expected returns and risk in the stock market

32
Expected Returns and Risk in the Stock Market Michael J. Brennan Alex P. Taylor Q- Group Conference San Diego October, 2019

Upload: others

Post on 15-Feb-2022

2 views

Category:

Documents


0 download

TRANSCRIPT

Expected Returns and Risk in the Stock Market

Michael J. Brennan

Alex P. Taylor

Q- Group Conference

San Diego

October, 2019

SUMMARYโ€ข Two new models for predicting expected return

โ€ข Pricing kernel modelโ€ข Constrains predictors with discipline of asset pricing modelโ€ข Predicts market return as function of estimated covariances with portfolio returns โ€“ riskโ€ข Quarterly (annual) R2 of 8.3% (17.1%)โ€ข Out of sample reduces 1 year naรฏve forecast error by 13%

โ€ข Discount rate modelโ€ข Exploits accounting identity of log-linear present value model (no economic content)โ€ข Consistent with sentiment, illiquidity etcโ€ข Identifies shocks to the discount rate and then sums them up to get current discount rateโ€ข Predicts market return as a function of past portfolio returnsโ€ข Quarterly (annual) R2 of 5.6% (9.9%)โ€ข Does not improve on naรฏve forecast out of sample

โ€ข Provide independent evidence on predictability

Models for predicting expected returns

โ€ข Yield based modelsโ€ข Dividend yield, market to book ratios, T-Bill rate

โ€ข Information based modelsโ€ข Lettau, Ludwigson (2001)โ€ข Rapach et al. (2016)

โ€ข Sentiment based modelsโ€ข Baker and Wurgler (2006)โ€ข Huang et al. (2015)

โ€ข Risk- based modelsโ€ข Merton (1980), Ghysels et al.(2005), Scruggs(1998), Guo et al (2009).

Our primary model is a risk-based model โ€“ pricing kernel modelsupplementary analysis with a (changing) yield based model โ€“ discount rate model

Principal Findings

โ€ข Pricing kernel modelโ€ข In sample R2 1954-2016, 15-18% for 1 year returnsโ€ข Out of sample R2 1965-2016, 9-16%

โ€ข Rapach et al (2016) around 13% for short interest predictor

โ€ข Discount rate modelโ€ข In sample R2 1954-2016 18% for 1 year returnsโ€ข Out of sample R2 essentially zeroโ€ข Allows us to separate cash flow news from discount rate news

โ€ข Interpretation

โ€ข The time varying risk that is driving time varying returns istimeโ€“varying risk of cash flow news

Two structural models of expected returns

Both assume that expected returns follow an AR1 process:

โ€ข Model 1: pricing kernel model

โ€ข Constrains predictors with discipline of asset pricing model

โ€ข Not consistent with sentiment/liquidity explanations

โ€ข Model 2: discount rate model: a factor model of returns based on cash flow and discount rate news

โ€ข Purely statistical model relying on accounting identity of Campbell Shiller (1988)

โ€ข Consistent with time variation due to sentiment, liquidity etc.

The models are intimately related โ€“ but not equivalent

The model of time-variation in expected excess returns

๐‘…๐‘€,๐‘ก+1 = ๐œ‡๐‘ก + ๐œ‰๐‘ก

๐œ‡๐‘ก follows an AR1 (mean-reverting) process with innovation ๐‘ง๐‘ก

๐œ‡๐‘ก = าง๐œ‡ + ๐œŒ ๐œ‡๐‘กโˆ’1 โˆ’ าง๐œ‡ + ๐‘ง๐‘ก = าง๐œ‡ +

๐‘ =0

โˆž

๐œŒ๐‘ ๐‘ง๐‘กโˆ’๐‘ 

Pricing kernel model

๐œ‡๐‘ก driven by changing risk or covariance with pricing kernel which we estimated directly

Discount rate model

๐œ‡๐‘ก estimated by aggregating past changes in discount rate, ๐‘ง๐‘กโˆ’๐‘ 

Pricing kernel โ€“ general model of asset pricing

โ€ข Marginal utility of representative investor, mt+1

โ€ข Risk premium on any security (including the market portfolio) is given by (negative of) its covariance with the pricing kernel, mt+1

๐ธ๐‘ก ๐‘…๐‘—,๐‘ก+1 โˆ’ ๐‘…๐น๐‘ก โ‰ ๐œ‡๐‘—๐‘ก = โˆ’๐‘๐‘œ๐‘ฃ๐‘ก(๐‘…๐‘—,๐‘ก+1, ๐‘š๐‘ก+1)

โ€ข Example 1: CAPM: ๐‘š๐‘ก+1 = ๐›ฟ0 โˆ’ ๐›ฟ1๐‘…๐‘€,๐‘ก+1

๐œ‡๐‘—๐‘ก = ๐›ฟ1๐‘๐‘œ๐‘ฃ๐‘ก ๐‘…๐‘—,๐‘ก+1, ๐‘…๐‘€,๐‘ก+1 , proportional to ๐›ฝ๐‘—

For Market ๐œ‡๐‘€๐‘ก = ๐›ฟ1๐‘๐‘œ๐‘ฃ๐‘ก ๐‘…๐‘€,๐‘ก+1, ๐‘…๐‘€,๐‘ก+1 = ๐›ฟ1๐œŽ๐‘€,๐‘ก2 - Merton (1980)

Pricing kernel โ€“ general model of asset pricing - continued

โ€ข Example 2: Fama-French 3 factor model: ๐‘š๐‘ก+1 = ๐›ฟ0 โˆ’ ๐›ฟ1๐‘…๐‘€,๐‘ก+1 โˆ’ ๐›ฟ2๐ป๐‘€๐ฟ๐‘ก+1 โˆ’ ๐›ฟ3๐‘†๐‘€๐ต๐‘ก+1

Market risk premium: ๐œ‡๐‘€๐‘ก = ๐›ฟ1๐‘๐‘œ๐‘ฃ๐‘ก ๐‘…๐‘€,๐‘ก+1, ๐‘…๐‘€,๐‘ก+1 + ๐›ฟ2๐‘๐‘œ๐‘ฃ๐‘ก ๐‘…๐‘€,๐‘ก+1, ๐ป๐‘€๐ฟ๐‘€,๐‘ก+1 + ๐›ฟ3๐‘๐‘œ๐‘ฃ๐‘ก ๐‘…๐‘€,๐‘ก+1, ๐‘†๐‘€๐ต๐‘ก+1

โ€ข We can generalize this to any pricing kernel written as a linear function of portfolio returns:

๐‘š๐‘ก+1 = ๐›ฟ0 โˆ’ ๐›ฟ1๐‘…1,๐‘ก+1- ๐›ฟ2๐‘…2,๐‘ก+1- ๐›ฟ3๐‘…3,๐‘ก+1โ€ฆ.. - ๐›ฟ๐‘€๐‘…๐‘€,๐‘ก+1

๐œ‡๐‘€๐‘ก =

๐‘—=1

๐‘€

๐›ฟ๐‘—๐‘๐‘œ๐‘ฃ๐‘ก ๐‘…๐‘€,๐‘ก+1, ๐‘…๐‘—,๐‘ก+1

The market risk premium is a weighted sum of the conditional covariances of market return with the returns on the portfolios that span the pricing kernel. How do we estimate the conditional covariances ??

Estimating conditional covariances

We assume that covariances can be written as geometrically weighted sum of past products of excess returns:

๐‘๐‘œ๐‘ฃ๐‘ก(๐‘…๐‘€,๐‘ก+1, ๐‘…๐‘,๐‘ก+1) = ฯƒ๐‘ =0โˆž ๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐‘…๐‘,๐‘กโˆ’๐‘ )

Then

๐œ‡๐‘€,๐‘ก = ๐›ฟ1

๐‘ =0

โˆž

๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐‘…1,๐‘กโˆ’๐‘ ) + ๐›ฟ2

๐‘ =0

โˆž

๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐‘…2,๐‘กโˆ’๐‘ ) + โ€ฆ + ๐›ฟ๐‘ƒ

๐‘ =0

โˆž

๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐‘…๐‘ƒ,๐‘กโˆ’๐‘ )

๐œ‡๐‘€,๐‘ก = ๐›ฟ1 ๐‘ฅ1,๐‘ก ๐›ฝ + ๐›ฟ2 ๐‘ฅ2,๐‘ก ๐›ฝ + โ€ฆ + ๐›ฟ๐‘ƒ ๐‘ฅ๐‘ƒ,๐‘ก ๐›ฝ

where ๐‘ฅ๐‘,๐‘ก ๐›ฝ = ๐‘๐‘œ๐‘ฃ๐‘ก(๐‘…๐‘€,๐‘ก+1, ๐‘…๐‘,๐‘ก+1)

Estimation equation:

๐‘…๐‘€,๐‘ก+1 โˆ’ ๐‘…๐น,๐‘ก = ๐‘Ž0 + ๐‘Ž1๐‘ฅ1,๐‘ก ๐›ฝ + ๐‘Ž2๐‘ฅ2,๐‘ก ๐›ฝ + โ€ฆ + ๐‘Ž๐‘ƒ๐‘ฅ๐‘ƒ,๐‘ก ๐›ฝ

Estimation procedure:

1. Choose pricing kernel e.g. CAPM, FF3

2. Choose value for ฮฒ

3. Calculate covariance estimates ๐‘ฅ๐‘๐‘ก ๐›ฝ = ฯƒ๐‘ =0โˆž ๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐‘…๐‘,๐‘กโˆ’๐‘ )

4. Run OLS regression of market excess return on covariance estimates ๐‘ฅ๐‘๐‘ก ๐›ฝ

5. Calculate R2

6. Iterate over ฮฒ to find maximum R2

7. Compute significance levels, s.eโ€™s, bias adjustment using bootstrap

Estimated covariances with market return

The return interval

โ€ข Increasing prediction horizon tends to increase predictive R2

โ€ข But more precise estimates of covariances possible with short return intervals

โ€ข However theory implies relevant return interval for covariances of returns should be same as prediction horizonโ€ข NB covariances of arithmetic returns do not scale with return intervalโ€ข Returns not iid and lagged cross-correlations of returns

โ€ข As compromise, compute covariances using lagged 1โ€“quarter returns to predict 1-quarter return

โ€ข Persistence in ฮผ means this covariance will also predict 1 year returns (estimates of 1-year covariances unreliable)

โ€ข Compare with results using 1-month lagged returns to calculate covariances

Data

FF aggregate market factor

๐‘…๐น๐‘ก - 1-month T-bill rate compounded

๐‘…๐‘€๐‘ก difference between market factor and ๐‘…๐น๐‘ก

Pricing kernel portfoliosโ€ข Market

โ€ข FF3F

โ€ข Zero โ€“ market + zero dividend portfolio

โ€ข Growth โ€“ market + average return on (sl, bl)

โ€ข Sample 1946 โ€“ 2016โ€ข Predictions: 1954.1 โ€“ 2016.4

Predicting 1- quarter market excess returns

KernelPortfolios

a0 RM SMB HML ฮฒ R2 R2c p-value

M 0.00(0.01)

1.34(0.44)

0.45(0.26)

0.04 0.04 0.01

FF3F -0.00(0.01)

1.65(0.51)

-1.18(0.97)

1.50(0.82)

0.61(0.23)

0.07 0.06 0.00

Predicting 1- year market excess returns

M 0.04(0.09)

3.00(1.36)

0.35(0.30)

0.04 0.03 0.21

FF3F 0.03(0.12)

6.11(2.15)

-10.02(3.82)

5.52(3.02)

0.52(0.22)

0.19 0.17 0.00

s.e. in parens.

17% R2 for 1 year predictions compares with the following R2 for prior predictors

Divyld Earnings yield

Book/Mkt

Value Spread

Glamor Stock Variance

T-Billrate

Long term yld

0.04 0.01 0.01 0.03 0.05 0.01 0.01 0.00

TermSpread

Inflation DefaultSpread

Kelly-Pruitt

Guo &Savickas

cay hjtzSentiment

Shortinterest

0.04 0.02 0.02 0.05 0.03 0.07 0.08 0.08

Constant 0.00(0.00)

0.17(1.59)

0.28(1.31)

Div yield 0.04(1.82)

0.03(1.47)

Glamor -0.03(1.9)

-0.03(1.90)

Kelly-Pruitt 0.00(0.02)

0.01(0.24)

cay 0.06(2.76)

0.04(2.37)

FF3F prediction 1.00(5.94)

0.82(4.52)

R2 0.19 0.17 0.29

Throwing all the major predictors into the predictive regression:

Only cay is significant but much less strong than FF3F (t-stats in parentheses)

Inspection of the FF portfolios reveals we can get strong results with just two portfolios in the pricing kernel: the market portfolio and either

โ€ข Growth = (sl + bl)/2

Or

โ€ข Zero = the zero dividend yield portfolio

Predicting 1- year market excess returns

KernelPortfolios

a0 RM Growth Zero ฮฒ R2 R2c p-value

Growth 0.03(0.01)

25.2(5.99)

-18.6(4.79)

0.51(0.29)

0.16 0.15 0.01

Zero 0.03(0.07)

16.8(4.25)

-9.90(2.73)

0.58(0.26)

0.19 0.18 0.00

s.e. in parens.

Kernel Portfolios Sample a0 RM SMB HML ฮฒ R2 p-value

FF3F 1955-85 0.01 8.72 -12.82 2.99 0.47 0.21 0.03(0.32) (3.18) (4.97) (4.18)

1986-2010 0.07 3.30 -6.78 7.3 0.57 0.17 0.08(0.75) (2.43) (5.22) (4.55)

a0 RM GrowthGrowth 1955-85 0.01 30.51 -21.00 0.42 0.20 0.03

(0.26) (8.12) (6.20)

1986-2010 0.07 24.50 -19.95 0.54 0.14 0.15(0.64) (8.22) (7.11)

a0 RM ZeroZero 1955-85 0.01 20.78 -11.04 0.57 0.22 0.01

(0.16) (6.22) (3.79)

1986-2010 0.07 18.18 -12.6 0.53 0.20 0.04(0.61) (5.68) (4.16)

The reduced form models, Growth and Zero, have much more stable coefficients across subperiods

Subperiod Analysis

s.e. in parens.

-20

-10

0

10

20

30

40

50

19

54

19

55

19

57

19

58

19

60

19

61

19

63

19

64

19

66

19

67

19

69

19

70

19

72

19

73

19

75

19

76

19

78

19

79

19

81

19

82

19

84

19

85

19

87

19

88

19

90

19

91

19

93

19

94

19

96

19

97

19

99

20

00

20

02

20

03

20

05

20

06

20

08

20

09

20

11

20

12

20

14

20

15

1 year expected returns from pricing kernel model

PKM(FF3) PKM(G) PKM(Zero)

Correlations: FF3F, Growth 0.96; FF3F, Zero 0.87

Expected Return Series

โ€ข Mean 1 year expected return 7.4%

โ€ข Peaks

โ€ข 1955.2 27% (21%) Formosa crisis

โ€ข 1962.4 26% (20%) Cuban missile crisis

โ€ข 1974.3 32% (40%) First oil crisis

โ€ข 1987.4 22% (32%) Lehman Bros.

โ€ข Negative

โ€ข Around the millennium (dot.com)โ€ข 1973-4 (Cf. Boudoukh et al. 1993)

From FF3F (Zero) model

Pseudo R2 for 1-year out of sample forecasts - 1965-2016

FF3F Growth Zero

9.4% 13.8% 16.1%

โ€ข And the reduced form models perform better in out of sample forecasts

โ€ข Previous resultsโ€ข Kelly-Pruitt (2013): 3.5-13.1% for 1980-2010โ€ข Rapach et al. (2016) short interest predictor: 13.2% for 1990-2014.

Discount Rate Model

โ€ข Provides further check on Pricing Kernel Model

โ€ข Allows us to distinguish cash flow news from discount rate news

โ€ข We shall show that it is changing covariance with cash flow news that is driving changing expected returns

Discount Rate Model โ€“ intuition

For a bond, if we know:its initial yield, and the time series of returns (changes in yield)

Then we know its current yield and expected return

100 100

Tt

The problem is more difficult for stocks โ€“because returns affected by news about cash flows as well as about discount rates.

We shall use returns on several portfolios to soak up cash flow news and isolate discount rate news

Discount Rate Modelโ€ข Expected log (excess) return follows AR1

๐‘…๐‘€,๐‘ก+1 = ๐œ‡๐‘ก + ๐œ– ๐‘ก+1

๐œ‡๐‘ก = าง๐œ‡ + ๐œŒ ๐œ‡ ๐‘กโˆ’1 โˆ’ าง๐œ‡ + ๐’›๐’•

= าง๐œ‡ +

๐‘ =0

โˆž

๐œŒ๐‘ ๐‘ง๐‘กโˆ’๐‘ 

โ€ข There exists set of well diversified portfolios that span innovations in cash flow (yjt )and discount rate (๐’›๐’•) factors:

๐‘…๐‘,๐‘ก = ๐›ฝ ๐‘0 +

๐‘—=1

๐‘€

๐›ฝ๐‘๐‘—๐’š๐‘—๐‘ก + ๐›พ๐‘๐’›๐’•

Choose portfolio, ฮดd, so that ฯƒ๐‘=1๐‘ƒ ๐›ฟ๐‘

๐‘‘ ฮฒ๐‘๐‘— = 0, ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘™๐‘™ ๐‘—, ฯƒ๐‘=1๐‘ƒ ฮด๐‘

๐‘‘ฮณ๐‘ = 1.

Then ๐œ‡๐‘ก = ฯ ๐œ‡๐‘กโˆ’1 + ๐›ฟ0๐‘‘ + ฯƒ๐‘=1

๐‘ƒ ๐›ฟ๐‘๐‘‘ ๐‘…๐‘๐‘ก

Successive substitution for ๐œ‡๐‘กโˆ’1 yieldsโ€ฆ. ๐‘…๐‘€,๐‘ก+1 = ๐‘Ž0 + ฯƒ๐‘=1๐‘ƒ ๐›ฟ๐‘

๐‘‘ ฯƒ๐‘ =0โˆž ๐›ฝ๐‘ ๐‘…๐‘,๐‘กโˆ’๐‘  + ํœ€๐‘ก+1

Discount rate news

๐‘ฅ๐‘๐‘ก๐‘‘ ๐›ฝ

Empirical discount rate model:

๐‘…๐‘€,๐‘ก+1 = ๐‘Ž0 +๐‘=1

๐‘ƒ

๐›ฟ๐‘๐‘‘๐‘ฅ๐‘๐‘ก

๐‘‘ ๐›ฝ + ํœ€๐‘ก+1

where ๐‘ฅ๐‘๐‘ก๐‘‘ ๐›ฝ = ฯƒ๐‘ =0

โˆž ๐›ฝ๐‘ ๐‘…๐‘,๐‘กโˆ’๐‘ .

Estimation as for pricing kernel model

RHS `spanning portfoliosโ€™:

Market and pricing kernel portfolios for FF3F, Growth and Zero

a0 RM m_FF3F m_Growth m_Zero ฮฒ R2 p-value

0.08 -0.42 1.88 0.98 0.10 0.05

(0.03) (0.16) (1.89)

0.1 -0.51 2.66 0.99 0.14 0.01

(0.03) (0.16) (2.00)

0.07 -0.50 2.11 0.82 0.09 0.07

(0.03) (0.18) (2.04)

Discount Rate Model 1954-2016

s.e. in parens.

-15

-10

-5

0

5

10

15

20

25

30

19

54

19

55

19

57

19

58

19

60

19

61

19

63

19

64

19

66

19

67

19

69

19

70

19

72

19

73

19

75

19

76

19

78

19

79

19

81

19

82

19

84

19

85

19

87

19

88

19

90

19

91

19

93

19

94

19

96

19

97

19

99

20

00

20

02

20

03

20

05

20

06

20

08

20

09

20

11

20

12

20

14

20

15

1 year Expected Returns from Discount Rate Model

DRM(FF3) DRM(Growth) DRM(Zero)

-20

-10

0

10

20

30

40

50

19

54

19

55

19

57

19

58

19

60

19

61

19

63

19

64

19

66

19

67

19

69

19

70

19

72

19

73

19

75

19

76

19

78

19

79

19

81

19

82

19

84

19

85

19

87

19

88

19

90

19

91

19

93

19

94

19

96

19

97

19

99

20

00

20

02

20

03

20

05

20

06

20

08

20

09

20

11

20

12

20

14

20

15

1-year Expected Returns from Pricing Kernel and Discount Rate Models

PKM(FF3) DRM(FF3)

Correlations of PKM and DRM estimates around 0.4 โ€“ 0.5 โ€“ but both have separate information about expected returnsโ€ฆ..

Regression of market returns on PKM and DRM estimates of expected return

1 2 3

constant -2.85

(1.11)

PKM(FF3) 1.00 0.78

(5.94) (3.65)

DRM (FF3) 1.00 0.60

(4.32) (2.41)

R2 0.19 0.14 0.23

Both estimatesadd information

The BIG issue

The market moves because of

โ€ข new information about future cash flows โ€“ cash flow news

โ€ข new information about future expected returns โ€“ discount rate news

Our discount rate model gives us a direct estimate of cash flow news - zt

This enables us to ask:

Is it time-varying risk of cash flow news or time varying risk of discount rate news that is driving time-varying expected returns?

A Cash Flow News Pricing Kernel Model

โ€ข Define cash flow news as the component of ๐‘…๐‘€ that is orthogonal to discount rate news, zt

โ€ข We have three estimates of zt corresponding to our 3 different discount rate models, FF3, Growth, Zero.

โ€ข So we have three different estimates of cash flow news obtained by regressing ๐‘…๐‘€on zt (FF3), zt (Growth), zt (Zero).

โ€ข Call them CFN(FF3), CFN(Growth) and CFN(Zero)

Then consider the following cash flow news version of the pricing kernel model:

๐‘…๐‘€,๐‘ก+1 โˆ’ ๐‘…๐น,๐‘ก = ๐‘Ž0 + ๐‘Ž1๐‘ฅ๐‘ก ๐›ฝ

where ๐‘ฅ๐‘ก ๐›ฝ = ฯƒ๐‘ =0โˆž ๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐ถ๐น๐‘๐‘กโˆ’๐‘ )

We shall estimate it for the three different estimates of cash flow news

a0 CFN(FF3F) CFN(Growth) CFN(Zero) ฮฒ R2 p-value

0.04 22.3 0.60 0.21 0.00

(0.05) (6.44)

0.04 19.1 0.60 0.18 0.00

(0.06) (13.23)

0.03 23.0 0.65 0.21 0.00

(0.05) (6.78)

Cash Flow News Pricing Kernel Model

s.e. in parens.

, ๐‘ฅ๐‘ก ๐›ฝ = ฯƒ๐‘ =0โˆž ๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐ถ๐น๐‘๐‘กโˆ’๐‘ )

RM SMB HML ฮฒ R2 p-value

M 0.04(0.09)

3.00(1.36)

0.35(0.30)

0.03 0.21

FF3F 0.03(0.12)

6.11(2.15)

-10.02(3.82)

5.52(3.02)

0.52(0.22)

0.17 0.00

๐‘…๐‘€,๐‘ก+1 โˆ’ ๐‘…๐น,๐‘ก = ๐‘Ž0 + ๐‘Ž1๐‘ฅ๐‘ก ๐›ฝ

For comparison

Summary

โ€ข Pricing Kernel Model: ๐‘ฅ๐‘๐‘ก ๐›ฝ = ฯƒ๐‘ =0โˆž ๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐‘…๐‘,๐‘กโˆ’๐‘ )

โ€ข FF3F, Growth and Zero R2 = 17-18%

โ€ข OOS R2 = 9 -16%

โ€ข Discount Rate Model: ๐‘ฅ๐‘๐‘ก๐‘‘ ๐›ฝ = ฯƒ๐‘ =0

โˆž ๐›ฝ๐‘ ๐‘…๐‘,๐‘กโˆ’๐‘ 

โ€ข FF3F, Growth and Zero R2 = 9-14 %

โ€ข Not significant OOS

โ€ข Identifies discount rate news

โ€ข Cash Flow News Pricing Kernel Model: ๐‘ฅ๐‘ก ๐›ฝ = ฯƒ๐‘ =0โˆž ๐›ฝ๐‘ (๐‘…๐‘€,๐‘กโˆ’๐‘ ๐ถ๐น๐‘๐‘กโˆ’๐‘ )

โ€ข FF3F, Growth and Zero R2 = 18-21 %

โ€ข Time Varying Risk of Cash Flow News drives time-varying expected returns.