021*RO2C + 0.112*RO2XC + 0.112*zRNO3 + 0.123*HO2 +

0.765*xHO2 + 0.55*xHCHO + 0.013*xCCHO + 0.123*RCHO + 0.194*xRCHO +

0.508*xPROD1 + 0.26*xPROD2 + 0.877*yR6OOH + 0.209*XC # 2.57e-11;

<T237H> PGMEACT + OH = 1.722*RO2C + 0.127*RO2XC + 0.127*zRNO3 + 0.33*xHO2 +

0.538*xMECO3 + 0.004*xRCO3 + 0.029*xHCHO + 0.005*xRCHO + 0.049*xPROD1 +

0.05*xPROD2 + 0.543*CCOOH + yR6OOH + 2.524*XC # 1.44e-11;

<T238H> CSVACET + OH = 1.412*RO2C + 0.111*RO2XC + 0.111*zRNO3 + 0.57*xHO2 +

0.288*xMEO2 + 0.031*xRCO3 + 0.288*xCO + 0.003*xHCHO + 0.058*xCCHO +

0.055*xRCHO + 0.745*xPROD1 + 0.06*xPROD2 + 0.319*CCOOH + yR6OOH +

0.403*XC # 1.94e-11;

<T239H> DGEE + OH = 1.206*RO2C + 0.11*RO2XC + 0.11*zRNO3 + 0.099*HO2 +

0.622*xHO2 + 0.169*xMEO2 + 0.233*xHCHO + 0.01*xCCHO + 0.099*RCHO +

0.077*xRCHO + 0.001*xGLCHO + 0.405*xPROD1 + 0.708*xPROD2 +

0.901*yR6OOH - 1.48*XC # 5.08e-11;

<T240H> DPRGLCL + OH = 0.484*RO2C + 0.052*RO2XC + 0.052*zRNO3 + 0.464*HO2 +

0.484*xHO2 + 0.484*xCCHO + 0.464*PROD2 + 0.484*xPROD2 + 0.536*yR6OOH +

0.968*XC # 3.64e-11;

<T241H> ADIPACD + OH = 1.632*RO2C + 0.112*RO2XC + 0.112*zRNO3 + 0.888*xHO2 +

0.019*CO2 + 1.152*xRCHO + 0.159*xPROD2 + 0.031*xMGLY + 0.129*xBACL +

yR6OOH + 0.29*XC # 1.09e-11;

<T242H> BZCH2OH + OH = 0.422*RO2C + 0.052*RO2XC + 0.052*zRNO3 + 0.06*OH +

0.466*HO2 + 0.422*xHO2 + 0.227*xGLY + 0.196*xMGLY + 0.136*XYNL +

0.3*BALD + 0.063*xAFG1 + 0.359*xAFG2 + 0.06*AFG3 + 0.03*AFG5 +

0.474*yRAOOH - 0.282*XC # 2.29e-11;

<T243H> C7RCHO1 + OH = 0.327*RO2C + 0.067*RO2XC + 0.067*zRNO3 + 0.136*xHO2 +

0.754*RCO3 + 0.044*xRCO3 + 0.009*xCO + 0.118*xRCHO + 0.017*xMGLY +

0.246*yR6OOH + 3.79*XC # 3.00e-11;

<T243N> C7RCHO1 + NO3 = RCO3 + HNO3 + 4*XC # 1.90e-14;

<T244H> C7KET2 + OH = 1.449*RO2C + 0.193*RO2XC + 0.193*zRNO3 + 0.513*xHO2 +

0.283*xMECO3 + 0.011*xRCO3 + 0.099*xHCHO + 0.013*xCCHO + 0.589*xRCHO +

0.347*xPROD2 + yR6OOH + 1.269*XC # 1.10e-11;

<T245H> M3HXO2 + OH = 1.125*RO2C + 0.163*RO2XC + 0.163*zRNO3 + 0.298*xHO2 +

0.539*xRCO3 + 0.19*xHCHO + 0.187*xCCHO + 0.161*xRCHO + 0.252*xACET +

0.244*xPROD1 + yR6OOH + 1.626*XC # 7.21e-12;

<T246H> BUOC3OH + OH = 0.921*RO2C + 0.115*RO2XC + 0.115*zRNO3 + 0.22*HO2 +

0.665*xHO2 + 0.457*xCCHO + 0.202*xRCHO + 0.411*xPROD1 + 0.22*PROD2 +

0.257*xPROD2 + 0.78*yR6OOH + 0.284*XC # 3.76e-11;

<T247H> E3EOC3OH + OH = 1.392*RO2C + 0.159*RO2XC + 0.159*zRNO3 + 0.407*xHO2 +

0.278*xMEO2 + 0.157*xMECO3 + 0.002*xHCHO + 0.058*xCCHO + 0.056*xRCHO +

0.73*xPROD1 + 0.079*xPROD2 + 0.091*RCOOH + 0.315*xMGLY + 0.001*xBACL +

yR6OOH + 0.552*XC # 1.96e-11;

<T248H> DPGOME2 + OH = 1.278*RO2C + 0.139*RO2XC + 0.139*zRNO3 + 0.074*HO2 +

0.659*xHO2 + 0.128*xMEO2 + 0.346*xHCHO + 0.028*xCCHO + 0.074*RCHO +

0.113*xRCHO + 0.008*xPROD1 + 0.669*xPROD2 + 0.002*HCOOH +

0.926*yR6OOH + 1.027*XC # 5.48e-11;

<T249H> C8RCHO1 + OH = 0.383*RO2C + 0.096*RO2XC + 0.096*zRNO3 + 0.164*xHO2 +

0.714*RCO3 + 0.026*xRCO3 + 0.008*xCO + 0.149*xRCHO + 0.015*xMGLY +

0.286*yR6OOH + 4.704*XC # 2.71e-11;

Page 271: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

259

<T249N> C8RCHO1 + NO3 = RCO3 + HNO3 + 5*XC # 1.70e-14;

<T250H> IBUIBTR + OH = 1.608*RO2C + 0.235*RO2XC + 0.235*zRNO3 + 0.692*xHO2 +

0.006*xMEO2 + 0.067*xRCO3 + 0.208*xCO + 0.069*xHCHO + 0.002*xCCHO +

0.034*xRCHO + 0.66*xACET + 0.466*xPROD1 + 0.003*xPROD2 + 0.258*RCOOH +

0.003*xBACL + yR6OOH + 1.352*XC # 5.52e-12;

<T251H> DGBE + OH = 1.225*RO2C + 0.248*RO2XC + 0.248*zRNO3 + 0.089*HO2 +

0.663*xHO2 + 0.18*xHCHO + 0.008*xCCHO + 0.089*RCHO + 0.231*xRCHO +

0.001*xGLCHO + 0.287*xPROD1 + 0.643*xPROD2 + 0.911*yR6OOH + 0.348*XC

# 7.44e-11;

<T252H> TEXANOL + OH = 0.659*RO2C + 0.181*RO2XC + 0.181*zRNO3 + 0.47*HO2 +

0.346*xHO2 + 0.004*xRCO3 + 0.003*xCO + 0.003*HCHO + 0.184*xHCHO +

0.001*xCCHO + 0.162*RCHO + 0.195*xRCHO + 0.26*xACET + 0.218*xPROD1 +

0.314*PROD2 + 0.006*xPROD2 + 0.003*RCOOH + 0.001*xBACL + 0.53*yR6OOH +

6.054*XC # 1.45e-11;

<T253H> DBUPTHT + OH = 0.761*RO2C + 0.198*RO2XC + 0.198*zRNO3 + 0.027*OH +

0.067*HO2 + 0.625*xHO2 + 0.084*xRCO3 + 0.053*xCCHO + 0.053*xPROD1 +

0.312*xPROD2 + 0.058*xGLY + 0.148*xMGLY + 0.085*xBACL + 0.054*XYNL +

0.122*xAFG1 + 0.169*xAFG2 + 0.027*AFG3 + 0.013*AFG5 + 0.534*yR6OOH +

0.372*yRAOOH + 9.303*XC # 8.59e-12;

<T254H> CH3CL + OH = RO2C + xCL + xHCHO + yROOH # 3.15e-13^2.00@585;

<T255H> ACRYLNIT + OH = RO2C + xHO2 + xHCHO + yROOH + XN + 2*XC # 4.90e-12;

<T256H> AMP + OH = 0.015*RO2C + 0.001*RO2XC + 0.001*zRNO3 + 0.185*HO2 +

0.015*xHO2 + 0.185*RCHO + 0.015*xRCHO + 0.799*NRAD + 0.016*yROOH +

0.201*XN + 0.198*XC # 2.80e-11;

<T256N> AMP + NO3 = HNO3 + NRAD # 5.88e-14;

<T257H> C13DCP + OH = RO2C + xHO2 + xCLCCHO + yROOH + XC # 8.45e-12;

<T257O> C13DCP + O3 = 0.063*RO2C + 0.063*xCL + 0.048*OH + 0.015*HO2 + 0.048*CO +

0.343*CO2 + 0.063*xHCHO + 0.5*CLCCHO + 0.61*RCHO2 + 0.315*HCL +

0.063*yROOH - 0.284*XC # 3.22e-15@2972;

<T257N> C13DCP + NO3 = 0.949*RO2C + 0.051*RO2XC + 0.051*zRNO3 + 0.949*xNO2 +

0.949*xCLCCHO + yROOH + 0.051*XN + 0.796*XC # 5.57e-18;

<T257P> C13DCP + O3P = 0.88*PROD1 + 0.12*CLACET - 0.88*XC # 4.79e-13;

<T258H> C2CL + OH = 1.123*RO2C + xCL + 0.246*xHCHO + 0.877*xCCHO + yROOH

# 6.94e-13^2.00@152;

<T259H> CHCL3 + OH = RO2C + xCL + yROOH + XC # 5.67e-13^2.00@504;

<T260H> CL212ETH + OH = RO2C + xCL + xCLCCHO + yROOH # 9.90e-13^2.00@409;

<T261H> HL2BEN + OH = 0.31*RO2C + 0.027*RO2XC + 0.027*zRNO3 + 0.062*OH +

0.601*HO2 + 0.31*xHO2 + 0.31*xGLY + 0.57*XYNL + 0.109*xAFG1 +

0.202*xAFG2 + 0.062*AFG3 + 0.031*AFG5 + 0.337*yRAOOH - 1.548*XC

# 5.55e-13;

<T262H> CL2ME + OH = RO2C + xCL + yROOH + XC # 7.69e-13^2.00@500;

<T263H> CL3ETHE + OH = RO2C + xCL + 0.75*xPROD1 + 0.25*xCLCCHO + yROOH +

1.5*XC # 5.63e-13@-427;

<T263N> CL3ETHE + NO3 = RO2C + xCL + yROOH + XN + 2*XC # 2.99e-16;

<T263P> CL3ETHE + O3P = 2*XC # 4.37e-14;

<T264H> CL4ETHE + OH = RO2C + xCL + xPROD1 + yROOH - 2*XC # 9.64e-12@1209;

<T265H> HLBEN + OH = 0.31*RO2C + 0.027*RO2XC + 0.027*zRNO3 + 0.062*OH +

0.601*HO2 + 0.31*xHO2 + 0.31*xGLY + 0.57*XYNL + 0.109*xAFG1 +

0.202*xAFG2 + 0.062*AFG3 + 0.031*AFG5 + 0.337*yRAOOH - 1.548*XC

# 7.70e-13;

<T266H> CLETHE + OH = RO2C + 0.649*xCL + 0.351*xHO2 + 0.351*xHCHO +

0.649*xGLCHO + yROOH + 0.351*XC # 1.69e-12@-422;

<T267H> ETACTYL + OH = 0.67*OH + 0.33*RCO3 + 0.33*HCOOH + 0.67*MGLY + 0.67*XC

# 8.00e-12;

<T268H> ETAMINE + OH = 0.515*RO2C + 0.485*HO2 + 0.515*xHO2 + 0.485*PROD2 +

0.515*xPROD2 + 0.515*yROOH + XN - 4*XC # 2.58e-11;

<T268O> ETAMINE + O3 = RO2C + OH + xHO2 + xPROD2 + yROOH + XN - 4*XC

# 1.98e-20;

<T268N> ETAMINE + NO3 = 0.492*RO2C + 0.508*HO2 + 0.492*xHO2 + HNO3 +

0.508*PROD2 + 0.492*xPROD2 + 0.492*yROOH + XN - 4*XC # 1.16e-13;

<T269H> ETOHNH2 + OH = 0.514*RO2C + 0.486*HO2 + 0.514*xHO2 + 0.514*xHCHO +

0.091*RCHO + 0.394*PROD2 + 0.514*xPROD2 + 0.514*yROOH + XN - 4.235*XC

# 4.41e-11;

Page 272: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

260

<T269O> ETOHNH2 + O3 = RO2C + OH + xHO2 + xHCHO + xPROD2 + yROOH + XN - 5*XC

# 6.58e-20;

<T269N> ETOHNH2 + NO3 = 0.564*RO2C + 0.436*HO2 + 0.564*xHO2 + HNO3 +

0.564*xHCHO + 0.436*PROD2 + 0.564*xPROD2 + 0.564*yROOH + XN +

4.564*XC # 1.35e-13;

<T270H> HFC152A + OH = RO2C + xHO2 + xCCHO + yROOH # 9.40e-13@990;

<T271H> INDTET + OH = 0.447*RO2C + 0.103*RO2XC + 0.103*zRNO3 + 0.05*HO2 +

0.447*xHO2 + 0.3*RCO3 + 0.1*BZO + 0.285*xPROD2 + 0.163*xGLY +

0.05*XYNL + 0.081*xAFG1 + 0.081*xAFG2 + 0.35*yR6OOH + 0.2*yRAOOH +

4.637*XC # 3.40e-11;

<T272H> MEACTYL + OH = 0.67*OH + 0.33*MECO3 + 0.33*HCOOH + 0.67*MGLY

# 5.90e-12;

<T273H> MEBR + OH = RO2C + xCL + xHCHO + yROOH # 2.34e-13^2.00@521;

<T274H> NMP + OH = 0.85*RO2C + 0.15*RO2XC + 0.15*zRNO3 + 0.85*xHO2 +

0.425*xRCHO + 0.425*xPROD2 + yR6OOH + XN + 0.275*XC # 2.15e-11;

<T274N> NMP + NO3 = 0.85*RO2C + 0.15*RO2XC + 0.15*zRNO3 + 0.85*xHO2 +

0.85*xPROD2 + 2*XN - 1*XC # 1.26e-13;

<T275H> SIOME4 + OH = 0.4*RO2C + 0.4*xHO2 + 0.4*yR6OOH + 8*XC # 1.00e-12;

<T276H> T13DCP + OH = RO2C + xHO2 + xCLCCHO + yROOH + XC # 1.44e-11;

<T276O> T13DCP + O3 = 0.063*RO2C + 0.063*xCL + 0.048*OH + 0.015*HO2 + 0.048*CO +

0.343*CO2 + 0.063*xHCHO + 0.5*CLCCHO + 0.61*RCHO2 + 0.315*HCL +

0.063*yROOH - 0.284*XC # 6.64e-15@2742;

<T276N> T13DCP + NO3 = 0.949*RO2C + 0.051*RO2XC + 0.051*zRNO3 + 0.949*xNO2 +

0.949*xCLCCHO + yROOH + 0.051*XN + 0.796*XC # 9.13e-17;

<T276P> T13DCP + O3P = 0.88*PROD1 + 0.12*CLACET - 0.88*XC # 1.30e-12;

<T277H> TCE111 + OH = 2*RO2C + xCL + xHCHO + yROOH + XC # 5.33e-13^2.00@1129;

<T278H> TMAMINE + OH = RO2C + xHO2 + xPROD2 + yROOH + XN - 3*XC # 4.84e-11;

<T278O> TMAMINE + O3 = RO2C + OH + xHO2 + xPROD2 + yROOH + XN - 3*XC

# 7.84e-18;

<T278N> TMAMINE + NO3 = RO2C + xHO2 + HNO3 + xPROD2 + yROOH + XN - 3*XC

# 1.56e-13;

<T279H> VINACYL + OH = 0.986*RO2C + 0.027*RO2XC + 0.027*zRNO3 + 0.973*xHO2 +

0.948*xHCHO + 0.946*xRCHO + 0.007*xACRO + 0.015*xMVK + 0.005*xIPRD +

yROOH - 0.054*XC # 6.55e-12@-467;

<T279O> VINACYL + O3 = 0.063*RO2C + 0.128*OH + 0.095*HO2 + 0.063*xHO2 +

0.303*CO + 0.088*CO2 + 0.5*HCHO + 0.063*xCCHO + 0.5*RCHO +

0.185*HCHO2 + 0.425*RCHO2 + 0.063*yROOH + 0.023*XC # 3.36e-15@1774;

<T279N> VINACYL + NO3 = 0.995*RO2C + 0.08*RO2XC + 0.08*zRNO3 + 0.92*xHO2 +

0.075*xCCHO + 0.92*xRNO3 + yROOH + 0.08*XN - 2.15*XC # 3.14e-13@938;

<T279P> VINACYL + O3P = 0.45*RCHO + 0.55*PROD1 + 0.45*XC # 1.34e-11@350;

<T300H> PROPALD + OH = 0.965*RCO3 + 0.035*RO2C + 0.035*xHO2 + 0.035*xCO +

0.035*xCCHO + 0.035*yROOH # 5.10e-12@-405;

<T300N> PROPALD + NO3 = HNO3 + RCO3 # 1.40e-12@1601;

<T300V> PROPALD = RO2C + xHO2 + yROOH + xCCHO + CO + HO2 # 1.0/<C2CHO>;

<T301H> MEK + OH = 0.967*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.376*xHO2 +

0.51*xMECO3 + 0.074*xRCO3 + 0.088*xHCHO + 0.504*xCCHO + 0.376*xRCHO +

yROOH + 0.3*XC # 1.30e-12^2.00@25;

<T301V> MEK = MECO3 + RO2C + xHO2 + xCCHO + yROOH # 1.75e-1/<MEK_06>;

<SP21> MOLINATE + OH = 0.18*HO2 + 1.168*RO2C + 0.512*xHO2 + 0.82*yR6OOH +

0.164*RO2XC + 0.164*zRNO3 + 0.512*xRCHO + 0.144*xCCHO + 0.18*PROD2 +

0.144*xR2NCOS + 4.104*XC + 0.856*XN # 2.42e-11;

<SP22> MOLINATE + NO3 = HNO3 + 1.28*RO2C + 0.48*xHO2 + yR6OOH + 0.2*RO2XC +

0.2*zRNO3 + 0.48*xRCHO + 0.32*xCCHO + 0.32*xR2NCOS + 3.48*XC + 0.68*XN

# 9.20e-15;

<SP03> HS + O3 = HSO # 8.50e-12@280;

<SP04> HS + NO2 = HSO + NO # 2.90e-11@-240;

<SP05> HSO + O3 = 0.55*HS + 0.45*HO2 + 0.45*SO2 # 1.10e-13;

<SP06> HSO + NO2 = NO + HO2 + SO2 # 9.60e-12;

<SP07> HS + O2 = HO2 + SO2 # 1.00e-20;

<SP08> HSO + O2 = HO2 + SO2 + O3P # 1.00e-17;

<SP12> xR2NCOS = R2NCOS # 1.0?RO2RO;

<SP13> xR2NCOS = 7*XC + XN # 1.0?RO2XRO;

<SP14> R2NCOS + NO2 = R2NCOSO + NO # 6.00e-11;

Page 273: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

261

<SP15> R2NCOS + O3 = R2NCOSO # 4.90e-12;

<SP16> R2NCOSO + NO2 = RCO3 + SO2 + NO + 4*XC + XN # 1.20e-11;

<SP17> R2NCOSO + O3 = RCO3 + SO2 + 4*XC + XN # 4.10e-13;

<Nr01> NRAD + NO2 = PROD2 + 2*XN - 2*XC # 1.0*K<BR28>;

<Nr03> NRAD + HO2 = 4*XC + XN # 1.0*K<BR22>;

<BL01> OTH1 + OH = 1.033*RO2C + xCL + 0.033*xHCHO + 0.595*xCLCCHO + yROOH +

0.777*XC # 2.23e-13;

<BL02> OTH2 + OH = 1.826*RO2C + 0.097*RO2XC + 0.097*zRNO3 + 0.062*xHO2 +

0.095*xMEO2 + 0.034*xMECO3 + 0.713*xTBUO + 0.021*xCO + 0.023*CO2 +

0.857*xHCHO + 0.019*xRCHO + 0.023*xACET + 0.055*RCOOH + 0.008*xMGLY +

yR6OOH + 0.187*XC # 7.74e-13;

<BL03> OTH3 + OH = 1.51*RO2C + 0.046*RO2XC + 0.046*zRNO3 + 0.39*xCL +

0.504*xHO2 + 0.06*xRCO3 + 0.144*xCO + 0.002*xHCHO + 0.429*xRCHO +

0.011*xACET + 0.053*xPROD1 + 0.003*RCOOH + 0.013*xMGLY + 0.006*xBACL +

0.39*xCLCCHO + yROOH + 0.014*XC # 2.31e-12;

<BL04> OTH4 + OH = 1.549*RO2C + 0.197*RO2XC + 0.197*zRNO3 + 0.734*xHO2 +

0.037*xMEO2 + 0.002*xRCO3 + 0.03*xTBUO + 0.09*xHCHO + 0.244*xCCHO +

0.266*xRCHO + 0.001*xGLCHO + 0.126*xACET + 0.049*xPROD1 +

0.352*xPROD2 + 0.002*CCOOH + yR6OOH + 0.587*XC # 5.16e-12;

<BL05> OTH5 + OH = 1.482*RO2C + 0.435*RO2XC + 0.435*zRNO3 + 0.018*HO2 +

0.524*xHO2 + 0.001*xMEO2 + 0.019*xRCO3 + 0.001*xCO + 0.015*xHCHO +

0.092*xCCHO + 0.004*RCHO + 0.165*xRCHO + 0.011*xACET + 0.049*xPROD1 +

0.014*PROD2 + 0.375*xPROD2 + 0.979*yR6OOH + 3.062*XC # 1.92e-11;

<BL06> OLE1 + OH = 1.22*RO2C + 0.254*RO2XC + 0.254*zRNO3 + 0.704*xHO2 +

0.042*xRCO3 + 0.012*xCO + 0.376*xHCHO + 0.004*xCCHO + 0.198*xRCHO +

0.005*xGLCHO + 0.051*xACET + 0.237*xPROD2 + 0.218*xMGLY + 0.053*xBACL +

0.016*xACRO + 0.039*xMVK + 0.005*xIPRD + yR6OOH + 3.68*XC # 3.78e-11;

<BL07> OLE1 + O3 = 0.048*RO2C + 0.013*RO2XC + 0.013*zRNO3 + 0.105*OH +

0.088*HO2 + 0.02*xHO2 + 0.28*CO + 0.075*CO2 + 0.5*HCHO + 0.265*RCHO +

0.015*xRCHO + 0.001*PROD1 + 0.006*PROD2 + 0.004*xPROD2 + 0.235*MGLY +

0.185*HCHO2 + 0.225*RCHO2 + 0.033*yR6OOH + 5.598*XC # 3.28e-15@1736;

<BL08> OLE1 + NO3 = 1.333*RO2C + 0.288*RO2XC + 0.288*zRNO3 + 0.7*xHO2 +

0.002*xMEO2 + 0.01*xRCO3 + 0.269*HNO3 + 0.091*xCO + 0.001*xHCHO +

0.027*xCCHO + 0.004*xRCHO + 0.108*xACET + 0.001*xPROD1 + 0.003*xPROD2 +

0.142*xBACL + 0.226*xMVK + 0.345*xRNO3 + yR6OOH + 0.387*XN + 3.194*XC

# 7.46e-15;

<BL09> OLE2 + O3P = 0.012*RCHO + 0.106*PROD1 + 0.882*PROD2 + 4.248*XC

# 2.25e-11;

<BL10> OLE2 + OH = 0.965*RO2C + 0.249*RO2XC + 0.249*zRNO3 + 0.75*xHO2 +

0.084*xHCHO + 0.2*xCCHO + 0.665*xRCHO + 0.104*xACET + 0.035*xPROD1 +

0.147*xPROD2 + 0.115*xBALD + 0.002*xMACR + 0.008*xMVK + 0.022*xIPRD +

yR6OOH + 3.738*XC # 7.23e-11;

<BL11> OLE2 + O3 = 0.235*RO2C + 0.012*RO2XC + 0.012*zRNO3 + 0.225*OH +

0.036*HO2 + 0.072*xHO2 + 0.06*MEO2 + 0.109*xMECO3 + 0.004*xRCO3 +

0.113*CO + 0.063*CO2 + 0.048*HCHO + 0.08*xHCHO + 0.113*CCHO +

0.019*xCCHO + 0.681*RCHO + 0.085*xRCHO + 0.044*ACET + 0.001*xACET +

0.032*PROD1 + 0.014*PROD2 + 0.042*HCOOH + 0.042*CCOOH + 0.056*RCOOH +

0.084*BALD + 0.004*HCHO2 + 0.013*CCHO2 + 0.552*RCHO2 + 0.197*yR6OOH +

3.857*XC # 2.47e-14@1510;

<BL12> OLE2 + NO3 = 1.326*RO2C + 0.34*RO2XC + 0.34*zRNO3 + 0.07*xNO2 +

0.56*xHO2 + 0.055*xHCHO + 0.034*xCCHO + 0.038*xRCHO + 0.063*xACET +

0.035*xPROD1 + 0.031*xBALD + 0.557*xRNO3 + 0.86*yR6OOH + 0.373*XN +

3.835*XC # 3.32e-12;

<BL13> OLE1 + O3P = 0.45*RCHO + 0.264*PROD1 + 0.286*PROD2 + 4.878*XC

# 5.13e-12;

<BL14> ARO1 + OH = 0.661*RO2C + 0.138*RO2XC + 0.138*zRNO3 + 0.051*OH +

0.183*HO2 + 0.58*xHO2 + 0.049*xMEO2 + 0.033*xCCHO + 0.023*xRCHO +

0.267*xPROD2 + 0.181*xGLY + 0.143*xMGLY + 0.012*xBACL + 0.005*CRES +

0.152*XYNL + 0.002*xBALD + 0.126*xAFG1 + 0.21*xAFG2 + 0.051*AFG3 +

0.026*AFG5 + 0.361*yR6OOH + 0.406*yRAOOH + 3.063*XC # 8.04e-12;

<BL15> ARO2 + OH = 0.514*RO2C + 0.119*RO2XC + 0.119*zRNO3 + 0.06*OH +

0.102*HO2 + 0.508*xHO2 + 0.006*xMEO2 + 0.16*RCO3 + 0.045*BZO +

0.007*xRCHO + 0.126*xPROD2 + 0.145*xGLY + 0.2*xMGLY + 0.028*xBACL +

Page 274: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

262

0.071*XYNL + 0.008*xBALD + 0.168*xAFG1 + 0.157*xAFG2 + 0.06*AFG3 +

0.048*xAFG4 + 0.03*AFG5 + 0.067*yR6OOH + 0.461*yRAOOH + 3.584*XC

# 2.63e-11;

<BL16> TERP + OH = 1.147*RO2C + 0.2*RO2XC + 0.2*zRNO3 + 0.759*xHO2 +

0.042*xRCO3 + 0.001*xCO + 0.264*xHCHO + 0.533*xRCHO + 0.036*xACET +

0.005*xPROD1 + 0.255*xPROD2 + 0.009*xMGLY + 0.014*xBACL + 0.002*xMVK +

0.001*xIPRD + yR6OOH + 5.056*XC # 1.87e-11@-435;

<BL17> TERP + O3 = 0.875*RO2C + 0.203*RO2XC + 0.203*zRNO3 + 0.585*OH +

0.052*HO2 + 0.067*xHO2 + 0.126*xMECO3 + 0.149*xRCO3 + 0.166*CO +

0.019*xCO + 0.045*CO2 + 0.079*HCHO + 0.15*xHCHO + 0.22*xRCHO +

0.165*xACET + 0.004*PROD1 + 0.29*PROD2 + 0.001*xGLY + 0.002*xMGLY +

0.055*xBACL + 0.001*xMACR + 0.001*xIPRD + 0.107*HCHO2 + 0.161*RCHO2 +

0.545*yR6OOH + 3.886*XC # 9.57e-16@785;

<BL18> TERP + NO3 = 1.509*RO2C + 0.397*RO2XC + 0.397*zRNO3 + 0.421*xNO2 +

0.162*xHO2 + 0.019*xRCO3 + 0.01*xCO + 0.017*xHCHO + 0.509*xRCHO +

0.001*xGLCHO + 0.175*xACET + 0.001*xMGLY + 0.003*xMACR + 0.001*xMVK +

0.002*xIPRD + 0.163*xRNO3 + yR6OOH + 0.416*XN + 4.473*XC

# 1.28e-12@-490;

<BL19> TERP + O3P = 0.147*RCHO + 0.853*PROD2 + 4.441*XC # 3.71e-11;

<BT19> SESQ + OH = 1.147*RO2C + 0.2*RO2XC + 0.2*zRNO3 + 0.759*xHO2 +

0.042*xRCO3 + 0.001*xCO + 0.264*xHCHO + 0.533*xRCHO + 0.036*xACET +

0.005*xPROD1 + 0.255*xPROD2 + 0.009*xMGLY + 0.014*xBACL + 0.002*xMVK +

0.001*xIPRD + yR6OOH + 10.056*XC # 1.0*K<BL16>;

<BT20> SESQ + O3 = 0.875*RO2C + 0.203*RO2XC + 0.203*zRNO3 + 0.585*OH +

0.052*HO2 + 0.067*xHO2 + 0.126*xMECO3 + 0.149*xRCO3 + 0.166*CO +

0.019*xCO + 0.045*CO2 + 0.079*HCHO + 0.15*xHCHO + 0.22*xRCHO +

0.165*xACET + 0.004*PROD1 + 0.29*PROD2 + 0.001*xGLY + 0.002*xMGLY +

0.055*xBACL + 0.001*xMACR + 0.001*xIPRD + 0.107*HCHO2 + 0.161*RCHO2 +

0.545*yR6OOH + 8.886*XC # 1.0*K<BL17>;

<BT21> SESQ + NO3 = 1.509*RO2C + 0.397*RO2XC + 0.397*zRNO3 + 0.421*xNO2 +

0.162*xHO2 + 0.019*xRCO3 + 0.01*xCO + 0.017*xHCHO + 0.509*xRCHO +

0.001*xGLCHO + 0.175*xACET + 0.001*xMGLY + 0.003*xMACR + 0.001*xMVK +

0.002*xIPRD + 0.163*xRNO3 + yR6OOH + 0.416*XN + 9.473*XC

# 1.0*K<BL18>;

<BT22> SESQ + O3P = 0.147*RCHO + 0.853*PROD2 + 9.441*XC # 1.0*K<BL19>;

<CI01> CL2 = 2*CL # 1.0/<CL2>;

<CI02> CL + NO + M = CLNO # 7.60e-32^-1.80;

<CI03> CLNO = CL + NO # 1.0/<CLNO_06>;

<CI04> CL + NO2 = CLONO # 1.30e-30^-2.00&1.00e-10^-1.00&0.60&1.00;

<CI05> CL + NO2 = CLNO2 # 1.80e-31^-2.00&1.00e-10^-1.00&0.60&1.00;

<CI06> CLONO = CL + NO2 # 1.0/<CLONO>;

<CI07> CLNO2 = CL + NO2 # 1.0/<CLNO2>;

<CI08> CL + HO2 = HCL # 3.44e-11^-0.56;

<CI09> CL + HO2 = CLO + OH # 9.41e-12^2.10;

<CI10> CL + O3 = CLO # 2.80e-11@250;

<CI11> CL + NO3 = CLO + NO2 # 2.40e-11;

<CI12> CLO + NO = CL + NO2 # 6.20e-12@-295;

<CI13> CLO + NO2 = CLONO2 # 1.80e-31^-3.40&1.50e-11^-1.90&0.60&1.00;

<CI14> CLONO2 = CLO + NO2 # 1.0/<CLONO2_1>;

<CI15> CLONO2 = CL + NO3 # 1.0/<CLONO2_2>;

<CI16> CLONO2 = CLO + NO2 # 4.48e-05^-1.00@12530&3.71e+15^3.50@12530&0.60&1.00;

<CI17> CL + CLONO2 = CL2 + NO3 # 6.20e-12@-145;

<CI18> CLO + HO2 = HOCL # 2.20e-12@-340;

<CI19> HOCL = OH + CL # 1.0/<HOCL_06>;

<CI20> CLO + CLO = 0.29*CL2 + 1.42*CL # 1.25e-11@1960;

<CI21> OH + HCL = CL # 1.70e-12@230;

<CI22> CL + H2 = HCL + HO2 # 3.90e-11@2310;

<CP01> HCHO + CL = HCL + HO2 + CO # 8.10e-11@30;

<CP02> CCHO + CL = HCL + MECO3 # 8.00e-11;

<CP03> MEOH + CL = HCL + HCHO + HO2 # 5.50e-11;

<CP04> RCHO + CL = HCL + 0.9*RCO3 + 0.1*RO2C + 0.1*xCCHO + 0.1*xCO + 0.1*xHO2 +

0.1*yROOH # 1.23e-10;

<CP05> ACET + CL = HCL + RO2C + xHCHO + xMECO3 + yROOH # 7.70e-11@1000;

Page 275: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

263

<CP06> PROD1 + CL = HCL + 0.975*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.84*xHO2 +

0.085*xMECO3 + 0.036*xRCO3 + 0.065*xHCHO + 0.07*xCCHO + 0.84*xRCHO +

yROOH + 0.763*XC # 3.60e-11;

<CP07> RNO3 + CL = HCL + 0.038*NO2 + 0.055*HO2 + 1.282*RO2C + 0.202*RO2XC +

0.202*zRNO3 + 0.009*RCHO + 0.018*PROD1 + 0.012*PROD2 + 0.055*RNO3 +

0.159*xNO2 + 0.547*xHO2 + 0.045*xHCHO + 0.3*xCCHO + 0.02*xRCHO +

0.003*xACET + 0.041*xPROD1 + 0.046*xPROD2 + 0.547*xRNO3 +

0.908*yR6OOH + 0.201*XN - 0.149*XC # 1.92e-10;

<CP08> PROD2 + CL = HCL + 0.314*HO2 + 0.68*RO2C + 0.116*RO2XC + 0.116*zRNO3 +

0.198*RCHO + 0.116*PROD2 + 0.541*xHO2 + 0.007*xMECO3 + 0.022*xRCO3 +

0.237*xHCHO + 0.109*xCCHO + 0.591*xRCHO + 0.051*xPROD1 + 0.04*xPROD2 +

0.686*yR6OOH + 1.262*XC # 2.00e-10;

<CP09> GLY + CL = HCL + 0.63*HO2 + 1.26*CO + 0.37*RCO3 - 0.37*XC

# 8.10e-11@30;

<CP10> MGLY + CL = HCL + CO + MECO3 # 8.00e-11;

<CP11> CRES + CL = HCL + xHO2 + xBALD + yR6OOH # 6.20e-11;

<CP12> BALD + CL = HCL + BZCO3 # 8.00e-11;

<CP13> ROOH + CL = HCL + 0.414*OH + 0.588*RO2C + 0.414*RCHO + 0.104*xOH +

0.482*xHO2 + 0.106*xHCHO + 0.104*xCCHO + 0.197*xRCHO + 0.285*xPROD1 +

0.586*yROOH - 0.287*XC # 1.66e-10;

<CP14> R6OOH + CL = HCL + 0.145*OH + 1.078*RO2C + 0.117*RO2XC + 0.117*zRNO3 +

0.145*PROD2 + 0.502*xOH + 0.237*xHO2 + 0.186*xCCHO + 0.676*xRCHO +

0.28*xPROD2 + 0.855*yR6OOH + 0.348*XC # 3.00e-10;

<CP15> RAOOH + CL = 0.404*HCL + 0.139*OH + 0.148*HO2 + 0.589*RO2C +

0.124*RO2XC + 0.124*zRNO3 + 0.074*PROD2 + 0.147*MGLY + 0.139*IPRD +

0.565*xHO2 + 0.024*xOH + 0.448*xRCHO + 0.026*xGLY + 0.03*xPROD1 +

0.252*xMGLY + 0.073*xAFG1 + 0.073*xAFG2 + 0.713*yR6OOH + 1.674*XC

# 4.29e-10;

<TP01> ACRO + CL = 0.484*xHO2 + 0.274*xCL + 0.216*MACO3 + 1.032*RO2C +

0.026*RO2XC + 0.026*zRNO3 + 0.216*HCL + 0.484*xCO + 0.274*xHCHO +

0.274*xGLY + 0.484*xCLCCHO + 0.784*yROOH - 0.294*XC # 2.94e-10;

<CP16> MACR + CL = 0.25*HCL + 0.165*MACO3 + 0.802*RO2C + 0.033*RO2XC +

0.033*zRNO3 + 0.802*xHO2 + 0.541*xCO + 0.082*xIPRD + 0.18*xCLCCHO +

0.541*xCLACET + 0.835*yROOH + 0.208*XC # 3.85e-10;

<CP17> MVK + CL = 1.283*RO2C + 0.053*RO2XC + 0.053*zRNO3 + 0.322*xHO2 +

0.625*xMECO3 + 0.947*xCLCCHO + yROOH + 0.538*XC # 2.32e-10;

<CP18> IPRD + CL = 0.401*HCL + 0.084*HO2 + 0.154*MACO3 + 0.73*RO2C +

0.051*RO2XC + 0.051*zRNO3 + 0.042*AFG1 + 0.042*AFG2 + 0.712*xHO2 +

0.498*xCO + 0.195*xHCHO + 0.017*xMGLY + 0.009*xAFG1 + 0.009*xAFG2 +

0.115*xIPRD + 0.14*xCLCCHO + 0.42*xCLACET + 0.762*yR6OOH + 0.709*XC

# 4.12e-10;

<CP19> CLCCHO = HO2 + CO + RO2C + xCL + xHCHO + yROOH # 1.0/<CLCCHO>;

<CP20> CLCCHO + OH = RCO3 - 1*XC # 3.10e-12;

<CP21> CLCCHO + CL = HCL + RCO3 - 1*XC # 1.29e-11;

<CP22> CLACET = MECO3 + RO2C + xCL + xHCHO + yROOH # 5.00e-1/<CLACET>;

<CP23> xCL = CL # 1.0?RO2RO;

<CP24> xCL = # 1.0?RO2XRO;

<CP25> xCLCCHO = CLCCHO # 1.0?RO2RO;

<CP26> xCLCCHO = 2*XC # 1.0?RO2XRO;

<CP27> xCLACET = CLACET # 1.0?RO2RO;

<CP28> xCLACET = 3*XC # 1.0?RO2XRO;

<CE01> CH4 + CL = HCL + MEO2 # 7.30e-12@1280;

<CE02> ETHE + CL = xHO2 + 2*RO2C + xHCHO + CLCHO

# 1.60e-29^-3.30&3.10e-10^-1.00&0.60&1.00;

<CE03> ISOP + CL = 0.15*HCL + 0.738*xHO2 + 0.177*xCL + 1.168*RO2C +

0.085*RO2XC + 0.085*zRNO3 + 0.275*xHCHO + 0.177*xMVK + 0.671*xIPRD +

0.067*xCLCCHO + yR6OOH + 0.018*XC # 4.80e-10;

<CE04> ACYL + CL = HO2 + CO + XC # 5.20e-30^-2.40&2.20e-10&0.60&1.00;

<T00L> ETHANE + CL = RO2C + xHO2 + xCCHO + HCL + yROOH # 8.30e-11@100;

<T01L> PROPANE + CL = 0.97*RO2C + 0.03*RO2XC + 0.03*zRNO3 + 0.97*xHO2 +

0.482*xRCHO + 0.488*xACET + HCL + yROOH - 0.09*XC # 1.20e-10@-40;

<T02L> NC4 + CL = 1.418*RO2C + 0.077*RO2XC + 0.077*zRNO3 + 0.923*xHO2 +

0.481*xCCHO + 0.313*xRCHO + 0.37*xPROD1 + HCL + yROOH + 0.157*XC

Page 276: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

264

# 2.05e-10;

<T03L> M2C3 + CL = 1.19*RO2C + 0.049*RO2XC + 0.049*zRNO3 + 0.651*xHO2 +

0.3*xTBUO + 0.239*xHCHO + 0.422*xRCHO + 0.23*xACET + HCL + yROOH +

0.311*XC # 1.43e-10;

<T04L> NC5 + CL = 1.577*RO2C + 0.143*RO2XC + 0.143*zRNO3 + 0.857*xHO2 +

0.105*xCCHO + 0.328*xRCHO + 0.177*xPROD1 + 0.352*xPROD2 + HCL +

yR6OOH + 0.128*XC # 2.80e-10;

<T05L> M2C4 + CL = 1.734*RO2C + 0.123*RO2XC + 0.123*zRNO3 + 0.869*xHO2 +

0.008*xMEO2 + 0.044*xHCHO + 0.482*xCCHO + 0.381*xRCHO + 0.439*xACET +

0.042*xPROD1 + HCL + yR6OOH + 0.618*XC # 2.20e-10;

<T06L> CYCC5 + CL = 2.438*RO2C + 0.224*RO2XC + 0.224*zRNO3 + 0.776*xHO2 +

0.054*xCO + 0.756*xRCHO + 0.02*xPROD1 + HCL + yR6OOH + 1.254*XC

# 3.09e-10;

<T07L> NC6 + CL = 1.591*RO2C + 0.22*RO2XC + 0.22*zRNO3 + 0.78*xHO2 +

0.009*xCCHO + 0.214*xRCHO + 0.585*xPROD2 + HCL + yR6OOH + 0.51*XC

# 3.40e-10;

<T08L> M22C4 + CL = 2.068*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.549*xHO2 +

0.016*xMEO2 + 0.268*xTBUO + 0.409*xHCHO + 0.637*xCCHO + 0.185*xRCHO +

0.001*xGLCHO + 0.363*xACET + 0.016*xPROD1 + HCL + yR6OOH + 0.517*XC

# 1.96e-10;

<T09L> M23C4 + CL = 1.733*RO2C + 0.164*RO2XC + 0.164*zRNO3 + 0.836*xHO2 +

0.047*xHCHO + 0.039*xCCHO + 0.456*xRCHO + 0.734*xACET + 0.001*xPROD1 +

HCL + yR6OOH + 1.317*XC # 2.30e-10;

<T10L> M2C5 + CL = 1.661*RO2C + 0.193*RO2XC + 0.193*zRNO3 + 0.807*xHO2 +

0.001*xHCHO + 0.004*xCCHO + 0.625*xRCHO + 0.234*xACET + 0.006*xPROD1 +

0.183*xPROD2 + HCL + yR6OOH + 1.134*XC # 2.90e-10;

<T11L> M3C5 + CL = 1.832*RO2C + 0.191*RO2XC + 0.191*zRNO3 + 0.809*xHO2 +

0.019*xHCHO + 0.783*xCCHO + 0.282*xRCHO + 0.001*xGLCHO + 0.344*xPROD1 +

0.047*xPROD2 + HCL + yR6OOH + 0.763*XC # 2.80e-10;

<T12L> CYCC6 + CL = 1.272*RO2C + 0.201*RO2XC + 0.201*zRNO3 + 0.799*xHO2 +

0.203*xRCHO + 0.597*xPROD2 + HCL + yR6OOH + 0.603*XC # 3.50e-10;

<T13L> MECYCC5 + CL = 2.241*RO2C + 0.31*RO2XC + 0.31*zRNO3 + 0.596*xHO2 +

0.092*xMECO3 + 0.003*xRCO3 + 0.028*xCO + 0.052*xHCHO + 0.679*xRCHO +

0.001*xPROD1 + 0.007*xPROD2 + HCL + yR6OOH + 1.784*XC # 3.21e-10;

<T14L> NC7 + CL = 1.519*RO2C + 0.29*RO2XC + 0.29*zRNO3 + 0.71*xHO2 +

0.143*xRCHO + 0.575*xPROD2 + HCL + yR6OOH + 1.381*XC # 3.90e-10;

<T15L> M223C4 + CL = 1.925*RO2C + 0.233*RO2XC + 0.233*zRNO3 + 0.589*xHO2 +

0.178*xTBUO + 0.348*xHCHO + 0.016*xCCHO + 0.302*xRCHO + 0.755*xACET +

HCL + yR6OOH + 1.339*XC # 2.90e-10;

<T16L> M22C5 + CL = 1.602*RO2C + 0.215*RO2XC + 0.215*zRNO3 + 0.599*xHO2 +

0.186*xTBUO + 0.087*xHCHO + 0.003*xCCHO + 0.586*xRCHO + 0.028*xACET +

0.013*xPROD1 + 0.191*xPROD2 + HCL + yR6OOH + 1.833*XC # 2.58e-10;

<T17L> M23C5 + CL = 1.846*RO2C + 0.253*RO2XC + 0.253*zRNO3 + 0.747*xHO2 +

0.038*xHCHO + 0.412*xCCHO + 0.314*xRCHO + 0.003*xGLCHO + 0.41*xACET +

0.203*xPROD1 + 0.047*xPROD2 + HCL + yR6OOH + 1.348*XC # 2.79e-10;

<T18L> M24C5 + CL = 1.857*RO2C + 0.234*RO2XC + 0.234*zRNO3 + 0.766*xHO2 +

0.213*xHCHO + 0.009*xCCHO + 0.661*xRCHO + 0.23*xACET + 0.008*xPROD1 +

0.082*xPROD2 + HCL + yR6OOH + 2.168*XC # 2.90e-10;

<T19L> M2C6 + CL = 1.585*RO2C + 0.267*RO2XC + 0.267*zRNO3 + 0.733*xHO2 +

0.008*xHCHO + 0.019*xCCHO + 0.362*xRCHO + 0.121*xACET + 0.378*xPROD2 +

HCL + yR6OOH + 1.635*XC # 3.50e-10;

<T20L> M33C5 + CL = 2.353*RO2C + 0.244*RO2XC + 0.244*zRNO3 + 0.74*xHO2 +

0.016*xMEO2 + 0.359*xHCHO + 1.047*xCCHO + 0.102*xRCHO + 0.022*xGLCHO +

0.477*xACET + 0.174*xPROD1 + 0.004*xPROD2 + HCL + yR6OOH + 0.566*XC

# 2.60e-10;

<T21L> M3C6 + CL = 1.67*RO2C + 0.269*RO2XC + 0.269*zRNO3 + 0.731*xHO2 +

0.005*xHCHO + 0.17*xCCHO + 0.433*xRCHO + 0.133*xPROD1 + 0.289*xPROD2 +

HCL + yR6OOH + 1.476*XC # 3.30e-10;

<T22L> ET3C5 + CL = 1.739*RO2C + 0.26*RO2XC + 0.26*zRNO3 + 0.74*xHO2 +

0.009*xHCHO + 0.658*xCCHO + 0.366*xRCHO + 0.001*xGLCHO + 0.301*xPROD1 +

0.073*xPROD2 + HCL + yR6OOH + 1.373*XC # 3.31e-10;

<T23L> M11CC5 + CL = 2.277*RO2C + 0.383*RO2XC + 0.383*zRNO3 + 0.455*xHO2 +

0.129*xMECO3 + 0.032*xRCO3 + 0.243*xCO + 0.211*xHCHO + 0.574*xRCHO +

Page 277: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

265

0.006*xACET + 0.01*xPROD1 + HCL + yR6OOH + 2.114*XC # 3.13e-10;

<T24L> M12CC5 + CL = 2.03*RO2C + 0.371*RO2XC + 0.371*zRNO3 + 0.392*xHO2 +

0.157*xMECO3 + 0.081*xRCO3 + 0.011*xCO + 0.029*xHCHO + 0.09*xCCHO +

0.543*xRCHO + 0.005*xPROD2 + HCL + yR6OOH + 2.338*XC # 3.32e-10;

<T25L> CYCC7 + CL = 1.6*RO2C + 0.318*RO2XC + 0.318*zRNO3 + 0.682*xHO2 +

0.044*xHCHO + 0.002*xCCHO + 0.377*xRCHO + 0.31*xPROD2 + HCL + yR6OOH +

2.053*XC # 3.90e-10;

<T26L> M13CYC5 + CL = 2.062*RO2C + 0.383*RO2XC + 0.383*zRNO3 + 0.464*xHO2 +

0.151*xMECO3 + 0.002*xRCO3 + 0.053*xCO + 0.094*xHCHO + 0.569*xRCHO +

0.046*xPROD2 + HCL + yR6OOH + 2.264*XC # 3.32e-10;

<T27L> ETCYCC5 + CL = 2.269*RO2C + 0.401*RO2XC + 0.401*zRNO3 + 0.524*xHO2 +

0.075*xRCO3 + 0.022*xCO + 0.013*xHCHO + 0.145*xCCHO + 0.571*xRCHO +

0.001*xGLCHO + 0.003*xPROD1 + 0.008*xPROD2 + 0.008*xMGLY + HCL +

yR6OOH + 2.245*XC # 3.83e-10;

<T28L> NC8 + CL = 1.449*RO2C + 0.352*RO2XC + 0.352*zRNO3 + 0.648*xHO2 +

0.088*xRCHO + 0.561*xPROD2 + HCL + yR6OOH + 2.258*XC # 4.60e-10;

<T29L> BRC8 + CL = 1.634*RO2C + 0.339*RO2XC + 0.339*zRNO3 + 0.661*xHO2 +

0.054*xHCHO + 0.11*xCCHO + 0.352*xRCHO + 0.033*xACET + 0.043*xPROD1 +

0.329*xPROD2 + HCL + yR6OOH + 2.391*XC # 3.66e-10;

<T30L> M224C5 + CL = 1.991*RO2C + 0.209*RO2XC + 0.209*zRNO3 + 0.592*xHO2 +

0.199*xTBUO + 0.425*xHCHO + 0.003*xCCHO + 0.581*xRCHO + 0.117*xACET +

0.063*xPROD1 + 0.097*xPROD2 + HCL + yR6OOH + 2.591*XC # 2.60e-10;

<T31L> M22C6 + CL = 1.49*RO2C + 0.302*RO2XC + 0.302*zRNO3 + 0.509*xHO2 +

0.189*xTBUO + 0.055*xHCHO + 0.038*xCCHO + 0.419*xRCHO + 0.002*xACET +

0.009*xPROD1 + 0.277*xPROD2 + HCL + yR6OOH + 2.34*XC # 3.19e-10;

<T32L> M234C5 + CL = 1.935*RO2C + 0.313*RO2XC + 0.313*zRNO3 + 0.687*xHO2 +

0.105*xHCHO + 0.385*xCCHO + 0.285*xRCHO + 0.003*xGLCHO + 0.649*xACET +

0.123*xPROD1 + HCL + yR6OOH + 1.947*XC # 2.90e-10;

<T33L> M23C6 + CL = 1.753*RO2C + 0.327*RO2XC + 0.327*zRNO3 + 0.673*xHO2 +

0.019*xHCHO + 0.123*xCCHO + 0.363*xRCHO + 0.31*xACET + 0.108*xPROD1 +

0.227*xPROD2 + HCL + yR6OOH + 1.96*XC # 3.41e-10;

<T34L> M24C6 + CL = 1.752*RO2C + 0.34*RO2XC + 0.34*zRNO3 + 0.66*xHO2 +

0.103*xHCHO + 0.212*xCCHO + 0.427*xRCHO + 0.055*xACET + 0.066*xPROD1 +

0.227*xPROD2 + HCL + yR6OOH + 2.361*XC # 3.41e-10;

<T35L> M25C6 + CL = 1.801*RO2C + 0.324*RO2XC + 0.324*zRNO3 + 0.676*xHO2 +

0.068*xHCHO + 0.541*xRCHO + 0.366*xACET + 0.143*xPROD2 + HCL + yR6OOH +

2.409*XC # 3.40e-10;

<T36L> M2C7 + CL = 1.489*RO2C + 0.338*RO2XC + 0.338*zRNO3 + 0.662*xHO2 +

0.006*xHCHO + 0.01*xCCHO + 0.229*xRCHO + 0.021*xACET + 0.45*xPROD2 +

HCL + yR6OOH + 2.496*XC # 3.91e-10;

<T37L> M3C7 + CL = 1.562*RO2C + 0.338*RO2XC + 0.338*zRNO3 + 0.662*xHO2 +

0.002*xHCHO + 0.129*xCCHO + 0.265*xRCHO + 0.058*xPROD1 + 0.408*xPROD2 +

HCL + yR6OOH + 2.237*XC # 3.92e-10;

<T38L> M4C7 + CL = 1.542*RO2C + 0.338*RO2XC + 0.338*zRNO3 + 0.662*xHO2 +

0.002*xHCHO + 0.004*xCCHO + 0.325*xRCHO + 0.041*xPROD1 + 0.411*xPROD2 +

HCL + yR6OOH + 2.357*XC # 3.92e-10;

<T39L> M233C5 + CL = 2.264*RO2C + 0.32*RO2XC + 0.32*zRNO3 + 0.675*xHO2 +

0.005*xMEO2 + 0.358*xHCHO + 0.506*xCCHO + 0.106*xRCHO + 0.014*xGLCHO +

0.941*xACET + 0.133*xPROD1 + 0.004*xPROD2 + HCL + yR6OOH + 0.98*XC

# 2.71e-10;

<T40L> M34C6 + CL = 1.75*RO2C + 0.324*RO2XC + 0.324*zRNO3 + 0.676*xHO2 +

0.036*xHCHO + 0.37*xCCHO + 0.201*xRCHO + 0.004*xGLCHO + 0.383*xPROD1 +

0.219*xPROD2 + HCL + yR6OOH + 1.823*XC # 3.42e-10;

<T41L> E3M2C5 + CL = 1.784*RO2C + 0.32*RO2XC + 0.32*zRNO3 + 0.68*xHO2 +

0.026*xHCHO + 0.287*xCCHO + 0.473*xRCHO + 0.002*xGLCHO + 0.404*xACET +

0.151*xPROD1 + 0.068*xPROD2 + HCL + yR6OOH + 1.833*XC # 3.42e-10;

<T42L> M112CC5 + CL = 2.062*RO2C + 0.434*RO2XC + 0.434*zRNO3 + 0.213*xHO2 +

0.164*xMECO3 + 0.189*xRCO3 + 0.024*xCO + 0.171*xHCHO + 0.114*xCCHO +

0.367*xRCHO + 0.116*xACET + 0.006*xPROD2 + 0.001*xMGLY + HCL + yR6OOH +

2.59*XC # 3.24e-10;

<T43L> M113CC5 + CL = 2.09*RO2C + 0.454*RO2XC + 0.454*zRNO3 + 0.374*xHO2 +

0.159*xMECO3 + 0.013*xRCO3 + 0.195*xCO + 0.227*xHCHO + 0.001*xCCHO +

0.431*xRCHO + 0.011*xACET + 0.002*xPROD1 + 0.1*xPROD2 + HCL + yR6OOH +

Page 278: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

266

2.561*XC # 3.24e-10;

<T44L> M11CC6 + CL = 1.819*RO2C + 0.379*RO2XC + 0.379*zRNO3 + 0.621*xHO2 +

0.031*xCO + 0.236*xHCHO + 0.379*xRCHO + 0.004*xGLCHO + 0.021*xACET +

0.317*xPROD2 + 0.001*xGLY + HCL + yR6OOH + 2.347*XC # 3.74e-10;

<T45L> M14CC6 + CL = 1.866*RO2C + 0.446*RO2XC + 0.446*zRNO3 + 0.554*xHO2 +

0.092*xHCHO + 0.011*xCCHO + 0.502*xRCHO + 0.002*xGLCHO + 0.068*xPROD2 +

HCL + yR6OOH + 3.292*XC # 3.94e-10;

<T46L> CYCC8 + CL = 1.528*RO2C + 0.365*RO2XC + 0.365*zRNO3 + 0.634*xHO2 +

0.002*xHCHO + 0.135*xCCHO + 0.298*xRCHO + 0.34*xPROD2 + HCL + yR6OOH +

2.604*XC # 4.45e-10;

<T47L> M13CYC6 + CL = 1.757*RO2C + 0.417*RO2XC + 0.417*zRNO3 + 0.582*xHO2 +

0.001*xMECO3 + 0.012*xCO + 0.08*xHCHO + 0.017*xCCHO + 0.451*xRCHO +

0.001*xPROD1 + 0.149*xPROD2 + HCL + yR6OOH + 3.119*XC # 3.94e-10;

<T48L> NC9 + CL = 1.393*RO2C + 0.398*RO2XC + 0.398*zRNO3 + 0.602*xHO2 +

0.068*xRCHO + 0.535*xPROD2 + HCL + yR6OOH + 3.198*XC # 4.80e-10;

<T49L> BRC9 + CL = 1.524*RO2C + 0.397*RO2XC + 0.397*zRNO3 + 0.603*xHO2 +

0.036*xHCHO + 0.007*xCCHO + 0.275*xRCHO + 0.013*xACET + 0.008*xPROD1 +

0.407*xPROD2 + HCL + yR6OOH + 3.23*XC # 4.28e-10;

<T50L> M225C6 + CL = 1.702*RO2C + 0.351*RO2XC + 0.351*zRNO3 + 0.433*xHO2 +

0.215*xTBUO + 0.066*xHCHO + 0.6*xRCHO + 0.001*xGLCHO + 0.223*xACET +

0.003*xPROD1 + 0.055*xPROD2 + HCL + yR6OOH + 3.155*XC # 3.30e-10;

<T51L> M235C6 + CL = 1.767*RO2C + 0.381*RO2XC + 0.381*zRNO3 + 0.619*xHO2 +

0.09*xHCHO + 0.076*xCCHO + 0.381*xRCHO + 0.372*xACET + 0.007*xPROD1 +

0.243*xPROD2 + HCL + yR6OOH + 2.727*XC # 3.52e-10;

<T52L> M24C7 + CL = 1.588*RO2C + 0.396*RO2XC + 0.396*zRNO3 + 0.604*xHO2 +

0.071*xHCHO + 0.007*xCCHO + 0.387*xRCHO + 0.019*xACET + 0.014*xPROD1 +

0.339*xPROD2 + HCL + yR6OOH + 3.231*XC # 4.03e-10;

<T53L> M2C8 + CL = 1.447*RO2C + 0.4*RO2XC + 0.4*zRNO3 + 0.6*xHO2 + 0.001*xHCHO +

0.136*xRCHO + 0.013*xACET + 0.469*xPROD2 + HCL + yR6OOH + 3.338*XC

# 4.53e-10;

<T54L> M35C7 + CL = 1.696*RO2C + 0.408*RO2XC + 0.408*zRNO3 + 0.592*xHO2 +

0.01*xHCHO + 0.322*xCCHO + 0.3*xRCHO + 0.06*xPROD1 + 0.302*xPROD2 +

HCL + yR6OOH + 2.946*XC # 4.04e-10;

<T55L> M4C8 + CL = 1.472*RO2C + 0.395*RO2XC + 0.395*zRNO3 + 0.605*xHO2 +

0.001*xHCHO + 0.012*xCCHO + 0.188*xRCHO + 0.004*xPROD1 + 0.482*xPROD2 +

HCL + yR6OOH + 3.133*XC # 4.54e-10;

<T56L> M33C7 + CL = 1.834*RO2C + 0.376*RO2XC + 0.376*zRNO3 + 0.617*xHO2 +

0.006*xMEO2 + 0.109*xHCHO + 0.392*xCCHO + 0.351*xRCHO + 0.008*xGLCHO +

0.19*xACET + 0.007*xPROD1 + 0.273*xPROD2 + HCL + yR6OOH + 2.54*XC

# 3.84e-10;

<T57L> M224C6 + CL = 1.75*RO2C + 0.379*RO2XC + 0.379*zRNO3 + 0.447*xHO2 +

0.175*xTBUO + 0.132*xHCHO + 0.216*xCCHO + 0.426*xRCHO + 0.007*xACET +

0.071*xPROD1 + 0.131*xPROD2 + HCL + yR6OOH + 3.093*XC # 3.31e-10;

<T58L> M26C7 + CL = 1.523*RO2C + 0.383*RO2XC + 0.383*zRNO3 + 0.617*xHO2 +

0.001*xHCHO + 0.356*xRCHO + 0.144*xACET + 0.269*xPROD2 + HCL + yR6OOH +

3.587*XC # 4.02e-10;

<T59L> M25C7 + CL = 1.683*RO2C + 0.389*RO2XC + 0.389*zRNO3 + 0.611*xHO2 +

0.017*xHCHO + 0.177*xCCHO + 0.324*xRCHO + 0.085*xACET + 0.086*xPROD1 +

0.297*xPROD2 + HCL + yR6OOH + 2.942*XC # 4.03e-10;

<T60L> M3C8 + CL = 1.462*RO2C + 0.393*RO2XC + 0.393*zRNO3 + 0.607*xHO2 +

0.002*xHCHO + 0.063*xCCHO + 0.166*xRCHO + 0.017*xPROD1 + 0.454*xPROD2 +

HCL + yR6OOH + 3.224*XC # 4.54e-10;

<T61L> ET3C7 + CL = 1.5*RO2C + 0.392*RO2XC + 0.392*zRNO3 + 0.608*xHO2 +

0.002*xHCHO + 0.106*xCCHO + 0.242*xRCHO + 0.042*xPROD1 + 0.409*xPROD2 +

HCL + yR6OOH + 3.086*XC # 4.55e-10;

<T62L> M123CC6 + CL = 1.732*RO2C + 0.461*RO2XC + 0.461*zRNO3 + 0.517*xHO2 +

0.012*xMECO3 + 0.01*xRCO3 + 0.001*xCO + 0.04*xHCHO + 0.125*xCCHO +

0.307*xRCHO + 0.225*xPROD2 + HCL + yR6OOH + 3.618*XC # 4.06e-10;

<T63L> M135CC6 + CL = 1.781*RO2C + 0.48*RO2XC + 0.48*zRNO3 + 0.517*xHO2 +

0.003*xMECO3 + 0.019*xCO + 0.117*xHCHO + 0.029*xCCHO + 0.46*xRCHO +

0.002*xPROD1 + 0.084*xPROD2 + HCL + yR6OOH + 4.028*XC # 4.06e-10;

<T64L> M113CC6 + CL = 2.017*RO2C + 0.489*RO2XC + 0.489*zRNO3 + 0.509*xHO2 +

0.001*xMECO3 + 0.073*xCO + 0.283*xHCHO + 0.11*xCCHO + 0.434*xRCHO +

Page 279: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

267

0.04*xACET + 0.006*xPROD1 + 0.169*xPROD2 + HCL + yR6OOH + 3.028*XC

# 3.86e-10;

<T65L> E1M4CC6 + CL = 1.741*RO2C + 0.478*RO2XC + 0.478*zRNO3 + 0.521*xHO2 +

0.044*xHCHO + 0.132*xCCHO + 0.407*xRCHO + 0.002*xGLCHO + 0.131*xPROD2 +

HCL + yR6OOH + 3.813*XC # 4.57e-10;

<T66L> C3CYCC6 + CL = 1.377*RO2C + 0.379*RO2XC + 0.379*zRNO3 + 0.621*xHO2 +

0.001*xRCO3 + 0.284*xRCHO + 0.448*xPROD2 + HCL + yR6OOH + 3.183*XC

# 5.07e-10;

<T67L> CYCC9 + CL = 1.559*RO2C + 0.429*RO2XC + 0.429*zRNO3 + 0.571*xHO2 +

0.001*xRCO3 + 0.022*xHCHO + 0.066*xCCHO + 0.346*xRCHO + 0.001*xGLCHO +

0.29*xPROD2 + HCL + yR6OOH + 3.489*XC # 4.82e-10;

<T68L> NC10 + CL = 1.355*RO2C + 0.428*RO2XC + 0.428*zRNO3 + 0.572*xHO2 +

0.057*xRCHO + 0.515*xPROD2 + HCL + yR6OOH + 4.171*XC # 5.50e-10;

<T69L> BRC10 + CL = 1.458*RO2C + 0.431*RO2XC + 0.431*zRNO3 + 0.57*xHO2 +

0.001*xHCHO + 0.037*xCCHO + 0.198*xRCHO + 0.03*xACET + 0.019*xPROD1 +

0.391*xPROD2 + HCL + yR6OOH + 4.233*XC # 4.90e-10;

<T70L> M24C8 + CL = 1.5*RO2C + 0.435*RO2XC + 0.435*zRNO3 + 0.565*xHO2 +

0.039*xHCHO + 0.014*xCCHO + 0.243*xRCHO + 0.011*xACET + 0.003*xPROD1 +

0.406*xPROD2 + HCL + yR6OOH + 4.113*XC # 4.64e-10;

<T71L> M26C8 + CL = 1.507*RO2C + 0.429*RO2XC + 0.429*zRNO3 + 0.571*xHO2 +

0.001*xHCHO + 0.071*xCCHO + 0.262*xRCHO + 0.054*xACET + 0.036*xPROD1 +

0.318*xPROD2 + HCL + yR6OOH + 4.283*XC # 4.64e-10;

<T72L> M2C9 + CL = 1.399*RO2C + 0.435*RO2XC + 0.435*zRNO3 + 0.565*xHO2 +

0.106*xRCHO + 0.012*xACET + 0.46*xPROD2 + HCL + yR6OOH + 4.276*XC

# 5.14e-10;

<T73L> M3C9 + CL = 1.425*RO2C + 0.436*RO2XC + 0.436*zRNO3 + 0.564*xHO2 +

0.001*xHCHO + 0.038*xCCHO + 0.113*xRCHO + 0.012*xPROD1 + 0.457*xPROD2 +

HCL + yR6OOH + 4.178*XC # 5.15e-10;

<T74L> M4C9 + CL = 1.418*RO2C + 0.429*RO2XC + 0.429*zRNO3 + 0.571*xHO2 +

0.001*xHCHO + 0.007*xCCHO + 0.161*xRCHO + 0.002*xPROD1 + 0.466*xPROD2 +

HCL + yR6OOH + 4.124*XC # 5.15e-10;

<T75L> M33C8 + CL = 1.746*RO2C + 0.416*RO2XC + 0.416*zRNO3 + 0.578*xHO2 +

0.006*xMEO2 + 0.086*xHCHO + 0.3*xCCHO + 0.393*xRCHO + 0.006*xGLCHO +

0.161*xACET + 0.006*xPROD1 + 0.247*xPROD2 + HCL + yR6OOH + 3.632*XC

# 4.46e-10;

<T76L> M224C7 + CL = 1.613*RO2C + 0.41*RO2XC + 0.41*zRNO3 + 0.45*xHO2 +

0.141*xTBUO + 0.078*xHCHO + 0.002*xCCHO + 0.542*xRCHO + 0.004*xACET +

0.045*xPROD1 + 0.171*xPROD2 + HCL + yR6OOH + 4.05*XC # 3.93e-10;

<T77L> M225C7 + CL = 1.597*RO2C + 0.382*RO2XC + 0.382*zRNO3 + 0.449*xHO2 +

0.168*xTBUO + 0.047*xHCHO + 0.143*xCCHO + 0.483*xRCHO + 0.002*xACET +

0.103*xPROD1 + 0.149*xPROD2 + HCL + yR6OOH + 3.942*XC # 3.93e-10;

<T78L> M23C8 + CL = 1.495*RO2C + 0.426*RO2XC + 0.426*zRNO3 + 0.574*xHO2 +

0.005*xHCHO + 0.032*xCCHO + 0.176*xRCHO + 0.134*xACET + 0.001*xPROD1 +

0.41*xPROD2 + HCL + yR6OOH + 3.981*XC # 4.64e-10;

<T79L> M25C8 + CL = 1.569*RO2C + 0.444*RO2XC + 0.444*zRNO3 + 0.556*xHO2 +

0.005*xHCHO + 0.001*xCCHO + 0.297*xRCHO + 0.072*xACET + 0.013*xPROD1 +

0.374*xPROD2 + HCL + yR6OOH + 3.926*XC # 4.64e-10;

<T80L> M2E3C7 + CL = 1.553*RO2C + 0.426*RO2XC + 0.426*zRNO3 + 0.574*xHO2 +

0.004*xHCHO + 0.042*xCCHO + 0.295*xRCHO + 0.188*xACET + 0.002*xPROD1 +

0.358*xPROD2 + HCL + yR6OOH + 3.751*XC # 4.65e-10;

<T81L> CYCC10 + CL = 1.521*RO2C + 0.454*RO2XC + 0.454*zRNO3 + 0.544*xHO2 +

0.002*xRCO3 + 0.002*xCO + 0.014*xHCHO + 0.077*xCCHO + 0.282*xRCHO +

0.058*xACET + 0.297*xPROD2 + HCL + yR6OOH + 4.298*XC # 5.19e-10;

<T82L> C4CYCC6 + CL = 1.328*RO2C + 0.406*RO2XC + 0.406*zRNO3 + 0.594*xHO2 +

0.007*xCCHO + 0.193*xRCHO + 0.479*xPROD2 + HCL + yR6OOH + 4.097*XC

# 5.69e-10;

<T83L> NC11 + CL = 1.331*RO2C + 0.448*RO2XC + 0.448*zRNO3 + 0.552*xHO2 +

0.049*xRCHO + 0.503*xPROD2 + HCL + yR6OOH + 5.147*XC # 6.27e-10;

<T84L> BRC11 + CL = 1.424*RO2C + 0.458*RO2XC + 0.458*zRNO3 + 0.542*xHO2 +

0.001*xHCHO + 0.009*xCCHO + 0.163*xRCHO + 0.025*xACET + 0.005*xPROD1 +

0.413*xPROD2 + HCL + yR6OOH + 5.171*XC # 5.52e-10;

<T85L> M26C9 + CL = 1.455*RO2C + 0.458*RO2XC + 0.458*zRNO3 + 0.542*xHO2 +

0.001*xHCHO + 0.001*xCCHO + 0.219*xRCHO + 0.049*xACET + 0.003*xPROD1 +

Page 280: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

268

0.371*xPROD2 + HCL + yR6OOH + 5.207*XC # 5.26e-10;

<T86L> M3C10 + CL = 1.391*RO2C + 0.458*RO2XC + 0.458*zRNO3 + 0.542*xHO2 +

0.001*xHCHO + 0.032*xCCHO + 0.096*xRCHO + 0.01*xPROD1 + 0.449*xPROD2 +

HCL + yR6OOH + 5.165*XC # 5.77e-10;

<T87L> M4C10 + CL = 1.396*RO2C + 0.458*RO2XC + 0.458*zRNO3 + 0.542*xHO2 +

0.001*xHCHO + 0.001*xCCHO + 0.118*xRCHO + 0.002*xPROD1 + 0.462*xPROD2 +

HCL + yR6OOH + 5.115*XC # 5.77e-10;

<T88L> CYCC11 + CL = 1.469*RO2C + 0.478*RO2XC + 0.478*zRNO3 + 0.521*xHO2 +

0.003*xCO + 0.012*xHCHO + 0.084*xCCHO + 0.209*xRCHO + 0.348*xPROD2 +

HCL + yR6OOH + 5.234*XC # 5.82e-10;

<T89L> E1P2CC6 + CL = 1.492*RO2C + 0.49*RO2XC + 0.49*zRNO3 + 0.51*xHO2 +

0.004*xHCHO + 0.022*xCCHO + 0.185*xRCHO + 0.381*xPROD2 + HCL + yR6OOH +

5.171*XC # 5.82e-10;

<T90L> NC12 + CL = 1.315*RO2C + 0.46*RO2XC + 0.46*zRNO3 + 0.54*xHO2 +

0.044*xRCHO + 0.497*xPROD2 + HCL + yR6OOH + 6.126*XC # 6.89e-10;

<T91L> BRC12 + CL = 1.413*RO2C + 0.476*RO2XC + 0.476*zRNO3 + 0.525*xHO2 +

0.001*xHCHO + 0.036*xCCHO + 0.128*xRCHO + 0.017*xPROD1 + 0.431*xPROD2 +

HCL + yR6OOH + 6.033*XC # 6.14e-10;

<T92L> M36C10 + CL = 1.46*RO2C + 0.482*RO2XC + 0.482*zRNO3 + 0.518*xHO2 +

0.001*xHCHO + 0.056*xCCHO + 0.165*xRCHO + 0.029*xPROD1 + 0.406*xPROD2 +

HCL + yR6OOH + 5.948*XC # 5.89e-10;

<T93L> M3C11 + CL = 1.367*RO2C + 0.469*RO2XC + 0.469*zRNO3 + 0.531*xHO2 +

0.001*xHCHO + 0.029*xCCHO + 0.084*xRCHO + 0.009*xPROD1 + 0.449*xPROD2 +

HCL + yR6OOH + 6.145*XC # 6.39e-10;

<T94L> M5C11 + CL = 1.366*RO2C + 0.469*RO2XC + 0.469*zRNO3 + 0.531*xHO2 +

0.003*xCCHO + 0.098*xRCHO + 0.464*xPROD2 + HCL + yR6OOH + 6.102*XC

# 6.39e-10;

<T95L> NC13 + CL = 1.305*RO2C + 0.467*RO2XC + 0.467*zRNO3 + 0.533*xHO2 +

0.039*xRCHO + 0.494*xPROD2 + HCL + yR6OOH + 7.117*XC # 7.51e-10;

<T96L> NC14 + CL = 1.299*RO2C + 0.471*RO2XC + 0.471*zRNO3 + 0.529*xHO2 +

0.036*xRCHO + 0.493*xPROD2 + HCL + yR6OOH + 8.108*XC # 8.13e-10;

<T97L> NC15 + CL = 1.294*RO2C + 0.474*RO2XC + 0.474*zRNO3 + 0.526*xHO2 +

0.033*xRCHO + 0.492*xPROD2 + HCL + yR6OOH + 9.105*XC # 8.74e-10;

<T98L> NC16 + CL = 1.291*RO2C + 0.476*RO2XC + 0.476*zRNO3 + 0.524*xHO2 +

0.031*xRCHO + 0.493*xPROD2 + HCL + yR6OOH + 10.093*XC # 9.36e-10;

<T99L> PROPENE + CL = 0.971*RO2C + 0.029*RO2XC + 0.029*zRNO3 + 0.971*xHO2 +

0.124*xACRO + 0.306*xCLCCHO + 0.54*xCLACET + 0.124*HCL + yROOH +

0.222*XC # 2.67e-10;

<T101L> BUTENE1 + CL = 1.319*RO2C + 0.083*RO2XC + 0.083*zRNO3 + 0.918*xHO2 +

0.02*xHCHO + 0.113*xCCHO + 0.04*xRCHO + 0.174*xACRO + 0.011*xMVK +

0.021*xIPRD + 0.244*xCLCCHO + 0.429*xCLACET + 0.266*HCL + yROOH +

0.69*XC # 3.39e-10;

<T102L> ISOBUTEN + CL = 1.744*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.783*xCL +

0.177*xHO2 + 0.783*xHCHO + 0.783*xACET + 0.177*xMACR + 0.185*HCL +

yROOH - 0.074*XC # 3.25e-10;

<T103L> C2BUTE + CL = 0.971*RO2C + 0.079*RO2XC + 0.079*zRNO3 + 0.919*xHO2 +

0.002*xMEO2 + 0.047*xHCHO + 0.104*xMVK + 0.08*xIPRD + 0.737*xCLACET +

0.199*HCL + yROOH + 0.45*XC # 3.88e-10;

<T104L> T2BUTE + CL = 0.923*RO2C + 0.077*RO2XC + 0.077*zRNO3 + 0.921*xHO2 +

0.002*xMEO2 + 0.104*xMVK + 0.082*xIPRD + 0.737*xCLACET + 0.199*HCL +

yROOH + 0.499*XC # 3.55e-10;

<T105L> BUTDE12 + CL = MACO3 + HCHO + HCL - 1*XC # 3.28e-11;

<T106L> BUTDE13 + CL = 1.884*RO2C + 0.069*RO2XC + 0.069*zRNO3 + 0.541*xCL +

0.39*xHO2 + 0.863*xHCHO + 0.457*xACRO + 0.473*xIPRD + yROOH +

1.013*XC # 4.90e-10;

<T107L> PENTEN1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

1.179*XC # 4.05e-10;

<T108L> M1BUT3 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

1.179*XC # 3.52e-10;

Page 281: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

269

<T109L> M1BUT2 + CL = 1.76*RO2C + 0.092*RO2XC + 0.092*zRNO3 + 0.484*xCL +

0.424*xHO2 + 0.597*xHCHO + 0.033*xRCHO + 0.484*xPROD1 + 0.067*xMACR +

0.035*xMVK + 0.138*xIPRD + 0.151*xCLCCHO + 0.31*HCL + yR6OOH +

0.416*XC # 3.82e-10;

<T110L> M2BUT2 + CL = 0.923*RO2C + 0.077*RO2XC + 0.077*zRNO3 + 0.921*xHO2 +

0.002*xMEO2 + 0.104*xMVK + 0.082*xIPRD + 0.737*xCLACET + 0.199*HCL +

yR6OOH + 1.499*XC # 3.23e-10;

<T111L> C2PENT + CL = 1.729*RO2C + 0.14*RO2XC + 0.14*zRNO3 + 0.577*xCL +

0.282*xHO2 + 0.001*xMEO2 + 0.116*xHCHO + 0.742*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.231*xIPRD + 0.33*HCL + yR6OOH - 0.535*XC # 3.94e-10;

<T112L> T2PENT + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH - 0.382*XC # 3.94e-10;

<T113L> CYCPNTE + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH - 0.382*XC # 3.94e-10;

<T114L> HEXENE1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

2.179*XC # 4.05e-10;

<T115L> M33BUT1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

2.179*XC # 4.05e-10;

<T116L> M3C5E1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

2.179*XC # 3.78e-10;

<T117L> M2C5E1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

2.179*XC # 4.05e-10;

<T118L> M2C5E2 + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T119L> C2C6E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T120L> C3C6E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T121L> M3C5E2 + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T122L> M4T2C5E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T123L> T2C6E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T124L> T3C6E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T125L> C6OLE2 + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T126L> M3CC5E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T127L> M1CC5E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T128L> CYCHEXE + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

Page 282: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

270

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 0.618*XC # 3.94e-10;

<T129L> T2C7E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 1.618*XC # 3.94e-10;

<T130L> T3C7E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 1.618*XC # 3.94e-10;

<T131L> C7OLE1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

3.179*XC # 4.05e-10;

<T132L> C8COLE + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 2.618*XC # 3.94e-10;

<T133L> OCTENE1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

4.179*XC # 4.05e-10;

<T134L> M244C5E1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

4.179*XC # 4.05e-10;

<T135L> C9E1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

5.179*XC # 4.05e-10;

<T136L> T4C9E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 3.618*XC # 3.94e-10;

<T137L> C10E1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

6.179*XC # 4.05e-10;

<T138L> E34C6E2 + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 4.618*XC # 3.94e-10;

<T139L> C10OLE2 + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 4.618*XC # 3.94e-10;

<T140L> CARENE3 + CL = 2.258*RO2C + 0.582*RO2XC + 0.582*zRNO3 + 0.068*xCL +

0.252*xHO2 + 0.034*xMECO3 + 0.05*xRCO3 + 0.016*xMACO3 + 0.035*xCO +

0.158*xHCHO + 0.185*xRCHO + 0.274*xACET + 0.007*xGLY + 0.003*xBACL +

0.003*xMVK + 0.158*xIPRD + 0.006*xAFG1 + 0.006*xAFG2 + 0.001*xAFG4 +

0.109*xCLCCHO + 0.548*HCL + yR6OOH + 3.544*XC # 5.46e-10;

<T141L> APINENE + CL = 2.258*RO2C + 0.582*RO2XC + 0.582*zRNO3 + 0.068*xCL +

0.252*xHO2 + 0.034*xMECO3 + 0.05*xRCO3 + 0.016*xMACO3 + 0.035*xCO +

0.158*xHCHO + 0.185*xRCHO + 0.274*xACET + 0.007*xGLY + 0.003*xBACL +

0.003*xMVK + 0.158*xIPRD + 0.006*xAFG1 + 0.006*xAFG2 + 0.001*xAFG4 +

0.109*xCLCCHO + 0.548*HCL + yR6OOH + 3.544*XC # 5.46e-10;

<T142L> BPINENE + CL = 2.258*RO2C + 0.582*RO2XC + 0.582*zRNO3 + 0.068*xCL +

0.252*xHO2 + 0.034*xMECO3 + 0.05*xRCO3 + 0.016*xMACO3 + 0.035*xCO +

0.158*xHCHO + 0.185*xRCHO + 0.274*xACET + 0.007*xGLY + 0.003*xBACL +

0.003*xMVK + 0.158*xIPRD + 0.006*xAFG1 + 0.006*xAFG2 + 0.001*xAFG4 +

0.109*xCLCCHO + 0.548*HCL + yR6OOH + 3.544*XC # 5.46e-10;

<T143L> DLIMONE + CL = 2.258*RO2C + 0.582*RO2XC + 0.582*zRNO3 + 0.068*xCL +

0.252*xHO2 + 0.034*xMECO3 + 0.05*xRCO3 + 0.016*xMACO3 + 0.035*xCO +

0.158*xHCHO + 0.185*xRCHO + 0.274*xACET + 0.007*xGLY + 0.003*xBACL +

0.003*xMVK + 0.158*xIPRD + 0.006*xAFG1 + 0.006*xAFG2 + 0.001*xAFG4 +

0.109*xCLCCHO + 0.548*HCL + yR6OOH + 3.544*XC # 5.46e-10;

<T144L> SABINENE + CL = 2.258*RO2C + 0.582*RO2XC + 0.582*zRNO3 + 0.068*xCL +

0.252*xHO2 + 0.034*xMECO3 + 0.05*xRCO3 + 0.016*xMACO3 + 0.035*xCO +

0.158*xHCHO + 0.185*xRCHO + 0.274*xACET + 0.007*xGLY + 0.003*xBACL +

Page 283: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

271

0.003*xMVK + 0.158*xIPRD + 0.006*xAFG1 + 0.006*xAFG2 + 0.001*xAFG4 +

0.109*xCLCCHO + 0.548*HCL + yR6OOH + 3.544*XC # 5.46e-10;

<T145L> C11E1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

7.179*XC # 4.05e-10;

<T146L> T5C11E + CL = 1.634*RO2C + 0.134*RO2XC + 0.134*zRNO3 + 0.577*xCL +

0.287*xHO2 + 0.002*xMEO2 + 0.078*xHCHO + 0.687*xCCHO + 0.577*xRCHO +

0.052*xMVK + 0.237*xIPRD + 0.33*HCL + yR6OOH + 5.618*XC # 3.94e-10;

<T147L> TOLUENE + CL = 0.89*RO2C + 0.11*RO2XC + 0.11*zRNO3 + 0.89*xHO2 +

0.89*xBALD + yR6OOH + 0.11*XC # 6.20e-11;

<T148L> C2BENZ + CL = 0.86*RO2C + 0.14*RO2XC + 0.14*zRNO3 + 0.86*xHO2 +

0.106*xRCHO + 0.753*xPROD2 + yR6OOH + 2.324*XC # 1.70e-10;

<T149L> MXYLENE + CL = 0.86*RO2C + 0.14*RO2XC + 0.14*zRNO3 + 0.86*xHO2 +

0.86*xBALD + yR6OOH + 1.14*XC # 1.35e-10;

<T150L> OXYLENE + CL = 0.86*RO2C + 0.14*RO2XC + 0.14*zRNO3 + 0.86*xHO2 +

0.86*xBALD + yR6OOH + 1.14*XC # 1.40e-10;

<T151L> PXYLENE + CL = 0.86*RO2C + 0.14*RO2XC + 0.14*zRNO3 + 0.86*xHO2 +

0.86*xBALD + yR6OOH + 1.14*XC # 1.44e-10;

<T152L> STYRENE + CL = 0.82*RO2C + 0.18*RO2XC + 0.18*zRNO3 + 0.82*xHO2 +

0.82*xRCHO + 0.82*yR6OOH + 4.46*XC # 4.00e-10;

<T153L> NC3BEN + CL = 0.833*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.833*xHO2 +

0.05*xRCHO + 0.782*xPROD2 + yR6OOH + 3.156*XC # 2.28e-10;

<T154L> IC3BEN + CL = 0.833*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.261*xHO2 +

0.571*xMEO2 + 0.261*xRCHO + 0.571*xPROD2 + yR6OOH + 3.218*XC

# 1.56e-10;

<T155L> METTOL + CL = 0.833*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.833*xHO2 +

0.077*xRCHO + 0.544*xPROD2 + 0.213*xBALD + yR6OOH + 3.012*XC

# 2.39e-10;

<T156L> OETTOL + CL = 0.833*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.833*xHO2 +

0.077*xRCHO + 0.544*xPROD2 + 0.213*xBALD + yR6OOH + 3.012*XC

# 2.39e-10;

<T157L> PETTOL + CL = 0.833*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.833*xHO2 +

0.077*xRCHO + 0.544*xPROD2 + 0.213*xBALD + yR6OOH + 3.012*XC

# 2.39e-10;

<T158L> TMB123 + CL = 0.833*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.833*xHO2 +

0.833*xBALD + yR6OOH + 2.167*XC # 2.42e-10;

<T159L> TMB124 + CL = 0.833*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.833*xHO2 +

0.833*xBALD + yR6OOH + 2.167*XC # 2.42e-10;

<T160L> TMB135 + CL = 0.833*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.833*xHO2 +

0.833*xBALD + yR6OOH + 2.167*XC # 2.42e-10;

<T161L> C10BEN1 + CL = 0.918*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.662*xHO2 +

0.152*xMEO2 + 0.105*xCCHO + 0.072*xRCHO + 0.742*xPROD2 + yR6OOH +

3.848*XC # 2.48e-10;

<T162L> TC4BEN + CL = 1.666*RO2C + 0.167*RO2XC + 0.167*zRNO3 + 0.833*xMEO2 +

0.833*xHCHO + 0.833*xPROD2 + yR6OOH + 2.334*XC # 9.82e-11;

<T163L> MC10BEN2 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.716*xHO2 +

0.097*xMEO2 + 0.106*xRCHO + 0.613*xPROD2 + 0.094*xBALD + yR6OOH +

4.127*XC # 3.02e-10;

<T164L> OC10BEN2 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.716*xHO2 +

0.097*xMEO2 + 0.106*xRCHO + 0.613*xPROD2 + 0.094*xBALD + yR6OOH +

4.127*XC # 3.02e-10;

<T165L> PC10BEN2 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.716*xHO2 +

0.097*xMEO2 + 0.106*xRCHO + 0.613*xPROD2 + 0.094*xBALD + yR6OOH +

4.127*XC # 3.02e-10;

<T166L> PCYMENE + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.425*xHO2 +

0.389*xMEO2 + 0.178*xRCHO + 0.389*xPROD2 + 0.247*xBALD + yR6OOH +

3.892*XC # 2.25e-10;

<T167L> C10B123 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.813*xHO2 +

0.06*xRCHO + 0.423*xPROD2 + 0.331*xBALD + yR6OOH + 3.843*XC

# 3.09e-10;

<T168L> C10B124 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.813*xHO2 +

0.06*xRCHO + 0.423*xPROD2 + 0.331*xBALD + yR6OOH + 3.843*XC

Page 284: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

272

# 3.09e-10;

<T169L> C10B135 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.813*xHO2 +

0.06*xRCHO + 0.423*xPROD2 + 0.331*xBALD + yR6OOH + 3.843*XC

# 3.09e-10;

<T170L> BEN1234 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.813*xHO2 +

0.813*xBALD + yR6OOH + 3.187*XC # 2.78e-10;

<T171L> BEN1245 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.813*xHO2 +

0.813*xBALD + yR6OOH + 3.187*XC # 2.78e-10;

<T172L> MBEN1235 + CL = 0.813*RO2C + 0.187*RO2XC + 0.187*zRNO3 + 0.813*xHO2 +

0.813*xBALD + yR6OOH + 3.187*XC # 2.78e-10;

<T174L> C11BEN1 + CL = 0.866*RO2C + 0.199*RO2XC + 0.199*zRNO3 + 0.689*xHO2 +

0.112*xMEO2 + 0.065*xCCHO + 0.048*xRCHO + 0.753*xPROD2 + yR6OOH +

4.902*XC # 3.10e-10;

<T175L> MC11BEN2 + CL = 0.801*RO2C + 0.199*RO2XC + 0.199*zRNO3 + 0.583*xHO2 +

0.218*xMEO2 + 0.083*xRCHO + 0.691*xPROD2 + 0.028*xBALD + yR6OOH +

4.997*XC # 3.53e-10;

<T176L> OC11BEN2 + CL = 0.801*RO2C + 0.199*RO2XC + 0.199*zRNO3 + 0.583*xHO2 +

0.218*xMEO2 + 0.083*xRCHO + 0.691*xPROD2 + 0.028*xBALD + yR6OOH +

4.997*XC # 3.53e-10;

<T177L> PC11BEN2 + CL = 0.801*RO2C + 0.199*RO2XC + 0.199*zRNO3 + 0.583*xHO2 +

0.218*xMEO2 + 0.083*xRCHO + 0.691*xPROD2 + 0.028*xBALD + yR6OOH +

4.997*XC # 3.53e-10;

<T178L> C11B123 + CL = 0.801*RO2C + 0.199*RO2XC + 0.199*zRNO3 + 0.801*xHO2 +

0.06*xRCHO + 0.581*xPROD2 + 0.159*xBALD + yR6OOH + 5.027*XC

# 3.88e-10;

<T179L> C11B124 + CL = 0.801*RO2C + 0.199*RO2XC + 0.199*zRNO3 + 0.801*xHO2 +

0.06*xRCHO + 0.581*xPROD2 + 0.159*xBALD + yR6OOH + 5.027*XC

# 3.88e-10;

<T180L> C11B135 + CL = 0.801*RO2C + 0.199*RO2XC + 0.199*zRNO3 + 0.801*xHO2 +

0.06*xRCHO + 0.581*xPROD2 + 0.159*xBALD + yR6OOH + 5.027*XC

# 3.88e-10;

<T182L> C12BEN1 + CL = 0.84*RO2C + 0.207*RO2XC + 0.207*zRNO3 + 0.705*xHO2 +

0.088*xMEO2 + 0.047*xCCHO + 0.036*xRCHO + 0.757*xPROD2 + yR6OOH +

5.926*XC # 3.72e-10;

<T183L> MC12BEN2 + CL = 0.841*RO2C + 0.207*RO2XC + 0.207*zRNO3 + 0.678*xHO2 +

0.115*xMEO2 + 0.048*xCCHO + 0.076*xRCHO + 0.702*xPROD2 + 0.015*xBALD +

yR6OOH + 6.002*XC # 4.00e-10;

<T184L> OC12BEN2 + CL = 0.841*RO2C + 0.207*RO2XC + 0.207*zRNO3 + 0.678*xHO2 +

0.115*xMEO2 + 0.048*xCCHO + 0.076*xRCHO + 0.702*xPROD2 + 0.015*xBALD +

yR6OOH + 6.002*XC # 4.00e-10;

<T185L> PC12BEN2 + CL = 0.841*RO2C + 0.207*RO2XC + 0.207*zRNO3 + 0.678*xHO2 +

0.115*xMEO2 + 0.048*xCCHO + 0.076*xRCHO + 0.702*xPROD2 + 0.015*xBALD +

yR6OOH + 6.002*XC # 4.00e-10;

<T186L> C12B123 + CL = 0.793*RO2C + 0.207*RO2XC + 0.207*zRNO3 + 0.602*xHO2 +

0.191*xMEO2 + 0.082*xRCHO + 0.592*xPROD2 + 0.118*xBALD + yR6OOH +

5.943*XC # 4.13e-10;

<T187L> C12B124 + CL = 0.793*RO2C + 0.207*RO2XC + 0.207*zRNO3 + 0.602*xHO2 +

0.191*xMEO2 + 0.082*xRCHO + 0.592*xPROD2 + 0.118*xBALD + yR6OOH +

5.943*XC # 4.13e-10;

<T188L> C12B135 + CL = 0.793*RO2C + 0.207*RO2XC + 0.207*zRNO3 + 0.602*xHO2 +

0.191*xMEO2 + 0.082*xRCHO + 0.592*xPROD2 + 0.118*xBALD + yR6OOH +

5.943*XC # 4.13e-10;

<T189L> ETOX + CL = 2*RO2C + xHO2 + 0.657*xCO + 0.041*CO2 + 0.041*xHCHO +

0.657*HCOOH + HCL + yROOH + 0.604*XC # 1.38e-10;

<T190L> ETOH + CL = 0.312*RO2C + 0.688*HO2 + 0.312*xHO2 + 0.503*xHCHO +

0.688*CCHO + 0.061*xGLCHO + HCL + 0.312*yROOH - 0.001*XC

# 8.60e-11@-45;

<T191L> MEOME + CL = RO2C + xHO2 + 0.079*xHCHO + HCL + yROOH + 1.921*XC

# 7.32e-11;

<T192L> MEFORM + CL = RO2C + xHO2 + 0.657*xCO + 0.041*CO2 + 0.041*xHCHO +

0.657*HCOOH + HCL + yROOH + 0.604*XC # 3.66e-11;

<T193L> ETGLYCL + CL = HO2 + GLCHO + HCL # 1.38e-10;

<T194L> PROX + CL = 2.207*RO2C + 0.005*RO2XC + 0.005*zRNO3 + 0.591*xHO2 +

Page 285: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

273

0.404*xMECO3 + 0.34*xCO + 0.056*CO2 + 0.226*xHCHO + 0.047*xCCHO +

0.006*xRCHO + 0.547*HCOOH + 0.197*CCOOH + HCL + yROOH + 0.487*XC

# 1.47e-10;

<T195L> IC3OH + CL = 0.569*RO2C + 0.01*RO2XC + 0.01*zRNO3 + 0.421*HO2 +

0.569*xHO2 + 0.569*xHCHO + 0.569*xCCHO + 0.421*ACET + HCL +

0.579*yROOH - 0.03*XC # 8.60e-11;

<T196L> NC3OH + CL = 0.582*RO2C + 0.006*RO2XC + 0.006*zRNO3 + 0.414*HO2 +

0.58*xHO2 + 0.389*xHCHO + 0.383*xCCHO + 0.414*RCHO + 0.194*xRCHO +

HCL + 0.586*yROOH - 0.015*XC # 2.50e-10@130;

<T198L> MEACET + CL = 0.993*RO2C + 0.014*RO2XC + 0.014*zRNO3 + 0.986*xHO2 +

0.621*xCO + 0.002*xPROD1 + 0.617*CCOOH + 0.004*RCOOH + 0.029*xMGLY +

HCL + yROOH + 0.954*XC # 3.79e-11;

<T199L> PRGLYCL + CL = 0.223*RO2C + 0.777*HO2 + 0.223*xHO2 + 0.195*xHCHO +

0.469*RCHO + 0.028*xRCHO + 0.195*xGLCHO + 0.309*PROD1 + HCL +

0.223*yROOH - 0.312*XC # 1.47e-10;

<T200L> MEOETOH + CL = 0.605*RO2C + 0.395*HO2 + 0.605*xHO2 + 0.411*xHCHO +

0.395*RCHO + 0.078*xRCHO + 0.001*xGLCHO + 0.126*xPROD2 + HCL +

0.605*yROOH + 0.412*XC # 1.75e-10;

<T201L> GLYCERL + CL = HO2 + 0.761*RCHO + 0.239*PROD2 + HCL - 0.717*XC

# 1.81e-10;

<T203L> THF + CL = 2.071*RO2C + 0.085*RO2XC + 0.085*zRNO3 + 0.909*xHO2 +

0.006*xRCO3 + 0.181*xCO + 0.015*xHCHO + 0.726*xRCHO + 0.183*xPROD2 +

HCL + yROOH # 2.62e-10;

<T204L> MEC3AL2 + CL = 0.844*RO2C + 0.038*RO2XC + 0.038*zRNO3 + 0.53*xHO2 +

0.432*RCO3 + 0.415*xCO + 0.314*xHCHO + 0.298*xCCHO + 0.115*xRCHO +

0.117*xACET + HCL + 0.568*yROOH + 0.455*XC # 1.47e-10;

<T205L> C4RCHO1 + CL = 0.71*RO2C + 0.046*RO2XC + 0.046*zRNO3 + 0.446*xHO2 +

0.34*RCO3 + 0.169*xRCO3 + 0.219*xCO + 0.091*xHCHO + 0.095*xCCHO +

0.351*xRCHO + 0.004*xGLY + HCL + 0.66*yROOH + 0.636*XC # 1.87e-10;

<T206L> IC4OH + CL = 0.844*RO2C + 0.043*RO2XC + 0.043*zRNO3 + 0.389*HO2 +

0.568*xHO2 + 0.766*xHCHO + 0.272*xCCHO + 0.389*RCHO + 0.079*xRCHO +

0.216*xACET + HCL + 0.611*yROOH + 0.38*XC # 1.77e-10;

<T207L> NC4OH + CL = 0.788*RO2C + 0.023*RO2XC + 0.023*zRNO3 + 0.302*HO2 +

0.675*xHO2 + 0.448*xHCHO + 0.113*xCCHO + 0.302*RCHO + 0.403*xRCHO +

0.022*xGLCHO + 0.159*xPROD2 + HCL + 0.698*yROOH + 0.075*XC # 2.28e-10;

<T208L> SC4OH + CL = 0.859*RO2C + 0.032*RO2XC + 0.032*zRNO3 + 0.259*HO2 +

0.709*xHO2 + 0.178*xHCHO + 0.711*xCCHO + 0.354*xRCHO + 0.259*PROD1 +

HCL + 0.741*yROOH + 0.11*XC # 1.76e-10;

<T209L> TC4OH + CL = 0.91*RO2C + 0.09*RO2XC + 0.09*zRNO3 + 0.91*xHO2 +

0.91*xHCHO + 0.91*xACET + HCL + yROOH - 0.18*XC # 9.83e-11;

<T210L> ETOET + CL = 1.196*RO2C + 0.067*RO2XC + 0.067*zRNO3 + 0.245*xHO2 +

0.689*xMEO2 + 0.081*xHCHO + 0.163*xCCHO + 0.089*xRCHO + 0.01*xGLCHO +

0.59*xPROD1 + 0.148*xPROD2 + HCL + yROOH - 1.033*XC # 2.10e-10;

<T212L> ETACET + CL = 0.963*RO2C + 0.04*RO2XC + 0.04*zRNO3 + 0.338*xHO2 +

0.622*xMECO3 + 0.296*xRCHO + 0.62*CCOOH + 0.003*RCOOH + 0.009*xMGLY +

HCL + yROOH + 0.352*XC # 1.06e-10;

<T213L> C4OH12 + CL = 0.446*RO2C + 0.018*RO2XC + 0.018*zRNO3 + 0.536*HO2 +

0.446*xHO2 + 0.296*xCCHO + 0.329*RCHO + 0.15*xRCHO + 0.296*xGLCHO +

0.207*PROD1 + HCL + 0.464*yROOH + 0.443*XC # 2.10e-10;

<T214L> MEOC3OH + CL = 0.736*RO2C + 0.016*RO2XC + 0.016*zRNO3 + 0.247*HO2 +

0.736*xHO2 + 0.18*xHCHO + 0.373*xCCHO + 0.171*xRCHO + 0.247*PROD2 +

0.192*xPROD2 + HCL + 0.753*yROOH - 0.169*XC # 1.84e-10;

<T215L> ETOETOH + CL = 0.814*RO2C + 0.023*RO2XC + 0.023*zRNO3 + 0.284*HO2 +

0.552*xHO2 + 0.141*xMEO2 + 0.485*xHCHO + 0.057*xCCHO + 0.284*RCHO +

0.076*xRCHO + 0.011*xGLCHO + 0.277*xPROD1 + 0.284*xPROD2 + HCL +

0.716*yROOH - 0.792*XC # 2.43e-10;

<T216L> DETGLCL + CL = 0.48*RO2C + 0.02*RO2XC + 0.02*zRNO3 + 0.5*HO2 +

0.48*xHO2 + 0.48*xHCHO + 0.5*RCHO + 0.48*xPROD2 + HCL + 0.5*yROOH +

0.98*XC # 2.76e-10;

<T217L> MBUTENOL + CL = 1.174*RO2C + 0.08*RO2XC + 0.08*zRNO3 + 0.244*xCL +

0.675*xHO2 + 0.255*xHCHO + 0.244*xRCHO + 0.474*xACET + 0.202*xIPRD +

0.474*xCLCCHO + 0.221*HCL + yR6OOH + 0.153*XC # 2.96e-10;

<T218L> C5RCHO1 + CL = 0.913*RO2C + 0.088*RO2XC + 0.088*zRNO3 + 0.427*xHO2 +

Page 286: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

274

0.255*RCO3 + 0.23*xRCO3 + 0.138*xCO + 0.044*xHCHO + 0.082*xCCHO +

0.42*xRCHO + 0.002*xGLY + 0.006*xMGLY + HCL + 0.745*yR6OOH + 1.389*XC

# 2.49e-10;

<T219L> IAMOH + CL = 0.899*RO2C + 0.049*RO2XC + 0.049*zRNO3 + 0.289*HO2 +

0.662*xHO2 + 0.436*xHCHO + 0.289*RCHO + 0.424*xRCHO + 0.102*xGLCHO +

0.233*xACET + 0.005*xPROD2 + HCL + 0.711*yR6OOH + 1.198*XC # 2.39e-10;

<T220L> MTBE + CL = 1.586*RO2C + 0.097*RO2XC + 0.097*zRNO3 + 0.329*xHO2 +

0.568*xMEO2 + 0.006*xTBUO + 0.771*xHCHO + 0.085*xACET + 0.244*xPROD1 +

0.002*xPROD2 + HCL + yR6OOH + 1.812*XC # 1.35e-10;

<T223L> IPRACET + CL = 1.482*RO2C + 0.073*RO2XC + 0.073*zRNO3 + 0.036*xHO2 +

0.395*xMEO2 + 0.496*xMECO3 + 0.095*CO2 + 0.544*xHCHO + 0.095*xACET +

0.496*CCOOH + 0.01*xMGLY + HCL + yR6OOH + 1.229*XC # 1.14e-10;

<T224L> PRACET + CL = 0.973*RO2C + 0.065*RO2XC + 0.065*zRNO3 + 0.585*xHO2 +

0.35*xRCO3 + 0.013*xCO + 0.002*xHCHO + 0.036*xCCHO + 0.184*xRCHO +

0.364*xPROD1 + 0.363*CCOOH + HCL + yR6OOH + 0.739*XC # 1.68e-10;

<T225L> MOEOETOH + CL = 1.282*RO2C + 0.055*RO2XC + 0.055*zRNO3 + 0.221*HO2 +

0.724*xHO2 + 0.244*xHCHO + 0.221*RCHO + 0.077*xRCHO + 0.001*xGLCHO +

0.066*xPROD1 + 0.641*xPROD2 + 0.003*HCOOH + HCL + 0.779*yR6OOH +

0.583*XC # 3.12e-10;

<T226L> CC6KET + CL = 1.303*RO2C + 0.199*RO2XC + 0.199*zRNO3 + 0.681*xHO2 +

0.12*xRCO3 + 0.087*xHCHO + 0.352*xRCHO + 0.342*xPROD2 + HCL + yR6OOH +

1.251*XC # 1.91e-10;

<T227L> CC6OH + CL = 1.08*RO2C + 0.117*RO2XC + 0.117*zRNO3 + 0.123*HO2 +

0.76*xHO2 + 0.087*xHCHO + 0.524*xRCHO + 0.123*PROD2 + 0.248*xPROD2 +

HCL + 0.877*yR6OOH + 1.413*XC # 3.52e-10;

<T228L> C6RCHO1 + CL = 1.101*RO2C + 0.159*RO2XC + 0.159*zRNO3 + 0.468*xHO2 +

0.204*RCO3 + 0.168*xRCO3 + 0.037*xCO + 0.008*xHCHO + 0.459*xRCHO +

0.042*xMGLY + HCL + 0.796*yR6OOH + 2.382*XC # 3.10e-10;

<T229L> MIBK + CL = 1.956*RO2C + 0.125*RO2XC + 0.125*zRNO3 + 0.178*xHO2 +

0.686*xMECO3 + 0.011*xRCO3 + 1.092*xHCHO + 0.323*xCCHO + 0.133*xRCHO +

0.343*xACET + 0.066*xPROD1 + HCL + yR6OOH + 0.415*XC # 1.12e-10;

<T230L> MNBK + CL = 1.477*RO2C + 0.121*RO2XC + 0.121*zRNO3 + 0.513*xHO2 +

0.366*xMECO3 + 0.191*xHCHO + 0.229*xCCHO + 0.586*xRCHO + 0.084*xPROD1 +

0.206*xPROD2 + HCL + yR6OOH + 0.563*XC # 1.63e-10;

<T231L> ETBE + CL = 1.31*RO2C + 0.126*RO2XC + 0.126*zRNO3 + 0.313*xHO2 +

0.518*xMEO2 + 0.043*xTBUO + 0.436*xHCHO + 0.168*xCCHO + 0.145*xRCHO +

0.125*xACET + 0.518*xPROD1 + HCL + yR6OOH + 0.9*XC # 2.03e-10;

<T232L> IBUACET + CL = 1.659*RO2C + 0.13*RO2XC + 0.13*zRNO3 + 0.817*xHO2 +

0.004*xMEO2 + 0.049*xRCO3 + 0.145*xCO + 0.26*xHCHO + 0.014*xCCHO +

0.074*xRCHO + 0.503*xACET + 0.233*xPROD1 + 0.194*CCOOH + HCL + yR6OOH +

1.585*XC # 1.78e-10;

<T233L> BUACET + CL = 1.26*RO2C + 0.128*RO2XC + 0.128*zRNO3 + 0.729*xHO2 +

0.143*xRCO3 + 0.009*xCO + 0.125*xCCHO + 0.262*xRCHO + 0.22*xPROD1 +

0.247*xPROD2 + 0.152*CCOOH + HCL + yR6OOH + 1.092*XC # 2.30e-10;

<T234L> DIACTALC + CL = 0.902*RO2C + 0.098*RO2XC + 0.098*zRNO3 + 0.853*xHO2 +

0.032*xMECO3 + 0.018*xRCO3 + 0.869*xHCHO + 0.032*xRCHO + 0.002*xACET +

0.851*xPROD1 + 0.002*xMGLY + HCL + yR6OOH + 0.913*XC # 6.95e-11;

<T235L> M24C5OH2 + CL = 0.703*RO2C + 0.076*RO2XC + 0.076*zRNO3 + 0.221*HO2 +

0.703*xHO2 + 0.422*xHCHO + 0.009*xCCHO + 0.415*xRCHO + 0.262*xACET +

0.221*PROD1 + 0.288*xPROD2 + HCL + 0.779*yR6OOH + 0.461*XC # 2.06e-10;

<T236L> BUOETOH + CL = 1.248*RO2C + 0.124*RO2XC + 0.124*zRNO3 + 0.188*HO2 +

0.688*xHO2 + 0.345*xHCHO + 0.065*xCCHO + 0.188*RCHO + 0.244*xRCHO +

0.166*xPROD1 + 0.5*xPROD2 + HCL + 0.812*yR6OOH - 0.179*XC # 3.66e-10;

<T237L> PGMEACT + CL = 1.589*RO2C + 0.125*RO2XC + 0.125*zRNO3 + 0.495*xHO2 +

0.315*xMECO3 + 0.065*xRCO3 + 0.117*xHCHO + 0.074*xRCHO + 0.078*xPROD1 +

0.13*xPROD2 + 0.38*CCOOH + HCL + yR6OOH + 2.234*XC # 1.85e-10;

<T238L> CSVACET + CL = 1.513*RO2C + 0.13*RO2XC + 0.13*zRNO3 + 0.523*xHO2 +

0.256*xMEO2 + 0.091*xRCO3 + 0.229*xCO + 0.01*xHCHO + 0.052*xCCHO +

0.052*xRCHO + 0.48*xPROD1 + 0.242*xPROD2 + 0.32*CCOOH + HCL + yR6OOH +

0.18*XC # 2.44e-10;

<T239L> DGEE + CL = 1.162*RO2C + 0.107*RO2XC + 0.107*zRNO3 + 0.181*HO2 +

0.546*xHO2 + 0.166*xMEO2 + 0.183*xHCHO + 0.007*xCCHO + 0.181*RCHO +

0.088*xRCHO + 0.001*xGLCHO + 0.311*xPROD1 + 0.68*xPROD2 + HCL +

Page 287: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

275

0.819*yR6OOH - 1.138*XC # 3.81e-10;

<T240L> DPRGLCL + CL = 0.624*RO2C + 0.067*RO2XC + 0.067*zRNO3 + 0.309*HO2 +

0.624*xHO2 + 0.201*xHCHO + 0.423*xCCHO + 0.201*xRCHO + 0.309*PROD2 +

0.423*xPROD2 + HCL + 0.691*yR6OOH - 0.444*XC # 2.94e-10;

<T241L> ADIPACD + CL = 1.611*RO2C + 0.098*RO2XC + 0.098*zRNO3 + 0.902*xHO2 +

1.38*xRCHO + 0.194*xPROD2 + 0.038*xMGLY + HCL + yR6OOH - 0.006*XC

# 1.24e-10;

<T243L> C7RCHO1 + CL = 1.133*RO2C + 0.225*RO2XC + 0.225*zRNO3 + 0.463*xHO2 +

0.17*RCO3 + 0.142*xRCO3 + 0.019*xCO + 0.428*xRCHO + 0.035*xMGLY + HCL +

0.83*yR6OOH + 3.306*XC # 3.72e-10;

<T244L> C7KET2 + CL = 1.506*RO2C + 0.208*RO2XC + 0.208*zRNO3 + 0.523*xHO2 +

0.269*xMECO3 + 0.047*xHCHO + 0.021*xCCHO + 0.675*xRCHO + 0.256*xPROD2 +

HCL + yR6OOH + 1.564*XC # 2.25e-10;

<T245L> M3HXO2 + CL = 1.226*RO2C + 0.174*RO2XC + 0.174*zRNO3 + 0.444*xHO2 +

0.381*xRCO3 + 0.319*xHCHO + 0.298*xCCHO + 0.277*xRCHO + 0.068*xACET +

0.187*xPROD1 + HCL + yR6OOH + 2.115*XC # 1.67e-10;

<T246L> BUOC3OH + CL = 1.253*RO2C + 0.157*RO2XC + 0.157*zRNO3 + 0.121*HO2 +

0.722*xHO2 + 0.077*xHCHO + 0.382*xCCHO + 0.305*xRCHO + 0.159*xPROD1 +

0.121*PROD2 + 0.469*xPROD2 + HCL + 0.879*yR6OOH + 0.126*XC # 3.75e-10;

<T247L> E3EOC3OH + CL = 1.297*RO2C + 0.162*RO2XC + 0.162*zRNO3 + 0.39*xHO2 +

0.172*xMEO2 + 0.276*xMECO3 + 0.036*xCCHO + 0.145*xRCHO + 0.405*xPROD1 +

0.305*xPROD2 + 0.062*RCOOH + 0.215*xMGLY + HCL + yR6OOH + 0.516*XC

# 2.81e-10;

<T248L> DPGOME2 + CL = 1.34*RO2C + 0.141*RO2XC + 0.141*zRNO3 + 0.208*HO2 +

0.433*xHO2 + 0.218*xMEO2 + 0.291*xHCHO + 0.043*xCCHO + 0.208*RCHO +

0.081*xRCHO + 0.045*xPROD1 + 0.571*xPROD2 + 0.009*HCOOH + HCL +

0.792*yR6OOH + 1.077*XC # 3.31e-10;

<T249L> C8RCHO1 + CL = 1.164*RO2C + 0.287*RO2XC + 0.287*zRNO3 + 0.494*xHO2 +

0.146*RCO3 + 0.072*xRCO3 + 0.015*xCO + 0.466*xRCHO + 0.028*xMGLY +

HCL + 0.854*yR6OOH + 4.127*XC # 4.34e-10;

<T250L> IBUIBTR + CL = 1.579*RO2C + 0.248*RO2XC + 0.248*zRNO3 + 0.702*xHO2 +

0.003*xMEO2 + 0.048*xRCO3 + 0.089*xCO + 0.3*xHCHO + 0.01*xCCHO +

0.146*xRCHO + 0.404*xACET + 0.468*xPROD1 + 0.012*xPROD2 + 0.123*RCOOH +

0.012*xBACL + HCL + yR6OOH + 1.945*XC # 2.44e-10;

<T251L> DGBE + CL = 1.266*RO2C + 0.256*RO2XC + 0.256*zRNO3 + 0.137*HO2 +

0.607*xHO2 + 0.123*xHCHO + 0.04*xCCHO + 0.137*RCHO + 0.224*xRCHO +

0.001*xGLCHO + 0.186*xPROD1 + 0.631*xPROD2 + HCL + 0.863*yR6OOH +

0.646*XC # 5.04e-10;

<T252L> TEXANOL + CL = 1.128*RO2C + 0.345*RO2XC + 0.345*zRNO3 + 0.16*HO2 +

0.495*xHO2 + 0.001*xRCO3 + 0.404*xHCHO + 0.007*xCCHO + 0.098*RCHO +

0.385*xRCHO + 0.229*xACET + 0.231*xPROD1 + 0.062*PROD2 + 0.04*xPROD2 +

0.001*RCOOH + 0.004*xBACL + HCL + 0.841*yR6OOH + 5.818*XC # 3.53e-10;

<T254L> CH3CL + CL = RO2C + xCL + xHCHO + HCL + yROOH # 2.17e-11@1130;

<T257L> C13DCP + CL = 0.949*RO2C + 0.051*RO2XC + 0.051*zRNO3 + 0.474*xCL +

0.474*xHO2 + 0.474*xCLCCHO + 0.474*xCLACET + yROOH + 0.324*XC

# 8.61e-11;

<T258L> C2CL + CL = 1.879*RO2C + xCL + 1.757*xHCHO + 0.121*xCCHO + HCL + yROOH +

0.001*XC # 7.46e-12;

<T259L> CHCL3 + CL = RO2C + xCL + HCL + yROOH + XC # 1.07e-16;

<T260L> CL212ETH + CL = RO2C + xCL + xCLCCHO + HCL + yROOH # 3.46e-13;

<T262L> CL2ME + CL = RO2C + xCL + HCL + yROOH + XC # 1.21e-14;

<T263L> CL3ETHE + CL = RO2C + xCL + yROOH + 2*XC # 8.08e-11;

<T264L> CL4ETHE + CL = RO2C + xCL + yROOH + 2*XC # 4.13e-11;

<T266L> CLETHE + CL = 1.35*RO2C + xCL + 0.35*xHCHO + 0.65*xCLCCHO + yROOH +

0.35*XC # 1.27e-10;

<T267L> ETACTYL + CL = 0.933*RO2C + 0.067*RO2XC + 0.067*zRNO3 + 0.933*xHO2 +

0.323*xRCHO + 0.61*xIPRD + HCL + yROOH - 0.421*XC # 9.74e-11;

<T272L> MEACTYL + CL = RO2C + xHO2 + xIPRD + HCL + yROOH - 2*XC # 3.28e-11;

<T276L> T13DCP + CL = 0.949*RO2C + 0.051*RO2XC + 0.051*zRNO3 + 0.474*xCL +

0.474*xHO2 + 0.474*xCLCCHO + 0.474*xCLACET + yROOH + 0.324*XC

# 8.61e-11;

<T277L> TCE111 + CL = 2*RO2C + xCL + xHCHO + HCL + yROOH + XC # 6.56e-12;

<T279L> VINACYL + CL = 1.319*RO2C + 0.083*RO2XC + 0.083*zRNO3 + 0.918*xHO2 +

Page 288: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

276

0.02*xHCHO + 0.113*xCCHO + 0.04*xRCHO + 0.174*xACRO + 0.011*xMVK +

0.021*xIPRD + 0.244*xCLCCHO + 0.429*xCLACET + 0.266*HCL + yROOH +

0.69*XC # 3.39e-10;

<T300L> PROPALD + CL = HCL + 0.9*RCO3 + 0.1*RO2C + 0.1*xCCHO + 0.1*xCO +

0.1*xHO2 + 0.1*yROOH # 1.23e-10;

<T301L> MEK + CL = HCL + 0.975*RO2C + 0.039*RO2XC + 0.039*zRNO3 + 0.84*xHO2 +

0.085*xMECO3 + 0.036*xRCO3 + 0.065*xHCHO + 0.07*xCCHO + 0.84*xRCHO +

yROOH + 0.763*XC # 3.60e-11;

<BC01> OTH1 + CL = 1.344*RO2C + xCL + 0.344*xHCHO + 0.656*xCLCCHO + HCL +

yROOH + 0.344*XC # 2.37e-12;

<BC02> OTH2 + CL = 1.832*RO2C + 0.098*RO2XC + 0.098*zRNO3 + 0.057*xHO2 +

0.101*xMEO2 + 0.031*xMECO3 + 0.713*xTBUO + 0.023*xCO + 0.024*CO2 +

0.862*xHCHO + 0.019*xRCHO + 0.024*xACET + 0.054*RCOOH + 0.001*xMGLY +

HCL + yR6OOH + 0.194*XC # 1.12e-10;

<BC03> OTH3 + CL = 1.562*RO2C + 0.049*RO2XC + 0.049*zRNO3 + 0.39*xCL +

0.551*xHO2 + 0.01*xRCO3 + 0.171*xCO + 0.007*xHCHO + 0.001*xCCHO +

0.464*xRCHO + 0.064*xPROD1 + 0.001*xPROD2 + 0.004*RCOOH + 0.012*xMGLY +

0.006*xBACL + 0.39*xCLCCHO + 0.61*HCL + yROOH - 0.01*XC # 1.18e-10;

<BC04> OTH4 + CL = 1.554*RO2C + 0.2*RO2XC + 0.2*zRNO3 + 0.753*xHO2 +

0.028*xMEO2 + 0.002*xRCO3 + 0.018*xTBUO + 0.146*xHCHO + 0.2*xCCHO +

0.292*xRCHO + 0.004*xGLCHO + 0.095*xACET + 0.026*xPROD1 + 0.28*xPROD2 +

0.002*CCOOH + HCL + yR6OOH + 1.191*XC # 2.61e-10;

<BC05> OTH5 + CL = 1.448*RO2C + 0.437*RO2XC + 0.437*zRNO3 + 0.012*HO2 +

0.54*xHO2 + 0.002*xMEO2 + 0.009*xRCO3 + 0.002*xCO + 0.023*xHCHO +

0.083*xCCHO + 0.006*RCHO + 0.193*xRCHO + 0.006*xACET + 0.033*xPROD1 +

0.006*PROD2 + 0.359*xPROD2 + HCL + 0.988*yR6OOH + 3.221*XC # 6.13e-10;

<BC06> OLE1 + CL = 1.666*RO2C + 0.136*RO2XC + 0.136*zRNO3 + 0.864*xHO2 +

0.039*xHCHO + 0.225*xCCHO + 0.079*xRCHO + 0.223*xACRO + 0.021*xMVK +

0.042*xIPRD + 0.181*xCLCCHO + 0.318*xCLACET + 0.408*HCL + yR6OOH +

5.179*XC # 4.05e-10;

<BC07> OLE2 + CL = 1.573*RO2C + 0.138*RO2XC + 0.138*zRNO3 + 0.515*xCL +

0.346*xHO2 + 0.002*xMEO2 + 0.071*xHCHO + 0.62*xCCHO + 0.58*xRCHO +

0.007*xACRO + 0.047*xMVK + 0.213*xIPRD + 0.006*xCLCCHO + 0.01*xCLACET +

0.307*HCL + 0.986*yR6OOH + 4.803*XC # 3.95e-10;

<BC08> ARO1 + CL = 0.904*RO2C + 0.188*RO2XC + 0.188*zRNO3 + 0.678*xHO2 +

0.135*xMEO2 + 0.091*xCCHO + 0.063*xRCHO + 0.718*xPROD2 + 0.032*xBALD +

3.834*XC # 2.68e-10;

<BC09> ARO2 + CL = 0.813*RO2C + 0.188*RO2XC + 0.188*zRNO3 + 0.731*xHO2 +

0.081*xMEO2 + 0.001*xCCHO + 0.095*xRCHO + 0.579*xPROD2 + 0.138*xBALD +

4.064*XC # 3.12e-10;

<BC10> TERP + CL = 2.258*RO2C + 0.582*RO2XC + 0.582*zRNO3 + 0.068*xCL +

0.252*xHO2 + 0.034*xMECO3 + 0.05*xRCO3 + 0.016*xMACO3 + 0.035*xCO +

0.158*xHCHO + 0.185*xRCHO + 0.274*xACET + 0.007*xGLY + 0.003*xBACL +

0.003*xMVK + 0.158*xIPRD + 0.006*xAFG1 + 0.006*xAFG2 + 0.001*xAFG4 +

0.109*xCLCCHO + 0.548*HCL + yR6OOH + 3.544*XC # 5.46e-10;

<BC11> SESQ + CL = 2.258*RO2C + 0.582*RO2XC + 0.582*zRNO3 + 0.068*xCL +

0.252*xHO2 + 0.034*xMECO3 + 0.05*xRCO3 + 0.016*xMACO3 + 0.035*xCO +

0.158*xHCHO + 0.185*xRCHO + 0.274*xACET + 0.007*xGLY + 0.003*xBACL +

0.003*xMVK + 0.158*xIPRD + 0.006*xAFG1 + 0.006*xAFG2 + 0.001*xAFG4 +

0.109*xCLCCHO + 0.548*HCL + yR6OOH + 8.544*XC # 1.0*K<BC10>;

endmech

constants

< C1> ATM_AIR = 1.0E+06

< C2> ATM_H2 = 0.56

< C3> ATM_N2 = 0.7808E+06

< C4> ATM_O2 = 0.2095E+06

< C5> ATM_CH4 = 1.85

end constants

Page 289: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

277

C-3. Build scipt used to generate the SAPRC-11D source code from CMAQ source code repository (options set for this study are marked in bold fonts)

#! /bin/csh -f

# ====================== CCTMv5.0.1 Build Script ======================= #

# Usage: bldit.cctm >&! bldit.cctm.log #

# Requirements: I/O API & netCDF libs, CVS, and a Fortran compiler, #

# MPICH for multiprocessor computing #

# Note that this script is configured/tested for Red Hat Linux O/S #

# The following environment variables must be set for this script to #

# build an executable. #

# setenv M3MODEL <source code CVS archive> #

# setenv M3LIB <code libraries> #

# If building on a machine which is accessing the CVS archive remotely #

# CVS_REMOTE_USER and CVS_REMOTE_MACH must be set in the environment. #

# The remote machine must be set up for passwordless access from ssh. #

# setenv CVS_REMOTE_USER <user ID on remote machine> #

# setenv CVS_REMOTE_MACH <CVS archive remote machine> #

# The sourced file, relinc.cctm is required to get the include files. #

# To report problems or request help with this script/program: #

# http://www.cmascenter.org/html/help.html #

# ====================================================================== #

#> Source the config.cmaq file to set the build environment

source ../config.cmaq

#> Check for remote archive settings:

if ( ! $?CVS_REMOTE_USER || ! $?CVS_REMOTE_MACH ) then

echo " CVS_REMOTE_USER or CVS_REMOTE_MACH not set"

echo " Using local CVS archive"

endif

#> Check for M3MODEL and M3LIB settings:

if ( ! -e $M3MODEL || ! -e $M3LIB ) then

echo " $M3MODEL or $M3LIB directory not found"

exit 1

endif

echo " Model archive path: $M3MODEL"

echo " library path: $M3LIB"

set BLD_OS = `uname -s` ## Script set up for Linux only

if ($BLD_OS != 'Linux') then

echo " $BLD_OS -> wrong bldit script for host!"

exit 1

endif

set echo

#:#:#:#:#:#:#:#:#:#:#:# Begin User Input Section #:#:#:#:#:#:#:#:#:#:#:#

#> user choices: cvs archives

setenv Project $M3MODEL/CCTM

setenv GlobInc $M3MODEL/includes/release

setenv Mechs $M3MODEL/mechs/release

#> user choices: base working directory

set Base = $cwd

set APPL = saprc11d

set CFG = cfg.$APPL

set MODEL = CCTM_${APPL}_$EXECID

Page 290: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

278

#> user choices: bldmake command

set Opt = verbose # show requested commands as they are executed

set MakeOpt # builds a Makefile to make the model; comment out

# this option for bldmake to compile the model

#> user choices: single or multiple processors

set ParOpt # set for multiple PE's; comment out for single PE

#> user choices: various modules

set Revision = release # release = latest CVS revision

#set Revision = '"CMAQv5_0_1"'

#set ModDriver = ( module ctm_wrf $Revision; )

set ModDriver = ( module ctm_yamo $Revision; )

set ModGrid = ( module cartesian $Revision; )

if ( $?ParOpt ) then

# set ModPar = ( module par $Revision; )

set ModPar = ( module par_nodistr $Revision; )

else

set ModPar = ( module par_noop $Revision; )

endif

set ModInit = ( module init_yamo $Revision; )

set ModAdjc = ( // yamo option does not need denrate )

# set ModCpl = ( module gencoor_wrf $Revision; )

set ModCpl = ( module gencoor $Revision; )

set ModHadv = ( module hyamo $Revision; )

# set ModVadv = ( module vwrf $Revision; )

set ModVadv = ( module vyamo $Revision; )

set ModHdiff = ( module multiscale $Revision; )

set ModVdiff = ( module acm2 $Revision; )

#set ModVdiff = ( module acm2_mp $Revision; )

set ModDepv = ( module m3dry $Revision; )

#set ModDepv = ( module m3dry_mp $Revision; )

set ModEmis = ( module emis $Revision; )

set ModBiog = ( module beis3 $Revision; )

set ModPlmrs = ( module smoke $Revision; )

set ModCgrds = ( module cgrid_spcs_nml $Revision; )

#set ModCgrds = ( module cgrid_spcs_icl $Revision; )

#set ModPhot = ( module phot_inline $Revision; )

set ModPhot = ( module phot_table $Revision; )

set ModChem = ( module smvgear $Revision; )

#set ModChem = ( module ros3 $Revision; )

#set ModChem = ( module ebi_cb05cl $Revision; )

#set ModChem = ( module ebi_cb05tucl $Revision; )

#set ModChem = ( module ebi_cb05tump $Revision; )

#set ModChem = ( module ebi_saprc99 $Revision; )

Page 291: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

279

#set ModChem = ( module ebi_saprc07tb $Revision; )

#set ModChem = ( module ebi_saprc07tc $Revision; )

set ModAero = ( module aero5 $Revision; )

#set ModAero = ( module aero6 $Revision; )

#set ModAero = ( module aero6_mp $Revision; )

set ModCloud = ( module cloud_acm_ae5 $Revision; )

#set ModCloud = ( module cloud_acm_ae6 $Revision; )

#set ModCloud = ( module cloud_acm_ae6_mp $Revision; )

set ModPa = ( module pa $Revision; )

set ModUtil = ( module util $Revision; )

#> user choices: emissions processing in chem or vdiff (default) ...

#set Cemis # Uncomment to process in chem

#> user choices: mechanism

#set Mechanism = cb05cl_ae5_aq

#set Mechanism = cb05tucl_ae5_aq

#set Mechanism = cb05tucl_ae6_aq

#set Mechanism = cb05tump_ae6_aq

#set Mechanism = saprc99_ae5_aq

#set Mechanism = saprc99_ae6_aq

#set Mechanism = saprc07tb_ae6_aq

#set Mechanism = saprc07tc_ae6_aq

set Mechanism = saprc11d_ae5_aq

set Tracer = trac0 # default: no tracer species

#> user choices: set process analysis linkages

set PABase = $GlobInc

set PAOpt = pa_noop

#> user choices: computing system configuration:

#> name of the "BLD" directory for checking out and compiling source code

#> compiler name and location/link flags

#> library paths

set Bld = $Base/BLD_${APPL}

#> Set full path of Fortran 90 compiler

set FC = ${myFC}

set FP = $FC

#> Set location of M3Bld executable

set Blder = $M3LIB/build/bldmake

#> Set location of libraries/include files

set IOAPI = "${M3LIB}/ioapi_3.1/Linux2_${system}${compiler} -lioapi"

set IOAPIMOD = ${M3LIB}/ioapi_3.1/Linux2_${system}${compiler}

set NETCDF = "${M3LIB}/netcdf/lib -lnetcdff -lnetcdf"

if ( $?ParOpt ) then # Multiprocessor system configuration

set PARMOD = ${M3LIB}/pario

set STENEX = ${M3LIB}/se_snl

set MPI_INC = ${M3LIB}/mpich/include

else

set PARMOD = "."

set STENEX = "${M3LIB}/se_noop"

set MPI_INC = "."

endif

Page 292: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

280

#> Set compiler flags

set F_FLAGS = "${myFFLAGS} -I ${IOAPIMOD} -I ${PARMOD} -I ${STENEX} -I."

set F90_FLAGS = "${myFRFLAGS} -I ${IOAPIMOD} -I ${PARMOD} -I ${STENEX} -I."

set CPP_FLAGS = ""

set C_FLAGS = "${myCFLAGS} -DFLDMN -I ${MPI_INC}"

set LINK_FLAGS = "${myLINK_FLAG}"

#:#:#:#:#:#:#:#:#:#:#:# End of User Input Section :#:#:#:#:#:#:#:#:#:#:#:#:#

if ( ! -e "$Bld" ) then

mkdir $Bld

else

if ( ! -d "$Bld" ) then

echo " *** target exists, but not a directory ***"

exit 1

endif

endif

cd $Bld

#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#:#

if ( $?ParOpt ) then # Multiprocessor system configuration

# set Mpich = $MPICH

set seL = se_snl

set LIB2 = "-L${M3LIB}/pario -lpario"

set LIB3 =

set LIB4 = "-L${M3LIB}/mpich/lib -lmpich ${extra_lib}"

set Str1 = (// Parallel / Include message passing definitions)

set Str2 = (include SUBST_MPI ${MPI_INC}/mpif.h;)

else

set seL = sef90_noop

set LIB2 =

set LIB3 =

set LIB4 = "${extra_lib}"

set Str1 =

set Str2 =

endif

set LIB1 = "-L${STENEX} -l${seL}"

set LIB5 = "-L${IOAPI}"

set LIB6 = "-L${NETCDF}"

set LIBS = "$LIB1 $LIB2 $LIB3 $LIB4 $LIB5 $LIB6"

source $Base/relinc.cctm

if ( $status ) exit 1

set ICL_PAR = $Bld

set ICL_CONST = $Bld

set ICL_FILES = $Bld

set ICL_EMCTL = $Bld

set ICL_MECH = $Bld

set ICL_PA = $Bld

#if ( $?Cemis ) then

# set CV = -Demis_chem

# else

# set CV =

# endif

if ( $?ParOpt ) then # split to avoid line > 256 char

set PAR = ( -Dparallel )

Page 293: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

281

set Popt = SE

else

echo " Not Parallel; set Serial (no-op) flags"

set PAR = ""

set Popt = NOOP

endif

set STX1 = ( -DSUBST_MODULES=${Popt}_MODULES\

-DSUBST_BARRIER=${Popt}_BARRIER )

set STX2 = ( -DSUBST_GLOBAL_MAX=${Popt}_GLOBAL_MAX\

-DSUBST_GLOBAL_MIN=${Popt}_GLOBAL_MIN\

-DSUBST_GLOBAL_MIN_DATA=${Popt}_GLOBAL_MIN_DATA\

-DSUBST_GLOBAL_TO_LOCAL_COORD=${Popt}_GLOBAL_TO_LOCAL_COORD\

-DSUBST_GLOBAL_SUM=${Popt}_GLOBAL_SUM\

-DSUBST_GLOBAL_LOGICAL=${Popt}_GLOBAL_LOGICAL\

-DSUBST_LOOP_INDEX=${Popt}_LOOP_INDEX\

-DSUBST_SUBGRID_INDEX=${Popt}_SUBGRID_INDEX )

set STX3 = ( -DSUBST_HI_LO_BND_PE=${Popt}_HI_LO_BND_PE\

-DSUBST_SUM_CHK=${Popt}_SUM_CHK\

-DSUBST_INIT_ARRAY=${Popt}_INIT_ARRAY\

-DSUBST_COMM=${Popt}_COMM\

-DSUBST_MY_REGION=${Popt}_MY_REGION\

-DSUBST_SLICE=${Popt}_SLICE\

-DSUBST_GATHER=${Popt}_GATHER\

-DSUBST_DATA_COPY=${Popt}_DATA_COPY\

-DSUBST_IN_SYN=${Popt}_IN_SYN )

if ( ! $?CVS_REMOTE_USER || ! $?CVS_REMOTE_MACH ) then

setenv CVSROOT $Project

else

setenv CVSROOT :ext:${CVS_REMOTE_USER}@${CVS_REMOTE_MACH}:${Project}

endif

#> make the config file

set Cfile = ${CFG}.bld

set quote = '"'

echo > $Cfile

echo "model $MODEL;" >> $Cfile

echo >> $Cfile

echo "FPP $FP;" >> $Cfile

echo >> $Cfile

set text = "$quote$CPP_FLAGS $PAR $STX1 $STX2 $STX3$quote;"

echo "cpp_flags $text" >> $Cfile

echo >> $Cfile

echo "f_compiler $FC;" >> $Cfile

echo >> $Cfile

echo "f_flags $quote$F_FLAGS$quote;" >> $Cfile

echo >> $Cfile

echo "f90_flags $quote$F90_FLAGS$quote;" >> $Cfile

echo >> $Cfile

echo "c_flags $quote$C_FLAGS$quote;" >> $Cfile

echo >> $Cfile

echo "link_flags $quote$LINK_FLAGS$quote;" >> $Cfile

echo >> $Cfile

echo "libraries $quote$LIBS$quote;" >> $Cfile

echo >> $Cfile

echo "global $Opt;" >> $Cfile

echo >> $Cfile

set text="// mechanism:"

Page 294: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

282

echo "$text ${Mechanism}" >> $Cfile

echo "// project archive: ${Project}" >> $Cfile

echo >> $Cfile

if ( $compiler == gfort ) then

set ICL_PAR = '.'

set ICL_CONST = '.'

set ICL_FILES = '.'

set ICL_EMCTL = '.'

set ICL_MECH = '.'

set ICL_PA = '.'

endif

echo "include SUBST_PE_COMM $ICL_PAR/PE_COMM.EXT;" >> $Cfile

echo "include SUBST_CONST $ICL_CONST/CONST.EXT;" >> $Cfile

echo "include SUBST_FILES_ID $ICL_FILES/FILES_CTM.EXT;" >> $Cfile

echo "include SUBST_EMISPRM $ICL_EMCTL/EMISPRM.EXT;" >> $Cfile

echo "include SUBST_RXCMMN $ICL_MECH/RXCM.EXT;" >> $Cfile

echo "include SUBST_RXDATA $ICL_MECH/RXDT.EXT;" >> $Cfile

echo >> $Cfile

set text = "// Process Analysis / Integrated Reaction Rates processing"

echo $text >> $Cfile

echo "include SUBST_PACTL_ID $ICL_PA/PA_CTL.EXT;" >> $Cfile

echo "include SUBST_PACMN_ID $ICL_PA/PA_CMN.EXT;" >> $Cfile

echo "include SUBST_PADAT_ID $ICL_PA/PA_DAT.EXT;" >> $Cfile

echo >> $Cfile

echo "$Str1" >> $Cfile

if ( $compiler == gfort && $?ParOpt ) then

ln -s ${MPI_INC}/mpif.h $Bld

echo "include SUBST_MPI ./mpif.h;" >> $Cfile

else

echo "$Str2" >> $Cfile

endif

echo >> $Cfile

set text = "ctm_wrf and ctm_yamo"

echo "// options are" $text >> $Cfile

echo "$ModDriver" >> $Cfile

echo >> $Cfile

set text = "cartesian"

echo "// options are" $text >> $Cfile

echo "$ModGrid" >> $Cfile

echo >> $Cfile

set text = "par, par_nodistr and par_noop"

echo "// options are" $text >> $Cfile

echo "$ModPar" >> $Cfile

echo >> $Cfile

set text = "init_yamo"

echo "// options are" $text >> $Cfile

echo "$ModInit" >> $Cfile

echo >> $Cfile

set text = ""

echo "// options are" $text >> $Cfile

echo "$ModAdjc" >> $Cfile

echo >> $Cfile

set text = "gencoor_wrf and gencoor"

echo "// options are" $text >> $Cfile

echo "$ModCpl" >> $Cfile

Page 295: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

283

echo >> $Cfile

set text = "hyamo"

echo "// options are" $text >> $Cfile

echo "$ModHadv" >> $Cfile

echo >> $Cfile

set text = "vwrf and vyamo"

echo "// options are" $text >> $Cfile

echo "$ModVadv" >> $Cfile

echo >> $Cfile

set text = "multiscale"

echo "// options are" $text >> $Cfile

echo "$ModHdiff" >> $Cfile

echo >> $Cfile

set text = "acm2 and acm2_mp"

echo "// options are" $text >> $Cfile

echo "$ModVdiff" >> $Cfile

echo >> $Cfile

set text = "m3dry and m3dry_mp"

echo "// options are" $text >> $Cfile

echo "$ModDepv" >> $Cfile

echo >> $Cfile

set text = "emis"

echo "// options are" $text >> $Cfile

echo "$ModEmis" >> $Cfile

echo >> $Cfile

set text = "beis3"

echo "// options are" $text >> $Cfile

echo "$ModBiog" >> $Cfile

echo >> $Cfile

set text = "smoke"

echo "// options are" $text >> $Cfile

echo "$ModPlmrs" >> $Cfile

echo >> $Cfile

set text = "cgrid_spcs_nml and cgrid_spcs_icl"

echo "// options are" $text >> $Cfile

echo "$ModCgrds" >> $Cfile

echo >> $Cfile

set text = "phot_inline and phot_table"

echo "// options are" $text >> $Cfile

echo "$ModPhot" >> $Cfile

echo >> $Cfile

set text = "smvgear, ros3, ebi_cb05cl, ebi_cb05tucl, ebi_cb05tump, ebi_saprc99,

ebi_saprc07tb, and ebi_saprc07tc"

echo "// options are" $text >> $Cfile

echo "$ModChem" >> $Cfile

echo >> $Cfile

set text = "aero5, aero6, and aero6_mp"

echo "// options are" $text >> $Cfile

echo "$ModAero" >> $Cfile

echo >> $Cfile

Page 296: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

284

set text = "cloud_acm_ae5, cloud_acm_ae6, and cloud_acm_ae6_mp"

echo "// options are" $text >> $Cfile

echo "$ModCloud" >> $Cfile

echo >> $Cfile

set text = "pa, which requires the"

echo "// options are" $text "replacement of the three" >> $Cfile

set text = "// global include files with their pa_noop counterparts"

echo $text >> $Cfile

echo "$ModPa" >> $Cfile

echo >> $Cfile

set text = "util"

echo "// options are" $text >> $Cfile

echo "$ModUtil" >> $Cfile

echo >> $Cfile

if ( $?ModMisc ) then

echo "$ModMisc" >> $Cfile

echo >> $Cfile

endif

#> make the makefile or the model executable

if ( $?MakeOpt ) then

$Blder -make $Cfile # $Cfile = ${CFG}.bld

else

set NoMake

$Blder $Cfile

endif

if ( $status != 0 ) then

echo " *** failure in $Blder ***"

exit 1

endif

if ( -e "$Base/${CFG}" ) then

echo " >>> previous ${CFG} exists, re-naming to ${CFG}.old <<<"

unalias mv

mv $Base/${CFG} $Base/${CFG}.old

endif

cp ${CFG}.bld $Base/${CFG}

if ( ( $Opt != no_compile ) && \

( $Opt != no_link ) && \

( $Opt != parse_only ) && \

( $Opt != show_only ) && \

$?NoMake ) then

mv $MODEL $Base

endif

exit

Page 297: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

285

C-4. Run script for SAPRC-11D (4-km domain)

#! /bin/csh -f

# ====================== CCTMv5.0.1 Run Script ====================== #

# Usage: run.cctm >&! cctm_V5.log & #

# The following environment variables must be set for this script to #

# execute properly: #

# setenv M3DATA = input/output data directory #

# To report problems or request help with this script/program: #

# http://www.cmascenter.org/html/help.html #

# =================================================================== #

#> Source the config.cmaq file to set the run environment

source ../config.cmaq

#> Check that M3DATA is set:

if ( ! -e $M3DATA ) then

echo " $M3DATA path does not exist"

exit 1

endif

echo " "; echo " Input data path, M3DATA set to $M3DATA"; echo " "

# check input parameters

if ( $#argv != 4 ) then

echo 'usage:' $0 'YYYY MM DD N_DAYS'

exit 1

endif

set s_year=$1

set s_month=$2

set s_day=$3

set n_days=$4

set APPL = saprc11d

set CFG = texaqs06_4km

set MECH = saprc11d_ae5_aq

set EXEC = CCTM_${APPL}_$EXECID

#> horizontal domain decomposition

#setenv NPCOL_NPROW "1 1"; set NPROCS = 1 # single processor setting

setenv NPCOL_NPROW "4 4"; set NPROCS = 16

#> Set the working directory:

set BASE = $cwd

set BLD = ${BASE}/BLD_$APPL

cd $BASE; date; cat $BASE/cfg.${APPL}; echo " "; set echo

#> timestep run parameters

# set STDATE = 2006241 # beginning date

#set STTIME = 000000 # beginning GMT time (HHMMSS)

set NSTEPS = 240000 # time duration (HHMMSS) for this run

set TSTEP = 010000 # output time step interval (HHMMSS)

# set YEAR = 2006

# set YR = 06

# set MONTH = 08

# set DAY = 29

#> set log file [ default = unit 6 ]; uncomment to write standard output to a log

Page 298: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

286

#setenv LOGFILE $BASE/$APPL.log

#> horizontal grid defn; check GRIDDESC file for GRID_NAME options

setenv GRIDDESC /mnt/gv0/qying/aqrp_ucr_cmaq_input/met/4km/GRIDDESC

setenv GRID_NAME EASTUS4

#> species for standard conc

#setenv CONC_SPCS "O3 NO ANO3I ANO3J NO2 FORM ISOP ANH4J ASO4I ASO4J"

#> layer range for standard conc

#setenv CONC_BLEV_ELEV " 1 4"

#> species for integral average conc

#setenv AVG_CONC_SPCS "O3 NO CO NO2"

setenv AVG_CONC_SPCS "ALL"

#> layer range for integral average conc

setenv ACONC_BLEV_ELEV " 1 1"

#> override default beginning time average conc timestamp [ N|F ]

#setenv ACONC_END_TIME Y

#> max sync time step (sec) [720]

#setenv CTM_MAXSYNC 300

#> min sync time step (sec) [60]

#setenv CTM_MINSYNC 01

#> cksum report [ Y|T ]

#setenv CTM_CKSUM N

#> cloud diagnostic file [ N|F ]

#setenv CLD_DIAG Y

#> aerosol diagnostic file [ N|F ]

#setenv CTM_AERDIAG Y

#> photolysis diagnostic file [ N|F ]

#setenv CTM_PHOTDIAG Y

#> sea-salt emissions diagnostic file [ N|F ]

#setenv CTM_SSEMDIAG Y

#> windblown dust? [ Y|T ]

setenv CTM_WB_DUST N

#> use agricultural activity for windblown dust? [ N|F ]

#> - env var ignored if CTM_WB_DUST is N|F

setenv CTM_ERODE_AGLAND N

#> windblown dust emissions diagnostic file [ N|F ]

#> - env var ignored if CTM_WB_DUST is N|F

setenv CTM_DUSTEM_DIAG N

#> turn on lightning NOx [ N|F ]

setenv CTM_LTNG_NO N

#> save derived vertical velocity component to conc file [ N|F ]

setenv CTM_WVEL N

#> use Min Kz option in edyintb [Y], otherwise revert to Kz0UT

setenv KZMIN N

Page 299: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

287

#> inline deposition velocities [ Y|T ]

setenv CTM_ILDEPV N

#> landuse specific deposition velocities [ N|F ]

setenv CTM_MOSAIC N

#> Ammonia bi-directional flux for inline deposition velocities [ N|F ]

#> - env var ignored if CTM_ILDEPV is N|F

setenv CTM_ABFLUX N

#> Mercury bi-directional flux for inline deposition velocities [ N|F ]

#> - env var ignored if CTM_ILDEPV is N|F

setenv CTM_HGBIDI N

#> Surface HONO interaction [ Y|T ]

#> - env var ignored if CTM_ILDEPV is N|F

setenv CTM_SFC_HONO N

#> diagnostic file for deposition velocities [ N|F ]

setenv CTM_DEPV_FILE N

#> use in-line biogenic emissions [ N|F ]

setenv CTM_BIOGEMIS N

#> use in-line plume rise emissions [ N|F ]

setenv CTM_PT3DEMIS N

#> turn off excess WRITE3 logging

setenv IOAPI_LOG_WRITE F

#> stop on inconsistent input file [ T | Y | F | N ]

setenv FL_ERR_STOP F

#> turn off I/O-API PROMPT*FILE interactive mode

setenv PROMPTFLAG F

#> support needed for large timestep records (>2GB/timestep record) [ NO ]

setenv IOAPI_OFFSET_64 NO

#> define the model execution id

setenv EXECUTION_ID $EXEC

#> remove existing output files?

#set DISP = delete

#set DISP = update

set DISP = delete

#> output files and directories

set OUTDIR = /mnt/gv0/qying/cmaq_output/saprc11d/4km

if ( ! -d "$OUTDIR" ) mkdir -p $OUTDIR

set i=0

while ( $i < $n_days)

@ i1 = $i + 1

# previous day

set STDPRE = ` yest -d ${s_year}/${s_month}/${s_day} +$i +%Y%j`

# current day

set STDATE = ` yest -d ${s_year}/${s_month}/${s_day} +$i1 +%Y%j`

set STDATE1 = ` yest -d ${s_year}/${s_month}/${s_day} +$i +%Y%m%d`

Page 300: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

288

set YEAR = ` yest -d ${s_year}/${s_month}/${s_day} +$i +%Y`

set MONTH = ` yest -d ${s_year}/${s_month}/${s_day} +$i +%m`

set DAY = ` yest -d ${s_year}/${s_month}/${s_day} +$i +%d`

set STTIME = 000000

#> inputs

#> species defn & photolysis

setenv gc_matrix_nml ${BLD}/GC_$MECH.nml

setenv ae_matrix_nml ${BLD}/AE_$MECH.nml

setenv nr_matrix_nml ${BLD}/NR_$MECH.nml

setenv tr_matrix_nml ${BLD}/Species_Table_TR_0.nml

setenv CSQY_DATA ${BLD}/CSQY_DATA_$MECH

if (! (-e $CSQY_DATA ) ) then

echo " $CSQY_DATA not found "

exit 1

endif

#> inline biogenic emissions processing

if ( $?CTM_BIOGEMIS ) then # $CTM_BIOGEMIS is defined

if ( $CTM_BIOGEMIS == 'Y' || $CTM_BIOGEMIS == 'T' ) then

set biogon = 1

else

set biogon = 0

endif

else # $CTM_BIOGEMIS is not defined => $CTM_BIOGEMIS == 'Y'

set biogon = 1

endif

if ( $biogon ) then

set GSPROpath = ${M3DATA}/emis

setenv GSPRO $GSPROpath/gspro_cb05soa_notoxics_cmaq_poc_09nov2007.txt

set IN_BEISpath = ${M3DATA}/emis

setenv B3GRD $IN_BEISpath/b3grd_CMAQ-BENCHMARK_C70_2006am_Fulltox.ncf

# setenv BIOSEASON $IN_BEISpath/bioseason.cmaq.2002_02b_CMAQ-BENCHMARK_v31.ncf

setenv BIOG_SPRO B10C5 # speciation profile to use for biogenics

setenv BIOSW_YN N # use frost date switch [Y|T]

setenv SUMMER_YN Y # Use summer normalized emissions? [Y|T]

# setenv PX_VERSION Y # MCIP is PX version? [N|F]

#> beis mass emissions diagnostic file [N|F] ]

setenv B3GTS_DIAG Y

setenv YMD ${YEAR}${MONTH}${DAY}

setenv INITIAL_RUN Y # non-existent or not using SOILINP [N|F]; default uses

SOILINP

# setenv SOILINP $OUTDIR/$EXEC"_SOILINP".${YEAR}${MONTH}${DAY} # Biogenic NO soil

input file

endif

#if ( $DISP == 'delete' && $biogon ) then

# rm -f $B3GTS_S $SOILOUT

#endif

if ( $?CTM_PT3DEMIS ) then # $CTM_PT3DEMIS is defined

if ( $CTM_PT3DEMIS == 'Y' || $CTM_PT3DEMIS == 'T' ) then

set pt3don = 1

else

set pt3don = 0

endif

else # $CTM_PT3DEMIS is not defined => $CTM_PT3DEMIS == 'N'

set pt3don = 0

endif

setenv OCEAN_1 /mnt/gv0/qying/aqrp_ucr_cmaq_input/met/ocean_file_EASTUS4.ncf

Page 301: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

289

if ( $?CTM_ERODE_AGLAND ) then # $CTM_ERODE_AGLAND is defined

if ( $CTM_ERODE_AGLAND == 'Y' || $CTM_ERODE_AGLAND == 'T' ) then

set aglandon = 1

else

set aglandon = 0

endif

else # $CTM_ERODE_AGLAND is not defined => $CTM_ERODE_AGLAND == 'N'

set aglandon = 0

endif

if ( $aglandon ) then

setenv CROPMAP01 ${M3DATA}/crop/BeginPlanting_4km_CMAQ-BENCHMARK

setenv CROPMAP04 ${M3DATA}/crop/EndPlanting_4km_CMAQ-BENCHMARK

setenv CROPMAP08 ${M3DATA}/crop/EndHarvesting_4km_CMAQ-BENCHMARK

endif

set COT = ${M3DATA}/dust

setenv DUST_LU_1 $COT/beld3_CMAQ-BENCHMARK_output_a.ncf

setenv DUST_LU_2 $COT/beld3_CMAQ-BENCHMARK_output_tot.ncf

##> lightning NOx

if ( $?CTM_LTNG_NO ) then # $CTM_LTNG_NO is defined

if ( $CTM_LTNG_NO == 'Y' || $CTM_LTNG_NO == 'T' ) then

set ltngon = 1

else

set ltngon = 0

endif

else # $CTM_LTNG_NO is not defined => $CTM_LTNG_NO == 'N

set ltngon = 0

endif

#> set output file name extensions

setenv CTM_APPL ${CFG}_${STDATE}

#> set output file names

set CONCfile = $EXEC.CONC.${CTM_APPL} # CTM_CONC_1

set ACONCfile = $EXEC.ACONC.${CTM_APPL} # CTM_ACONC_1

set CGRIDfile = $EXEC.CGRID.${CTM_APPL} # CTM_CGRID_1

set DD1file = $EXEC.DRYDEP.${CTM_APPL} # CTM_DRY_DEP_1

set DV1file = $EXEC.DEPV.${CTM_APPL} # CTM_DEPV_DIAG

set PT1file = $EXEC.PT3D.${CTM_APPL} # CTM_PT3D_DIAG

set BIO1file = $EXEC.B3GTS_S.${CTM_APPL} # B3GTS_S

set SOIL1file = $EXEC.SOILOUT.${CTM_APPL} # SOILOUT

set WD1file = $EXEC.WETDEP1.${CTM_APPL} # CTM_WET_DEP_1

set WD2file = $EXEC.WETDEP2.${CTM_APPL} # CTM_WET_DEP_2

set AV1file = $EXEC.AEROVIS.${CTM_APPL} # CTM_VIS_1

set AD1file = $EXEC.AERODIAM.${CTM_APPL} # CTM_DIAM_1

set RJ1file = $EXEC.PHOTDIAG1.${CTM_APPL} # CTM_RJ_1

set RJ2file = $EXEC.PHOTDIAG2.${CTM_APPL} # CTM_RJ_2

set SSEfile = $EXEC.SSEMIS.$CTM_APPL # CTM_SSEMIS_1

set DSEfile = $EXEC.DUSTEMIS.$CTM_APPL # CTM_DUST_EMIS_1

set PA1file = $EXEC.PA_1.${CTM_APPL} # CTM_IPR_1

set PA2file = $EXEC.PA_2.${CTM_APPL} # CTM_IPR_2

set PA3file = $EXEC.PA_3.${CTM_APPL} # CTM_IPR_3

set IRR1file = $EXEC.IRR_1.${CTM_APPL} # CTM_IRR_1

set IRR2file = $EXEC.IRR_2.${CTM_APPL} # CTM_IRR_2

set IRR3file = $EXEC.IRR_3.${CTM_APPL} # CTM_IRR_3

set DEPVFSTfile = $EXEC.DEPVFST.${CTM_APPL} # CTM_DEPV_FST

set DEPVMOSfile = $EXEC.DEPVMOS.${CTM_APPL} # CTM_DEPV_MOS

set DDFSTfile = $EXEC.DDFST.${CTM_APPL} # CTM_DRY_DEP_FST

set DDMOSfile = $EXEC.DDMOS.${CTM_APPL} # CTM_DRY_DEP_MOS

#> set floor file (neg concs)

Page 302: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

290

setenv FLOOR_FILE $BASE/FLOOR_${CTM_APPL}

#> input files and directories

source outck.q

if ( $biogon ) then

if ( $B3GTS_DIAG == 'Y' || $B3GTS_DIAG == 'T' ) then

setenv B3GTS_S $OUTDIR/$EXEC"_B3GTS_S".${CTM_APPL}

endif

setenv SOILOUT $OUTDIR/$EXEC"_SOILOUT".${CTM_APPL} # Biogenic NO soil output file

endif

setenv EMISDATE ${STDATE1}

if ( $pt3don ) then

setenv NPTGRPS 5

set IN_PTpath = ${M3DATA}/emis

set CASE1 = 12US1_C25_2006am

set CASE2 = 12US1_cmaq_cb05_tx_C25_2006am

setenv CASE ${EMISDATE}_$CASE2

set EMISpath = $IN_PTpath

set EMISfile = emis_mole_all_${CASE}.ncf

setenv STK_GRPS_01 $IN_PTpath/stack_groups_ptnonipm_${CASE1}.ncf

setenv STK_GRPS_02 $IN_PTpath/stack_groups_ptipm_${CASE1}.ncf

setenv STK_GRPS_03 $IN_PTpath/stack_groups_othpt_${CASE1}.ncf

setenv STK_GRPS_04 $IN_PTpath/stack_groups_seca_c3_${CASE1}.ncf

setenv STK_GRPS_05 $IN_PTpath/stack_groups_ptfire_${EMISDATE}_${CASE1}.ncf

# setenv PT3DDIAG Y # optional 3d point source emissions diagnostic file [N]

# setenv PT3DFRAC Y # optional layer fractions diagnostic (play) file(s) [N]

setenv LAYP_STTIME $STTIME

setenv LAYP_NSTEPS $NSTEPS

setenv STK_EMIS_01 $IN_PTpath/inln_mole_ptnonipm_${CASE}.ncf

setenv STK_EMIS_02 $IN_PTpath/inln_mole_ptipm_${CASE}.ncf

setenv STK_EMIS_03 $IN_PTpath/inln_mole_othpt_${CASE}.ncf

setenv STK_EMIS_04 $IN_PTpath/inln_mole_seca_c3_${CASE}.ncf

setenv STK_EMIS_05 $IN_PTpath/inln_mole_ptfire_${CASE}.ncf

setenv LAYP_STDATE $STDATE

else

set EMISpath = /mnt/gv0/qying/aqrp_ucr_cmaq_input/emis_saprc11d

set EMISfile = egts_l.${EMISDATE}.1.texaqs06_4km.4km_texaqs06_4km.withtceq.ncf

endif

setenv EMIS_1 $EMISpath/$EMISfile

if ( -e ${EMIS_1}.gz ) then

echo 'unzipping file' $EMIS_1

gunzip ${EMIS_1}.gz

endif

#set TR_EMpath =

#set TR_EMfile =

if ( $ltngon ) then

#> file (offline)

set IN_LTpath = ${M3DATA}/lightning

setenv LTNGNO $IN_LTpath/nox_CMAQ-BENCHMARK.35L.$EMISDATE

#> inline

# setenv LTNGNO "InLine"

#> use lightning parameter file? [ Y|T ]

# setenv LTNGPARAM Y

#> point to lightning parameter file (ignored if LTNGPARAM is [ N|F]

# setenv LTNGPARM_FILE $IN_LTpath/params/LTNG_RATIO.2004.$MONTH.ioapi

#> diagnostic file? [ N|F ]

# setenv LTNGDIAG Y

# setenv LTNGOUT $OUTDIR/${EXEC}.LTNGDIAG.${CTM_APPL}

Page 303: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

291

# unsetenv LTNGPARAM

# if (! -e $LTNGNO) aget -a $IN_LTpath

/asm2/MOD3EVAL/LNOx/emisLNOx/2004af/36US1/pnox3d.t$EMISDATE

endif

#set ICpath = $OUTDIR

#set ICfile = CCTM_e3aCGRID.d1b

if ( -e $OUTDIR/${EXEC}.CGRID.${CFG}_${STDPRE} ) then

set ICpath = $OUTDIR

set ICFILE = ${EXEC}.CGRID.${CFG}_${STDPRE}

else

set ICpath = /mnt/gv0/qying/aqrp_ucr_cmaq_input/ic_saprc11d

set ICFILE = ICON_V5g_s11d_texaqs06_4km_profile

endif

setenv INIT_GASC_1 $ICpath/$ICFILE

setenv INIT_AERO_1 $INIT_GASC_1

setenv INIT_NONR_1 $INIT_GASC_1

setenv INIT_TRAC_1 $INIT_GASC_1

set BCpath = /mnt/gv0/qying/aqrp_ucr_cmaq_input/bc_saprc11d

set BCFILE = BCON_V5g_s11d_conc_texaqs06_4km_${STDATE}

setenv BNDY_GASC_1 $BCpath/$BCFILE

setenv BNDY_AERO_1 $BNDY_GASC_1

setenv BNDY_NONR_1 $BNDY_GASC_1

setenv BNDY_TRAC_1 $BNDY_GASC_1

set EXTN = ${YEAR}-${MONTH}-${DAY}

set METpath = /mnt/gv0/qying/aqrp_ucr_cmaq_input/met/4km

setenv GRID_DOT_2D $METpath/GRIDDOT2D_${EXTN}

setenv GRID_CRO_2D $METpath/GRIDCRO2D_${EXTN}

setenv MET_CRO_2D $METpath/METCRO2D_${EXTN}

setenv MET_CRO_3D $METpath/METCRO3D_${EXTN}

setenv MET_DOT_3D $METpath/METDOT3D_${EXTN}

setenv MET_BDY_3D $METpath/METBDY3D_${EXTN}

set TR_DVpath = $METpath

set TR_DVfile = $MET_CRO_2D

set JVALpath = /mnt/gv0/qying/aqrp_ucr_cmaq_input/jproc_saprc11d

set JVALfile = JTABLE_${STDATE}

setenv XJ_DATA $JVALpath/$JVALfile

#> ozone columne data for the photolysis model

set OMIpath = /home/qying/models/CMAQ/data/raw/phot

setenv OMI $OMIpath/OMI.dat

#> for the run control ...

setenv CTM_STDATE $STDATE

setenv CTM_STTIME $STTIME

setenv CTM_RUNLEN $NSTEPS

setenv CTM_TSTEP $TSTEP

setenv CTM_PROGNAME $EXEC

#> look for existing log files

set test = `ls CTM_LOG_???.${CTM_APPL}`

if ( "$test" != "" ) then

if ( $DISP == 'delete' ) then

echo " ancillary log files being deleted"

foreach file ( $test )

echo " deleting $file"

Page 304: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

292

rm $file

end

else

echo "*** Logs exist - run ABORTED ***"

exit 1

endif

endif

#> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

#env

ls -l $BASE/$EXEC; size $BASE/$EXEC

unlimit

limit

#> Executable call for single PE, uncomment to invoke

# time $BASE/$EXEC

#> Executable call for multiple PE, set location of MPIRUN script

set MPIRUN = mpiexec

set TASKMAP = $BASE/machines

cat $TASKMAP

# time $MPIRUN -machinefile $TASKMAP -np $NPROCS $BASE/$EXEC.sh < /dev/null

time $MPIRUN -n $NPROCS -f machines $BASE/$EXEC

mkdir -p ${OUTDIR}/logs/${STDATE}

mv ./CTM_LOG_???.${CTM_APPL} ${OUTDIR}/logs/${STDATE}

gzip ${EMIS_1}

@ i = $i + 1

end

date

exit

Page 305: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

293

Appendix D. Additional Information on Implementing Mechanisms for CMAQ Simulations

D-1. Ozone and alkene time series using different SAPRC mechanisms

Figure D-1. Predicted (based on 4-km resolution SAPRC-11D) and observed ozone concentrations (in

units of ppb) at 12 CAMS monitoring sites within the HGB area.

Page 306: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

294

Figure D-2. Predicted (based on 4-km resolution SAPRC-11L) and observed ozone concentrations (in

units of ppb) at 12 CAMS monitoring sites within the HGB area.

Page 307: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

295

Figure D-3. Predicted (based on 2-km resolution SAPRC-11L) and observed ozone concentrations (in

units of ppb) at 12 CAMS monitoring sites within the HGB area.

Page 308: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

296

Figure D-4. Predicted (based on 4-km resolution SAPRC-11D) and observed concentrations of

ethene, propene, 1-butene, cis-2-butene, trans-2-butene, 1-pentene, cis-2-pentene, and trans-2-

pentene (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

Page 309: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

297

D-2. Detailed ozone performance data

Acronyms:

MB: Mean Bias

ME: Mean Error

MNB: Mean Normalized Bias

MNE: Mean Normalized Error (or Normalized Gross Error (NGE))

NMB: Normalized Mean Bias

NME: Normalized Mean Error

MFB: Mean Fractional Bias

MFE: Mean Fractional Error

APP: Accuracy of Paired Peak

AAPP: Absolute Accuracy of Paired Peak

AUP: Accuracy of Unpaired Peak

AAUP: Absolute Accuracy of Unaired Peak

np: number of data points

Table D-1. Ozone model performance based on 4-km S11D. MB ME MNB MNE NMB NME MFB MFE np APP AAPP AUP AAUP np

HALC -0.007 0.012 -0.071 0.154 -0.086 0.157 -0.092 0.165 56 -0.11 0.14 -0.04 0.15 6

HNWA -0.006 0.010 -0.064 0.121 -0.074 0.121 -0.075 0.128 66 -0.09 0.13 -0.05 0.12 7

HWAA 0.001 0.012 0.027 0.162 0.013 0.159 0.006 0.159 46 -0.01 0.10 0.07 0.14 6

HLAA 0.001 0.013 0.040 0.167 0.019 0.161 0.019 0.162 44 0.06 0.07 0.11 0.11 4

HCQA -0.002 0.023 0.010 0.292 -0.026 0.297 -0.058 0.311 63 -0.11 0.22 0.12 0.20 8

BAYP -0.020 0.022 -0.213 0.238 -0.244 0.266 -0.281 0.305 76 -0.23 0.23 -0.20 0.20 8

HSMA -0.007 0.021 -0.058 0.262 -0.086 0.261 -0.114 0.292 66 -0.20 0.28 0.00 0.16 7

SHWH -0.013 0.022 -0.113 0.246 -0.157 0.266 -0.171 0.289 80 -0.10 0.23 -0.01 0.23 7

HROC -0.027 0.028 -0.328 0.346 -0.337 0.352 -0.453 0.470 58 -0.32 0.32 -0.21 0.21 8

HOEA -0.019 0.021 -0.197 0.238 -0.220 0.252 -0.250 0.288 51 -0.24 0.26 -0.17 0.25 6

C35C -0.036 0.036 -0.457 0.457 -0.462 0.462 -0.642 0.642 36 -0.36 0.36 -0.30 0.30 6

DRPK -0.011 0.018 -0.106 0.215 -0.140 0.234 -0.149 0.248 65 -0.20 0.21 -0.05 0.18 8

average -0.012 0.020 -0.128 0.241 -0.150 0.249 -0.188 0.288 -0.160 0.214 -0.061 0.187

Table D-2. Ozone model performance based on 2-km S11D. MB ME MNB MNE NMB NME MFB MFE np APP AAPP AUP AAUP np

HALC -0.005 0.012 -0.048 0.154 -0.063 0.154 -0.068 0.161 56 -0.10 0.13 0.01 0.15 6

HNWA -0.006 0.010 -0.062 0.124 -0.072 0.124 -0.074 0.131 66 -0.10 0.14 -0.03 0.09 7

HWAA 0.002 0.012 0.036 0.159 0.023 0.155 0.018 0.154 46 -0.01 0.12 0.08 0.12 6

HLAA -0.001 0.013 0.002 0.164 -0.017 0.159 -0.020 0.164 44 0.03 0.06 0.07 0.10 4

HCQA 0.000 0.023 0.031 0.290 -0.005 0.296 -0.037 0.307 63 -0.09 0.23 0.15 0.21 8

BAYP -0.022 0.024 -0.229 0.255 -0.258 0.281 -0.303 0.327 76 -0.26 0.26 -0.20 0.21 8

HSMA -0.006 0.021 -0.050 0.264 -0.079 0.263 -0.108 0.293 66 -0.20 0.28 0.01 0.16 7

SHWH -0.012 0.022 -0.094 0.251 -0.139 0.269 -0.152 0.291 80 -0.07 0.24 0.01 0.24 7

HROC -0.017 0.022 -0.196 0.278 -0.210 0.282 -0.284 0.358 58 -0.19 0.21 -0.06 0.12 8

HOEA -0.016 0.019 -0.163 0.208 -0.187 0.222 -0.203 0.245 51 -0.21 0.25 -0.15 0.24 6

C35C -0.040 0.040 -0.501 0.501 -0.507 0.507 -0.716 0.716 36 -0.40 0.40 -0.37 0.37 6

DRPK -0.007 0.017 -0.051 0.202 -0.086 0.215 -0.084 0.219 65 -0.16 0.18 -0.02 0.19 8

average -0.011 0.019 -0.110 0.237 -0.133 0.244 -0.169 0.280 -0.147 0.208 -0.041 0.182

Page 310: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

298

Table D-3. Ozone model performance based on 4-km S11L. MB ME MNB MNE NMB NME MFB MFE np APP AAPP AUP AAUP np

HALC -0.009 0.013 -0.104 0.168 -0.119 0.173 -0.128 0.185 56 -0.14 0.16 -0.07 0.16 6

HNWA -0.008 0.011 -0.098 0.135 -0.108 0.138 -0.112 0.147 66 -0.12 0.14 -0.08 0.12 7

HWAA -0.002 0.012 -0.010 0.157 -0.023 0.157 -0.030 0.160 46 -0.04 0.10 0.03 0.15 6

HLAA -0.002 0.012 -0.001 0.156 -0.021 0.154 -0.020 0.157 44 0.02 0.06 0.07 0.09 4

HCQA -0.005 0.022 -0.030 0.281 -0.066 0.289 -0.098 0.311 63 -0.15 0.22 0.07 0.18 8

BAYP -0.023 0.024 -0.245 0.257 -0.275 0.286 -0.323 0.334 76 -0.26 0.26 -0.23 0.23 8

HSMA -0.010 0.021 -0.095 0.260 -0.123 0.264 -0.153 0.300 66 -0.23 0.30 -0.04 0.16 7

SHWH -0.016 0.023 -0.149 0.249 -0.193 0.274 -0.213 0.302 80 -0.13 0.24 -0.05 0.22 7

HROC -0.029 0.029 -0.355 0.366 -0.364 0.373 -0.489 0.499 58 -0.35 0.35 -0.24 0.24 8

HOEA -0.022 0.023 -0.232 0.258 -0.254 0.274 -0.293 0.317 51 -0.27 0.28 -0.20 0.27 6

C35C -0.037 0.037 -0.469 0.469 -0.474 0.474 -0.662 0.662 36 -0.37 0.37 -0.31 0.31 6

DRPK -0.014 0.019 -0.143 0.223 -0.176 0.245 -0.193 0.266 65 -0.24 0.24 -0.09 0.19 8

average -0.015 0.021 -0.161 0.248 -0.183 0.258 -0.226 0.303 -0.190 0.227 -0.094 0.192

Table D-4. Ozone model performance based on 2-km S11L. MB ME MNB MNE NMB NME MFB MFE np APP AAPP AUP AAUP np

HALC -0.007 0.013 -0.075 0.170 -0.090 0.172 -0.098 0.183 56 -0.12 0.14 -0.01 0.16 6

HNWA -0.008 0.011 -0.089 0.141 -0.099 0.143 -0.104 0.152 66 -0.13 0.15 -0.04 0.10 7

HWAA 0.000 0.012 0.010 0.162 -0.004 0.160 -0.009 0.161 46 -0.02 0.14 0.05 0.13 6

HLAA -0.005 0.012 -0.041 0.158 -0.058 0.157 -0.062 0.164 44 -0.01 0.08 0.05 0.11 4

HCQA -0.003 0.022 -0.007 0.284 -0.044 0.292 -0.078 0.310 63 -0.15 0.23 0.10 0.18 8

BAYP -0.024 0.025 -0.260 0.277 -0.289 0.303 -0.344 0.360 76 -0.28 0.28 -0.22 0.23 8

HSMA -0.009 0.022 -0.083 0.274 -0.114 0.276 -0.145 0.312 66 -0.25 0.30 -0.04 0.15 7

SHWH -0.014 0.023 -0.127 0.257 -0.173 0.281 -0.192 0.308 80 -0.11 0.25 -0.02 0.24 7

HROC -0.019 0.024 -0.228 0.292 -0.242 0.298 -0.325 0.383 58 -0.22 0.22 -0.09 0.13 8

HOEA -0.018 0.021 -0.185 0.228 -0.210 0.243 -0.231 0.271 51 -0.22 0.28 -0.17 0.26 6

C35C -0.042 0.042 -0.533 0.533 -0.538 0.538 -0.769 0.769 36 -0.44 0.44 -0.39 0.39 6

DRPK -0.009 0.019 -0.077 0.222 -0.114 0.239 -0.117 0.247 65 -0.17 0.21 -0.05 0.19 8

average -0.013 0.021 -0.141 0.250 -0.165 0.258 -0.206 0.302 -0.177 0.225 -0.071 0.188

Page 311: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

299

D-3. Ozone time series for SAPRC-07L and SAPRC-07T.

Figure D-5. Predicted (based on 2-km resolution SAPRC-07T) and observed ozone concentrations (in

units of ppb) at 12 CAMS monitoring sites within the HGB area.

Page 312: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

300

Figure D-6. Predicted (based on 2-km resolution SAPRC-07L) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

Page 313: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

301

Figure D-7. Predicted (based on 4-km resolution SAPRC-07T) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

Page 314: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

302

Figure D-8. Predicted (based on 4-km resolution SAPRC-07L) and observed ozone

concentrations (in units of ppb) at 12 CAMS monitoring sites within the HGB area.

Page 315: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

303

D-4. Detailed ozone performance data for SAPRC-07L and SAPRC-07T

Table D-5. Comparison of Mean Normalized Bias (MNB), Mean Normalized Error (MNE) and

Accuracy of Unpaired Peak (AUP) for four SAPRC-07 simulations. MNB MNE AUP

S07T-4km

S07T-2km

S07L-4km

S07L-2km

S07T-4km

S07T-2km

S07L-4km

S07L-2km

S07T-4km

S07T-2km

S07L-4km

S11L-2km

HALC -0.088 -0.066 -0.113 -0.091 0.175 0.178 0.173 0.174 -0.03 0.01 -0.06 -0.02

HNWA -0.069 -0.067 -0.093 -0.091 0.132 0.135 0.132 0.136 -0.02 0.00 -0.04 -0.03 HWAA -0.006 0.006 -0.023 -0.011 0.145 0.152 0.130 0.134 0.04 0.05 0.01 0.03

HLAA 0.013 -0.027 -0.004 -0.043 0.152 0.165 0.140 0.154 0.05 0.03 0.03 0.01

HCQA -0.065 -0.043 -0.066 -0.046 0.267 0.265 0.253 0.252 0.07 0.11 0.07 0.10 BAYP -0.164 -0.132 -0.170 -0.138 0.279 0.275 0.272 0.268 -0.08 -0.05 -0.09 -0.07

HSMA -0.151 -0.143 -0.155 -0.150 0.273 0.276 0.263 0.265 -0.09 -0.08 -0.10 -0.10

SHWH -0.128 -0.109 -0.134 -0.114 0.239 0.240 0.229 0.230 -0.01 0.01 -0.02 0.00 HROC -0.381 -0.388 -0.382 -0.397 0.391 0.403 0.389 0.404 -0.23 -0.22 -0.24 -0.23

HOEA -0.223 -0.187 -0.244 -0.210 0.261 0.231 0.266 0.233 -0.11 -0.10 -0.14 -0.13

C35C -0.480 -0.532 -0.466 -0.539 0.480 0.532 0.466 0.539 -0.34 -0.41 -0.33 -0.43 DRPK -0.180 -0.130 -0.195 -0.145 0.245 0.230 0.240 0.226 -0.09 -0.06 -0.11 -0.07

Avg. -0.160 -0.151 -0.170 -0.164 0.253 0.257 0.246 0.251 -0.071 -0.060 -0.086 -0.077

Table D-6. Ozone model performance based on 4-km S07T. MB ME MNB MNE NMB NME MFB MFE np APP AAPP AUP AAUP np

HALC -0.008 0.014 -0.088 0.175 -0.105 0.180 -0.114 0.192 56 -0.11 0.15 -0.03 0.16 6

HNWA -0.006 0.010 -0.069 0.132 -0.082 0.137 -0.082 0.141 66 -0.04 0.14 -0.02 0.13 7

HWAA -0.001 0.011 -0.006 0.145 -0.019 0.147 -0.024 0.149 46 -0.04 0.10 0.04 0.15 6

HLAA 0.000 0.011 0.013 0.152 -0.004 0.149 -0.006 0.151 44 -0.01 0.11 0.05 0.12 4

HCQA -0.008 0.022 -0.065 0.267 -0.102 0.279 -0.134 0.305 63 -0.16 0.21 0.07 0.19 8

BAYP -0.018 0.025 -0.164 0.279 -0.215 0.310 -0.246 0.347 76 -0.27 0.28 -0.08 0.20 8

HSMA -0.014 0.022 -0.151 0.273 -0.173 0.277 -0.213 0.320 66 -0.28 0.33 -0.09 0.17 7

SHWH -0.014 0.021 -0.128 0.239 -0.172 0.265 -0.188 0.287 80 -0.09 0.20 -0.01 0.19 7

HROC -0.030 0.030 -0.381 0.391 -0.384 0.393 -0.534 0.543 58 -0.41 0.41 -0.23 0.24 8

HOEA -0.021 0.023 -0.223 0.261 -0.248 0.278 -0.289 0.324 51 -0.25 0.26 -0.11 0.22 6

C35C -0.038 0.038 -0.480 0.480 -0.486 0.486 -0.678 0.678 36 -0.40 0.40 -0.34 0.34 6

DRPK -0.016 0.021 -0.180 0.245 -0.210 0.266 -0.235 0.295 65 -0.23 0.25 -0.09 0.20 8

average -0.014 0.021 -0.160 0.253 -0.183 0.264 -0.228 0.311 -0.190 0.236 -0.071 0.193

Table D-7. Ozone model performance based on 2-km S07T. MB ME MNB MNE NMB NME MFB MFE np APP AAPP AUP AAUP np

HALC -0.007 0.014 -0.066 0.178 -0.085 0.180 -0.092 0.191 56 -0.11 0.14 0.01 0.17 6

HNWA -0.006 0.010 -0.067 0.135 -0.079 0.139 -0.081 0.143 66 -0.05 0.15 0.00 0.11 7

HWAA 0.000 0.011 0.006 0.152 -0.007 0.152 -0.012 0.152 46 -0.03 0.11 0.05 0.13 6

HLAA -0.003 0.012 -0.027 0.165 -0.044 0.164 -0.050 0.171 44 -0.04 0.13 0.03 0.14 4

HCQA -0.006 0.021 -0.043 0.265 -0.079 0.277 -0.111 0.301 63 -0.14 0.20 0.11 0.19 8

BAYP -0.015 0.025 -0.132 0.275 -0.183 0.303 -0.207 0.333 76 -0.24 0.25 -0.05 0.20 8

HSMA -0.013 0.022 -0.143 0.276 -0.166 0.280 -0.206 0.322 66 -0.29 0.33 -0.08 0.17 7

SHWH -0.012 0.021 -0.109 0.240 -0.153 0.265 -0.168 0.285 80 -0.07 0.21 0.01 0.20 7

HROC -0.030 0.031 -0.388 0.403 -0.391 0.403 -0.561 0.575 58 -0.40 0.40 -0.22 0.23 8

HOEA -0.018 0.021 -0.187 0.231 -0.214 0.248 -0.239 0.280 51 -0.22 0.25 -0.10 0.21 6

C35C -0.042 0.042 -0.532 0.532 -0.539 0.539 -0.770 0.770 36 -0.45 0.45 -0.41 0.41 6

DRPK -0.012 0.019 -0.130 0.230 -0.159 0.246 -0.173 0.263 65 -0.20 0.23 -0.06 0.20 8

average -0.014 0.021 -0.151 0.257 -0.175 0.266 -0.223 0.315 -0.185 0.238 -0.060 0.197

Page 316: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

304

Table D-8. Ozone model performance based on 4-km S07L. MB ME MNB MNE NMB NME MFB MFE np APP AAPP AUP AAUP np

HALC -0.010 0.014 -0.113 0.173 -0.129 0.179 -0.138 0.192 56 -0.14 0.16 -0.06 0.15 6

HNWA -0.008 0.010 -0.093 0.132 -0.105 0.139 -0.107 0.143 66 -0.07 0.14 -0.04 0.13 7

HWAA -0.003 0.010 -0.023 0.130 -0.035 0.133 -0.039 0.136 46 -0.06 0.09 0.01 0.12 6

HLAA -0.001 0.010 -0.004 0.140 -0.018 0.138 -0.021 0.142 44 -0.04 0.10 0.03 0.12 4

HCQA -0.008 0.021 -0.066 0.253 -0.101 0.265 -0.130 0.291 63 -0.15 0.19 0.07 0.16 8

BAYP -0.018 0.025 -0.170 0.272 -0.219 0.303 -0.249 0.340 76 -0.28 0.28 -0.09 0.19 8

HSMA -0.014 0.021 -0.155 0.263 -0.175 0.267 -0.215 0.312 66 -0.29 0.32 -0.10 0.16 7

SHWH -0.014 0.020 -0.134 0.229 -0.176 0.255 -0.191 0.277 80 -0.10 0.18 -0.02 0.17 7

HROC -0.030 0.030 -0.382 0.389 -0.384 0.390 -0.532 0.539 58 -0.40 0.40 -0.24 0.24 8

HOEA -0.022 0.023 -0.244 0.266 -0.265 0.282 -0.312 0.332 51 -0.27 0.28 -0.14 0.22 6

C35C -0.036 0.036 -0.466 0.466 -0.472 0.472 -0.653 0.653 36 -0.39 0.39 -0.33 0.33 6

DRPK -0.017 0.020 -0.195 0.240 -0.222 0.260 -0.251 0.292 65 -0.24 0.25 -0.11 0.18 8

average -0.015 0.020 -0.170 0.246 -0.192 0.257 -0.236 0.304 -0.203 0.232 -0.086 0.182

Table D-9. Ozone model performance based on 2-km S07L. MB ME MNB MNE NMB NME MFB MFE np APP AAPP AUP AAUP np

HALC -0.008 0.014 -0.091 0.174 -0.107 0.178 -0.115 0.189 56 -0.14 0.15 -0.02 0.15 6

HNWA -0.008 0.011 -0.091 0.136 -0.102 0.142 -0.105 0.147 66 -0.08 0.14 -0.03 0.11 7

HWAA -0.002 0.010 -0.011 0.134 -0.022 0.136 -0.026 0.136 46 -0.05 0.10 0.03 0.10 6

HLAA -0.004 0.012 -0.043 0.154 -0.057 0.154 -0.064 0.162 44 -0.06 0.13 0.01 0.14 4

HCQA -0.006 0.020 -0.046 0.252 -0.081 0.264 -0.111 0.289 63 -0.14 0.19 0.10 0.17 8

BAYP -0.015 0.024 -0.138 0.268 -0.188 0.296 -0.210 0.326 76 -0.26 0.26 -0.07 0.19 8

HSMA -0.013 0.021 -0.150 0.265 -0.171 0.269 -0.212 0.313 66 -0.30 0.32 -0.10 0.15 7

SHWH -0.013 0.020 -0.114 0.230 -0.157 0.255 -0.170 0.275 80 -0.08 0.18 0.00 0.19 7

HROC -0.031 0.031 -0.397 0.404 -0.398 0.405 -0.571 0.578 58 -0.40 0.40 -0.23 0.23 8

HOEA -0.019 0.021 -0.210 0.233 -0.232 0.250 -0.263 0.285 51 -0.24 0.26 -0.13 0.22 6

C35C -0.042 0.042 -0.539 0.539 -0.544 0.544 -0.776 0.776 36 -0.46 0.46 -0.43 0.43 6

DRPK -0.014 0.019 -0.145 0.226 -0.172 0.242 -0.189 0.263 65 -0.21 0.23 -0.07 0.19 8

average -0.015 0.020 -0.164 0.251 -0.186 0.261 -0.234 0.312 -0.200 0.236 -0.077 0.189

Page 317: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

305

Appendix E. Chamber Simulation Results for the Carbon Bond Chemical Mechanism

Chamber simulations with a version of the Carbon Bond version 6 (CB6r1v1b) were carried out

to provide additional data potentially useful for the TCEQ to evaluate and update the

mechanisms currently used by the TCEQ. The reactions in CB6r1v1b for propene and the 10

tested alkenes in this project are nearly identical to those for CB6r1 (Yarwood et al, 2012). The

mechanism files for CB6r1v1b were received from Dr. Jaegun Jung at ENVIRON around one

year ago (on October 23, 2012) via email. The rate constant for the OH + NO2 = HNO3 reaction

of CB6r1vb is the same as that used for SAPRC-07T and SAPRC-11D. Thus, the chamber wall

mechanism for CB6 used for a previous AQRP project (Yarwood et al, 2012) was used without

updating. Propene and the 10 tested alkenes were represented by model species of CB6r1v1b as

shown in Table E-1. The simulation results are shown in Figure E-1 to Figure E-11.

Table E-1. List of lumping methods used for the Carbon Bond chemical mechanism (CB6r1v1b)

for propene and the 10 tested alkenes for this project.

Tested alkenes Lumping method*

Propene OLE + PAR 1-Butene OLE + 2 PAR 1-Pentene OLE + 3 PAR 1-Hexene OLE + 4 PAR trans-2-Butene IOLE cis-2-Butene IOLE trans-2-Pentene IOLE + PAR cis-2-Pentene IOLE + PAR Isobutene FORM + 3 PAR 1,3-Butadiene 2 OLE 2-Methyl-2-butene OLE + 3 PAR *Model speices used in this table are defined as follows.

PAR: paraffin carbon bond (C-C).

OLE: terminal olefin carbon bond (R-C=C).

IOLE: internal olefin carbon bond (R-C=C-R)

FORM: formaldehyde (HCHO)

Page 318: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

306

Figure E-1. Comparison of modeled and measured concentrations for propene with CB6r1v1b

and SAPRC-11D.*

*For CB6r1v1b, propene is modeled by OLE + PAR, and the OLE concentrations are displayed

as propene concentrations.

EPA1683A EPA1683B EPA1713A EPA1713B

D(O

3-N

O)

O3

NO

Pro

pen

e

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.02

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.01

0.02

0.02

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.02

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.02

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0 120 240 360

Page 319: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

307

Figure E-2. Comparison of modeled and measured concentrations for 1-butene with CB6r1v1b

and SAPRC-11D.*

*For CB6r1v1b, 1-butene is modeled by OLE + 2 PAR, and the OLE concentrations are

displayed as 1-butene concentrations.

EPA1703B EPA1704A EPA1705B EPA1708B ITC927

D(O

3-N

O)

O3

NO

1-B

ute

ne

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0 120 240 360

0.00

0.01

0.02

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0.50

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

Page 320: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

308

Figure E-3. Comparison of modeled and measured concentrations for 1-pentene with CB6r1v1b

and SAPRC-11D.*

*For CB6r1v1b, 1-pentene is modeled by OLE + 3 PAR, and the OLE concentrations are

displayed as 1-pentene concentrations.

EPA1704B EPA1707A EPA1710A EPA1711B

D(O

3-N

O)

O3

NO

1-P

en

ten

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240

0.00

0.01

0.02

0.03

0.04

0 120 240

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 120 240 360 480

0.00

0.10

0.20

0.30

0.40

0.50

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 120 240 360 480

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0 120 240 360

Page 321: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

309

Figure E-4. Comparison of modeled and measured concentrations for 1-hexene with CB6r1v1b

and SAPRC-11D.*

*For CB6r1v1b, 1-hexene is modeled by OLE + 4 PAR, and the OLE concentrations are

displayed as 1-hexene concentrations.

EPA1705A EPA1707B EPA1708A EPA1710B EPA1711A ITC929

D(O

3-N

O)

O3

NO

1-H

exen

e

0.00

0.10

0.20

0.30

0.40

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0.50

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.10

0.20

0.30

0.40

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0.50

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

Page 322: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

310

Figure E-5. Comparison of modeled and measured concentrations for trans-2-butene with

CB6r1v1b and SAPRC-11D.*

*For CB6r1v1b, trans-2-butene is modeled by IOLE, and the IOLE concentrations are displayed

as trans-2-butene (t-2-butene) concentrations.

EPA1691B EPA1712B EPA1722A TVA063

D(O

3-N

O)

O3

NO

t-2-B

ute

ne

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.02

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 120 240 360

Page 323: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

311

Figure E-6. Comparison of modeled and measured concentrations for cis-2-butene with

CB6r1v1b and SAPRC-11D.*

*For CB6r1v1b, cis-2-butene is modeled by IOLE, and the IOLE concentrations are displayed as

cis-2-butene (c-2-butene) concentrations.

EPA1692B EPA1699A EPA1700A EPA1722B

D(O

3-N

O)

O3

NO

c-2

-Bu

ten

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.01

0.02

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

Page 324: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

312

Figure E-7. Comparison of modeled and measured concentrations for trans-2-pentene with

CB6r1v1b and SAPRC-11D.*

*For CB6r1v1b, trans-2-pentene is modeled by IOLE + PAR, and the IOLE concentrations are

displayed as trans-2-pentene (t-2-pentene) concentrations.

EPA1685B EPA1724A

D(O

3-N

O)

O3

NO

t-2-P

en

ten

e

0.00

0.05

0.10

0.15

0.20

0 120 240 360

0.00

0.05

0.10

0.15

0 120 240 360

0.00

0.01

0.02

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360 480

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 120 240 360 480

Page 325: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

313

Figure E-8. Comparison of modeled and measured concentrations for cis-2-pentene with

CB6r1v1b and SAPRC-11D.*

*For CB6r1v1b, cis-2-pentene is modeled by IOLE + PAR, and the IOLE concentrations are

displayed as cis-2-pentene (c-2-pentene) concentrations.

EPA1687B EPA1724B

D(O

3-N

O)

O3

NO

c-2

-Pen

ten

e

0.00

0.05

0.10

0.15

0.20

0.25

0 60 120 180 240

0.00

0.05

0.10

0.15

0.20

0 60 120 180 240

0.00

0.01

0.02

0.03

0.04

0 60 120 180 240

0.00

0.05

0.10

0.15

0 60 120 180 240

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.00

0.01

0.02

0 120 240 360 480

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0 120 240 360 480

Page 326: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

314

Figure E-9. Comparison of modeled and measured concentrations for isobutene with CB6r1v1b

and SAPRC-11D.*

*For CB6r1v1b, isobutene is modeled by FORM + 3 PAR, and isobutene concentrations for

CB6r1v1b are not displayed.

EPA1699B EPA1700B EPA1701A EPA1701B DTC052B

D(O

3-N

O)

O3

NO

Iso

bu

ten

e

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0.50

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0.50

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 120 240 360

Page 327: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

315

Figure E-10. Comparison of modeled and measured concentrations for 1,3-butadiene with

CB6r1v1b and SAPRC-11D.*

*For CB6r1v1b, 1,3-butadiene is modeled by 2 OLE, and 1,3-butadiene concentrations for

CB6r1v1b are not displayed. The simulated OH, HO2 and NO2 concentrations for CB6r1v1b

were steeply increased in the early stages of the experiments, and the simulations for CB6r1v1b

were abrupted ended before the modeling end time.

EPA1702A EPA1702B EPA1703A EPA1712A EPA1072A

D(O

3-N

O)

O3

NO

1,3

-Bu

tad

ien

e

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.00

0.01

0.02

0 120 240 360 480

0.00

0.05

0.10

0.15

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360 480

0.00

0.01

0.02

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0 120 240 360 480

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0 120 240 360

Page 328: Final Report for Texas AQRP Project 12-006aqrp.ceer.utexas.edu/projectinfoFY12_13/12-006/12... · Final Report for Texas AQRP Project 12-006 Environmental Chamber Experiments and

316

Figure E-11. Comparison of modeled and measured concentrations for 2-methyl-2-butene with

CB6r1v1b and SAPRC-11D.*

*For CB6r1v1b, 2-methyl-2-butene is modeled by OLE + 3 PAR, and 2-methyl-2-butene

concentrations for CB6r1v1b are not displayed.

EPA1699B EPA1700B EPA1701A EPA1701B DTC052B

D(O

3-N

O)

O3

NO

Iso

bu

ten

e

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0.50

0 120 240 360

0.00

0.10

0.20

0.30

0.40

0.50

0 120 240 360

0.00

0.01

0.02

0.03

0.04

0.05

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 120 240 360

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 120 240 360

0.00

0.01

0.02

0.03

0 120 240 360

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0 120 240 360