failure of two overhead crane shafts - srce

7
14 ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Engineering Power Željko Domazet 1 , Francisko Lukša 1 , Miro Bugarin 1 Failure of two overhead crane shafts 1 Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture; University of Split; Split, Croatia Abstract The failure analysis of two overhead crane shafts is presented: the failure of an overhead crane drive shaft and the failure of an overhead crane gearbox shaft, due to rotating-bending fatigue. The fracture of the overhead crane drive shaft originated in small radius fillet between two different diameters of the shaft. A new shaft was made with a larger-size fillet, resulting in reduced stress concentration in this region. The failure of the overhead crane gearbox shaft originated in the intersection of two stress raisers, due to a change in the shaft diameter and in the keyway corner. A new shaft was made with a larger-size fillet and a larger size radius of the keyway corner to minimize stress concentration in this section. In both cases the installed couplings were replaced by gear couplings in order to allow parallel and angular misalignment as well as to avoid additional load due to misalignment. The analysis shows that the fatigue life can be significantly increased with a simple change in the structural details Keywords: Failure analysis; Shaft failures; Overhead cranes 1. Introduction The fatigue fractures of shafts originate at points of stress concentration, such as changes in the shaft diam- eter and ends of the keyways. The sharp corner at the intersection between two different diameters of the shafts or in the bottom of the keyway can cause local stress to be few times greater than the average nominal stress. The failure analysis of an overhead crane trolley drive shaft is presented in the first part of this paper. The failure originated in the radius fillet between two different di- ameters of the shaft. The failure analysis of an overhead crane trolley gearbox shaft is presented in the second part of the paper. The failure of this shaft originated at the intersection of two stress raisers, the change in the shaft diameter and keyway. 2. Failure of overhead crane drive shaft In “Steelworks Split” the high-speed electric overhead crane, Fig.1, was suitable for transport of the billets from the melt shop to the rolling mill hall. The crane was rated at 10 tons with a span of 20.5 m and handled about 100 lifts and transports per day, each lift averaging 5 tons. The stepped drive shaft used for an overhead crane trolley wheel fractured after 24 months of service. The electric motor power rating was 3 kW with an output speed of 940 rpm. The maximum travel speed of the trolley was 32 m/min. The shaft was connected with the gearbox by a roller chain coupling, supported by two roller bearings and connected with the wheel by a key, Figure 2. The shaft was made of quenched and tempered steel 25CrMo4 according to German standard DIN (Deutsches Institut für Normung) [1]. The chemical composition of material was verified by using quantometer. The hard- ness and the microstructure were confirmed to be tem- pered steel 25CrMo4. The fracture occurred on the fillet Fig. 1. Overhead crane for transport of billets Fig. 2. Overhead crane trolley [2]

Upload: others

Post on 09-Jan-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Failure of two overhead crane shafts - Srce

14

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

– En

gine

erin

g Po

wer

Željk

o D

omaz

et1 ,

Fran

cisk

o Lu

kša1 ,

Miro

Bug

arin

1

Failu

re o

f tw

o ov

erhe

ad c

rane

sha

fts

1 Fac

ulty

of E

lect

rical

Eng

inee

ring,

Mec

hani

cal E

ngin

eerin

g an

d N

aval

Arc

hite

ctur

e; U

nive

rsity

of S

plit;

Spl

it, C

roat

ia

Abs

trac

t

The

failu

re a

naly

sis

of tw

o ov

erhe

ad c

rane

sha

fts is

pre

sent

ed: t

he fa

ilure

of a

n ov

erhe

ad c

rane

dri

ve s

haft

and

the

failu

re o

f an

over

head

cra

ne g

earb

ox sh

aft,

due

to ro

tatin

g-be

ndin

g fa

tigue

. The

frac

ture

of t

he o

verh

ead

cran

e dr

ive

shaf

t ori

gina

ted

in s

mal

l rad

ius

fille

t bet

wee

n tw

o di

ffere

nt d

iam

eter

s of

the

shaf

t. A

new

sha

ft w

as m

ade

with

a

larg

er-s

ize

fille

t, re

sulti

ng in

redu

ced

stre

ss c

once

ntra

tion

in th

is re

gion

. The

failu

re o

f the

ove

rhea

d cr

ane

gear

box

shaf

t ori

gina

ted

in th

e in

ters

ectio

n of

two

stre

ss r

aise

rs, d

ue to

a c

hang

e in

the

shaf

t dia

met

er a

nd in

the

keyw

ay

corn

er. A

new

shaf

t was

mad

e w

ith a

larg

er-s

ize

fille

t and

a la

rger

size

radi

us o

f the

key

way

cor

ner t

o m

inim

ize

stre

ss

conc

entr

atio

n in

this

sect

ion.

In b

oth

case

s the

inst

alle

d co

uplin

gs w

ere

repl

aced

by

gear

cou

plin

gs in

ord

er to

allo

w

para

llel a

nd a

ngul

ar m

isal

ignm

ent a

s w

ell a

s to

avo

id a

dditi

onal

load

due

to m

isal

ignm

ent.

The

anal

ysis

sho

ws

that

th

e fa

tigue

life

can

be

sign

ifica

ntly

incr

ease

d w

ith a

sim

ple

chan

ge in

the

stru

ctur

al d

etai

ls

Key

wor

ds: F

ailu

re a

naly

sis;

Sha

ft fa

ilure

s; O

verh

ead

cran

es

1. I

ntro

duct

ion

The

fatig

ue f

ract

ures

of

shaf

ts o

rigin

ate

at p

oint

s of

st

ress

con

cent

ratio

n, s

uch

as c

hang

es in

the

shaf

t dia

m-

eter

and

end

s of

the

keyw

ays.

The

shar

p co

rner

at t

he

inte

rsec

tion

betw

een

two

diffe

rent

dia

met

ers o

f the

shaf

ts

or in

the

botto

m o

f the

key

way

can

cau

se lo

cal s

tress

to

be fe

w ti

mes

gre

ater

than

the a

vera

ge n

omin

al st

ress

. The

fa

ilure

ana

lysi

s of

an

over

head

cra

ne tr

olle

y dr

ive

shaf

t is

pre

sent

ed i

n th

e fir

st p

art

of t

his

pape

r. Th

e fa

ilure

or

igin

ated

in th

e ra

dius

fill

et b

etw

een

two

diffe

rent

di-

amet

ers o

f the

shaf

t. Th

e fa

ilure

ana

lysi

s of a

n ov

erhe

ad

cran

e tro

lley

gear

box

shaf

t is

pre

sent

ed i

n th

e se

cond

pa

rt of

the

pape

r. Th

e fa

ilure

of

this

sha

ft or

igin

ated

at

the

inte

rsec

tion

of tw

o st

ress

rai

sers

, the

cha

nge

in th

e sh

aft d

iam

eter

and

key

way

.

2. F

ailu

re o

f ove

rhea

d cr

ane

driv

e sh

aft

In “

Stee

lwor

ks S

plit”

the

high

-spe

ed e

lect

ric o

verh

ead

cran

e, F

ig.1

, was

suita

ble

for t

rans

port

of th

e bill

ets f

rom

th

e m

elt

shop

to

the

rolli

ng m

ill h

all.

The

cran

e w

as

rate

d at

10

tons

with

a sp

an o

f 20.

5 m

and

han

dled

abo

ut

100

lifts

and

tra

nspo

rts p

er d

ay,

each

lift

ave

ragi

ng 5

to

ns. T

he st

eppe

d dr

ive

shaf

t use

d fo

r an

over

head

cra

ne

trolle

y w

heel

fra

ctur

ed a

fter

24 m

onth

s of

ser

vice

. The

el

ectri

c m

otor

pow

er r

atin

g w

as 3

kW

with

an

outp

ut

spee

d of

940

rpm

. The

max

imum

tra

vel

spee

d of

the

tro

lley

was

32

m/m

in.

The

shaf

t w

as c

onne

cted

with

the

gea

rbox

by

a ro

ller

chai

n co

uplin

g, s

uppo

rted

by t

wo

rolle

r be

arin

gs a

nd

conn

ecte

d w

ith th

e w

heel

by

a ke

y, F

igur

e 2.

The

shaf

t w

as m

ade

of q

uenc

hed

and

tem

pere

d st

eel

25C

rMo4

acco

rdin

g to

Ger

man

stan

dard

DIN

(Deu

tsch

es

Inst

itut f

ür N

orm

ung)

[1].

The

chem

ical

com

posi

tion

of

mat

eria

l was

ver

ified

by

usin

g qu

anto

met

er. T

he h

ard-

ness

and

the

mic

rost

ruct

ure

wer

e co

nfirm

ed to

be

tem

-pe

red

stee

l 25C

rMo4

. The

frac

ture

occ

urre

d on

the

fille

t

Fig.

1. O

verh

ead

cran

e fo

r tra

nspo

rt of

bill

ets

Fig.

2. O

verh

ead

cran

e tro

lley

[2]

Page 2: Failure of two overhead crane shafts - Srce

Vol.

15(1

) 202

0 ––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

15

due

to c

hang

e be

twee

n tw

o di

ffere

nt d

iam

eter

s of

the

sh

aft

appr

oxim

atel

y 22

5 m

m f

rom

the

driv

en e

nd a

nd

appr

oxim

atel

y 30

mm

fro

m o

ne e

nd o

f th

e ke

yway

w

here

the

cran

e w

heel

was

key

ed to

the

axle

, Fig

ure

3.

2.1.

Fra

ctur

e su

rfac

e in

vest

igat

ion

The

cont

our o

f the

frac

ture

sur

face

was

con

vex

with

re-

spec

t to

the

smal

ler-s

ectio

n si

de. T

here

wer

e th

ree

frac

-tu

re re

gion

s, Fi

gure

4: a

regi

on o

f mul

tiple

cra

ck o

rigin

s ar

ound

the

oute

r per

imet

er (a

t A);

a re

gion

of t

he c

rack

pr

opag

atio

n zo

ne (

at B

); an

d a

regi

on o

f th

e fin

al, f

ast

frac

ture

(at C

).

The p

rese

nce o

f mul

tiple

crac

k or

igin

s sep

arat

ed b

y ra

tche

t m

arks

aro

und

the

oute

r per

imet

er w

as a

n in

dica

tion

of ro

-ta

tiona

l-ben

ding

fatig

ue w

ith se

vere

stre

ss c

once

ntra

tion.

The

rela

tivel

y sm

all s

ize

of th

e fin

al fr

actu

re re

gion

was

an

indi

catio

n of

low

nom

inal

stre

ss. I

n ro

tatio

nal-b

end-

ing,

dur

ing

each

revo

lutio

n, e

very

poi

nt o

f the

sha

ft ci

r-cu

mfe

renc

e w

as s

ubje

cted

to te

nsile

-com

pres

sive

stre

ss

and

ther

efor

e th

e cr

ack

coul

d be

initi

ated

at a

ny p

oint

on

the

shaf

t per

iphe

ry.

The

indi

vidu

al c

rack

s pr

opag

ated

tow

ard

a sin

gle

crac

k fro

nt, r

egio

n B,

Fig

ure

4. T

he c

rack

surfa

ces w

ere

pres

sed

toge

ther

dur

ing

the

com

pres

sive

com

pone

nt o

f the

stre

ss

cycl

e, a

nd m

utua

l ru

bbin

g oc

curre

d. T

he b

each

mar

ks

wer

e not

visi

ble b

ecau

se th

ey w

ere o

blite

rate

d by

rubb

ing.

The

conc

lusi

on f

rom

the

surf

ace

inve

stig

atio

n w

as th

at

the

shaf

t fra

ctur

ed a

s a

resu

lt of

rot

atio

nal-b

endi

ng f

a-

tigue

. The

prim

ary

caus

e of

the

frac

ture

was

the

bend

ing

load

dur

ing

the

rota

tion,

alth

ough

the

tota

l loa

d w

as a

co

mbi

natio

n of

ben

ding

and

tors

iona

l loa

ds. T

he s

mal

l ra

dius

of t

he fi

llet a

t a c

hang

e in

shaf

t dia

met

er, d

etai

l B

in F

igur

e 3,

resu

lted

in h

igh

stre

ss c

once

ntra

tion,

whi

ch

initi

ated

the

crac

k.

The

visu

al e

xam

inat

ion

of th

e w

heel

and

rai

l rev

eale

d sm

ooth

and

ligh

t con

tact

are

a on

the

side

s of

bot

h pa

rts

due

to m

utua

l ru

bbin

g, d

etai

l in

Fig

ure

1, w

hich

was

ca

used

by

addi

tiona

l tor

sion

al lo

ad. P

ost-f

ailu

re v

erifi

-ca

tion

of p

aral

lelis

m a

nd s

traig

htne

ss o

f th

e ra

ils w

ith

optic

al in

stru

men

t rev

eale

d m

isal

ignm

ent i

n pa

ralle

lism

an

d st

raig

htne

ss.

2.2.

Str

ess

anal

ysis

2.2.

1. B

endi

ng s

tress

es

Dur

ing

norm

al o

pera

tion,

ben

ding

stre

sses

in th

e cr

itica

l ar

ea w

ere

caus

ed b

y a

whe

el v

ertic

al l

oad.

The

whe

el

verti

cal

load

was

con

side

red

as a

for

ce a

pplie

d at

the

ce

nter

line

of t

he w

heel

con

tact

with

the

shaf

t, se

e Fi

gure

5.

The

appl

ied

forc

e was

calc

ulat

ed fr

om th

e des

ign

load

, se

e re

fere

nce

[2].

A n

umer

ical

ana

lysi

s of

loca

l stre

sses

was

don

e by

the

finite

ele

men

t met

hod

usin

g A

DIN

A s

oftw

are.

The

line

-ar

ela

stic

mod

el w

ith 3

D so

lid e

lem

ents

with

eig

ht D

OF

per n

odes

was

use

d, F

igur

e 5.

Eac

h no

de h

ad 3

deg

rees

of

free

dom

, tra

nsla

tion

in X

, Y an

d Z

dire

ctio

n. T

he m

od-

el is

fixe

d in

the

line

on th

e po

sitio

ns o

f bea

ring

cent

ers

and

load

ed w

ith c

once

ntra

ted

forc

es in

the

node

s. Th

e nu

mer

ical

ana

lysi

s of

loca

l stre

sses

reve

aled

that

des

ign

forc

e du

e to

ver

tical

load

sho

uld

not h

ave

led

to s

haft

frac

ture

. For

ce 3

0 kN

cau

sed

loca

l stre

sses

of 7

9 M

Pa in

th

e cr

itica

l are

a.

Post

-fai

lure

ver

ifica

tion

reve

aled

par

alle

l mis

alig

nmen

t of

0.5

mm

bet

wee

n tw

o sh

aft a

xes.

The

num

eric

al a

nal-

ysis

of

loca

l stre

sses

rev

eale

d th

at d

ispl

acem

ent o

f 0.

5 m

m c

ause

d an

inc

reas

e in

loc

al s

tress

es i

n th

e cr

itica

l ar

ea th

ree

times

(298

MPa

), Fi

gure

5.

A ro

ller c

hain

cou

plin

g w

as u

sed

to tr

ansm

it po

wer

be-

twee

n sh

afts

. The

torq

ue w

as tr

ansm

itted

thro

ugh

a do

u-bl

e ro

ller c

hain

. Due

to c

lear

ance

s bet

wee

n th

e ch

ain

and

the

spro

cket

tee

th o

n tw

o co

uplin

gs,

the

rolle

r ch

ain

coup

ling

perm

itted

ecc

entri

city

– ε

(pa

ralle

l m

isal

ign-

men

t) be

twee

n sh

afts

up

to 2

% o

f the

rolle

r cha

in p

itch

Fig.

3. S

tepp

ed d

rive

shaf

t

Fig.

4. F

ract

ure

surf

aces

Fig.

5. N

umer

ical

ana

lysi

s

Page 3: Failure of two overhead crane shafts - Srce

16

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

– En

gine

erin

g Po

wer

and

angu

lar

mis

alig

nmen

t – α

bet

wee

n sh

afts

up

to 1

°, [3

], se

e Fi

gure

6.

If e

ccen

trici

ty a

nd a

ngul

ar m

isal

ignm

ent

betw

een

the

whe

el s

haft

axis

and

the

driv

e ax

is i

s hi

gher

tha

n th

e ch

ain

coup

ling

can

com

pens

ate,

ther

e is

a v

ertic

al fo

rce

on t

he e

nd o

f th

e w

heel

sha

ft an

d al

so c

orre

spon

ding

ad

ditio

nal b

endi

ng s

tress

es in

the

criti

cal p

lace

.

2.2.

2. T

orsi

onal

stre

sses

The

max

imum

app

lied

torq

ue o

f 71

6 N

m i

n th

e dr

ive

shaf

t was

est

imat

ed fr

om th

e el

ectri

c m

otor

pow

er ra

ting

of 3

kW

, the

max

imum

trav

el s

peed

of t

he tr

olle

y of

32

m/m

in a

nd th

e w

heel

dia

met

er w

as 2

50 m

m. T

he c

alcu

-la

ted

nom

inal

she

ar s

tress

for

the

shaf

t dia

met

er o

f 50

m

m w

as 2

8.6

MPa

. The

stre

ss c

once

ntra

tion

fact

or d

ue

to to

rsio

nal s

tress

at a

cha

nge

of th

e sh

aft d

iam

eter

ac-

cord

ing

to l

itera

ture

[4]

was

1.8

. The

max

imum

she

ar

loca

l stre

ss a

t the

inte

rsec

tion

of th

e ch

ange

of t

he s

haft

diam

eter

due

to s

tress

con

cent

ratio

n w

as 5

1.5

MPa

.

From

the

com

paris

on b

etw

een

bend

ing

and

shea

r stre

ss-

es it

was

con

clud

ed th

at b

endi

ng st

ress

es w

ere

dom

inan

t fo

r the

sha

ft fr

actu

re.

2.3.

Cor

rect

ive

actio

n

A c

orre

ctiv

e ac

tion

was

con

side

red

in tw

o w

ays:

a) D

ecre

asin

g th

e st

ress

con

cent

ratio

n in

the

criti

cal a

rea

by in

crea

sing

the

size

of t

he fi

llet r

adiu

s an

d

b) R

educ

ing

the

influ

ence

of

para

llel m

isal

ignm

ent b

e-tw

een

the

shaf

t axi

s an

d co

uplin

g ax

is o

n lo

cal s

tress

es

by c

hang

ing

the

type

of

the

coup

ling,

whi

ch p

erm

itted

m

ore

para

llel m

isal

ignm

ent b

etw

een

axes

.

2.3.

1. In

crea

sing

the

size

of t

he fi

llet r

adiu

s

The

dist

ance

bet

wee

n th

e la

rge

diam

eter

of

the

shaf

t (w

heel

) and

the

bear

ing

was

11

mm

, Fig

ure

7. T

he sp

ac-

er w

as p

ositi

oned

bet

wee

n th

e w

heel

and

bea

ring.

In-

crea

sing

the

size

of

the

fille

t rad

ius

was

lim

ited

by th

e de

sign

of t

he s

pace

r.

Ther

efor

e, n

umer

ical

exp

erim

ents

wer

e ca

rrie

d ou

t fo

r fo

ur d

iffer

ent s

izes

of t

he fi

llet r

adiu

s in

ord

er to

redu

ce

loca

l stre

sses

bel

ow th

e en

dura

nce

limit,

Fig

ures

8 a

nd

10.

Fig.

6. R

olle

r cha

in c

oupl

ing

[3]

Fig.

7. D

esig

n of

the

spac

er

Fig.

8. S

tress

dis

tribu

tion

Fig.

9. G

ear c

oupl

ing,

[7]

Page 4: Failure of two overhead crane shafts - Srce

Vol.

15(1

) 202

0 ––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

17

The

stre

ss c

once

ntra

tion

fact

ors

in th

e cr

itica

l are

as h

ad

a go

od a

gree

men

t with

lite

ratu

re [4

] and

[5].

The

fatig

ue

stre

ngth

cur

ve o

f th

e m

ater

ial w

as u

sed

from

lite

ratu

re

[6].

The

curv

es in

Fig

ure

8 sh

ow th

e in

crea

sing

siz

e of

the

fille

t rad

ius

from

1.5

mm

to 5

mm

, red

ucin

g m

axim

um

loca

l stre

ss b

y ab

out 1

.5 ti

mes

(fro

m 2

98 to

200

MPa

).

2.3.

2. C

hang

e of

the

coup

ling

type

A g

ear

coup

ling

was

con

side

red

to s

ubst

itute

the

rolle

r ch

ain

coup

ling,

Fig

ure

9. T

he g

ear c

oupl

ing

can

acco

m-

mod

ate m

ore e

ccen

trici

ty an

d an

gula

r mis

alig

nmen

t tha

n th

e ro

ller c

hain

cou

plin

g. A

ccor

ding

to [7

], th

e ge

ar c

ou-

plin

g pe

rmits

par

alle

l of

fset

0.7

5 m

m,

angu

lar

3° a

nd

axia

l gap

from

-0.5

to 1

mm

. Sin

ce p

ost-f

ailu

re v

erifi

ca-

tion

reve

aled

par

alle

l mis

alig

nmen

t of 0

.5 m

m b

etw

een

two

shaf

t axe

s, th

e ap

plic

atio

n of

the

gear

cou

plin

g in

th

is ca

se ca

n el

imin

ate f

orce

on

the s

haft

due t

o m

isal

ign-

men

t an

d ca

n al

so r

educ

e lo

cal

stre

sses

in

the

criti

cal

area

.

Figu

re 1

0 sh

ows

the

influ

ence

of

cons

ider

ed c

orre

ctiv

e ac

tions

on

fatig

ue li

fe.

The

actu

al s

ervi

ce li

fe w

as e

stim

ated

from

the

wor

king

tim

e of

the

cran

e, th

e nu

mbe

r of

lifti

ngs

and

the

whe

el

diam

eter

. The

cra

ne w

as in

ser

vice

for a

bout

400

wor

k-in

g da

ys in

the

perio

d of

two

year

s. Th

e av

erag

e nu

mbe

r of

tran

spor

ts p

er d

ay w

as 1

00 w

ith th

e tra

vel o

f the

trol

-le

y 10

m p

er e

ach

trans

port.

For

the

whe

el d

iam

eter

of

250

mm

and

the

corr

espo

ndin

g sh

aft t

he a

ctua

l ser

vice

lif

e w

as a

bout

4.8

·105 c

ycle

s. Th

e es

timat

ed s

ervi

ce li

fe

from

the n

umer

ical

mod

el w

as ab

out 3

·105 c

ycle

s, Fi

gure

10

.

The

rede

sign

of t

he s

haft

fille

t rad

ius

from

1.5

mm

to 5

m

m r

educ

ed m

axim

um l

ocal

stre

ss b

elow

the

fat

igue

en

dura

nce

limit

(abo

ut 9

0% o

f en

dura

nce

limit)

. Th

e ap

plic

atio

n of

a g

ear c

oupl

ing

to a

ccom

mod

ate

para

llel

mis

alig

nmen

t re

duce

d m

axim

um l

ocal

stre

ss t

o ab

out

35%

of

the

endu

ranc

e lim

it, w

hat

was

mor

e th

an t

wo

times

in

com

paris

on t

o th

e re

desi

gn o

f th

e sh

aft

fille

t ra

dius

. A c

ombi

natio

n of

the

fille

t rad

ius

rede

sign

and

th

e ap

plic

atio

n of

the

gear

cou

plin

g ad

ditio

nally

redu

ced

loca

l stre

sses

, Fig

ure

10.

Bas

ed o

n th

is a

naly

sis,

the

actu

al se

rvic

e lif

e of

the

shaf

t ca

n be

impr

oved

fro

m th

e fin

ite (

abou

t 4.8

·105 c

ycle

s)

to th

e in

finite

life

time.

2.3.

3. C

orre

ctio

n

New

sha

fts w

ere

mad

e fr

om q

uenc

hed

and

tem

pere

d st

eel 4

2CrM

o4 a

ccor

ding

to D

IN [

1] w

ith a

larg

er-s

ize

fille

t, w

hich

min

imiz

ed s

tress

con

cent

ratio

n in

this

re-

gion

and

pre

vent

ed re

curr

ence

of t

he fa

ilure

. The

rolle

r ch

ain

coup

lings

wer

e re

plac

ed b

y ge

ar c

oupl

ings

to r

e-du

ce th

e in

fluen

ce o

f par

alle

l mis

alig

nmen

t bet

wee

n th

e sh

aft a

xis

and

coup

ling

axis

on

loca

l stre

sses

.

3. F

ailu

re o

f ove

rhea

d cr

ane

gear

box

shaf

t

An

elec

tric

over

head

cra

ne, F

ig. 1

1, w

as s

uita

ble

for t

he

trans

port

of a

ladl

e with

liqu

id st

eel f

rom

the l

adle

furn

ace

to th

e co

ntin

uous

cas

ting

mac

hine

. The

cra

ne w

as ra

ted

at

50 to

ns w

ith a

spa

n of

18.

4 m

and

han

dled

abo

ut 2

0 lif

ts an

d tra

nspo

rts p

er d

ay, e

ach

lift a

vera

ging

43

tons

. The

ste

pped

driv

e sha

ft us

ed in

an o

verh

ead

cran

e tro

lley

gear

-bo

x, F

igur

e 12

, bro

ke a

fter 3

6 m

onth

s of

ser

vice

.

The

elec

tric

mot

or p

ower

rat

ing

was

5.5

kW

with

an

outp

ut s

peed

of 9

40 rp

m. T

he m

axim

um tr

avel

spe

ed o

f th

e tro

lley

was

20

m/m

in. T

he o

verh

ead

cran

e tro

lley

gear

box

[8] i

s sho

wn

in F

igur

e 12

and

the

shaf

t is s

how

n in

Fig

ures

13

and

14.

Fig.

10.

Influ

ence

of c

orre

ctiv

e ac

tions

on

fatig

ue li

fe

Fig.

11.

Ove

rhea

d cr

ane

for t

rans

port

of la

dle

with

liqu

id s

teel

Fig.

12.

Ove

rhea

d cr

ane

trolle

y ge

arbo

x

Page 5: Failure of two overhead crane shafts - Srce

18

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

– En

gine

erin

g Po

wer

3.1.

Fra

ctur

e su

rfac

e in

vest

igat

ion

The

shaf

t was

mad

e of

con

stru

ctio

n st

eel S

t 52-

3 ac

cord

-in

g to

DIN

[9].

The

frac

ture

occ

urre

d on

a fi

llet d

ue to

ch

ange

bet

wee

n tw

o di

ffere

nt d

iam

eter

s of

the

shaf

t ap-

prox

imat

ely

110

mm

from

one

end

. The

con

tour

of t

he

frac

ture

sur

face

was

con

vex

with

res

pect

to th

e sm

all-

er-s

ectio

n si

de.

Ther

e w

ere

four

fra

ctur

e re

gion

s, Fi

gure

15.

Num

erou

s ra

tche

t mar

ks (a

t A),

on th

e ou

ter e

dge

of th

e su

rface

and

th

e da

rk b

and

at th

is ed

ge in

dica

te f

atig

ue c

rack

s in

itia-

tion,

wha

t is a

cha

ract

erist

ic o

f rot

atio

nal-b

endi

ng fa

tigue

. Tw

o cr

acks

(at

B)

from

the

key

way

cor

ners

sug

geste

d to

rsio

nal s

tress

es. T

he cr

acks

prop

agat

ed ci

rcum

fere

ntia

lly

arou

nd th

e sh

aft (

at C

). Th

e fin

al f

ract

ure

was

a m

ixed

du

ctile

and

brit

tle fr

actu

re in

the

mid

dle

of th

e el

liptic

al

cont

our (

at D

). Th

e be

ach

mar

ks w

ere

not v

isibl

e be

caus

e th

ey w

ere

oblit

erat

ed b

y ru

bbin

g.

In th

is ca

se th

ere w

ere t

wo

stre

ss ra

iser

s in

the s

ame a

rea:

a

shar

p co

rner

in th

e ke

yway

and

a c

hang

e in

the

shaf

t di

amet

er. A

dditi

onal

ly, t

he e

nd o

f th

e ke

yway

was

due

to

chan

ge in

the s

haft

diam

eter

, fra

ctur

e sec

tion

in F

igur

e 13

, cau

sing

hig

h co

ncen

tratio

n of

stre

sses

.

The c

oncl

usio

n fro

m th

e sur

face

inve

stiga

tion

was

that

the

shaf

t fra

ctur

ed as

a re

sult

of th

e rot

atio

nal-b

endi

ng fa

tigue

du

e to

high

stre

ss co

ncen

tratio

n. T

he cr

acks

wer

e ini

tiate

d

in th

e int

erse

ctio

n of

two

stres

s rai

sers

, on

the s

harp

corn

er

in th

e ke

yway

and

on

the

radi

us o

f the

fille

t due

to c

hang

e in

the

shaf

t dia

met

er, d

etai

l B in

Fig

ure

13.

3.2.

Str

ess

anal

ysis

3.2.

1. B

endi

ng s

tress

es

A s

plit

muf

f co

uplin

g w

as u

sed

to t

rans

mit

pow

er b

e-tw

een

the

shaf

ts, F

ig.1

2.

The

split

muf

f co

uplin

g is

a ty

pe o

f rig

id c

oupl

ing

and

shou

ld b

e us

ed w

hen

the

alig

nmen

t of t

he tw

o sh

afts

can

be

mai

ntai

ned

very

acc

urat

ely.

A s

mal

l m

issa

lignm

ent

betw

een

two

shaf

ts c

an c

ause

hig

h st

ress

es. P

ost-f

ailu

re

verif

icat

ion

reve

aled

par

alle

l m

isal

ignm

ent

of 0

.8 m

m

betw

een

the

gear

box

shaf

t axi

s an

d th

e dr

ive

shaf

t axi

s of

the

whe

el, F

igur

e 16

.

The

num

eric

al a

naly

sis o

f loc

al st

ress

es w

as d

one

by th

e fin

ite e

lem

ent m

etho

d us

ing

AD

INA

sof

twar

e. T

he a

p-pl

ied

forc

e of

F=1

5000

N w

as e

stim

ated

from

the

para

l-le

l mis

alig

nmen

t of

d=0.

8 m

m a

ccor

ding

to e

xpre

ssio

n (1

), Fi

gure

17,

whe

re l

= 7

20 m

m a

nd a

= 1

80 m

m,

Figu

re 1

6.

Fig.

13.

Ste

pped

driv

e sh

aft [

8]

Fig.

14.

Ste

pped

driv

e br

oken

sha

ft

Fig.

15.

Fra

ctur

e su

rfac

es

Fig.

16.

Mis

alig

nmen

t bet

wee

n th

e ge

arbo

x sh

aft a

xis

and

driv

e sh

aft a

xis

of th

e w

heel

Fig.

17.

Def

lect

ion

Page 6: Failure of two overhead crane shafts - Srce

Vol.

15(1

) 202

0 ––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

19

d

Fa EIla

=−

()

2

63�

(1

)

The

linea

r el

astic

mod

el w

ith 3

D s

olid

ele

men

ts w

ith

eigh

t DO

F pe

r nod

es w

as u

sed,

Fig

ure 1

8. E

ach

node

had

3

degr

ees o

f fre

edom

, tra

nsla

tion

in X

, Y a

nd Z

dire

ctio

n.

The

mod

el is

fixe

d in

the

back

side

face

and

load

ed w

ith

conc

entra

ted

forc

es in

the

node

on

the

front

sid

e.

The

FEM

ana

lysi

s of

loc

al s

tress

es r

evea

led

that

the

m

axim

um st

ress

217

MPa

was

in th

e sh

arp

corn

er o

f the

ke

yway

and

the

stre

ss o

n th

e fil

let d

ue to

cha

nge

in th

e sh

aft d

iam

eter

nea

r the

key

way

was

154

MPa

, Fig

ure

18.

Stre

ss c

once

ntra

tion

fact

ors

in c

ritic

al a

reas

had

a g

ood

agre

emen

t with

lite

ratu

re [4

] and

[5].

3.2.

2. T

orsi

onal

stre

sses

The m

axim

um ap

plie

d to

rque

of 1

458

Nm

in th

e gea

rbox

ou

tput

shaf

t was

est

imat

ed fr

om th

e el

ectri

c m

otor

pow

-er

ratin

g of

5.5

kW

with

an

outp

ut sp

eed

of 9

40 rp

m a

nd

the

gear

box

trans

mis

sion

ratio

26.

The

cal

cula

ted

shea

r st

ress

for

the

shaf

t dia

met

er o

f 65

mm

was

26.

5 M

Pa.

The s

tress

conc

entra

tion

fact

or d

ue to

tors

iona

l stre

ss d

ue

to c

hang

e of

the

shaf

t dia

met

er w

as 1

.5 a

nd d

ue to

the

keyw

ay it

was

1.7

[4].

The

max

imum

loca

l stre

ss d

ue to

ch

ange

in th

e sha

ft di

amet

er an

d th

e key

way

due

to st

ress

co

ncen

tratio

n w

as 6

7.6

MPa

.

3.3.

Cor

rect

ive

actio

n

Cor

rect

ive

actio

n w

ere

cons

ider

ed in

bot

h cr

itica

l are

as:

a) In

crea

sing

the

fille

t rad

ius

due

to c

hang

e in

the

shaf

t di

amet

er fr

om 2

.5 m

m to

4 m

m, F

ig. 1

9.

b) In

crea

sing

the r

adiu

s in

the k

eyw

ay co

rner

of t

he m

ax-

imum

siz

e. T

he m

axim

um r

adiu

s si

ze i

n th

e ke

yway

co

rner

for

the

shaf

t dia

met

er 6

5 m

m a

ccor

ding

to D

IN

[10]

was

0.6

mm

, Fig

. 19.

c) R

educ

ing

the

influ

ence

of

para

llel m

isal

ignm

ent b

e-tw

een

the

shaf

t axi

s an

d co

uplin

g ax

is o

n lo

cal s

tress

es

by c

hang

ing

the

type

of c

oupl

ing

whi

ch p

erm

its p

aral

lel

mis

alig

nmen

t bet

wee

n ax

es.

3.3.

1. In

crea

sing

bot

h th

e ra

dius

in th

e ke

yway

co

rner

and

the

radi

us d

ue to

cha

nge

in th

e sh

aft d

iam

eter

.

The

FEM

ana

lysis

of

loca

l stre

sses

afte

r th

e re

desig

n re

-ve

aled

dec

reas

ing

the m

axim

um b

endi

ng st

ress

in th

e sha

rp

corn

er o

f the

key

way

from

217

MPa

to 1

45 M

Pa a

s w

ell

as d

ecre

asin

g str

esse

s of

the

fille

t rad

ius

due

to c

hang

e in

th

e sh

aft d

iam

eter

from

154

MPa

to 8

6 M

Pa, F

igur

e 20

.

Fig.

18.

Num

eric

al a

naly

sis

Fig.

19.

Orig

inal

and

impr

oved

des

ign

of th

e fil

let r

adiu

s

Fig.

20.

Num

eric

al a

naly

sis

Page 7: Failure of two overhead crane shafts - Srce

20

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

––––

– En

gine

erin

g Po

wer

3.3.

2. C

hang

e of

the

coup

ling

type

A g

ear

coup

ling

was

con

side

red

to s

ubst

itute

the

spl

it m

uff

coup

ling

sinc

e po

st-f

ailu

re v

erifi

catio

n re

veal

ed

para

llel m

isal

ignm

ent o

f 0,8

mm

bet

wee

n tw

o sh

aft a

xes.

The

appl

icat

ion

of g

ear c

oupl

ings

can

elim

inat

e fo

rce

on

the

shaf

t due

to m

isal

ignm

ent a

nd c

an a

lso

redu

ce lo

cal

stre

sses

on

the

criti

cal a

rea.

Figu

re 2

1 sh

ows

the

influ

ence

of

cons

ider

ed c

orre

ctiv

e ac

tions

on

the

fatig

ue li

fe. T

he fa

tigue

stre

ngth

cur

ve o

f th

e m

ater

ial i

s us

ed fr

om li

tera

ture

[11]

.

The

actu

al s

ervi

ce li

fe w

as e

stim

ated

from

the

wor

king

tim

e of

the

cran

e, th

e nu

mbe

r of

lifti

ngs

and

the

whe

el

diam

eter

. The

cra

ne w

as in

ser

vice

for a

bout

800

wor

k-in

g da

ys d

urin

g a

thre

e ye

ar p

erio

d. T

he a

vera

ge n

umbe

r of

tran

spor

ts p

er d

ay w

as 2

0 w

ith th

e tra

vel o

f the

trol

ley

12 m

per

eac

h tra

nspo

rt. F

or th

e w

heel

dia

met

er o

f 630

m

m a

nd th

e co

rres

pond

ing

shaf

t, th

e ac

tual

ser

vice

life

w

as 3

.5·1

05 cyc

les.

The

estim

ated

ser

vice

life

fro

m th

e nu

mer

ical

mod

el w

as a

bout

3·1

05 cyc

les,

Figu

re 1

0.

The

rede

sign

of th

e sh

aft f

illet

radi

us re

duce

d th

e m

axi-

mum

loca

l stre

ss a

nd th

e es

timat

ed fa

tigue

life

was

abo

ut

two

times

long

er a

ccor

ding

to a

ctua

l fat

igue

life

, Fig

ure

21. T

he a

pplic

atio

n of

a g

ear

coup

ling

to a

ccom

mod

ate

para

llel m

isalig

nmen

t elim

inat

ed f

orce

due

to m

isalig

n-m

ent,

and

bend

ing

stres

ses

beca

me

negl

igib

le. A

com

bi-

natio

n of

the

fille

t rad

ius

rede

sign

and

appl

icat

ion

of th

e ge

ar c

oupl

ing

addi

tiona

lly im

prov

ed fa

tigue

life

.

Bas

ed o

n th

is a

naly

sis,

the

actu

al s

ervi

ce li

fe o

f a s

haft

can

be im

prov

ed fr

om fi

nite

(3.5

·105 c

ycle

s) to

infin

ite

lifet

ime.

3.3.

3. C

orre

ctio

n

New

sha

fts w

ere

mad

e w

ith th

e ra

dius

siz

e du

e to

cha

nge

in th

e sha

ft di

amet

er 4

mm

and

the r

adiu

s siz

e in

the k

eyw

ay

corn

er 0

.6 m

m, m

inim

izin

g str

ess

conc

entra

tion

in b

oth

criti

cal a

reas

and

pre

vent

ing

recu

rrenc

e of

the

failu

re.

Split

muf

f co

uplin

gs w

ere

repl

aced

by

gear

cou

plin

gs

to r

educ

e th

e in

fluen

ce o

f pa

ralle

l m

isalig

nmen

t be

-tw

een

the s

haft

axis

and

the c

oupl

ing

axis

on lo

cal s

tress

es.

4. C

oncl

usio

n

The

failu

re a

naly

sis o

f tw

o ov

erhe

ad c

rane

shaf

ts sh

owed

th

at th

e ov

erhe

ad c

rane

driv

e sh

aft a

nd th

e ge

arbo

x sh

aft

fract

ured

as a

resu

lt of

rota

tiona

l-ben

ding

fatig

ue. I

n bo

th

case

s th

e fra

ctur

e oc

curre

d on

the

plac

es w

ith h

igh

stres

s co

ncen

tratio

n. T

he f

ract

ure

of th

e ov

erhe

ad c

rane

driv

e sh

aft o

rigin

ated

in th

e sm

all r

adiu

s fill

et b

etw

een

two

dif-

fere

nt d

iam

eter

s of t

he sh

aft.

The

fract

ure

of th

e ov

erhe

ad

cran

e gea

rbox

shaf

t was

initi

ated

in th

e int

erse

ctio

n of

two

stres

s rai

sers

on

the s

harp

corn

er in

the k

eyw

ay an

d on

the

radi

us o

f the

fille

t due

to ch

ange

in th

e sha

ft di

amet

er. T

he

failu

re a

naly

sis r

evea

led

that

the

desig

n lo

ad s

houl

d no

t ha

ve le

d to

shaf

t fra

ctur

e an

d th

at th

ere

also

exi

sted

addi

-tio

nal l

oad

unfo

rese

en b

y th

e de

sign.

The

pos

t-fai

lure

ver

-ifi

catio

n in

bot

h ca

ses

reve

aled

par

alle

l m

isalig

nmen

t be

twee

n tw

o sh

aft a

xes.

Corre

ctiv

e ac

tions

wer

e co

nsid

-er

ed i

n tw

o w

ays:

to i

mpr

ove

serv

ice

life

by a

sm

all

chan

ge in

the

desig

n an

d to

rem

ove

the

unfo

rese

en a

ddi-

tiona

l loa

d du

e to

misa

lignm

ent b

etw

een

two

shaf

t axe

s.

In th

e cas

e of t

he o

verh

ead

cran

e driv

e sha

ft, in

crea

sing

the

size o

f the

fille

t rad

ius f

rom

1.5

mm

to 5

mm

dec

reas

ed th

e m

axim

um lo

cal s

tress

bel

ow th

e en

dura

nce

limit,

resu

lting

in

sig

nific

ant i

ncre

asin

g of

the

fatig

ue li

fe. I

n th

e ca

se o

f th

e ove

rhea

d cr

ane g

earb

ox sh

aft,

incr

easin

g th

e rad

ius s

ize

due

to c

hang

e in

the

shaf

t dia

met

er fr

om 2

.5 m

m to

4 m

m

and

the

incr

easin

g of

the

radi

us s

ize

in th

e ke

yway

cor

ner

from

0.2

to 0

.6 m

m ex

tend

s the

fatig

ue li

fe m

ore t

han

twic

e.

The

gear

cou

plin

g, c

ompa

red

to th

e ro

ller c

hain

cou

plin

g an

d es

peci

ally

to sp

lit m

uff c

oupl

ing,

allo

ws m

ore

angu

lar

and

para

llel

misa

lignm

ent,

prol

ongi

ng s

igni

fican

tly s

haft

serv

ice

life.

Base

d on

this

anal

ysis,

the

actu

al s

ervi

ce li

fe

of th

e sha

ft ca

n be

impr

oved

from

fini

te to

infin

ite li

fetim

e.

Ref

eren

ces

[1]

Deu

tsch

es I

nstit

ut f

ür N

orm

ung.

DIN

172

00,

1987

(D

IN,

Ber

lin)

[2]

Cra

ne d

esig

n an

d m

anua

l boo

k of

bill

et o

verh

ead

cran

e in

“S

teel

wor

ks S

plit”

[3]

D.I.

D.,

“Pow

er t

rans

mis

sion

& c

onve

yor

chai

n”,

cata

log,

D

aido

Kog

yo c

o, K

umas

aka-

Cho

, Kag

a-C

ity, I

shik

awa

Pref

, 92

2-86

86, J

apan

, 200

7.[4

] W

.D. P

ilkey

, D.F

. Pilk

ey, “

Stre

ss c

once

ntra

tion

fact

ors”

, 3rd

ed.,

Hob

oken

, Joh

n W

iley

& S

ons,

New

Yor

k, 2

008.

[5]

E. H

eiba

ch, “

Bet

riebf

estig

keit“

, VD

I Ver

lag

Gm

bh, D

üsel

-do

rf, 1

989.

[6]

V. G

rubi

šić,

G.

Jaco

by,

“Fra

ctur

e an

alys

is,

valid

atio

n an

d te

chno

logi

es to

incr

ease

the

stre

ngth

of m

ater

ials

”, S

emin

ar,

Fire

nze,

Mar

ch 1

995.

[7]

SEIS

A, “

Gea

r cou

plin

g”, c

atal

og, S

eisa

Gea

r Ltd

., K

aizu

ka,

Osa

ka, J

apan

, 201

1.[8

] C

rane

des

ign

and

man

ual b

ook

of la

dle

over

head

cra

ne in

“S

teel

wor

ks S

plit”

[9]

Deu

tsch

es I

nstit

ut f

ür N

orm

ung.

DIN

171

00,

1980

(D

IN,

Ber

lin)

[10]

Deu

tsch

es I

nstit

ut f

ür N

orm

ung.

DIN

688

5-1,

Paß

fede

rn

nute

n, 1

968

(DIN

, Ber

lin)

[11]

Ž. D

omaz

et, “

Fatig

ue s

tress

con

cent

ratio

n fa

ctor

for

sha

ft w

ith d

iffer

ent k

eyw

ays

in b

endi

ng ”

, Ost

erre

ichi

sche

Ing

e-ni

eur u

nd A

rchi

tekt

en Z

eits

chrif

t, 14

2. J

g., H

eft 6

/199

7

Fig.

21.

Influ

ence

of c

orre

ctiv

e ac

tions

on

the

fatig

ue li

fe