feeding the world in the 21feeding the world in the 21 century: … · 2014. 6. 10. · rice qsh1...

28
Feeding the World in the 21 st Feeding the World in the 21 Century: the role of Genomics Mik B Mike Bevan Venice, Sept 2009

Upload: others

Post on 03-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

  • Feeding the World in the 21stFeeding the World in the 21Century: the role of

    Genomics

    Mik BMike BevanVenice, Sept 2009

  • •Where does our food come from?

    •What are the problems in producingWhat are the problems in producing sufficient food?

    •How much will we need?

    •Which technologies will be important?

  • Most of our food comes from a few domesticated species

    Large‐ scale agricultureag cu tu e

  • Grain Production 2007/8Grain Production 2007/8

    rice20%

    coarse grains51%

    wheat29%

  • Centres of crop domestication

  • THE INTIMATE RELATIONSHIP BETWEEN CROP DOMESTICATION AND CIVILISATION

  • What kinds of genes?

    Teosinte branched1 (tb1): a DNA binding transcriptional regulator that represses the outgrowth of lateral budsrepresses the outgrowth of lateral buds

  • The Power of Artificial SelectionDiff t l t d i f i l i (B i l )Different selected versions of a single crop species (Brassica oleracea).

  • Simple Single Gene InheritanceProstrate growth-1 (Prog1) - vegetative phase plant architecture.

    Prog1 (dominant) prog1 (recessive)Prog1 (dominant) prog1 (recessive)

    Wild Rice. Domesticated Rice

  • Nature of the Changes in the GenesCrop Gene Class CommentCrop Gene Class Comment

    Rice qSH1 cis regulatory altered CRE binding site

    Rice gif1 cis regulatory restricted/reduced expressionRice gif1 cis regulatory restricted/reduced expression

    Tomato fw2.2 cis regulatory heterochronic expression shift

    Maize tb1 cis regulatory enhancer; up regulationMaize tb1 cis regulatory enhancer; up regulation

    Tomato fas cis regulatory down regulation

    Maize tga1 protein function transcriptional repressionMaize tga1 protein function transcriptional repression

    Rice sha1 protein function AA change in DNA binding domain

    Rice prog1 protein & cis-reg multiple changesRice prog1 protein & cis-reg multiple changes

    Wheat Q protein & cis-reg dimerization; message level; miRNA

    Rice sh4 protein & cis-reg multiple changesRice sh4 protein & cis-reg multiple changes

    Barley Vrs Loss of function frame shift or AA change

    Rice gn1a LOF & cis-reg multiple alleles / different lesionsRice gn1a LOF & cis-reg multiple alleles / different lesions

    Barley nud LOF deletion of the entire gene (17 kb)

  • THE WORLD IS GETTING WARMER

  • POPULATIONS ARE INCREASING

  • WATER AND OTHER RESOURCES ARE LIMITING

  • UK Wheat Yield Trends9

    UK Wheat Yield Trends

    7

    8

    5

    6

    ha)

    3

    4

    5

    Yiel

    d (t/

    h

    2

    3

    0

    1

    5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5 0 5

    1885

    1890

    1895

    1900

    1905

    1910

    1915

    1920

    1925

    1930

    1935

    1940

    1945

    1950

    1955

    1960

    1965

    1970

    1975

    1980

    1985

    1990

    1995

    2000

    2005

  • Average Sub-Saharan African Corn Yields Are Equivalent to Average U S Yields in Late 1920sEquivalent to Average U.S. Yields in Late 1920sYIELDS LAG DUE IN PART TO LIMITED TECH ADOPTION AND ADVANCES IN AG PRACTICES

    10000

    11000

    160

    Bi t h GMOTODAY, AVERAGE SUB SAHARAN

    6000

    7000

    8000

    9000

    elds

    (kg/

    ha)

    100

    120

    140

    Yiel

    ds (b

    u/ac

    )

    Single Crossb=113 2/1 81

    Biotech GMOb=194.7/3.11

    SUB-SAHARAN AFRICAN YIELDS ARE AT - OR BELOW - THESE

    3000

    4000

    5000

    6000

    Aver

    age

    Cor

    n Yi

    e

    60

    80

    Aver

    age

    Cor

    n Y

    Double CrossOpen

    b=113.2/1.81

    b 63 1/1 01

    LEVELS

    0

    1000

    2000

    0

    20

    40Pollinatedb=63.1/1.01

    b=1.0/0.02

    1865 1875 1885 1895 1905 1915 1925 1935 1945 1955 1965 1975 1985 1995 2005Year

    THERE IS A REAL NEED FOR BETTER YIELD

    Source: March 2006. Crop Science. Ref# 46:528-543

    IMPROVED AGRONOMIC PRACTICES, BREEDING AND BIOTECH CAN ALL PLAY A ROLE

  • THE FUTURE

    Sir Roland Biffin circa 1925

  • The Three Pillars of Yield

    BREEDING  AGRONOMICS  BIOTECHNOLOGY 

    Strategically breed plants to  Use precision ag, planting density, plant  Supplement breeding g y pcreate new, more robust seeds 

    that perform better – and longer – in the field.

    p g p g y phealth protection, and conservation 

    tillage to make acres more productive.

    pp gadvancements by adding special beneficial genes to 

    the plant.

    ALL THREE ARE CRITICAL IN DELIVERING YIELD TODAY – AND TOMORROW

  • The Combination of Maize Breeding, Agronomic Practice Improvements and Biotech Can Maximize Yield Gains300

    260

    280

    RE

    CORN YIELD POTENTIAL TO 2030 IN THE UNITED STATES

    220

    240

    BUSH

    ELS PE

    R ACR

    180

    200

    B

    140

    160

    120

    Germplasm Agronomic Practices Advanced Breeding Biotech

  • Genomics can accelerate plant breeding using more diverse germplasmdiverse germplasm

    Faster, more preciseselection of desired genetic

    Wider range of i i i

    Precise geneticcombinationsselection of desired genetic

    combinations using genetic markersand precision phenotyping

    (potential to shorten period to about 5 yrs

    genetic variationinto breeding

    (uses wild relatives and 

    combinationsselected with desiredphenotypes

    (new traits taken fromfrom 20 yrs)new genetic combinations)

    After Tanksley and McCouch. Science 277,1063.

    the wild into elite lines)

    21

  • The grass family (Poaceae)

    Ehrhartoideae PooideaePanicoideae

    Oryza

    Oryza sativa (rice)

    Aveneae

    Avena (oat)

    Paniceae

    Panicum (switchgrass)

    Brachypodieae

    Brachypodium

    Andropogoneae

    Sorghum

    Triticeae

    Hordeum (barley)

    l ( )

    Saccharum (sugarcane)

    Zea (maize) 

    Secale (rye)

    Triticum (wheat)

    Miscanthus

    Source: http://beta.uniprot.org/taxonomy/

  • The wheat genome is a major challenge but is feasibleThe wheat genome is a major challenge, but is feasible

  • Rice/Wheat/Brachypodium Synteny; guidelines for  wheat 

    WheatWheat5003 unigenes7 chromosomes

    w1 w2 w3 w4 w5 w6 w7

    621 orthologs

    BrachypodiumBrachypodium37809 genes268 Mb

    5 chromosomes5 chromosomes

    5555 orthologs

    Rice41046 genes372 Mb

    12 chromosomes r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r1212 chromosomes

    MethodMethodAlignement criteria CIP CALPAlignement criteria CIP CALPStatisitical validationStatisitical validation

    Courtesy of Jerome SalseCourtesy of Jerome Salse

  • INTERNATIONAL CONSORTIUM BBSRC (TGAC/JIC) CSHL TGAC/EBI/JIC

    Wheat genomics strategies INTERNATIONAL  CONSORTIUM BBSRC (TGAC/JIC), CSHL TGAC/EBI/JIC

    WHEAT ANEUPLOID LINES PURIFIED CHROMOSOMES

    PHYSICAL MAP OF BACSPHYSICAL MAP OF BACS

    ASSEMBLYSEQUENCED FRAGMENTS ASSEMBLY,ANALYSIS

    TRANSCRIPTOME SEQUENCESEQUENCE

    LOW COVERAGEWHOLE GENOME SEQUENCE3 INDIVIDUAL GENOMES

    5 TIMES HUMAN GENOME

  • Market Forces Are Changing Supply-Demand Patterns Globall Creating a Ne D namic Across Agric lt reGlobally, Creating a New Dynamic Across Agriculture

    EMERGENCE OF DEMAND-DRIVEN AGRICULTURE: NEW DEMAND AND PRODUCTION TRENDS

    Expanding ethanol and export demands Growing wealth and p

    favor U.S. as low-cost corn producer

    gpopulation in Asia creates new demand for imported grain

    U.S. ramps up production of corn; Soy crop becomes increasingly focused on higher-value

    Brazil exploits land availability advantage to become commodity soyArgentina leverages

    gsegments over commodities

    become commodity soy producer to meet demand from China

    Argentina leverages geographic proximity

    to supply corn to Latin America

  • Advanced crop breeding systems

    •Genome sequencing of multiple lines

    •High throughput genotyping

    •Greater understanding of gene function using model•systems such as Arabidopsis and Brachypodium

    •Efficient gene transfer systems

    •Exploiting new sources of genetic variation

    •More efficient breeding pipeline from the lab to the field