explosive shaped charge penetration into tuff rock - sandia

69
SANDIA REPORT SAND88 - 2338 • UC - 35 Unlimited Release Printed October 1988 Explosive Shaped Charge Penetration Into Tuff Rock M. G. Vigil Prepared by Sandia Natiqnal Laboratories New Mexico 87185 and Livermore, California 94550 for the United States of Energy under Contract DE-AC04-76DPOO789 SF2900Q(S-S1) When printing a copy of any digitized SAND Report, you are required to update the markings to current standards.

Upload: others

Post on 11-Feb-2022

13 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

SANDIA REPORT SAND88 - 2338 • UC - 35 Unlimited Release Printed October 1988

Explosive Shaped Charge Penetration Into Tuff Rock

M. G. Vigil

Prepared by Sandia Natiqnal Laboratories Ai~uquerque, New Mexico 87185 and Livermore, California 94550 for the United States Departmen~ of Energy under Contract DE-AC04-76DPOO789

SF2900Q(S-S1)

When printing a copy of any digitized SAND Report, you are required to update the

markings to current standards.

Page 2: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Issued by Sandia National Laboratories, operated for the United States Department of Energy by Sandia Corporation. NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Govern­ment nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof or any of their contractors or subcontractors.

Printed in the United States of America Available from National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA 22161

NTIS price codes Printed copy: A04 Microfiche copy: AOI

Page 3: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

SAND88~2338 UC-35 Unlimited Release

Printed October 1988

EXPLOSIVE SHAPED CHARGE PENETRATION INTO TUFF ROCK

Manuel G. Vigil

Explosive Subsystems Division Sandia National Laboratories Albuquerque, NM 87185-5800

ABSTRACT

Analysis and data for the use of E~plosive Shaped Charges (ESC) to generate holes in tuff rock formation is presented. The ESCs evaluated include Conical Shaped Charges (CSC) and Explosive Formed Projectiles (EFP). The CSCs vary in size from 0.158 to 9.1 inches inside cone diameter. The EFPs were 5.0 inches in diameter. Data for projectile impact angles of 30 and 90 degrees are presented. Analytically predicted depth of penetration data generally compared favorably with experimental data. Predicted depth of penetration versus ESC standoff data and hole profile dimensions in tuff are also presented.

3

Page 4: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

ACKNOWLEDGMENTS

The author wishes to thank those persons who contributed to this study, namely, Donnie Marchi, 2512, for fabrication of test setup hardware, obtaining all test measurements, and involvement in conducting the tests. Duane Smith, 7173, and Dave Kessel, 7173, coordinated the scheduling, setup of safety procedures and arming and firing for these tests.

4

Page 5: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

TABLE OF CONTENTS

I. Introduction .................................................................... : .......................................... 8

II. Development ............................................................................................................. 9

Tuff Rock Formation ........... , ....................... , ............... : ....................................... , ... 9 Conical Shaped Ch~rges ~ ........................................................................................ 9 Predicted esc Jet Penetration ............. , .... , ............................................................ 10 CSC Test Results ...................................................................................................... 10 Explosive Formed Projectile ......................................... .... ..................................... 10 Predicted EFP Slug Penetration ............................................................................ 11 EFP Test Results ...................................................................................................... 12

III. ' Summary .; .................................................................................................................. 13

IV. References .................................................................................................................. 14

Tables ..................................................................................................................................... 16

Figures ..... , ....................................................................... , .... ; ................................................ 22

Distribution ......... : .......... , .. ; .................................. , .................................................................. 83

5

Page 6: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

TABLES

I Historical Background for Conical Shaped Charges (CSC) .............................. 16 II Explosive Shaped Charge Parameters .................................................................. 16 III Shaped Charge/Tuff Penetration Tests at Tonopah .................... ; .................... .18 IV EFP Parameters ....................................................................................................... 19 V Explosive Formed Projectile Slug Parameters ................................................... .20 VI Predicted CSC Jet Penetration in Tuff ........... : .................................................... .21

FIGURES

Figure

6

1 General Explosive Shaped Charge tuff Target Configuration .......................... 22 2 General Explosive SHaped Charge Configuration .. ~ ..................................... : .... 23 3 Hydrocode Simulation of a 42 0 Conical Shaped Charge,

Initial Liner Configuration, and Jet Slug Formation at 40 and 60 j.LS .......................................................................................................... 24

4 Hydrocode Simulation of Jet Formation From a Hemispherical Shaped Charge For the Point-Initiated Case at Three Times After Detonation .............................................................................. 25

5 Slug Shape for 5 Inch-Diameter EFP at 200 j.LS After Detonation .................. .26 6 Steel, Hollow Tube with High Pressure Hose Attached

For Cleaning Holes in tuff Formation .................................................................. 27 7 Steel Tape Used to Measure Hole Depth ............................................................ 29 8 Solid Steel Rod Used to Measure Hole Depth ................................................... 31 9 General Conical Shaped Charge Cross-Section Parameters ............................ 33 10 Basic Conical Shaped Charge Cross-Section ....................................................... 34 11 Optimized Conical Shaped Charge Configuration .................................... .. ....... 35 12 Conical Shaped Charge Configuration ................................................................. 36 13 CSC Development Test Housing Configuration ................................................ .37 14 3.86 Inch Diameter CSC Cross-Section ................................................................ 38 15 4.66 Inch Diameter CSC Cross-Section ................................................................ 39 16 M2A3 Conical Shaped Charge Coniguration ..................................................... .40 17 M3 9.125 Inch Diameter CSC Cross Section ...................................................... 41 18 Conical Shaped Charge Copper Jet ...................................................................... 42 19 Film Cassette #2 Showing Jet Tip at 201 j.LS from Detonation ........................ .43

Page 7: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Figures cont'd

20 Flash X-Ray Triple Exposure of Cassette #1.. ................................................... .44 21 0.158 Inch Diameter CSC Penetration Versus Standoff ................................... .45 22 3.86 CSC Jet Penetration Versus Standoff for a TuffTarget.. ......................... .46 23 4.66 CSC Jet Penetration Versus Standoff for a Tuff Target.. ......................... .47 24 6.986 Inch Diameter M2A3 CSC penetration Versus Standoff ....................... .48 25 9.125 Inch Diameter M3 CSC ................................................................................ 49 26 Conical Shaped Charge Jet Penetration into Welded

Tuff Formations at Tonapah Test Range ............................................................ .50 27 Shaped Charge Orientations Relative to Tuff

Formation Surface ................................................................................................... 51 28 3.86 Inch Diameter CSC Test Configuration ...................................................... .53 29 3.86 Inch Diameter CSC Generated Hole in Tuff.. ........................................... .55 30 4.66 Inch Diameter CSC Test Configuration ....................................................... 57 31 4.66 Inch Diameter CSC Generated Hole in Tuff.. ........................................... .59 32 7.0 Inch Diameter CSC Test Configuration ......................................................... 61 33 7.0 Inch Diameter CSC Generated Hole in Tuff.. .............................................. 63 34 9.125 Inch Diameter CSC Test Configuration ..................................................... 65 35 9.125 Inch Diameter CSC Generated Hole in Tuff ............................................ 67 36 Conical Shaped Charge Jet Entrance Hole Diameter

in Tuff as a Function of CSC Cone Inside Diameter ......................................... 69 37 Conical Shaped Charge Jet Bottom Hole Diameter in

Tuff as a Function of CSC Cone Inside Diameter ............................ ~ ................. 70 38 Explosive Formed Projectile Configuration ........................................................ 71 39 EFP Copper Liner for 5.0 In~h Inside Diameter EFP ....................................... 72 40 JTI Explosive Formed Projectile Measured Penetration

into Steel (RHA) Target Versus Standoff ........................................................... 73 41 Projectile Penetration to Length Ratio Versus Square

Root of Projectile Density and Target.. ................................................................ 74 42 EFP Test Configuration for 90 Degree Impact of Tuff Target.. ....................... 75 43 EFP Slug Generated Hole in Tuff Target.. .......................................................... 77 44 EFP Test Configuration for 30 Degree Impact of Tuff Target.. ....................... 79 45 EFP Slug Generated Hole in Tuff Target.. .......................................................... 81

7

Page 8: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

EXPLOSIVE SHAPED CHARGE PENETRATION INTO TUFF ROCK

I. Introduction

Explosive Shaped Charges (ESC) were used to generate holes in tuff rock formations. This ESC technology has application in the mining industry!, road construction, demolition, excavation, petroleum industry and general rock barrier penetration work. Several Conical Shaped Charges (CSC) and one Explosive Formed Projectile (EFP) were evaluated. The CSCs vary in size from 0.158 to 9.1 inches inside con~ diameter. The EFPs were 5.0 inches in diameter. ESC generated hole profiles in tuff are presented. Analytically predicted ESC depth of penetration data are compared to experimental data. Predicted CSC penetration versus standoff data are included.

The general ESC -- tuff target configuration for this study is shown in Figure 1. The general explosive shaped charge configurations considered for this study are shown in Figure 2.

The three ESCs shown in Figure 2 produce three different projectiles as illustrated in Figures 3 - 5 for a conical shaped charge (CSC), hemispherical shaped charge (HSC) and explosive formed projectile (EFP), respectively. For any homogeneous target material that will flow under high dynamic pressure impact conditions, a CSC will produce the smallest diameter and deepest hole. The EFP will produce the largest diameter and sha'llowest hole in the target. The HSC should prod~ce a hole profile where diameter and depth of penetration are between the CSC and EFP lin;lits. Only CSCs and EFPs were used in this study. I .

After each test, a small di~meter hollow tube, with a high pressure air hose attached, was inserted into the hole to blowout or clean the hole as shown in Figure 6. A measuring tape as shown in Figure 7 or a solid, steel rod about 0.375 inches in diameter, as shown in Figure 8, were used to measure the hole depth. An inclinometer along with the steel rod were used to measure the hole angle (0:) relative to the target surface. Different diameter, wooden spheres on threaded aluminum rods were used to measure the hole diameter at a given depth. Other methods for measuring hole profile proved to be too expensive.

8

Page 9: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

II. Development

Tuff Rock Formation

The ESC tests were conducted in the welded tuff formations at Tonopah Test Range in Nevada. The density of the tuff is 1.85 grams per cubic centimeter and the unconfined compression strength is 23 megapascals or 3338 pounds per square inch. The porosity of the tuff is about 5 percent.

Conic,!' Shaped Char&es

A detailed historical background for the development of conical shaped charge (CSC) technology is presented in Reference 1. A brief summary of major historical CSC events is listed in Table I and References 2 -- 19. Reference 19 lists 99 references on the tbeory and operation of conical shaped charges. General configurations for CSCs are shown in Figure 9 -- 10. Figure 9 illustrates the large number (20) of variables involved in the design of a eSc. An optimized CSC cross­sectipn is illustrated in Figure 11. It is assumed that the reader has some knowledge of the functioning19 of CSCs.

The cross-sections for the CSCs evaluated in this study are shown in Figures 12 -- 17. Figures 12 and 13 show the cross-section and steel housing for the 0.158 inch diameter CSC, respectively. Figures 14 -- 17 illustrate the configurations for 3.86, 4.66,6.986, and 9.125 inch inside diameter CSCs.

The ESC liner inside diameter, liner material, apex angle, explosive type, explosive weight and tamping material are listed in Table II. The eleven ESC tests conducted in this study are listed in Table III. The first nine tests involved CSCs.

Radiographs for the 0.158 inch diameter CSC jet are shown in Figure 18 at one microsecond intervals. The jet diameter aft of the tip is about 0.025 inches and the jet length just before breakup is about 0.5 inches. The measured jet tip velocity is 5.5 millimeter per microsecond. Figures 19 and 20 show radiographs of the 9.125 inch diameter CSC (M3) jet. Three flash X-ray heads were used to expose the two films shown in Figures 19 and 20. The three jet paths indicated on the radiographs are a result of each of the three different X-ray heads projecting the jet profile onto three different hejghts on the film. The jet had not arrived along the top path in Figure 19 film which was located down stream of the film of Figure 20 relative to the jet tip. The jet diameter aft of the tip is about 0.70 inches and the jet length before breakup is about 30 inches. The measured jet tip velocity was 7.1 millimeters per microsecond.

9

Page 10: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Predicted esc Jet Penetration

The Shaped Charge Analysis Program (SCAP)20.21 code developed at Sandia National Laboratories was used to predict the CSC jet penetrations in Tuff. This code uses a hydrodynamic model for target penetration. The model works well for targets that flow hydrodynamically under high dynamic pressure loading conditions. It was assumed that the tuff rock material would flow like metallic target materials. Figures 21 -- 25 show the SCAP code predictions of jet penetration versus standoff for the 0.158, 3.86, 4.66, 6.986, and 9.125 inch diameter CSCs, respectively. The SCAP code predicted and measured jet penetration versus CSC cone inside diameter data are compared in Figure 26.

esc Test Results

esc tests were conducted at 30 (shallow impact) and 90 (normal impact) degrees relative to the tuff target surface as illustrated in Figure 27. The standoffs were varied as shown in Table III. The 3.86 and 4.66 inch diameter CSC tests \\,fere conducted with relatively short (7 inch) and with relatively long (27 and 36 inches, respectively) standoffs.

Figures 28, 30, 32, and 34 show the test configuration for the 3.86, 4.66, 7.0, and 9.125 inch diameter CSCs. Figures 29, 31, 33, and 35 show the CSC generated holes in the tuff rock for the above CSCs, respectively. All CSC tests shown are for . 90 degree orientations of the CSC relative to the tuff surface. The measureq CSC standoff (S.O.), jet penetration (P), entrance hole diameter (De), hole bottom diameter (Db)' surface crater depth (He) and hole center line to target surface angle (0) data are listed in Table III for all tests. .

The target entrance hole diameter (De) as a function of CSC diameter is shown in Figure 36 for CSCs with copper liners. The bottom of the hole diameter versus CSC diameter is shown in Figure 37 for CSCs with copper liners.

Explosive Formed Projectile

The dimensions for the EFp22 used in this study are shown in Figure 38. The EFP explosive, copper liner, and tamping (casing) parameters are listed in Table IV. The EFP slug or projectile parameters are listed in Table V. The upper liner is shown in Figure 39. The EFP projectile penetration into rolled homogeneous armor (RHA) versus standoff is shown in Figure 40.

10

Page 11: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Predicted EFP Slug Penetration

The only simple prredictive tool for projectile penetration is the following modified Bernoulli equation:23

where, U = projectile penetration velocity YP = projectile strength factor Rt = target strength factor P~ =t,\rget density Pp :;: projectile density V p :;:: projectile velocity

The SCAP code can~ot model EFPs. Hydrodynamic codes wouJd require equation of stat~ parameters for the tuffmaterial which are not readily known. Modeling the collapse of the EFP disk could present some qifficulties in addition to the expense.

Since th~ strength f~ctors (Y P' Rt ) for the tuff and copper were not known, these terms were dropped in the above equation resulting in the familiar square root density lawl9 for high velocity impact:

The above equation was used to estimate the EFP penetration (P) in the tuff target:

where, L :;:: 10.0 inches (Table V) := projectile length Pp = 8.96 g/cc Pt =;= 1.85 g/ cc

Thus, P = 22.1 inches

A second similar method was also used. Since the EFP slug penetration in steel (RHA)22 is known, and shown in Figure 40, then for the same EFP, the following relationship can be derived:

11

Page 12: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

from Figure 40, at Standoff = 12 inches P Steel = 9.2 inches PSteel = 7.86 g/cc

PTUFF = 19 inches

The above two methods predict EFP slug penetrations into tuff of 19 -- 22.1 inches. The square root density law relationship for projectile (slug) penetration to slug length ratio as a function of square root of projectile density for various target materials including tuff is shown in Figure 41.

The EFP slug velocity was calculated using the Taylor Piston model24 for barrel tamped flyers:

where, VB A Z D G Ce

weight ALPHA M C

Vs = DA[(Z-l)/(Z+ 1)]

= maximum slug velocity = 3.4 mm/microsecond = [8/(G2-1)]o.5 = 1.0 = [1 + (32 Ce/27M)]O.5 = 2.24 = detonation velocity = 8.8 mm/microsecond = explosive detonation product gas exponent = 3.0 = discounted or effective explosive = C(ALPHA) = 945g (Ref. 24) = explosive discount factor = 0.35 = liner weight = 280g = actual explosive weight = 2700g

The calculated EFP slug velocity was 3.4 millimeters per microsecond which agrees well with the measured values of 3.83 (slug tip) to 2.4 (slug tail) millimeters per microsecond (average velocity = 3.1).22

EFP Test Results

EFP tests were conducted at 30 and 90 degrees relative to the tuff target surface as illustrated in Figure 27. The standoffs were varied as shown in Table III.

Figures 42 and 44 show the test configurations for 90 and 30 degree impacts, respectively. Figures 43 and 45 show the EFP slug generated holes in the tuff rock. The measured EFP standoff (S.O.), slug penetration (P), entrance hole diameter (De), bottom of the hole diameter (Db)' surface crater depth (He) and hole centerline to target surface angle (Q) data are listed in Table III for both tests.

12

Page 13: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

III. Summary

Conical shaped charges (esc) and explosive formed projectiles (EFP) have been shown to be useful in generating holes in tuff rock. {::SCs varying in diameter from 0.158 to 9.125 inches and an EFP of 5.0 inch diameter were used to generate holes in tuff w,th parameters in the following ranges (for 90 degree impacts and excluding the O.15~ inch eSC):

Penetration depth: Entrance hole diameter: Bottom of hole diameter: Surfac;e crater diameter: Depth of surface crater:

23.5 - 55 inches 1,2 - 5.5 inches 0.5 - 2 inches 6 - 23 inches 1 - 8 inches

The C~Cs generated the maximum depth of penetration with the 4.66 inch diameter C,SC producing a 55 inch hole in the Tuff. The EFP generated the largest diameters with 5.5 inches at the entrance and 2.0 inches at the bottom.

The S~AP code predictions of esc jetpenetration in tuff versus standoff were gener~lly in ~ood a~reement with the experimental data, as illustrated in Table VI. The simple hydrodynamic square root density law relationship for EFP slug penetra~ioQ predictions were in reasonable agreement with the ex;perimental data. Ther~fore, hydrodynamic theory describes the CSC jet and EFP slug penetration in ~uff reasonably well.

13

Page 14: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

14

IV. References

1. C. F. Austin, Lined - Cavity Shaped Charges and Their Use in Rock and Earth Materials. New Mexico Institute of Mining & Technology, Bulletin 69, 1959.

2. C. E. Munroe, Modern Explosives. Scribners Mag., v. 3, p. 563-576, 1888.

3. C. E. Munroe, The Application of Explosives. Pop. Sci. Monthly, v. 56, p. 444-455, 1900.

4. R. W. Wood, Optical and Physical Effects of High Explosives. Roy. Soc. Proc., v. 157, p. 249-260, 1936.

5. F. A. Korolev and G. I. Pokrovskii, Investigation of the Jet Action of Explosives by an Optical Method. Doklady Akad. Nauk. (U.S.S.R.), v.42, p. 266-267, 1944. .

6. V. Torrey, Bazooka's Grandfather. Pop. Sci. Monthly, v .. 146, p. 65-69, 211-216, 1945.

7. V. Torrey, Shaped Charge. Munroe Effect. Explosives Eng., v. 23, p . . 160-163, 1945. . .

8. J. B. Huttl, The Shaped Charge for Cheaper Mine Blasting. Eng. Min. J., v. 147,p.58-63,1946.

9. R. S. Lewis and G. B. Clark, Application of Shaped Explosive Charges to Mining Operations: Tests on STeel and Rock. Univ. of Utah Bull. 5, p. 1-37, 1946.

10. H. C. Draper, J. E. Hill, and W .. G. Agnew, Shaped Charges Applied to Mining. Part I. Drilling HOles for Blasting. U. S. Bur. Mines Rpt. Inv. 4371, 1948.

11. G. Birkhoff, D. P. MacDougall, E. M. Pugh, and G. Taylor, Explosives with Lined Cavities. J. Appl. Phys., v. 19, p. 563-582, 1948.

12. L. S. Byers, The Multiple Jet Shaped Blasting ChargenWhy it Functions, Pit and Quarry, v. 41, p. 98-102, 1949.

13. L. S. Byers, New Plurajet Shaped Blasting Charges Ready for Industry. Pit and Quarry, v. 42, p. 79-81, 1950.

Page 15: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

14. J. T. Gardiner, Use of Shaped Charge Process for Open Hole Shooting, World Oil, v. 131, p. 99-103, 1950.

15. M. P. Lebourg and G. R. Hodgson, A method of Perforating Casing Below Tubing, Am. Inst. Min. Met. Eng., Pet. Br., Trans., v. 195, p. 303-310, 1952.

16. M. P. Lebourg and W. T. Bell, Perforating of Multiple Tubingless . COIflpletions, Am. Inst. Min. Met. Eng., Soc. Pet. Eng., 34th annual fall meeting, Paper 1298-G, 1959.

17. V. C.Davis, Taconite Fragmentation, U. S. Bur. Mines Prt. Inv. 4918, 1953.

18. R. M. Hyatt, Bazooka at Work, Pop. Mech., v. 112, p. 115-117,208,1959.

19 P. C. Chou and W. J. Flis, Recent Developments in Shaped Charge . Technology, Propellants, Explosive, Pyrotechnics. 11,99-114, 1986.

20. M. G. Vigil, Optimized Conic,!l Shaped Charge Design Using the SCAP Code, SAND88-1790, Sandia National Laboratories, Albuquerque, NM, Allgust 1988.

21. A. C. Robinson SCAP-A Shaped Charge Analysis Program - User's Manual for SCAP 1.0. SAND85-0708, Sandia National Laboratories, Albuquerque, NM, April 1985.

42, Design and Fabrication of EFP Assemblies, Final Report, Dyna East C::orporation, Report No. DE-TC-87-01, February 17, 1987.

23~ A. Tate, Long Rod Penetration Models - Part II. Extensions to the Hydrodyn,\mic Theory of Penetration, Int. J. Mech, Sci. Vol. 28, No.9, pp. 599-612, 1986.

24. R. A. Benham, Analysis of the Motion of a Barrell-Tamped Explosively Propelled Plate, SAND 78-1127, Sandia National Laboratories, September 1978.

15

Page 16: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

I--' 0\

Year

1888

1910

1936

1944

1945

1946

1947

1948

1948

1949

1950

1952

1953

1959

1986

Table I. Historical Background for Conical Shaped Charges (CSC)

Person Discovery

Charles E. Monroe Unlined cavity effect

Egon Neumann Unlined cavity effect

R. W. Wood Lined cavity/high velocity jet

Korolev & Pokrovski High velocity copper jet (No.8 blasting cap)

Voltra Torrsy First unclassified publications on military CSCs

J. B. Ruttl First publication on CSC use in mining

Lewis, Clark, Brunckner Additional -publications on CSC uSe in mining

H. C. Draper, J. E. Hill . CSCs applied Ito mining, drilling holes for blasting

W.G.Agnew

Birkoff, MacDougal, First paper on jet formation

Prigh, Taylor and penetration theory

L. S. Byers CSC marketed for mining

J. T. Gardiner CSC use in Petroleum industry

M. P. Lebourg, esc use in Petroleum industry .

G. R. Hodgson

v. C. Davis Publication on ese for mining

R. M. Hyatt Bazooka at work

p. C. Chou, W. J. Flis Recent development in ese technology

Reference

2,3

4

5

6,7

8

9

10

11

12,13

14

15,16

17

18

19

Page 17: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

~

-...J

Type

--

CSC CSC CSC CSC CSC EFP

Diameter

0.158 3.860 4.660 6.986 9.125 5.000

Liner Material

Copper Copper Copper Glass Steel Copper

Table II. Explosive Sbaped Charge Parameters

Apex Explosive Explosive . Tamping Angle ~eight Material (deg) (lb)

-47 LX-13 0.002 Steel 42 Octol 3.500 Aluminum 60 Octol 5.330 Aluminum 60 CompB 9.500 Fiberglass 60 CompB 30.000 Steel

LX-14 5.95 Steel

Page 18: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

I-" 00 Table III. Shaped Charge/Tuff Penetration Tests at Tonopah

Test No.

1 2 3 4 5 6 7 8 9 10 11

Shaped Charge

CSC CSC CSC CSC CSC CSC CSC M2A3/CSC M3/CSC JTI/EFP JTI/EFP

D Dia.

0.15 3.86 3.86 3.86 4.66 4.66 4.66 7.0 9.13 5.0 5.0

D = shaped charge diameter S.O. = standoff P = penetrating depth De = hole entrance diameter Db = hole bottom diameter CSC = conical shaped charge EFP = explosively formed projectile NA = not applicable ex = impact angle Dc = surface crater diameter He = surface crater depth

S.O. (in)

0.16 24 7 24 36 7 36 14 20 12 12

P Depth (in)

0.92 27.01

37.5 43.0 53.0 55.0 52.5 46.0 50.0 23.5 13.5

(1) (2) (3)

De (in)

0.12 1.20 3.0 1.13 1.50 3.5 1.50 3.50 5.50 5.50 7.003

Db (in)

0.07 ? 7.02

0.5 0.5 16.42

0.5 44.02

40.02

23.02

Hole Profile

Dc He (in) (in)

0.84 0.13 10.0 7.5 8.5 2.8 29.0 6.0 9.0 8.0 6.0 1.0 35.0 7.0 14.5 4.0 23.0 4.0 14.0 3.0 40.0 6.5

= unable to clean hole out with air compressor = Depth for 2 inch diameter ball = EFP projectile ricochet

ex

(deg)

90 90 87 31 90 89 28 88 89 90 30

Page 19: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Table IV. E{?P Parameters

Explosive22

Lx~14

2.7 Kg (S.95Ib) p = 1.83 gjcc Detonation velocity = 8.8 mmjmicrosecond

CQPPer Liner22

Weight = 280 grams

Casing/Tamping22

Stainless Steel Weight = 3357.2 g

19

Page 20: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

20

Table V. Explosive Formed Projectile Slug Parameters

Slug Parameters22

1. 2. 3. 4. 5. 6. 7.

Diameter Length Tip Velocity Tail Velocity Mass Energy Breakup Time

Value

0.75 inches 10.0 inches 3.83 mm/microsecond 2.4 mm/microsecond 280 grams 1.35 megajouls 255 microseconds at 43.3 inches

Page 21: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

tv

"""'"

CSC Impact Diameter Angle

(deg).

0.158 90 3.860 90 3.860 30 4.660 90 4.660 30 6.986 90 9.125 90

* = Unable to clean hole

Table VL -Predicted esc Jet Penetration In-Tuff

Standoff (in) Penetration (in) Measu-red SCAP Measured SCAP % Diff.

0.2 -0.2 0.92 - 1.2 30 24 24 27.0* 51 7 7 43.0 41 10 36 36 53.0 54 4 7 1 52.5 49 7 14 14 46.0 54 17 20 20 50.0 43 13

Page 22: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

22

Shaped Charge

r Surface Spallation Crater

-I Dc

HOLE PROFILE MEASUREMENTS

Figure 1. General Explosive Shaped Charge Tuff Target Configuration

Page 23: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

'" w

CONICAL SHAPED CHARGE

HEMISPHERICAL SHAPED CHARGE

EXPLOSIVE FORMED PROJECTILE

Figure 2. General Explosive Shaped Charge Configurations

~

Page 24: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

IV

"'" - .::k'.

I • E L..LL I "t,\,\w1 , 100 140

SLUG ",I~ .JET I.

M

I •

• 1

• 4'" I' ..

L I _____ l ~ ____ I

• • 100 110 I. - I. 100 110 140 r., no JOG JIO '40 HO _ _ .re .,-JET ---i t· • .".. , • II'

IIIIiiI E . _ _ ~ __ . __ s' ~ t I' ..

01 ...... a

I I I I I I • I I I I I I I • eo 100 RO 140 .., ... roo no '40 rIO reo - - ,. HU - 400 4re

1,- .,-Figure 3, Hydrocode Simulation of an 42 0 Conical Shaped Charge, Initial Liner

Configuration, and Jet Slug Formation at 40 and 60 pS

Page 25: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

tv lJ1

..... I ......... ~

ORIGINAL --

--....J. ......... 1' •• 1 ...a-t_ .......... -".-at'-.

t. 40".

t • 46".

t. 56",

Figure 4. Hydrocode Simulation of Jet Formation From A Hemispherical Shaped Charge For The Point-Initiated Case at Three Times After Detonation

Page 26: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

tv 0'1

EXPLOSIVE FORMED PROJECTILE CONFIGURATION

0.375,1= I 5.725 •

DETONATOR T 5.000

I ,

5.625

END PLATE

EXPLOSIVE LINER RADIAL TAMPiNG

.- ROL~ REGION

@)

Figure 5. Slug Shape for 5 Inch-Diameter EFP at 200 "'s Mter Detonation

SLUG

Page 27: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

~

' . .,

Figure 6.

,.'~

• . \ . .' • l . "

.:' (. :.,

"

., H . -

Steel, Hollow Tube With High Pressure Hose Attached For Cleaning Holes in Tuff Formation 27-28

Page 28: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

N \0

I V) o

Figure 7. Steel Tape Used to Measure Hole Depth

Page 29: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Figure 8. Solid Steel Rod Used to Measure Hole Depth 31-32

Page 30: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

TAMPER

t HH

EXPLOSIVE I

I I ----lTC _

_ I RLI ... LINeR INNER RADIUS I RLO ... LINER OUTER RADIUS RCI ... CONFINEMENT/SHEATH INNER RADIUS RCO ... CONFINEMENT/SHEATH OUTER RADIUS HI . ... '-INER INNER HEIGHT HA ... LINER ACTUAL HEIGHT H ... LINER THEORETICAL APEX HEIGHT HCI ... CONFINEMENT ISHEATH INNER HEIGHT HCO'" CONFINEMENT/SHEATH OUTER HEIGHT HE ... EXPLOSIVE HEIGHT . . HH ... EXPLOSIVE HEIGHT ABOVE APEX TL ... LINER THICKNESS TC ... CONFIN~MENT/SHEATH THICKNESS R 1 ... LINER INNER APEX RADIUS R2 ... LINER OUTER APEX RADIUS 81 ... LINER INNER APEX HALF ANGLE

82

"'. LINER OUTER APEX HALF A,.GL.E

8~ ... CONFINEMENT/SHEATH INNER APEX HALF ANGLE

84

... CONFINEMeNT ISHEATH OUTER APEX HALF ANGLE

Figure 9. General Conical Spaped Charge Cross-Section Parameters

, I 1

33

Page 31: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

EXPLOSIVE

LINER H

~---We---~ ~TC ~--D

TARGET STANDOFF

Figure 10. Basic Conical Shaped Charge Cross-Section

34

Page 32: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

EXPLOSIVE

TAMPER

LINER

TARGET

I I~ 0 ----.1 1

~1.0D"'1.40~

20

~O.02D 20-60

Figure 11. Optimized Conical Shaped Charge Configuration

35

Page 33: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

W 0\

I '4 0.478" .. I

0.322"

0.015" ~ I. ~ I 0.158"

I • 0.375" 0.190" 0.158"

! t

COPPER CONE/CYLINDER (0.005 inches THICK) LX-13 EXPLOSIVE

LEXAN INSPECTION/ ALIGNMENT/PROTECTION CYLINDER

Figure 12. Conical Shaped Charge Configuration

Page 34: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

VJ -....l

f

1.2S0

0.700

1.000

TOP VIEW

SIDE VIEW

HOLDER; SHAPE CHARGE SHAPE

CHARGE -

LX-I3 EXPLOSIVE

/ DETONATOR, RP-2

LEADS TO I-~---- FIRESET

ASSEMBLY

Figure 13. CSC Development Test Housing Configurations

Page 35: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

38

TOTAL ASSEMBLY WEIGHTz5 Ib '----4.75"----1

f'=""":=i O.'8"_'II=i!·.~rlIJ

t O.Uo

[T

7.75"

4.75"

COPPER CONICAL

LHER

Figure 14. 3.86 Inch Diameter esc Cross-Section

5.18"

Page 36: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

I

4.10· COPPER 5 . .,8· CONICAL I ~ER ~-;--I ~..L~~ ___ ~.--'-----"--~

-Lf ...----4.86' I

O.o6S'!..,..., -----4.a7·:"'---~ '1\ 0.105'

~ ---5.0·;;...., -~ -i X-

Figure 15. 4.66 Inch Diameter CSC Cross-Section

39

Page 37: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

r= 7.188"::-1 0.87S"

I :=- s" ~-I ! TOTAL ASSEMBLY WEIGHT = 14.5 Ib t t STANDOFF 4.0"

Ft BERGLASS --14•3{sn

FIBERGLASS TAMPER~

o.S"~~

11.7S n

GLASS CONICAL

LINER ~~ , t 6.25'

600~ 4.08 n

I I ·

1.0"[ ...... --:-___ -+-__ ~-..... I ~._ s.On .1 I \0.OS_4"

0.101H---'~6.986" • X O•1• ...-----7.188·---.......

Figure 16. M2A3 Conical Shaped Charge Configuration

40

Page 38: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Sn:EL CONICAL

LINER

15.5"

'"

7.0"

1----- ::!~::' __ -lF 'll \ 8.5&3" ).Y

0.158"

Figure 17. M3 9.125 Inch Diameter CSC Cross-Section

41

Page 39: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

i!3

Figure 18. Conical Shaped Charge Copper Jet (Liner/I.D.- 0.158", Apex Angle =45°, Thickness =- 0.005", Stamped)

Page 40: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia
Page 41: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

~ ~

Figure 20. Flash X-Ray Triple Exposure of Cassette #1 Showing Jet Tip At 140.5 p'S

Page 42: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

~ VI

~ g Z 0 ~

~ .~ ~ ~ z ~

.~

MC3920TUFF.DAT 5-AUG-88 13:11:36 XSCAP 2.0 [CiN]

5

LEGEND o = SCAP MODEUNG

4

3

2l ~

1~ .{

041--------~------~--------~------~------~------~

o 0.5 1 1.5 2 2.5 3

STANDOFF (eM)

Figure 21. 0.158 Inch Diameter esc Penetration Versus Standoff

Page 43: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

~ 0\

~ 200

I 175 t- LEGEND

~ 0= SCAP MODELING E U 150 ........ Z 1130 em = 51" = 4.3'

0 125 ~I -l- I ~ 100 a: I I- 75 I W z I w 50 Q. I

25 l- I O·

157 .em = ~2.4" ~. 1.9"

0 25 50 75 100 125 150 · 175 200

STANDOFF (em)

Figure 22~ 3.86 esc Jet Penetratimi Versus Standoff for a Tuff Target

Page 44: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

(j) 200

175 ·~ LEGEN-D ....... o = SCAP MODELING

E (.) 150 ~

Z 125 0 -I- 100 <t a: I- 75 -W Z 50 W a.

25 75 em = 29.5" = 2.5'

1 t t

0 0 25 50 75 100 125 150 175 200

~ STANDOFF (em) -.l

Figure 23. 4.66 esc Jet Penetration Versus Standoff for a Tuff Target

Page 45: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

""'-00

S? g Z 0 -~ ~ ~ ~ Z ~ ~

M2A3TUFF.DAT - 5-AUG-88 - 14:25:15 - XSCAP 2.0

0] 175

LEGEND 150 o = SCAP MODELING

125

100

75

50

25

O'I--------.-------~------~-- I I I a 50 100 150 200 250 300 STANDOFF (eM)

Figure 24. 6.986 Inch Diameter M2A3 esc Penetration Versus Standoff

Page 46: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

-+:>. \0

5?

M3TUFF.DAT - 5-AUG-88 - 12:58:00 XSCAP 2.0

200l 175~

150

LEGEND {3 = seAP MODELING

g 125

Z 0 ....... ~ 100 ~ E-t ~ Z 75 (:Ll 0...

50

25

u4--- I -- I I I I I

o 50 100 150 200 250 300

STANDOFF (eM)

Figure 25. 9.125 Inch Diameter M3 esc

~

Page 47: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

V\ o

'" It D

L U C

'" I

lr.. lr.. :J t-

Z .... z o .... t­a: 0:= t­W Z W a.. t­w ..., u (1) U

I

a..

149

129

leB

BB

69

49

29

9

9

CONICAL SHAPED CHARGES

Cu CONES, 42-60 deg APEX ANGLES

H.E.CCOHP B, OCTOL, & LX-13)

TARGETCWELDED TU~~, 1.82 g/cc,TTR) •

P-12.69D-0.80 C~IT ~OR SCAP DATA ONLY)

o - SCAP .CODE • - EXPERIMENTAL DATA

2 4 6 B

D - CSC CONE INSIDE DIAMETER - Ctnches)

~IGURE 26. CONICAL SHAPED CHARGE JET PENETRATION INTO WELDED TU~~ ~ORHATION$AT TONAPAH TEST RANGE

19

Page 48: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

VI ~ , VI N

SHAPED" CHARGE

T S.o.

it' "" 0° ~

Figure 27. Shaped Charge Orientations Relative to Tuff Formation Surface

WELDED TUFF

Page 49: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Ul W

I

Ul ~

Figure 28. 3.86 Inch Diameter CSC Test Configuration

Page 50: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Vl Vl

I

Vl 0\

TEST: '3 DATE: 3/ "/Be SIDEWINDER WELDED TUFF

S ITE @ TTR __ ----_ _

SHAPED CHARGE: ' ---, DIA. (IN): ::) _ 8 to

STANDOFF (IN): 7- 0'" Il\1PACT ANGLE (DEG.): 90 0

Figure 29. 3.86 Inch Diameter esc Generated Hole in Tuff

Page 51: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

57-58

Page 52: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

VI \0

I

0\ o

TEST: ~DATE: 3/ :2/88 SIDEWINDER WELDED TUFF SITE @ TTR ---------;--

SHAPED CHARGE: --=---==-=-DIA. (IN): 4-. 6 6 ..

STANDOFF (IN): 70'1 IMPACT ANGLE (DEG.): 90 o

Figure 31. 4.66 Inch Diameter esc Generated Hole in Tuff

Page 53: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

0\ ....... I

0\ N

• T£ST :_~ DATE:~-J!-J 8 8_

lDEWlNOER WELDED Tu rF lTE @ TTR _____ --

SHAPED CHARGE: M2.~~JC~C mA o ( IN): -'.0 "

ST \~n()FF ( I" ) : J 4-1'11' \ CT \ 'lG I.E (DEC . ): 90"

Figure 32. 7.0 Inch Diameter esc Test Configuration

Page 54: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

0\ W

I

0\ ~

• TEST: <0 DATE: "3 ,'0 18a

SIDEWINDER WELDED TUFF SITE @ TTR -------SHAPED CHARGE: M2.~7:J/C~C,

DIA. (IN): -'.0 II ---'~=-------

STANDOFF (IN): 14" IMPACT ANGLE (DEG.): soQ

Figure 33. 7.0 Inch Diameter esc Generated Hole in Tuff

Page 55: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

I I I 5 11111 ~ I / 88 IIlI II I 1111 ~ 11111111 I II

," I I II

, II 11 ' 1111 11 11",f M 3 /c,~" III I II I .9. \ '5

11,,"lft d" ;20 '0' 1\l I " l l ,\ ". 1.1 1 1II I I t J

Figure 34. 9.125 Inch Diameter CSC Test Configuration 65-66

Page 56: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

0\ -.l , 0\ 00

')

• 1...,'1 l>ATE:_3/ 1o I 88 ..... 1 iJ.'WI\ DER " .LDED TU I· F

'TI rTI

dAPED CHARGE: M 3J~-~~ or". (r l\ 1 -E--alS~

STANDOFF (IN ):--.2 _____ _

IMPACT ANGLE (DEC .) : 90·

Figure 35. 9.125 Inch Diameter esc Generated Hole in Tuff

a

Page 57: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

0\ \Q

'" ., L U c -I ~ w I-W 1: a: H Q

W ...J 0 :J:

W U Z a: ~ I-Z W

~ W .,

It C

f CONICAL SHAPED CHARGES

5 Cu CONES, 42-68 des APEX ANGLES

H.E.(COMP B, OCTOL, " LX-t3)

..

3

2

1

0 2 .. 6 8

0 D - CSC CONE INSIDE DIAMETER - Cinches)

FIGURE 36. CONICAL SHAPED CHARGE JET ENTRANCE HOLE DIAMETER IN TUFF AS A FUNCTION OF CSC CONE INSIDE DIAMETER

10

Page 58: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

--.l o

., D .c u c -I ~ w I-W 1: n: ..... c W ...J 0 J:

1: 0 l-I-IS) aI

I-w ..., I

.0 c

I CONICAL SHAPED CHR~?C,S 1.4

J Cu CONES, 42-60 de~ rlPEX ANGLES

H.E.(COMP B, OCTOL, & LX-13) 1.2

1

.8

.6

.4 I /" '-- Db-. 007+. 118D

.2

o 2 4 6 8

o D - CSC CONE INSIDE DIAMETER - (Inches)

FIGURE 37. CONICAL SHAPED CHARGE ~ET BOTTOM HOLE DIAMETER IN TUFF AS A FUNCTION OF CSC CONE INSIDE DIAMETER

10

Page 59: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

-..l >-'

EXPLOSIVE FORMED PROJECTILE CONFIGURATION

0.375 ~jJ.-

DETONATOR 5.000

I I

5.625

END PLATE

. EXPLOSIVE LINER RADIAL TAMPING

Figure 38.

~

Page 60: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

72

C\I o q L

f) o

. l!'\ . LJ")

o ~ q

Page 61: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

• 0 .£:. u c

Z 0 H t-a: Q!: t-W Z W D-

W ..J H 1-U w ..., 0 It: D-

f

D-

-.J VJ

15 t EXPLOSIVE. ~ORMED PRO~ECTILECE~P' .1TI/E~PI 5.8 tn. I.D • LINER: COPPERtO~E), 288 9 EXPLOSIVE. LX-14.1.83g/cc •• 883cm/ua mHPER: STEEL, .3125 tn. THICK TARGET I STEEL(RHA)

19

5

O - EXPERIMENTAL DATA

9 2B 4B 6B BB IBB

B 50 - 5TANDOrr - tnches

~IGURE 40. ~TI EXPLOSIVE ~ORHED PRO~ECTILE MEASURED PENETRATION INTO STEELCRHA) TARGET VERSUS STANDO~r

Page 62: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

-....l ~

o H I­a: r:t:

J: I­~ Z W ...J

o I-

Z o H I-

4

3

SQUARE ROOT DENSITY LAH (P/L) - [G(RHOp/RHOt)A0.S] G-INITIAL TO PENETRATING AREA RATIO-l

a: 2 r:t: I­W Z W n..

,... ...J , n.. ....,

1

e 1 2 3 4

e SQUARE ROOT OF PROJECTILE DENSITY-(g/cc)A.5

rIGURE 41. PROJECTILE PENETRATION TO LENGTH RATIO VERSUS SQUARE ROOT Or PROJECTILE DENSITY AND TARGET

Page 63: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

-..) Vl

I -..) 0\

\

Figure 42.

3' 9

", "n '£.t t.. r J

\2 ct

EFP Test Configuration for 90 Degree Impact of Tuff Target

Page 64: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

4

~

.-' ,

l -. "

'. '\~

• TEST: 1 DATE: 3/8/&

SIDEWINDER WELDED TUFF SITE @ TTR

-------

SHAPED CHARGE: J'TI/E_EP DIA. (IN): 5 .0"

" STANDOFF (IN):~2 _____ _

IMPACT ANGLE (DEG . ): _90 o

-..) l' ii",.rp. .•. t! W • -..) ' ... :<',,: .'1. I I

-..) 00

Figure 43. EFP Slug Generated Hole in Tuff Target

I

Page 65: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

-...l \0 . 00 o

" 1Of"'tII!'oDER 'tIU.DED TI 'n­,l fF ·TTR

,\I 'I'nl (, \l\RCf:.~J1/ErP hi' "'1' S .0 ::" "lo"\~ II') \2."

\i \, I ,,-,,I \ Ill~.( ' ): 30·

Figure 44. EFP Test Confi guration for 30 Degree Impact of Tuff Target

Page 66: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

00 r--'

I

00 N

-' L

TEST: 2 DATE: 3/9/88 -- r, SlDEWINDER WELDED TUFF SITE @ TTR ------SHAPED CHARGE: J'TI/E'EP

" , DrA. {IN ):-.30S~."-'O~ __ _

STANDOFF (IN): ,2. " IMPACT ANGLE (DEG .): 30-

\;

Figure 45 . EFP Slug Generated Hole in Tuff Target

Page 67: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Distribution:

Aerojet Ordnance Co. Attn: J. Carleone 2521 Michelle Tustin, CA 92680

Ballistic Research Lab (10) Aberdeen Proving Ground Attn: . D. Dietrich

R. J. Eichelberger F. Grace. J. T. Harrison R. Jameson K. Kimsey M. Lampson S. B. Seglete~ W. P. WaIter S. K. Golaskie

Aberdeen, MD 21005

Joseph Ba<;kofen P. O. Box 1925 Washington, DC 20013

B;,tttelle Colum!'us Laboratory (2) Attn: 1. Whl te .

D. R. Trott 505 King Avenue Columbus, OH 43201

Ctr for Explosives Tech. Research New Mexico Technical Institute Attn: Per-Anders Persson Socorro, NM 87801

. Dyna East Corp (3) Attn: P. C. Chou

R. C. Ciccarelli W. J. Flis

3132 Market Street Philadelphia, PA 19104

Honeywell, Inc. (2) Defense Systems Group Attn: J. Houlton

G. R. Johnson 10400 Yellow Circle Drive Minnetouba, MN 55343

Lawrence Livermore National Lab (6) Attn: M. Finger

J. D. Immele J. L. Levatin M.J. Murphy M. Van Thiel M. L. Wilkins

P. O. Box 808 Livermore, CA 94550

Los Alamos National Lab (12) Attn: J. D. Allen, G787

R. Carver, B265 E. H. Farnum, G756 M. Ginsberg, J960 L. W. Hantel, F668 J. Hopson, F664 R. Karpp, P940 J. Repa, J960 P. Studt, F668 R. J. Young, F664 J. M. Walsh, P940 R. McCormick, P950

P. O. Box 1663 Los Alamos, NM 87545

Naval Weapons Center Materials Eng. Branch Attn: G. A. Hayes China Lake, CA 93555

83

Page 68: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

84

Teledyne (3) Attn: B. Heideman

D. F. Elliott W. B. Richardson

3601 Union Road Hollister, CA 95023

U.s. Army Armament Research and Development Center

Attn: A. Garcia Building 354 Dover, NJ 07801

E. I. DuPont de Nemours & Co, Inc. Attn: F. C. Sawyers 3520 Pebble Beach Dr Farmers Branch, TX 75234

Explosive Technology (2) Attn: M. D. Anderson

J. E. Kennedy P. O. BoxKK Fairfield, CA 94533-0659

Mason & Hanger (6) Silas Mason Co., Inc Pantex Plant Attn: D. Garrett

R. Slape D. Hilleary D. Schaffer P. Kramer C. A. Campos

P. O. Box 30020 Amarillo, TX 79177

Allied-Signal Aerospace Co Kansas City Div. Attn: G. Oswald P. O. Box 1159 Kansas City, MO 64141

Unidynamics/Phoenix, Inc. (2) Attn: R. Smith

J. Fronabarger P. O. Box 2990 Phoenix,PLl 85062

Ensign-Bickford Co (4) Aerospace Division Attn: L. . Mecca

B. Boggs K. PuIs : E. ·Tarca

660 Hopmeadow St. Simsbury, CT 06070

Jet Research Center, Inc. P. O. Box 246 Arlington, TX 76010

Lockheed Missiles & Space Co (5) Attn: W. E. Moffatt

R. Weinheimer . J.Meeks J. P. Beck N. Markovich-Cottong

1111 Lockheed Way Sunnyvale, CA 94086

Southwest Research Institute Attn: A. B. Wenzel 6220 Culebra Road PO Drawer 28510 San Antonio, TX 78284

Strategic Systems Project Office Department of the Navy Attn: D. Kenemuth, 27314 Washington, DC 20376

Page 69: Explosive Shaped Charge Penetration Into Tuff Rock - Sandia

Distribution:

1131 1413 1500 1510 1512 1513 1521 IS22 1523 1524 1530 1533 1533 1533 2500 2510 . 2512 2512 2512 2512 2512 2512 2513 25i3 2513 2514 2514 2515 2515 2515 2542 2600 3141 3151

B. Morosin G. G. Weigand W. Herrmann J. W. Nunziato J. C . Cummings D. W. Larsen R. D. Krieg R. C. Reuter J. H. Biffle D. B. Longscope L. W. Davison P. Yarrington M. E. Kipp

. A. C. Robinson D. B. Hayes, Actg D. H. Anderson J. G. Harlan D. R. Begeal S. G. Hallett R. G. Jungst . D. L. Marchi M. G. Vigil (15) D. E. Mitchell S. G, Barnhart T. L. Garcia P. L. Stanton L. L.Bonzon P. D. Wilco~ M. R. Kopczewski V. M. LoyolC;l W. N. Sullivan L. D. Bertholf . S. A. Landenberger (5) W. I. Klein (3)

3141-1

5120 5121 5121 5121 5121 5128 5128

, 5165 5165 5165 5165 5165 5165 5251 5251 5262 6230 6320 6321 6321 6322 6323 6323 6400 6416 6416 6416 7130 7133 7133 7133 7170 7173 7173

. 7533 7533 7535 8524

C. L. Ward (8) For DOEjOSTI W. R. Reynolds D. F. McVey O. R. Berg D. L. DeWerff M. M. Plugge B. E. Bader K. E. Mead S. D. Meyer R. K. Thomas N. R. Hansen W. J. Errickson W. J. Patterson L. B. Traylor T. A. Sellers, Actg L. A. Suber J. W. Kane W. C. Luth J. E. Stiegler R. E. Luna R. P. Sandoval J. M. Freedman G. C. Allen H. R. Yoshimura D. J. McCloskey R. M. Cranwell E. L. Emerson J. S. Philbin

. J. D. Kennedy O. L. Burchett P. W. Cooper S. R. Kurowski R. D. Bentley G. L. West H. D. Smith F. H. Mathews J. P. Weber D. C. Bickel P. W. Dean

85