final presentation - gabe a. cohn · microsoft powerpoint - final presentation.pptx author: cohng...

32
Computer Modeling of Wideband TaperedSlot Microwave Antenna Feeds Microwave Antenna Feeds S t b 19 2007 September 19, 2007 Gabe A. Cohn

Upload: others

Post on 13-Jul-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Computer Modelingof Wideband Tapered‐SlotMicrowave Antenna FeedsMicrowave Antenna Feeds

S t b 19 2007September 19, 2007

Gabe A. Cohn

Page 2: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

OverviewOverview

• Background on the Lindgren Feedg g• Goals of Computer Modeling• Modeling Software• Modeling the Lindgren Feed

– Return LossF fi ld P tt– Far‐field Patterns

• Postprocessing Calculations– Phase Center VariationPhase Center Variation– Taper and Spillover Efficiencies

• Conclusions and Future Work

2

Page 3: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

3

Page 4: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

4

Page 5: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Goals of Computer ModelingGoals of Computer Modeling

• Increase Efficiency and Reduce Noisec ease c e cy a d educe o se

• Don’t want to just starting making modificationsDon t want to just starting making modifications to the actual feed

• Would like to simulate the effect of proposed p pchanges

• Allow fast and simple testing of design improvements

5

Page 6: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Modeling Using QuickWaveModeling Using QuickWave

Features:• Finite Different Time Domain (FDTD) solver• Conformal polygon mesh 

Advantages:Advantages:• Very fast solver and postprocessing• Complete control of mesh

Disadvantages:Disadvantages:• Many bugs! (crashes way too much)• Very poor UI and documentation• Drawing directly linked to the mesh• Drawing must be made using code which• Drawing must be made using code which 

builds the mesh as well• Modifications are very difficult to make• Can’t model large structures• Can’t obtain good return loss data• Can t obtain good return loss data

6

Page 7: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Modeling Using CST Microwave StudioModeling Using CST Microwave Studio

Features:• Contains three solvers:Contains three solvers:

– Transient Solver (Time Domain)– Frequency Domain Solver– Eigenmode Solver

• Hexagonal and tetrahedral mesh• Supports Adaptive Subgridding• Automatic meshing utilities (with many options)• Built‐in postprocessing calculations (including phase 

center)• Built‐in optimizer can sweep parameters to find 

optimal

Advantages:• Very simple and powerful UI with good 

documentation• Very stable• The structure drawing is completely separate fromThe structure drawing is completely separate from 

the mesh and therefore each can be modified independently

Disadvantages:• Slow extraction of far‐field patterns• Subgridding is very resource intensive

7

Page 8: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Time Comparison of Modeling fSoftware

Time to… QuickWave CST MWS

Become Familiar with Software

Weeks Days

Create a new structure Days 1 hour

Modify the mesh <10 min Seconds (hours when using subgridding)

Run full simulation of  1‐2 hrs. 1‐3 hrs.Lindgren Feed

Export far‐field patterns with 5 degrees azimuthal 

10 hrs. 50 hrs.

resolution

Total (excluding becoming familiar with software)

3 days 3 days

8

Page 9: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Modeling the Lindgren Feed

9

Page 10: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Model of Lindgren FeedModel of Lindgren Feed

10

Page 11: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Good Agreement Verifies Model

‐2

0

|S11| Comparison for Feed OnlydB

‐8

‐6

‐4

‐12

‐10

8

‐18

‐16

‐14

‐20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Frequency (GHz)

Measured Data CST Model

11

Page 12: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Lindgren Feed without Radiation ShieldMeasured Data CST MWS Model Simulation

EPlane

HHPlane

12

Page 13: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Data and Model ComparisonLindgren Feed without Radiation Shield

4 GH 11 GH4 GHz 11 GHz

EPlane

HHPlane

13

Page 14: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Feed Inside Radiation ShieldFeed Inside Radiation Shield

14

Page 15: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Lindgren Feed in Radiation ShieldMeasured Data CST MWS Model Simulation

EPlane

HHPlane

15

Page 16: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

4 GH 11 GH

Data and Model ComparisonLindgren Feed in Radiation Shield

4 GHz 11 GHz

EPlane

HHPlane

16

Page 17: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Feed in Radiation Shield Lined with AN‐73 Mi Ab bMicrowave Absorber

17

Page 18: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Modeling Microwave AbsorberModeling Microwave Absorber

• Need the Following Electrical Properties:Need the Following Electrical Properties:– εr – Relative Permittivity

μ Relative Permeability– μr – Relative Permeability

– σ – Electrical Conductivity [S/m]

M ti C d ti it [Ω/ ]– σm – Magnetic Conductivity [Ω/m]

• This data is not provided by manufacturer

• Guessed parameters using a test simulation:εr = 5     μr = 5     σ = 1.2 S/m     σm = 1.2 Ω/m

18

Page 19: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Lindgren Feed in Absorber Lined Radiation Shield

Measured Data CST MWS Model Simulation

EPlane

HHPlane

19

Page 20: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

4 GH 11 GH

Data and Model ComparisonLindgren Feed in Absorber Lined Radiation Shield

4 GHz 11 GHz

EPlane

HHPlane

20

Page 21: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Phase Center Variation

21

Page 22: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Phase Center Variation ComparisonPhase Center Variation ComparisonPhase Center of Lindgren 3164‐05 Feed

Based on CST MWS Model

16

17

18

19

[cm]

11

12

13

14

15

ve th

e feed

 point)  

7

8

9

10

11

Phase Ce

nter (a

bov

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

P

Frequency [GHz]

Feed Only Feed in Radiation Shield Feed in Absorber Lined Radiation Shield

22

Page 23: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Taper and Spillover Efficiencies

23

Page 24: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Efficiency Calculations

Taper efficiency – uniformity of the amplitude distribution of

Efficiency Calculations

the feed pattern over the surface of the reflector

Spillover efficiency – fraction of the total radiated power that i ll t d b th fl tis collected by the reflector

The product of the two efficiencies is then easily calculated:

24

Page 25: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Spillover and Taper Efficiencies3164‐05 Feed Only

80

90

100

60

70

80

%]

40

50

Efficiency [%

10

20

30

0

0 10 20 30 40 50 60 70 80 90

Subtended Half‐Angle (theta) [deg]

25

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

Spillover Eff.

Taper Eff.

Page 26: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Product of Spillover and Taper Efficiencies3164‐05 Feed Only

80

90

100

60

70

80

]

40

50

Efficiency [%

]

20

30

0

10

0 10 20 30 40 50 60 70 80 90

Subtended Half‐Angle (theta) [deg]

26

Subtended Half‐Angle (theta) [deg]

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

Page 27: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Spillover and Taper Efficiencies3164‐05 Feed in Radiation Shield

80

90

100

60

70

80

%]

40

50

Efficiency [%

10

20

30

0

0 10 20 30 40 50 60 70 80 90

Subtended Half‐Angle (theta) [deg]

27

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

Spillover Eff.

Taper Eff.

Page 28: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Product of Spillover and Taper Efficiencies3164‐05 Feed in Radiation Shield

80

90

100

60

70

80

]

40

50

Efficiency [%

]

20

30

0

10

0 10 20 30 40 50 60 70 80 90

Subtended Half‐Angle (theta) [deg]

28

Subtended Half‐Angle (theta) [deg]

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

Page 29: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Spillover and Taper Efficiencies3164‐05 Feed in Absorber Lined Radiation Shield

80

90

100

60

70

80

%]

40

50

Efficiency [%

10

20

30

0

0 10 20 30 40 50 60 70 80 90

Subtended Half‐Angle (theta) [deg]

29

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

Spillover Eff.

Taper Eff.

Page 30: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Product of Spillover and Taper Efficiencies3164‐05 Feed in Absorber Lined Radiation Shield

80

90

100

60

70

80

]

40

50

Efficiency [%

]

20

30

0

10

0 10 20 30 40 50 60 70 80 90

Subtended Half‐Angle (theta) [deg]

30

Subtended Half‐Angle (theta) [deg]

2.2 GHz 3.0 GHz 4.0 GHz 8.4 GHz 11 GHz 14 GHz 18 GHz

Page 31: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

ConclusionsConclusions

• Can successfully model wideband feeds in either yQuickWave or CST Microwave Studio

• Highly recommend using CST MWS• The CST model of the Lindgren 3164‐05 Feed appears to be an accurate representation

• Can obtain return loss far field patterns phase• Can obtain return loss, far‐field patterns, phase center, taper efficiency, and spillover efficiency from a simulated model

• Simulated models can be used to predict the effect or proposed changes

31

Page 32: Final Presentation - Gabe A. Cohn · Microsoft PowerPoint - Final Presentation.pptx Author: cohng Created Date: 9/19/2007 2:13:28 PM

Future WorkFuture Work

• Need a better model of absorber material– Need to take measurements on the absorber materials that we 

have in order to get params.• Improve Return Loss 

– Change backshort, gap dimensions or fin shape• Alternatives with absorber

– Absorber strips on fin edgesAbsorber strips on fin edges– Absorber strips around cylinder– Absorber in backshort– Using different types of absorberUsing different types of absorber

• Cuts in fins– Slot to reduce back edge current

Different shape to change low frequency characteristics– Different shape to change low frequency characteristics

32