extremes and order statistics of 1d branching brownian...

65
Extremes and Order Statistics of 1d Branching Brownian Motion Gr´ egory Schehr Laboratoire de Physique Th´ eorique et Mod` eles Statistiques,CNRS, Universit´ e Paris-Sud, France Inhomogeneous random systems, IHP, January 24-25 2017 Collaborators: S. N. Majumdar (Orsay) & K. Ramola (Brandeis) Refs: Phys. Rev. Lett. 112, 210602 (2014) Longer version: Chaos, Solitons and Fractals 74, 79 (2015) Span distribution: Phys. Rev. E 91, 042131 (2015)

Upload: others

Post on 18-Mar-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremes and Order Statistics of 1dBranching Brownian Motion

Gregory Schehr

Laboratoire de Physique Theorique et Modeles Statistiques,CNRS,Universite Paris-Sud, France

Inhomogeneous random systems, IHP, January 24-25 2017

Collaborators: S. N. Majumdar (Orsay) & K. Ramola (Brandeis)

Refs: Phys. Rev. Lett. 112, 210602 (2014)

Longer version: Chaos, Solitons and Fractals 74, 79 (2015)

Span distribution: Phys. Rev. E 91, 042131 (2015)

Page 2: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Branching Brownian Motion with Death

���

���

������

������

������

������

������

������

������

������

��������

���

���

������

������

���

���

���

���

���

���

������

������

���

���

x0

t

time

Dynamics: In a small time intervaldt, a particle

• branches into 2 with proba. b dt• dies with proba. d dt• diffuses with proba. 1− (b + d) dt

x(t + dt) = x(t) + η(t) dt

where 〈η(t)〉 = 0〈η(t)η(t ′)〉 = 2D δ(t − t ′)

b, d and D ⇒ 3 parameters of the model

BBM ⇒ prototype model

• Evolutionary system (biology)• Genealogy• Cascade model (nuclear physics)• Directed polymer (statistical physics)• Epidemic spread, ....etc.

Page 3: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Branching Brownian Motion with Death

���

���

������

������

������

������

������

������

������

������

��������

���

���

������

������

���

���

���

���

���

���

������

������

���

���

x0

t

time

Dynamics: In a small time intervaldt, a particle

• branches into 2 with proba. b dt• dies with proba. d dt• diffuses with proba. 1− (b + d) dt

x(t + dt) = x(t) + η(t) dt

where 〈η(t)〉 = 0〈η(t)η(t ′)〉 = 2D δ(t − t ′)

b, d and D ⇒ 3 parameters of the model

BBM ⇒ prototype model

• Evolutionary system (biology)• Genealogy• Cascade model (nuclear physics)• Directed polymer (statistical physics)• Epidemic spread, ....etc.

Page 4: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Motivation: extreme and gap statistics

K. Ramola, S. N. Majumdar, G. S., PRL 2014

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

Q: extreme and gap statistics of BBM ?

=⇒ Difficult problem because x1(t) > x2(t) > x3(t) > · · · are stronglycorrelated

Page 5: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Motivation: extreme and gap statistics

K. Ramola, S. N. Majumdar, G. S., PRL 2014

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

Q: extreme and gap statistics of BBM ?

=⇒ Difficult problem because x1(t) > x2(t) > x3(t) > · · · are stronglycorrelated

Page 6: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Motivation: extreme and gap statistics

K. Ramola, S. N. Majumdar, G. S., PRL 2014

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

Q: extreme and gap statistics of BBM ?

=⇒ Difficult problem because x1(t) > x2(t) > x3(t) > · · · are stronglycorrelated

Page 7: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Application of extreme statistics: the span of BBM

K. Ramola, S. N. Majumdar, G. S., PRE 2015

x

t

Xmin Xmaxspan

=⇒ Application to the spatial extent of epidemic spreads

see also A. Kundu, S. N. Majumdar, G. S., PRL 2013 (N independent BMs)

Page 8: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Application of extreme statistics: the span of BBM

K. Ramola, S. N. Majumdar, G. S., PRE 2015

x

t

Xmin Xmaxspan

=⇒ Application to the spatial extent of epidemic spreads

see also A. Kundu, S. N. Majumdar, G. S., PRL 2013 (N independent BMs)

Page 9: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Application of extreme statistics: the span of BBM

K. Ramola, S. N. Majumdar, G. S., PRE 2015

x

t

Xmin Xmaxspan

=⇒ Application to the spatial extent of epidemic spreads

see also A. Kundu, S. N. Majumdar, G. S., PRL 2013 (N independent BMs)

Page 10: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Outline

1 Fluctuations of the particle number

2 Order and gap statistics of BBM with no death (a reminder)

3 Extreme and order statistics with death

Page 11: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Outline

1 Fluctuations of the particle number

2 Order and gap statistics of BBM with no death (a reminder)

3 Extreme and order statistics with death

Page 12: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Evolution of Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

population size n(t) ⇒ random variable

P(n, t) = Prob.[n(t) = n] statisfies a backward equation

Page 13: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Evolution of Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

population size n(t) ⇒ random variable

P(n, t) = Prob.[n(t) = n] statisfies a backward equation

Page 14: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Evolution of Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

population size n(t) ⇒ random variable

P(n, t) = Prob.[n(t) = n] statisfies a backward equation

Page 15: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Evolution of Population Size: backward approach

︸︷︷︸

d∆t b∆t 1− (b + d)∆t

t

x

0

∆t

∆x = η(0)∆t

A) B) C)

t +∆t

x = 0

P(n, t + ∆t) = d∆tδn,0 + b∆tn∑

n′=0

P(n′, t)P(n − n′, t) + (1− (b + d)∆t)P(n, t)

dP(n, t)

dt= −(b + d)P(n, t) + d δn,0 + b

n∑

n′=0

P(n′, t)P(n − n′, t)

Exact solution via generating function: P(z , t) =∞∑

n=0

zn P(n, t)

Page 16: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Phase transition at b = d

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

P(n, t) = (b − d)2 e(b+d)t (bebt−bedt)n−1

(bebt−dedt)n+1 for n ≥ 1

= d(ebt−edt)

(bebt−dedt) for n = 0

Consequently:

〈n(t)〉 = e(b−d)t −→t→∞

+∞ , b > d supercritical

1 , b = d critical

0 , b < d subcritical

Page 17: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Phase transition at b = d

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

P(n, t) = (b − d)2 e(b+d)t (bebt−bedt)n−1

(bebt−dedt)n+1 for n ≥ 1

= d(ebt−edt)

(bebt−dedt) for n = 0

Consequently:

〈n(t)〉 = e(b−d)t −→t→∞

+∞ , b > d supercritical

1 , b = d critical

0 , b < d subcritical

Page 18: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Typical vs. Average Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

• Supercritical phase (b > d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ e(b−d) t and Average size 〈n(t)〉 = e(b−d) t

• Critical point (b = d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ b t while Average size 〈n(t)〉 = 1

⇒ Strong fluctuations at the critical point

Page 19: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Typical vs. Average Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

• Supercritical phase (b > d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ e(b−d) t and Average size 〈n(t)〉 = e(b−d) t

• Critical point (b = d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ b t while Average size 〈n(t)〉 = 1

⇒ Strong fluctuations at the critical point

Page 20: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Typical vs. Average Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

• Supercritical phase (b > d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ e(b−d) t and Average size 〈n(t)〉 = e(b−d) t

• Critical point (b = d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ b t while Average size 〈n(t)〉 = 1

⇒ Strong fluctuations at the critical point

Page 21: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Typical vs. Average Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

• Supercritical phase (b > d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ e(b−d) t and Average size 〈n(t)〉 = e(b−d) t

• Critical point (b = d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ b t while Average size 〈n(t)〉 = 1

⇒ Strong fluctuations at the critical point

Page 22: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Typical vs. Average Population Size

(b > d) (b = d)

x2x3 x1. . .x4

(b < d)t

x

• Supercritical phase (b > d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ e(b−d) t and Average size 〈n(t)〉 = e(b−d) t

• Critical point (b = d): P(n, t) ∼ exp[− n

n∗(t)

]

Typical size n∗(t) ∼ b t while Average size 〈n(t)〉 = 1

⇒ Strong fluctuations at the critical point

Page 23: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Outline

1 Fluctuations of the particle number

2 Order and gap statistics of BBM with no death (a reminder)

3 Extreme and order statistics with death

Page 24: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics with no death d = 0

���

���

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������������

x0

t

tim

e

x1

ordered positions (right to left)

x 1(t) > x2

(t) > x3

(t) >

n(t) = ebt

0x

1

R(x,t)

v

FISHER WAVE

R(x , t) = Prob.[x1(t) > x ] satisfies Fisher-KPP equation:

∂R∂t = D ∂2R

∂x2 + b R − b R2 starting from R(x , 0) = θ(−x)

travelling front solution: R(x , t)→ f (x − vt) with speed v = 2√b D

x1(t)→ 2√b D t + O(ln t) at late times

Mckean ’75, Bramson ’78, Lalley & Selke ’87, Kessler et. al. ’97,..,Brunet & Derrida ’09,...

see also B. Derrida’s talk for large deviations

Page 25: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics with no death d = 0

���

���

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������������

x0

t

tim

e

x1

ordered positions (right to left)

x 1(t) > x2

(t) > x3

(t) >

n(t) = ebt

0x

1

R(x,t)

v

FISHER WAVE

R(x , t) = Prob.[x1(t) > x ] satisfies Fisher-KPP equation:

∂R∂t = D ∂2R

∂x2 + b R − b R2 starting from R(x , 0) = θ(−x)

travelling front solution: R(x , t)→ f (x − vt) with speed v = 2√b D

x1(t)→ 2√b D t + O(ln t) at late times

Mckean ’75, Bramson ’78, Lalley & Selke ’87, Kessler et. al. ’97,..,Brunet & Derrida ’09,...

see also B. Derrida’s talk for large deviations

Page 26: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics with no death d = 0

���

���

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������������

x0

t

tim

e

x1

ordered positions (right to left)

x 1(t) > x2

(t) > x3

(t) >

n(t) = ebt

0x

1

R(x,t)

v

FISHER WAVE

R(x , t) = Prob.[x1(t) > x ] satisfies Fisher-KPP equation:

∂R∂t = D ∂2R

∂x2 + b R − b R2 starting from R(x , 0) = θ(−x)

travelling front solution: R(x , t)→ f (x − vt) with speed v = 2√b D

x1(t)→ 2√b D t + O(ln t) at late times

Mckean ’75, Bramson ’78, Lalley & Selke ’87, Kessler et. al. ’97,..,Brunet & Derrida ’09,...

see also B. Derrida’s talk for large deviations

Page 27: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order and Gap Statistics for d = 0

���

���

������������

������

������

������

������

������

������

������

������

������

������

x0

t

time

x 1(t) > x2(t) > x

3(t) >

345 2 1

g

gap

k= x

k−x k+1

g4 1

g

Brunet & Derrida, 2009-2010

xk(t) −−−→t→∞

2√b D t

Gap: gk(t) = xk(t)− xk+1(t)

−→ stationary random variableas t →∞

In units of√D/b:

〈g1〉 ≈ 0.496, 〈g2〉 ≈ 0.303, ...

〈gk〉 −−−→k→∞

1k − 1

k ln k + . . .

Heuristic argument for the first gap distribution (Brunet & Derrida, ’10):

P(g1, t →∞) ≈ exp[−(1 +

√2)√

b/D g1

]

Page 28: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order and Gap Statistics for d = 0

���

���

������������

������

������

������

������

������

������

������

������

������

������

x0

t

time

x 1(t) > x2(t) > x

3(t) >

345 2 1

g

gap

k= x

k−x k+1

g4 1

g

Brunet & Derrida, 2009-2010

xk(t) −−−→t→∞

2√b D t

Gap: gk(t) = xk(t)− xk+1(t)

−→ stationary random variableas t →∞

In units of√D/b:

〈g1〉 ≈ 0.496, 〈g2〉 ≈ 0.303, ...

〈gk〉 −−−→k→∞

1k − 1

k ln k + . . .

Heuristic argument for the first gap distribution (Brunet & Derrida, ’10):

P(g1, t →∞) ≈ exp[−(1 +

√2)√

b/D g1

]

Page 29: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order and Gap Statistics for d > 0 → this talk

• Question: What happens to order & gap statistics when the death rated > 0 is switched on ? In particular, at the critical point d = b

• Recall: Prob.[n(t) = 0] = P(0, t) = d (ebt−edt)(beb t−dedt)

Consequently, for d > 0, with a nonzero proba. there may not be anyparticle at any given time t!

• Naturally leads one to study the Conditioned Ensemble where thesystem is conditioned to have a fixed n particles at time t.

• Prob. distr. of any observable O in the full problem

P(O, t) =∑

n>0 Q(O,t|n) P(n,t)∑n>0 P(n,t) ≈ Q(O, t|n∗(t))

where Q(O, t|n) −→ proba. of O in the Conditioned Ensemble

n∗(t) −→ typical population size

Page 30: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order and Gap Statistics for d > 0 → this talk

• Question: What happens to order & gap statistics when the death rated > 0 is switched on ? In particular, at the critical point d = b

• Recall: Prob.[n(t) = 0] = P(0, t) = d (ebt−edt)(beb t−dedt)

Consequently, for d > 0, with a nonzero proba. there may not be anyparticle at any given time t!

• Naturally leads one to study the Conditioned Ensemble where thesystem is conditioned to have a fixed n particles at time t.

• Prob. distr. of any observable O in the full problem

P(O, t) =∑

n>0 Q(O,t|n) P(n,t)∑n>0 P(n,t) ≈ Q(O, t|n∗(t))

where Q(O, t|n) −→ proba. of O in the Conditioned Ensemble

n∗(t) −→ typical population size

Page 31: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order and Gap Statistics for d > 0 → this talk

• Question: What happens to order & gap statistics when the death rated > 0 is switched on ? In particular, at the critical point d = b

• Recall: Prob.[n(t) = 0] = P(0, t) = d (ebt−edt)(beb t−dedt)

Consequently, for d > 0, with a nonzero proba. there may not be anyparticle at any given time t!

• Naturally leads one to study the Conditioned Ensemble where thesystem is conditioned to have a fixed n particles at time t.

• Prob. distr. of any observable O in the full problem

P(O, t) =∑

n>0 Q(O,t|n) P(n,t)∑n>0 P(n,t) ≈ Q(O, t|n∗(t))

where Q(O, t|n) −→ proba. of O in the Conditioned Ensemble

n∗(t) −→ typical population size

Page 32: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order and Gap Statistics for d > 0 → this talk

• Question: What happens to order & gap statistics when the death rated > 0 is switched on ? In particular, at the critical point d = b

• Recall: Prob.[n(t) = 0] = P(0, t) = d (ebt−edt)(beb t−dedt)

Consequently, for d > 0, with a nonzero proba. there may not be anyparticle at any given time t!

• Naturally leads one to study the Conditioned Ensemble where thesystem is conditioned to have a fixed n particles at time t.

• Prob. distr. of any observable O in the full problem

P(O, t) =∑

n>0 Q(O,t|n) P(n,t)∑n>0 P(n,t) ≈ Q(O, t|n∗(t))

where Q(O, t|n) −→ proba. of O in the Conditioned Ensemble

n∗(t) −→ typical population size

Page 33: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order and Gap Statistics for d > 0 → this talk

• Question: What happens to order & gap statistics when the death rated > 0 is switched on ? In particular, at the critical point d = b

• Recall: Prob.[n(t) = 0] = P(0, t) = d (ebt−edt)(beb t−dedt)

Consequently, for d > 0, with a nonzero proba. there may not be anyparticle at any given time t!

• Naturally leads one to study the Conditioned Ensemble where thesystem is conditioned to have a fixed n particles at time t.

• Prob. distr. of any observable O in the full problem

P(O, t) =∑

n>0 Q(O,t|n) P(n,t)∑n>0 P(n,t) ≈ Q(O, t|n∗(t))

where Q(O, t|n) −→ proba. of O in the Conditioned Ensemble

n∗(t) −→ typical population size

Page 34: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Outline

1 Fluctuations of the particle number

2 Order and gap statistics of BBM with no death (a reminder)

3 Extreme and order statistics with death

Page 35: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics for d > 0 with fixed nber of part.

���

���

������

������

������

������

������

������

������

������

��������

���

���

������

������

���

���

���

���

���

���

������

������

���

���

����������������

0

t

time

x

x

23 14

> x1(t) > x 2 (t) > x

3 (t) > > x n (t)

space

C (n, x , t) → proba. of having nparticles at t with all of them to theleft of x

P(n, t) → Proba. of having exactly nparticles at t → known exactly

Conditional prob.

Q(x , t|n) = C(n,x,t)P(n,t) → given that

there are n particles at t, the prob.that all of them are to the left of x

Exact backward evolution equation for C (n, x , t) + known P(n, t) −→

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

where a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) and one starts with Q(x , t|0) = 1

⇒ linear in Q(x , t|n) and can be solved recursively[K. Ramola, S. N. Majumdar & G. S., PRL, 112, 210602 (2014)]

Page 36: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics for d > 0 with fixed nber of part.

���

���

������

������

������

������

������

������

������

������

��������

���

���

������

������

���

���

���

���

���

���

������

������

���

���

����������������

0

t

time

x

x

23 14

> x1(t) > x 2 (t) > x

3 (t) > > x n (t)

space

C (n, x , t) → proba. of having nparticles at t with all of them to theleft of x

P(n, t) → Proba. of having exactly nparticles at t → known exactly

Conditional prob.

Q(x , t|n) = C(n,x,t)P(n,t) → given that

there are n particles at t, the prob.that all of them are to the left of x

Exact backward evolution equation for C (n, x , t) + known P(n, t) −→

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

where a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) and one starts with Q(x , t|0) = 1

⇒ linear in Q(x , t|n) and can be solved recursively[K. Ramola, S. N. Majumdar & G. S., PRL, 112, 210602 (2014)]

Page 37: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics for d > 0 with fixed nber of part.

���

���

������

������

������

������

������

������

������

������

��������

���

���

������

������

���

���

���

���

���

���

������

������

���

���

����������������

0

t

time

x

x

23 14

> x1(t) > x 2 (t) > x

3 (t) > > x n (t)

space

C (n, x , t) → proba. of having nparticles at t with all of them to theleft of x

P(n, t) → Proba. of having exactly nparticles at t → known exactly

Conditional prob.

Q(x , t|n) = C(n,x,t)P(n,t) → given that

there are n particles at t, the prob.that all of them are to the left of x

Exact backward evolution equation for C (n, x , t) + known P(n, t) −→

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

where a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) and one starts with Q(x , t|0) = 1

⇒ linear in Q(x , t|n) and can be solved recursively[K. Ramola, S. N. Majumdar & G. S., PRL, 112, 210602 (2014)]

Page 38: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics for d > 0 with fixed nber of part.

���

���

������

������

������

������

������

������

������

������

��������

���

���

������

������

���

���

���

���

���

���

������

������

���

���

����������������

0

t

time

x

x

23 14

> x1(t) > x 2 (t) > x

3 (t) > > x n (t)

space

C (n, x , t) → proba. of having nparticles at t with all of them to theleft of x

P(n, t) → Proba. of having exactly nparticles at t → known exactly

Conditional prob.

Q(x , t|n) = C(n,x,t)P(n,t) → given that

there are n particles at t, the prob.that all of them are to the left of x

Exact backward evolution equation for C (n, x , t) + known P(n, t) −→

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

where a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) and one starts with Q(x , t|0) = 1

⇒ linear in Q(x , t|n) and can be solved recursively[K. Ramola, S. N. Majumdar & G. S., PRL, 112, 210602 (2014)]

Page 39: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics for d > 0 with fixed nber of part.

���

���

������

������

������

������

������

������

������

������

��������

���

���

������

������

���

���

���

���

���

���

������

������

���

���

����������������

0

t

time

x

x

23 14

> x1(t) > x 2 (t) > x

3 (t) > > x n (t)

space

C (n, x , t) → proba. of having nparticles at t with all of them to theleft of x

P(n, t) → Proba. of having exactly nparticles at t → known exactly

Conditional prob.

Q(x , t|n) = C(n,x,t)P(n,t) → given that

there are n particles at t, the prob.that all of them are to the left of x

Exact backward evolution equation for C (n, x , t) + known P(n, t) −→

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

where a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) and one starts with Q(x , t|0) = 1

⇒ linear in Q(x , t|n) and can be solved recursively[K. Ramola, S. N. Majumdar & G. S., PRL, 112, 210602 (2014)]

Page 40: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Extremal statistics for d > 0 with fixed nber of part.

���

���

������

������

������

������

������

������

������

������

��������

���

���

������

������

���

���

���

���

���

���

������

������

���

���

����������������

0

t

time

x

x

23 14

> x1(t) > x 2 (t) > x

3 (t) > > x n (t)

space

C (n, x , t) → proba. of having nparticles at t with all of them to theleft of x

P(n, t) → Proba. of having exactly nparticles at t → known exactly

Conditional prob.

Q(x , t|n) = C(n,x,t)P(n,t) → given that

there are n particles at t, the prob.that all of them are to the left of x

Exact backward evolution equation for C (n, x , t) + known P(n, t) −→

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

where a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) and one starts with Q(x , t|0) = 1

⇒ linear in Q(x , t|n) and can be solved recursively[K. Ramola, S. N. Majumdar & G. S., PRL, 112, 210602 (2014)]

Page 41: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 12 erfc

(− x√

4Dt

)for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√4πDt

exp[− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√4πDt

exp[− x2

k

4Dt

]

Page 42: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 12 erfc

(− x√

4Dt

)for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√4πDt

exp[− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√4πDt

exp[− x2

k

4Dt

]

Page 43: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 12 erfc

(− x√

4Dt

)for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√4πDt

exp[− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√4πDt

exp[− x2

k

4Dt

]

Page 44: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 12 erfc

(− x√

4Dt

)for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√4πDt

exp[− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√4πDt

exp[− x2

k

4Dt

]

Page 45: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 12 erfc

(− x√

4Dt

)for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√4πDt

exp[− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√4πDt

exp[− x2

k

4Dt

]

Page 46: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 12 erfc

(− x√

4Dt

)for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√4πDt

exp[− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√4πDt

exp[− x2

k

4Dt

]

Page 47: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 12 erfc

(− x√

4Dt

)for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√4πDt

exp[− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√4πDt

exp[− x2

k

4Dt

]

Page 48: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Order Statistics at the Critical Point b = d

∂Q(x , t|n)

∂t= D

∂2Q(x , t|n)

∂x2+ a(t)

n−1∑

r=1

[Q(x , t|r)Q(x , t|n − r)− Q(x , t|n)]

a(t) = (b−d)2 e(b+d)t

(ebt−edt)(bebt−dedt) ∼ e−(b−d) t for b > d

∼ 1/t2 for b = d

• The source term ∼ a(t) n∗(t) ∼ O(1) for b > d , recall n∗(t) ∼ e(b−d) t

∼ 1/t for b = d , recall n∗(t) ∼ b t

• Consequently, the source term → negligible at the critical point b = d

Exact late time solution at the critical point b = d :

Q(x , t|n)→ 12 erfc

(− x√

4Dt

)for all 1 ≤ n ≤ n∗(t) ∼ bt

• Rightmost particle diffuses at the critical point b = d irrespective of n

P(x1, t|n)→ 1√4πDt

exp[− x2

1

4Dt

]

• Similarly the second, the third...all diffuse: P(xk , t|n)→ 1√4πDt

exp[− x2

k

4Dt

]

Page 49: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Particles diffuse (as a bunch) when b = d

1

2

3

t

x

Ordered particles diffuse as a bunch at the critical point b = d

While the center of mass ∼√D t, the gaps gk(t) = xk(t)− xk+1(t)

=⇒ stationary at late times

Exact computation of the gap distribution in the Conditioned Ensemble(fixed n)

Page 50: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Particles diffuse (as a bunch) when b = d

1

2

3

t

x

Ordered particles diffuse as a bunch at the critical point b = d

While the center of mass ∼√D t, the gaps gk(t) = xk(t)− xk+1(t)

=⇒ stationary at late times

Exact computation of the gap distribution in the Conditioned Ensemble(fixed n)

Page 51: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Particles diffuse (as a bunch) when b = d

1

2

3

t

x

Ordered particles diffuse as a bunch at the critical point b = d

While the center of mass ∼√D t, the gaps gk(t) = xk(t)− xk+1(t)

=⇒ stationary at late times

Exact computation of the gap distribution in the Conditioned Ensemble(fixed n)

Page 52: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Particles diffuse (as a bunch) when b = d

1

2

3

t

x

Ordered particles diffuse as a bunch at the critical point b = d

While the center of mass ∼√D t, the gaps gk(t) = xk(t)− xk+1(t)

=⇒ stationary at late times

Exact computation of the gap distribution in the Conditioned Ensemble(fixed n)

Page 53: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Universal gap distribution at the critical point b = d

• n = 2 sector:

⇒ Exact solution for the stationary gap distribution

p(g1|2) =√

b16D f

(√b

16D g1

)

with f (x) = −4 x +√

2π e2 x2

(1 + 4 x2) erfc(√

2 x)

p(g1|2) ∼√

πb8D as g1 → 0

∼ 8Db g−3

1 as g1 →∞[K. Ramola, S. N. Majumdar & G. S., PRL 112, 210602 (2014)]

• n > 2 sector: solve by recursion

p(g1|n) −−−−→g1→∞

8 Db g−3

1

• Similarly for the k-th gap → universal power-law tail for all k and n

p(gk |n) −−−−→gk→∞

8Db g−3

k

Page 54: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Universal gap distribution at the critical point b = d

• n = 2 sector:

⇒ Exact solution for the stationary gap distribution

p(g1|2) =√

b16D f

(√b

16D g1

)

with f (x) = −4 x +√

2π e2 x2

(1 + 4 x2) erfc(√

2 x)

p(g1|2) ∼√

πb8D as g1 → 0

∼ 8Db g−3

1 as g1 →∞[K. Ramola, S. N. Majumdar & G. S., PRL 112, 210602 (2014)]

• n > 2 sector: solve by recursion

p(g1|n) −−−−→g1→∞

8 Db g−3

1

• Similarly for the k-th gap → universal power-law tail for all k and n

p(gk |n) −−−−→gk→∞

8Db g−3

k

Page 55: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Universal gap distribution at the critical point b = d

• n = 2 sector:

⇒ Exact solution for the stationary gap distribution

p(g1|2) =√

b16D f

(√b

16D g1

)

with f (x) = −4 x +√

2π e2 x2

(1 + 4 x2) erfc(√

2 x)

p(g1|2) ∼√

πb8D as g1 → 0

∼ 8Db g−3

1 as g1 →∞[K. Ramola, S. N. Majumdar & G. S., PRL 112, 210602 (2014)]

• n > 2 sector: solve by recursion

p(g1|n) −−−−→g1→∞

8 Db g−3

1

• Similarly for the k-th gap → universal power-law tail for all k and n

p(gk |n) −−−−→gk→∞

8Db g−3

k

Page 56: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Universal gap distribution at the critical point b = d

• n = 2 sector:

⇒ Exact solution for the stationary gap distribution

p(g1|2) =√

b16D f

(√b

16D g1

)

with f (x) = −4 x +√

2π e2 x2

(1 + 4 x2) erfc(√

2 x)

p(g1|2) ∼√

πb8D as g1 → 0

∼ 8Db g−3

1 as g1 →∞[K. Ramola, S. N. Majumdar & G. S., PRL 112, 210602 (2014)]

• n > 2 sector: solve by recursion

p(g1|n) −−−−→g1→∞

8 Db g−3

1

• Similarly for the k-th gap → universal power-law tail for all k and n

p(gk |n) −−−−→gk→∞

8Db g−3

k

Page 57: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Universal gap distribution at the critical point b = d

• n = 2 sector:

⇒ Exact solution for the stationary gap distribution

p(g1|2) =√

b16D f

(√b

16D g1

)

with f (x) = −4 x +√

2π e2 x2

(1 + 4 x2) erfc(√

2 x)

p(g1|2) ∼√

πb8D as g1 → 0

∼ 8Db g−3

1 as g1 →∞[K. Ramola, S. N. Majumdar & G. S., PRL 112, 210602 (2014)]

• n > 2 sector: solve by recursion

p(g1|n) −−−−→g1→∞

8 Db g−3

1

• Similarly for the k-th gap → universal power-law tail for all k and n

p(gk |n) −−−−→gk→∞

8Db g−3

k

Page 58: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Numerical simulations at the critical point b = d

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

1

10-1 1 10

110

210

3

P~(g

1,t

|2)

g1

t =1t =10

t =102

t =103

t =104

t =105

8(D/b)1/g13

10-5

10-4

10-3

10-2

10-1

1

10-1 1 10

110

2

S(g

1,t|n)

g1

2 particles3 particles4 particles5 particles6 particles7 particles8 particles

10-6

10-5

10-4

10-3

10-2

10-1

1

10-1 1 10

110

2gk

1st gap2nd gap3rd gap4th gap5th gap

Page 59: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Summary and Conclusion

• Working in the Conditioned Ensemble, we computed the order and thegap statistics for branching Brownian motion with death

• At the critical point b = d , this provides exact results for the fullensemble

• At late times gaps become stationary with universal algebraic tail atthe critical point (b = d)

p(gk) −−−−→gk→∞

8Db g−3

k

Page 60: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Summary and Conclusion

• Working in the Conditioned Ensemble, we computed the order and thegap statistics for branching Brownian motion with death

• At the critical point b = d , this provides exact results for the fullensemble

• At late times gaps become stationary with universal algebraic tail atthe critical point (b = d)

p(gk) −−−−→gk→∞

8Db g−3

k

Page 61: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Summary and Conclusion

• Working in the Conditioned Ensemble, we computed the order and thegap statistics for branching Brownian motion with death

• At the critical point b = d , this provides exact results for the fullensemble

• At late times gaps become stationary with universal algebraic tail atthe critical point (b = d)

p(gk) −−−−→gk→∞

8Db g−3

k

Page 62: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Summary and Conclusion

• Working in the Conditioned Ensemble, we computed the order and thegap statistics for branching Brownian motion with death

• At the critical point b = d , this provides exact results for the fullensemble

• At late times gaps become stationary with universal algebraic tail atthe critical point (b = d)

p(gk) −−−−→gk→∞

8Db g−3

k

Page 63: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Summary and Conclusion

Other observables at the critical point:

• Joint distribution of the rightmost and leftmost positions of the BBMup to time t

−Y

Xmin

Xmax

X

t time

space

0

span

s = Xmax −Xmin

• Full distribution of the span S up to time t as t →∞p(S) −−−−→

S→∞(8π√

3) Db S−3

[K. Ramola, S. N. Majumdar & G. S., PRE 2015]

Page 64: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Summary and Conclusion

Other observables at the critical point:

• Joint distribution of the rightmost and leftmost positions of the BBMup to time t

−Y

Xmin

Xmax

X

t time

space

0

span

s = Xmax −Xmin

• Full distribution of the span S up to time t as t →∞

p(S) −−−−→S→∞

(8π√

3) Db S−3

[K. Ramola, S. N. Majumdar & G. S., PRE 2015]

Page 65: Extremes and Order Statistics of 1d Branching Brownian Motionirs.math.cnrs.fr/2017/pdf/schehr.pdf · Extremes and Order Statistics of 1d Branching Brownian Motion Gr egory Schehr

Summary and Conclusion

Other observables at the critical point:

• Joint distribution of the rightmost and leftmost positions of the BBMup to time t

−Y

Xmin

Xmax

X

t time

space

0

span

s = Xmax −Xmin

• Full distribution of the span S up to time t as t →∞p(S) −−−−→

S→∞(8π√

3) Db S−3

[K. Ramola, S. N. Majumdar & G. S., PRE 2015]