extended formulations i (bootcamp)

106
Extended Formulations I (Boot Camp) Thomas Rothvoss UW Seattle

Upload: others

Post on 16-Oct-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Extended Formulations I (BootCamp)

Extended Formulations I

(Boot Camp)

Thomas Rothvoss

UW Seattle

Page 2: Extended Formulations I (BootCamp)

Organization

1. Thomas Rothvoss (1.x lectures): Introduction to LPExtended Formulations

2. Hamza Fawzi (1.x lectures): Introduction to SDP ExtendedFormulations

3. Prasad Raghavendra (1.x lectures): Lower bounds forLP/SDP lifts

Page 3: Extended Formulations I (BootCamp)

Extended formulation

Page 4: Extended Formulations I (BootCamp)

Extended formulation

Given polytope P = x ∈ Rn | Ax ≤ b

P

Page 5: Extended Formulations I (BootCamp)

Extended formulation

Given polytope P = x ∈ Rn | Ax ≤ b

Write P = x ∈ Rn | ∃y : Bx+ Cy ≤ d

P

Q

linearprojection

Page 6: Extended Formulations I (BootCamp)

Extended formulation

Given polytope P = x ∈ Rn | Ax ≤ b→ many inequalities

Write P = x ∈ Rn | ∃y : Bx+ Cy ≤ d→ few inequalities

P

Q

linearprojection

Page 7: Extended Formulations I (BootCamp)

Extended formulation

Given polytope P = x ∈ Rn | Ax ≤ b→ many inequalities

Write P = x ∈ Rn | ∃y : Bx+ Cy ≤ d→ few inequalities

P

Q

linearprojection

The extension complexity of P is

xc(P ) := min

#facets of Q |

Q polyhedronp linear mapp(Q) = P

Page 8: Extended Formulations I (BootCamp)

Motivation

Page 9: Extended Formulations I (BootCamp)

Motivation

xc(conv(Spanning trees)) ≤ O(n3)⇒ optimize over all Spanning trees with LP of size O(n3)

P

Q

linearprojection

Page 10: Extended Formulations I (BootCamp)

Motivation

xc(conv(Spanning trees)) ≤ O(n3)⇒ optimize over all Spanning trees with LP of size O(n3)

P

Q

linearprojection

In reverse: If xc(P ) is high forTSP / MaxCut / Correlation / Matchings, then thoseproblems cannot be solved with a single poly-size LP!

Page 11: Extended Formulations I (BootCamp)

Part I

A non trivial example -

Knapsack

Page 12: Extended Formulations I (BootCamp)

Knapsack

Input: n objects with weight wi ∈ Z+

profit pi ∈ Q+

knapsack size B ∈ Q+

Goal: Find subset of objects, maximizing the profit andnot exceeding the weight bound:

OPT = maxI⊆1,...,n

i∈I

pi |∑

i∈I

wi ≤ B

Page 13: Extended Formulations I (BootCamp)

Knapsack

Input: n objects with weight wi ∈ Z+

profit pi ∈ Q+

knapsack size B ∈ Q+

Goal: Find subset of objects, maximizing the profit andnot exceeding the weight bound:

OPT = maxI⊆1,...,n

i∈I

pi |∑

i∈I

wi ≤ B

Known:

weakly NP-hard

Pseudo-polynomial time algorithm

FPTAS

Page 14: Extended Formulations I (BootCamp)

Knapsack

Input: n objects with weight wi ∈ Z+

profit pi ∈ Q+

knapsack size B ∈ Q+

Goal: Find subset of objects, maximizing the profit andnot exceeding the weight bound:

OPT = maxI⊆1,...,n

i∈I

pi |∑

i∈I

wi ≤ B

Known:

weakly NP-hard

Pseudo-polynomial time algorithm

FPTAS

xc(convx ∈ 0, 1n |∑n

i=1wixi ≤ B) ≤ O(n ·B).

Page 15: Extended Formulations I (BootCamp)

A dynamic program for Knapsack

Lemma

Knapsack can be solved in time O(n ·B).

Algorithm

(1) Compute table entries

T (i,W ) = maxI⊆1,...,i

j∈I

pj |∑

j∈I

wj = W

= max. profit of weight W subsets of first i items

using dynamic programming

T (i,W ) = maxT (i− 1,W )︸ ︷︷ ︸

don’t take i

, T (i− 1,W − wi) + pi︸ ︷︷ ︸

take i

∀i ∀W ≤ B

Page 16: Extended Formulations I (BootCamp)

Knapsack (3)

T (0, ∗) T (1, ∗) T (2, ∗) T (3, ∗)

T (∗, 0)

T (∗, 1)

T (∗, 2)

T (∗, 3) Instance:

w1 = 2

w2 = 1

w3 = 2

Create a network with nodes (i,W ) and

Page 17: Extended Formulations I (BootCamp)

Knapsack (3)

T (0, ∗) T (1, ∗) T (2, ∗) T (3, ∗)

T (∗, 0)

T (∗, 1)

T (∗, 2)

T (∗, 3) Instance:

w1 = 2

w2 = 1

w3 = 2

Create a network with nodes (i,W ) and “Don’t take i”-edge from (i− 1,W )→ (i,W ) at cost 0

Page 18: Extended Formulations I (BootCamp)

Knapsack (3)

T (0, ∗) T (1, ∗) T (2, ∗) T (3, ∗)

T (∗, 0)

T (∗, 1)

T (∗, 2)

T (∗, 3) Instance:

w1 = 2

w2 = 1

w3 = 2

Create a network with nodes (i,W ) and “Don’t take i”-edge from (i− 1,W )→ (i,W ) at cost 0 “Take i”-edge from (i− 1,W − wi)→ (i,W ) at cost pi

Page 19: Extended Formulations I (BootCamp)

Knapsack (3)

s t

1 2objects

3

1

B

weigh

ts

Instance:

w1 = 2

w2 = 1

w3 = 2

Create a network with nodes (i,W ) and “Don’t take i”-edge from (i− 1,W )→ (i,W ) at cost 0 “Take i”-edge from (i− 1,W − wi)→ (i,W ) at cost pi

Page 20: Extended Formulations I (BootCamp)

Knapsack (3)

s t

1 2objects

3

1

B

weigh

ts

Instance:

w1 = 2

w2 = 1

w3 = 2

Create a network with nodes (i,W ) and “Don’t take i”-edge from (i− 1,W )→ (i,W ) at cost 0 “Take i”-edge from (i− 1,W − wi)→ (i,W ) at cost pi

Observations:

s-t path ←→ Knapsack solution

Page 21: Extended Formulations I (BootCamp)

Knapsack (3)

s t

1 2objects

3

1

B

weigh

ts

Instance:

w1 = 2

w2 = 1

w3 = 2

Create a network with nodes (i,W ) and “Don’t take i”-edge from (i− 1,W )→ (i,W ) at cost 0 “Take i”-edge from (i− 1,W − wi)→ (i,W ) at cost pi

Observations:

s-t path ←→ Knapsack solution

max cost s-t path = max profit packing

Page 22: Extended Formulations I (BootCamp)

Knapsack (4)

Let G = (V,E) be network.

Let Ei = take item i edges

Page 23: Extended Formulations I (BootCamp)

Knapsack (4)

Let G = (V,E) be network.

Let Ei = take item i edges

Observation

The Knapsack polytope is the projection of Q with

xi =∑

e∈Ei

y(e) ∀i ∈ [n]

y(δ+(v))− y(δ−(v)) =

1 v = s

−1 v = t

0 otherwise

∀v ∈ V

x, y ≥ 0

Page 24: Extended Formulations I (BootCamp)

Knapsack (4)

Let G = (V,E) be network.

Let Ei = take item i edges

Observation

The Knapsack polytope is the projection of Q with

xi =∑

e∈Ei

y(e) ∀i ∈ [n]

y(δ+(v))− y(δ−(v)) =

1 v = s

−1 v = t

0 otherwise

∀v ∈ V

x, y ≥ 0

Corollary

xc(Knapsack polytope) ≤ O(n ·B).

Page 25: Extended Formulations I (BootCamp)

Knapsack (5)

Open problem

Consider a Knapsack polytope

P = conv

x ∈ 0, 1n |n∑

i=1

wixi ≤ B

.

P

Page 26: Extended Formulations I (BootCamp)

Knapsack (5)

Open problem

Consider a Knapsack polytope

P = conv

x ∈ 0, 1n |n∑

i=1

wixi ≤ B

.

Is there is always a polytope K with

K ⊆ P ⊆ (1 + ε)K

xc(K) ≤ poly(n, 1ε )?

K

(1 + ε)KP

Page 27: Extended Formulations I (BootCamp)

Knapsack (5)

Open problem

Consider a Knapsack polytope

P = conv

x ∈ 0, 1n |n∑

i=1

wixi ≤ B

.

Is there is always a polytope K with

K ⊆ P ⊆ (1 + ε)K

xc(K) ≤ poly(n, 1ε )?

Known:

xc(K) ≤ nO(1/ε) possible(Bienstock)

K

(1 + ε)KP

Page 28: Extended Formulations I (BootCamp)

Part II

Slack-matrices, Yannakakis’

Theorem and Communication

Complexity

Page 29: Extended Formulations I (BootCamp)

Slack-matrix

Write: P = conv(x1, . . . , xv) = x ∈ Rn | Ax ≤ b

S# facets

# vertices

SijSij = bi −AT

i xj

slack-matrix

Pb

b b

b

b

Page 30: Extended Formulations I (BootCamp)

Slack-matrix

Write: P = conv(x1, . . . , xv) = x ∈ Rn | Ax ≤ b

S# facets

# vertices

facet i

vertexj

SijSij = bi −AT

i xj

slack-matrix

Pb

b b

b

bAix = bi

bxj

Sij

Page 31: Extended Formulations I (BootCamp)

Slack-matrix

Write: P = conv(x1, . . . , xv) = x ∈ Rn | Ax ≤ b

S# facets

# vertices

U≥0

V ≥ 0rr

SijSij = bi −AT

i xj

slack-matrix

Pb

b b

b

bAix = bi

bxj

Sij

Non-negative rank:

rk+(S) = minr | ∃U ∈ Rf×r≥0 , V ∈ Rr×v

≥0 : S = UV

Page 32: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Page 33: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation: Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b

Page 34: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation: Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b For vertex xj : Aix

j + UiVj = bi.

Page 35: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Factorization S = UV ⇒ extended formulation: Let P = x ∈ Rn | ∃y ≥ 0 : Ax+ Uy = b For vertex xj : Aix

j + UiVj = bi.

Aix > bi =⇒ Aix+ Uiy︸︷︷︸

≥0

> bi.

Page 36: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d Qb

bb

b

b

b

b

b

b

b

b

b

P

Page 37: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d Q

Aix+ 0y ≤ bi

b

bb

b

b

b

b

b

b

b

b

b

xjb

P

〈u(i), v(j)〉 = Sij

Page 38: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d

For facet i:u(i) := conic comb of i

Q

Aix+ 0y ≤ bi

b

bb

b

b

b

b

b

b

b

b

b

xjb

P

〈u(i), v(j)〉 = Sij

Page 39: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d

For facet i:u(i) := conic comb of i

For vertex xj :v(j) := d−Bxj − Cyj = slack of (xj , yj)

Q

Aix+ 0y ≤ bi

b

bb

b

b

b

b

b

b

b

b

b

xjb

(xj , yj)b

P

〈u(i), v(j)〉 = Sij

Page 40: Extended Formulations I (BootCamp)

Yannakakis’ Theorem

Theorem (Yannakakis ’88)

If S is the slack-matrix for P = x ∈ Rn | Ax ≤ b, thenxc(P ) = rk+(S).

Extended form. ⇒ factorization:

Given an extensionQ = (x, y) | Bx+ Cy ≤ d

For facet i:u(i) := conic comb of i

For vertex xj :v(j) := d−Bxj − Cyj = slack of (xj , yj)

Q

Aix+ 0y ≤ bi

b

bb

b

b

b

b

b

b

b

b

b

xjb

(xj , yj)b

P

〈u(i), v(j)〉 = u(i)Td︸ ︷︷ ︸

=bi

−u(i)B︸ ︷︷ ︸

=Ai

xj − u(i)C︸ ︷︷ ︸

=0

yj = Sij

Page 41: Extended Formulations I (BootCamp)

Rectangle covering lower bound

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 42: Extended Formulations I (BootCamp)

Rectangle covering lower bound

U

V

S

3

1

0

0

2

0 0 2 1 0

2

1

2

0

0

0 2 2 0 3

0 4 10 3 5

0 2 4 1 3

0 4 4 0 6

0 0 0 0 0

0 0 4 2 0

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 43: Extended Formulations I (BootCamp)

Rectangle covering lower bound

U

V

S

+

+

0

0+

0 0 + + 0

+

+

+

0

0

0 + + 0 +

0 + + + +

0 + + + +

0 + + 0 +

0 0 0 0 0

0 0 + + 0

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 44: Extended Formulations I (BootCamp)

Rectangle covering lower bound

U

V

S

+

+

0

0+

0 0 + + 0

+

+

+

0

0

0 + + 0 +

0 + + + +

0 + + + +

0 + + 0 +

0 0 0 0 0

0 0 + + 0

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 45: Extended Formulations I (BootCamp)

Rectangle covering lower bound

U

V

S

+

+

0

0+

0 0 + + 0

+

+

+

0

0

0 + + 0 +

0 + + + +

0 + + + +

0 + + 0 +

0 0 0 0 0

0 0 + + 0

Observation

rk+(S) ≥ rectangle-covering-number(S).

Page 46: Extended Formulations I (BootCamp)

Communication complexity

Setting:

Function f : X × Y → R

Alice Bob

Page 47: Extended Formulations I (BootCamp)

Communication complexity

Setting:

Function f : X × Y → R

Players Alice and Bob agree apriori on a deterministiccommunication protocoll

Alice Bob

Page 48: Extended Formulations I (BootCamp)

Communication complexity

Setting:

Function f : X × Y → R

Players Alice and Bob agree apriori on a deterministiccommunication protocoll

Alice receives x ∈ X, Bob receives y ∈ X

Alicex ∈ X

Boby ∈ Y

Page 49: Extended Formulations I (BootCamp)

Communication complexity

Setting:

Function f : X × Y → R

Players Alice and Bob agree apriori on a deterministiccommunication protocoll

Alice receives x ∈ X, Bob receives y ∈ X

They exchange messages to compute f(x, y)

Alicex ∈ X

Boby ∈ Y1

Page 50: Extended Formulations I (BootCamp)

Communication complexity

Setting:

Function f : X × Y → R

Players Alice and Bob agree apriori on a deterministiccommunication protocoll

Alice receives x ∈ X, Bob receives y ∈ X

They exchange messages to compute f(x, y)

Alicex ∈ X

Boby ∈ Y1

1, 0

Page 51: Extended Formulations I (BootCamp)

Communication complexity

Setting:

Function f : X × Y → R

Players Alice and Bob agree apriori on a deterministiccommunication protocoll

Alice receives x ∈ X, Bob receives y ∈ X

They exchange messages to compute f(x, y)

Alicex ∈ X

Boby ∈ Y1

1, 0

0

Page 52: Extended Formulations I (BootCamp)

Communication complexity

Setting:

Function f : X × Y → R

Players Alice and Bob agree apriori on a deterministiccommunication protocoll

Alice receives x ∈ X, Bob receives y ∈ X

They exchange messages to compute f(x, y)

Alicex ∈ X

Boby ∈ Y1

1, 0

0

1

both know f(x, y)

Page 53: Extended Formulations I (BootCamp)

Communication complexity

Setting:

Function f : X × Y → R

Players Alice and Bob agree apriori on a deterministiccommunication protocoll

Alice receives x ∈ X, Bob receives y ∈ X

They exchange messages to compute f(x, y)

Alicex ∈ X

Boby ∈ Y1

1, 0

0

1

both know f(x, y)

CC(f) = minprotocoll

maxx∈X,y∈Y

bits to compute f(x, y)

Page 54: Extended Formulations I (BootCamp)

Communication complexity (3)

decision tree:0 1

0 1 0 1

2222000000

222

222

222

111

111

Page 55: Extended Formulations I (BootCamp)

Communication complexity (3)

decision tree:0 1

0 1 0 1

2222

000000

222

222

222

111

111

2222000000

222

222

222

111

111

Page 56: Extended Formulations I (BootCamp)

Communication complexity (3)

decision tree:0 1

0 1 0 1

2222

000000

222

222

222

111

111

2222000000

222

222

222

111

111

v

Observations:

For a leave v of tree, Rv := (x, y) : protocoll ends in v isa monochromatic rectangle

Page 57: Extended Formulations I (BootCamp)

Communication complexity (3)

decision tree:0 1

0 1 0 1

2222

000000

222

222

222

111

111

2222000000

222

222

222

111

111

v

Observations:

For a leave v of tree, Rv := (x, y) : protocoll ends in v isa monochromatic rectangle

A protocol for matrix S exchanging k bits⇒ S can be partitioned into 2k monochromatic rectangles⇒ S is sum of 2k rank-1 matrix

Page 58: Extended Formulations I (BootCamp)

Communication complexity (3)

decision tree:0 1

0 1 0 1

2222

000000

222

222

222

111

111

2222000000

222

222

222

111

111

v

Observations:

For a leave v of tree, Rv := (x, y) : protocoll ends in v isa monochromatic rectangle

A protocol for matrix S exchanging k bits⇒ S can be partitioned into 2k monochromatic rectangles⇒ S is sum of 2k rank-1 matrix

xc(polytope) ≤ 2CC(slack matrix)

Page 59: Extended Formulations I (BootCamp)

An exact model (1)

We have seen:

2CCnondet(supp. of slack matrix) ≤ xc(polytope) ≤ 2CC(slack matrix)

Page 60: Extended Formulations I (BootCamp)

An exact model (1)

We have seen:

2CCnondet(supp. of slack matrix) ≤ xc(polytope) ≤ 2CC(slack matrix)

Exact communication model (Faenza, Fiorini, Grappe,Tiwary & Zhang):

Page 61: Extended Formulations I (BootCamp)

An exact model (1)

We have seen:

2CCnondet(supp. of slack matrix) ≤ xc(polytope) ≤ 2CC(slack matrix)

Exact communication model (Faenza, Fiorini, Grappe,Tiwary & Zhang):

Alice receives row index i. Bob receives col index j

Page 62: Extended Formulations I (BootCamp)

An exact model (1)

We have seen:

2CCnondet(supp. of slack matrix) ≤ xc(polytope) ≤ 2CC(slack matrix)

Exact communication model (Faenza, Fiorini, Grappe,Tiwary & Zhang):

Alice receives row index i. Bob receives col index j

Alice and Bob have internal randomness. They exchange0/1 bits.

Page 63: Extended Formulations I (BootCamp)

An exact model (1)

We have seen:

2CCnondet(supp. of slack matrix) ≤ xc(polytope) ≤ 2CC(slack matrix)

Exact communication model (Faenza, Fiorini, Grappe,Tiwary & Zhang):

Alice receives row index i. Bob receives col index j

Alice and Bob have internal randomness. They exchange0/1 bits.

At the end one of them outputs a non-negative numberwith Sij = Erandomness[protocoll(i, j)].

Page 64: Extended Formulations I (BootCamp)

An exact model (1)

We have seen:

2CCnondet(supp. of slack matrix) ≤ xc(polytope) ≤ 2CC(slack matrix)

Exact communication model (Faenza, Fiorini, Grappe,Tiwary & Zhang):

Alice receives row index i. Bob receives col index j

Alice and Bob have internal randomness. They exchange0/1 bits.

At the end one of them outputs a non-negative numberwith Sij = Erandomness[protocoll(i, j)].

Let CCRAND(S) be min. # bits. Then

xc(polytope) = 2CCRAND(slack matrix S)

Page 65: Extended Formulations I (BootCamp)

An exact model (2)

Let ui, vj ∈ Rr≥0 with Sij = 〈ui, vj〉.

Sij

S

i

j

Alice

Bob

Page 66: Extended Formulations I (BootCamp)

An exact model (2)

Let ui, vj ∈ Rr≥0 with Sij = 〈ui, vj〉.

Sij

S

i

j

Alice

Bob

Protocoll with log2(r) bits:

Page 67: Extended Formulations I (BootCamp)

An exact model (2)

Let ui, vj ∈ Rr≥0 with Sij = 〈ui, vj〉.

Sij

S

i

j

Alice

Bob

Protocoll with log2(r) bits:

Alice picks k ∈ [r] with probability vi(k) (ass. ‖vi‖1 ≤ 1)

Page 68: Extended Formulations I (BootCamp)

An exact model (2)

Let ui, vj ∈ Rr≥0 with Sij = 〈ui, vj〉.

Sij

S

i

j

Alice

Bob

Protocoll with log2(r) bits:

Alice picks k ∈ [r] with probability vi(k) (ass. ‖vi‖1 ≤ 1)

Bob receives k from Alice and outputs uj(k)

Page 69: Extended Formulations I (BootCamp)

An exact model (2)

Let ui, vj ∈ Rr≥0 with Sij = 〈ui, vj〉.

Sij

S

i

j

Alice

Bob

Protocoll with log2(r) bits:

Alice picks k ∈ [r] with probability vi(k) (ass. ‖vi‖1 ≤ 1)

Bob receives k from Alice and outputs uj(k)

Then

E[protocoll(i, j)] =r∑

k=1

vi(k) · uj(k) = 〈ui, vj〉

Page 70: Extended Formulations I (BootCamp)

An exact model (3)

Consider depth c protocoll tree:

Alice

Bob

Alice

Bob

leaf w

c

Page 71: Extended Formulations I (BootCamp)

An exact model (3)

Consider depth c protocoll tree:

Alice

Bob

Alice

Bob

leaf w

c

Sij =∑

leaves w

value(w) · Pr[protocoll(i, j) ends at w]

Page 72: Extended Formulations I (BootCamp)

An exact model (3)

Consider depth c protocoll tree:

Alice

Bob

Alice

Bob

leaf w

c

Sij =∑

leaves w

value(w) · Pr[protocoll(i, j) ends at w] =

leaves w

value(w)︸ ︷︷ ︸

≥0

·Pr[Alice stays on w path | i] · Pr[Bob stays on w path | j]

Page 73: Extended Formulations I (BootCamp)

An exact model (3)

Consider depth c protocoll tree:

Alice

Bob

Alice

Bob

leaf w

c

Sij =∑

leaves w

value(w) · Pr[protocoll(i, j) ends at w] =

leaves w

value(w)︸ ︷︷ ︸

≥0

·Pr[Alice stays on w path | i] · Pr[Bob stays on w path | j]

⇒ 2c-size non-neg factorization

Page 74: Extended Formulations I (BootCamp)

Part III

The Lower Bound on the

Correlation Polytope

Page 75: Extended Formulations I (BootCamp)

Correlation polytope (1)

The correlation polytope is

COR = convbbT : b ∈ 0, 1n

Page 76: Extended Formulations I (BootCamp)

Correlation polytope (1)

The correlation polytope is

COR = convbbT : b ∈ 0, 1n

Example: For n = 2,

COR = conv

(0 00 0

)

,

(1 00 0

)

,

(0 00 1

)

,

(1 11 1

)

Page 77: Extended Formulations I (BootCamp)

Correlation polytope (1)

The correlation polytope is

COR = convbbT : b ∈ 0, 1n

Example: For n = 2,

COR = conv

(0 00 0

)

,

(1 00 0

)

,

(0 00 1

)

,

(1 11 1

)

Observation: The polytope is NP-hard.For graph G = ([n], E) with adjacency matrix AG

maxcut(G) = maxx∈0,1n

(DG−AG)•xxT =

(i,j)∈E

(xi + xj − 2xixj)︸ ︷︷ ︸

=1 if xi 6=xj ,0 o.w.

Page 78: Extended Formulations I (BootCamp)

Correlation polytope (1)

The correlation polytope is

COR = convbbT : b ∈ 0, 1n

Example: For n = 2,

COR = conv

(0 00 0

)

,

(1 00 0

)

,

(0 00 1

)

,

(1 11 1

)

Observation: The polytope is NP-hard.For graph G = ([n], E) with adjacency matrix AG

maxcut(G) = maxx∈0,1n

(DG−AG)•xxT =

(i,j)∈E

(xi + xj − 2xixj)︸ ︷︷ ︸

=1 if xi 6=xj ,0 o.w.

Theorem (Fiorini, Massar, Pokutta, Tiwary, de Wolf ’12)

xc(COR) ≥ 2Ω(n).

Here: Simplified proof by Kaibel and Weltge

Page 79: Extended Formulations I (BootCamp)

Correlation polytope (2)

Lemma

For all a ∈ 0, 1n, (2diag(a)− aaT ) • Y ≤ 1 is a feasibleinequality for Y ∈ COR.

Page 80: Extended Formulations I (BootCamp)

Correlation polytope (2)

Lemma

For all a ∈ 0, 1n, (2diag(a)− aaT ) • Y ≤ 1 is a feasibleinequality for Y ∈ COR.

Suffices to check slack for Y = bbT .

1− 2·

11110000

supp(a)

1111

1111

1111

1111

supp(b)

+ 1111

1111

1111

1111

supp(a)

1111

1111

1111

1111

supp(b)

Page 81: Extended Formulations I (BootCamp)

Correlation polytope (2)

Lemma

For all a ∈ 0, 1n, (2diag(a)− aaT ) • Y ≤ 1 is a feasibleinequality for Y ∈ COR.

Suffices to check slack for Y = bbT .

1− 2·

11110000

supp(a)

1111

1111

1111

1111

supp(b)

+ 1111

1111

1111

1111

supp(a)

1111

1111

1111

1111

supp(b)

= 1− 2|a ∩ b|+ |a ∩ b|2 = (1− |a ∩ b|)2 ≥ 0

Page 82: Extended Formulations I (BootCamp)

Correlation polytope (3)

a

b

slack matrix S

(1− |a ∩ b|)2 (2diag(a)− aaT ) • Y ≤ 1

P

b

b b

b

COR

bbT

Page 83: Extended Formulations I (BootCamp)

Correlation polytope (3)

a

b

slack matrix S

(1− |a ∩ b|)2 (2diag(a)− aaT ) • Y ≤ 1

P

b

b b

b

COR

bbT

Observations:

S is a submatrix of the “real” slack-matrix

Page 84: Extended Formulations I (BootCamp)

Correlation polytope (3)

a

b

slack matrix S

(1− |a ∩ b|)2 (2diag(a)− aaT ) • Y ≤ 1

P

b

b b

b

COR

bbT

Observations:

S is a submatrix of the “real” slack-matrix

We have

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

Page 85: Extended Formulations I (BootCamp)

Incomplete slack matrices

Lemma

For a polytope P = x | Ax ≤ b and X = x1, . . . , xv ⊆ Pdefine a matrix S with Si,j := bi −Aixj . Then

rk≥0(S) = minxc(Q) : X ⊆ Q ⊆ P

P

b

b b

b

conv(X)

Page 86: Extended Formulations I (BootCamp)

Incomplete slack matrices

Lemma

For a polytope P = x | Ax ≤ b and X = x1, . . . , xv ⊆ Pdefine a matrix S with Si,j := bi −Aixj . Then

rk≥0(S) = minxc(Q) : X ⊆ Q ⊆ P

Q

P

b

b b

b

conv(X)

Page 87: Extended Formulations I (BootCamp)

Correlation polytope (3)

Sa

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

Page 88: Extended Formulations I (BootCamp)

Correlation polytope (3)

S1

11

11

a

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

Define disjoint pairs P0 := (a, b) : |a ∩ b| = 0

Page 89: Extended Formulations I (BootCamp)

Correlation polytope (3)

S1

11

11

a

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

Define disjoint pairs P0 := (a, b) : |a ∩ b| = 0

Claim

|P0| = 3n.

Page 90: Extended Formulations I (BootCamp)

Correlation polytope (3)

S1

11

11

a

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

Define disjoint pairs P0 := (a, b) : |a ∩ b| = 0

Claim

|P0| = 3n.

For disjoint pair (a, b), for coordinate i there are 3 options ai = 0, bi = 0 ai = 1, bi = 0 ai = 0, bi = 1

Page 91: Extended Formulations I (BootCamp)

Correlation polytope (4)

S

1

11

11

a

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

disjoint pairs P0 := (a, b) : |a ∩ b| = 0

Page 92: Extended Formulations I (BootCamp)

Correlation polytope (4)

S

1

11

11

0

0

0

00

a

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

disjoint pairs P0 := (a, b) : |a ∩ b| = 0 forbidden pairs P1 := (a, b) : |a ∩ b| = 1

Page 93: Extended Formulations I (BootCamp)

Correlation polytope (4)

S

1

11

11

0

0

0

00

Ra

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

disjoint pairs P0 := (a, b) : |a ∩ b| = 0 forbidden pairs P1 := (a, b) : |a ∩ b| = 1

Page 94: Extended Formulations I (BootCamp)

Correlation polytope (4)

S

1

11

11

0

0

0

00

Ra

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

disjoint pairs P0 := (a, b) : |a ∩ b| = 0 forbidden pairs P1 := (a, b) : |a ∩ b| = 1

Lemma

Any rectangle R without forbidden pairs has |R ∩ P0| ≤ 2n.

Page 95: Extended Formulations I (BootCamp)

Correlation polytope (4)

S

1

11

11

0

0

0

00

Ra

b

Sab =

1 |a ∩ b| = 0

0 |a ∩ b| = 1

disjoint pairs P0 := (a, b) : |a ∩ b| = 0 forbidden pairs P1 := (a, b) : |a ∩ b| = 1

Lemma

Any rectangle R without forbidden pairs has |R ∩ P0| ≤ 2n.

By rectangle covering lower bound

xc(COR) ≥|P0|

2n=

(3

2

)n

Page 96: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

Page 97: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

a : 1 ∈ a

a : 1 /∈ a

b : 1 /∈ b b : 1 ∈ b

Page 98: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

a : 1 ∈ a

a : 1 /∈ a

b : 1 /∈ b b : 1 ∈ b

R1

Define rectangles R1 = (a, b) ∈ R : 1 /∈ b

Page 99: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

a : 1 ∈ a

a : 1 /∈ a

b : 1 /∈ b b : 1 ∈ b

R1

R2

Define rectangles R1 = (a, b) ∈ R : 1 /∈ b andR2 = (a, b) ∈ R : 1 /∈ a

Page 100: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

a : 1 ∈ a

a : 1 /∈ a

b : 1 /∈ b b : 1 ∈ b

R1

R2

1

1

1

1

Define rectangles R1 = (a, b) ∈ R : 1 /∈ b andR2 = (a, b) ∈ R : 1 /∈ a

All entries in P0 covered

Page 101: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

a : 1 ∈ a

a : 1 /∈ a

b : 1 /∈ b b : 1 ∈ b

R1

R2

1

1

1

1

Define rectangles R1 = (a, b) ∈ R : 1 /∈ b andR2 = (a, b) ∈ R : 1 /∈ a

All entries in P0 covered

Delete symbol 1 from all tuples and apply induction

|P0∩R| ≤ |P0(n−1)∩R1|+ |P0(n−1)∩R2| ≤ 2 ·2n−1 = 2n

Page 102: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

a : 1 ∈ a

a : 1 /∈ a

b : 1 /∈ b b : 1 ∈ b

R1

R2

1

1

1

1

Define rectangles R1 = (a, b) ∈ R : 1 /∈ b andR2 = (a, b) ∈ R : 1 /∈ a

All entries in P0 covered

Delete symbol 1 from all tuples and apply induction

|P0∩R| ≤ |P0(n−1)∩R1|+ |P0(n−1)∩R2| ≤ 2 ·2n−1 = 2n

Good news: No forbidden pairs created!

Page 103: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

R1

R2a

a ∪ 1 1

1

Define rectangles R1 = (a, b) ∈ R : 1 /∈ b andR2 = (a, b) ∈ R : 1 /∈ a

All entries in P0 covered

Delete symbol 1 from all tuples and apply induction

|P0∩R| ≤ |P0(n−1)∩R1|+ |P0(n−1)∩R2| ≤ 2 ·2n−1 = 2n

Good news: No forbidden pairs created!

Potential problem: Diff. tuples collapse to the same one

Page 104: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

R1

R2a

a ∪ 1 1

1

b b ∪ 1

1

Define rectangles R1 = (a, b) ∈ R : 1 /∈ b andR2 = (a, b) ∈ R : 1 /∈ a

All entries in P0 covered

Delete symbol 1 from all tuples and apply induction

|P0∩R| ≤ |P0(n−1)∩R1|+ |P0(n−1)∩R2| ≤ 2 ·2n−1 = 2n

Good news: No forbidden pairs created!

Potential problem: Diff. tuples collapse to the same one

Page 105: Extended Formulations I (BootCamp)

Correlation polytope (5)

R

R1

R2a

a ∪ 1 1

1

b b ∪ 1

1

0

Define rectangles R1 = (a, b) ∈ R : 1 /∈ b andR2 = (a, b) ∈ R : 1 /∈ a

All entries in P0 covered

Delete symbol 1 from all tuples and apply induction

|P0∩R| ≤ |P0(n−1)∩R1|+ |P0(n−1)∩R2| ≤ 2 ·2n−1 = 2n

Good news: No forbidden pairs created!

Potential problem: Diff. tuples collapse to the same one

Page 106: Extended Formulations I (BootCamp)

The end

Thanks for your attention