Evaluation of the environmental impact of Brownfield remediation options: comparison of two life cycle assessment-based evaluation tools

Download Evaluation of the environmental impact of Brownfield remediation options: comparison of two life cycle assessment-based evaluation tools

Post on 08-Dec-2016

212 views

Category:

Documents

0 download

TRANSCRIPT

  • This article was downloaded by: [East Carolina University]On: 30 August 2013, At: 00:14Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,37-41 Mortimer Street, London W1T 3JH, UK

    Environmental TechnologyPublication details, including instructions for authors and subscription information:http://www.tandfonline.com/loi/tent20

    Evaluation of the environmental impact of Brownfieldremediation options: comparison of two life cycleassessment-based evaluation toolsValrie Cappuyns a & Bram Kessen aa Hogeschool-Universiteit Brussel, Centre for Economics and Corporate Sustainability(CEDON), Warmoesberg 26, 1000, Brussels, BelgiumAccepted author version posted online: 08 Mar 2012.Published online: 23 Apr 2012.

    To cite this article: Valrie Cappuyns & Bram Kessen (2012) Evaluation of the environmental impact of Brownfield remediationoptions: comparison of two life cycle assessment-based evaluation tools, Environmental Technology, 33:21, 2447-2459, DOI:10.1080/09593330.2012.671854

    To link to this article: http://dx.doi.org/10.1080/09593330.2012.671854

    PLEASE SCROLL DOWN FOR ARTICLE

    Taylor & Francis makes every effort to ensure the accuracy of all the information (the Content) containedin the publications on our platform. However, Taylor & Francis, our agents, and our licensors make norepresentations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of theContent. Any opinions and views expressed in this publication are the opinions and views of the authors, andare not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon andshould be independently verified with primary sources of information. Taylor and Francis shall not be liable forany losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoeveror howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use ofthe Content.

    This article may be used for research, teaching, and private study purposes. Any substantial or systematicreproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in anyform to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

  • Environmental TechnologyVol. 33, No. 21, November 2012, 24472459

    Evaluation of the environmental impact of Browneld remediation options: comparison of twolife cycle assessment-based evaluation tools

    Valrie Cappuyns and Bram Kessen

    Hogeschool-Universiteit Brussel, Centre for Economics and Corporate Sustainability (CEDON), Warmoesberg 26,1000 Brussels, Belgium

    (Received 15 December 2011; nal version received 28 February 2012 )

    The choice between dierent options for the remediation of a contaminated site traditionally relies on economical, technicaland regulatory criteria without consideration of the environmental impact of the soil remediation process itself. In the presentstudy, the environmental impact assessment of two potential soil remediation techniques (excavation and o-site cleaning andin situ steam extraction) was performed using two life cycle assessment (LCA)-based evaluation tools, namely the REC (riskreduction, environmental merit and cost) method and the ReCiPe method. The comparison and evaluation of the dierenttools used to estimate the environmental impact of Browneld remediation was based on a case study which consisted of theremediation of a former oil and fat processing plant.

    For the environmental impact assessment, both the REC andReCiPemethods result in a single score for the environmentalimpact of the soil remediation process and allow the same conclusion to be drawn: excavation and o-site cleaning has amore pronounced environmental impact than in situ soil remediation by means of steam extraction. The ReCiPe method takesinto account more impact categories, but is also more complex to work with and needs more input data. Within the routineevaluation of soil remediation alternatives, a detailed LCA evaluation will often be too time consuming and costly and theestimation of the environmental impact with the REC method will in most cases be sucient. The case study worked out inthis paper wants to provide a basis for a more sounded selection of soil remediation technologies based on a more detailedassessment of the secondary impact of soil remediation.

    Keywords: energy use; excavation; soil remediation; soil contamination; steam extraction

    1. Introduction1.1. Environmental impact of soil remediationApproximately 250,000 sites in Europe require cleanup,while the European Environmental Agency estimates thatnearly 3 million sites are potentially polluted [1]. Indus-trial activities are responsible for over 60% of Europessoil pollution (the oil sector accounts for 14% of this total).Among the most common harmful contaminants are heavymetals (37%) and mineral oils (33%) [1]. Although sev-eral EuropeanUnion (EU) directives support the preventionand cleanup of soil contamination (e.g. EU Directive onEnvironmental Liability, EU Waste Framework Directive,EU Water Framework Directive, EU Integrated PollutionPrevention and Control Directive), there is no general Euro-pean directive with regard to soil remediation and cleanup.Because the cleanup of all historically contaminated sites tobackground concentrations or levels suitable for all types ofland use is not considered technically or economically fea-sible, cleanup strategies are more and more designed to usesustainable, long-term solutions, often using a risk-basedapproach to land management

    Corresponding author: Email: valerie.cappuyns@hubrussel.be

    The cleanup level, the time required for the remedia-tion, economic resources and the best available technologiesare the most important factors that are traditionally takeninto account when a soil remediation technique has to beselected. More and more, the environmental impact of theremediation process itself is also taken into account. Ideally,to be more sustainable, remediation and/or cleaning of soiland groundwater should be performed in a closed-loop sys-tem, with conservation of landscape characteristics, to min-imize the environmental impact of the remediation projectand to achieve the goal of sustainable use of soil. Bothsoil and groundwater can be considered valuable resources.

    Therefore, besides primary impacts, associated with thestate of the site, and secondary impacts, associated withthe site remediation itself [2], contaminated site manage-ment should also account for tertiary impacts, associatedwith the eects of the reoccupation of the site [3]. The termgreen or gentle remediation techniques, is closely relatedto sustainable remediation, as green remediation tech-niques are dened as remediation techniques with a lowerenvironmental impact and a lower associated consumption

    ISSN 0959-3330 print/ISSN 1479-487X online 2012 Taylor & Francishttp://dx.doi.org/10.1080/09593330.2012.671854http://www.tandfonline.com

    Dow

    nloa

    ded

    by [E

    ast C

    arolin

    a Univ

    ersity

    ] at 0

    0:14 3

    0 Aug

    ust 2

    013

  • 2448 V. Cappuyns and B. Kessen

    Table 1. Literature overview of LCA-based case studies where the environmental impact of soil remediation technologies was evaluated.

    Ref Case study Impact assessment method or tool

    [22] - REC (uses value functions method for assessment ofenvironmental merit)

    [23] Site contaminatedwith Pb, As, Cd, polyaromatic hydrocarbons(PAHs)

    Calculation of potential impact indicators

    [8] Analysis of six generic remediation options Multimedia Maclkay model Solid Waste Burden (SWB) +useable land area

    [17] Site contaminated with mineral oil, PAHs and Cr Use of disadvantage factors[24] - Pollution factor (PF) is calculated, and expression of

    environmental impacts in dimensionless environmentalimpact units (EIUs)

    [21] Industrial site contaminated with sulfur No impact assessment but ranking of productivity resources[18] Spent pot lining (SPL) landll contaminated with Cd and Cu EDIP97+ simulation of contaminant transport in groundwater,

    using site-specic data[2] Diesel-contaminated site EDIP97[20] Landll sites in Switzerland Procedure for estimating heavy metal transport in soil within

    a current LCIA[25] Old landll Specify method for impact assessment transport of heavy

    metals[26] Former manufactured gas plant site Characterization method adopted from Umweltbundesamt

    (2000)[27] Mixed industrialresidentialcommercial area with BTEX

    and THP contaminationIPPC Tier Two methodology

    [28] Browneld contaminated by human activity in railway sector IMPACT2002+[10] Diesel-contaminated site US-EPA TRACI[29] Industrial site with 300 industries involved in chemical and

    petro-chemical productionsDEcision Support sYstem for REhabilitation of contaminated

    sites (DESYRE).[19] Outdoor shooting range and gasoline station Decision support tool (DST) based on REC[30] Site contaminated with chlorinated ethenes GaBi4 LCA software and EDIP97 impact assessment method

    (Lemming et al. [30])[16] Site contaminated with diesel Global warming potential (GWP), acidication potential

    (AP), eutrophiation potential (EP) and photo oxidantcreation potential (POCP)

    [13] Agricultural elds contaminated with dieldrin RNsoil and economic inputoutput LCA[31] Dioxin and furan contaminated sediments in a fjord ReCiPe impact model[15] Area of 700 km2 contaminated with Pb, Cd and Zn Global warming potential (GWP) of CO2[12] Previous oil depot ReCiPe- EPD[11] Industrial site with distribution centre for cars REC

    Note: IPPC, integrated pollution prevention and control; EPD, environmental product declaration.

    of natural resources such as water and energy [4]. Neverthe-less, in green remediation, only one aspect of sustainability,namely, the environmental aspect, is taken into account.

    1.2. Evaluation of the environmental impact of soilremediation by life cycle assessment

    Since the last decade, life cycle analysis or life cycle assess-ment (LCA) has been gaining wider acceptance as a tool forthe quantication of environmental impacts and evaluationof improvement options throughout the life cycle of a pro-cess, product or activity [5]. With regard to applications inenvironmental technology, LCA has for example been usedas a tool for the assessment of the environmental impact ofthe treatment of waste water (e.g. [6]) or to evaluate wastemanagement options (e.g. [7]). Several examples and casestudies that have been worked out during the last decadeshow that a life cycle framework, including a life cyclemanagement (LCM) approach structuring environmental

    activities and life cycle analysis for a quantitative exam-ination, can be helpful for the selection of site remediationoptions with minimum impact on the ecosystem and humanhealth [8].

    An updated overview (Table 1) of case studies deal-ing with LCA of the remediation of contaminated sitesillustrates the high variation in impact assessment meth-ods that have been used over the last 10 years. In order totake into account primary, secondary and tertiary impactsof soil remediation, dierent scenarios could be consideredand the collection of additional data concerning temporaland spatial eects should be integrated into the evaluationof contaminated sites [9]. For example, Cadotte et al. [10]considered two dierent remediation scenarios: one basedon a fast treatment time and another one based on a lowenvi-ronmental impact. Additionally, Sur et al. [9] illustrate thatthe result of LCA is highly dependent on the method usedand that the choice of impact categories heavily aects theoutcome of an LCA study.

    Dow

    nloa

    ded

    by [E

    ast C

    arolin

    a Univ

    ersity

    ] at 0

    0:14 3

    0 Aug

    ust 2

    013

  • Environmental Technology 2449

    Cappuyns et al. [11] compared two remediation sce-narios for a site with light non-aqueous phase liquid(LNAPL) contamination by applying the BATNEEC (bestavailable technique not entailing excessive costs) methodand the LCA-based REC (risk reduction, environmentalmerit and costs) method. They concluded that, although anLCA-based evaluation method is much more complex andrequires much more data than a classical BATNEEC analy-sis, both evaluation tools could be used in a complementaryway. A preliminary selection of remediation technologiescould be based on a BATNEEC analysis, followed by adetailed analysis of the selected remediation options bymeans of LCA. When alternatives for soil remediationare compared, one should be aware that environmentaleects occur on very dierent environmental problems andgeographical scales [12], pointing to the importance ofincluding land use in LCA.

    Anothermethodology, namely RNsoil, that has been pro-posed by Inoue and Katayama [13] combines two so-calledrescue numbers to evaluate the increase in economic cost,environmental impact on resource depletion on the onehand, and the risk reduction on the other. Recently, thismodel has been expanded by introducing life cycle costingand economic inputoutput life cycle assessment [14].

    Whereas most LCA-based methodologies try to expressthe environmental impact by means of one aggregatedscore (which is a possibility included in the most recentLCA packages), some studies still rely on characterizationindices such as global warming potential (GWP), acidica-tion potential (AP), eutrophiation potential (EP) and photooxidant creation potential (POCP) [15,16].

    It is also clear from Table 1 that most case studies dealwith sites contaminated with organic contaminants. Sitescontaminated with heavy metals [1720] or sulfur [21] areonly the subject of a few case studies.

    In the present paper, attention is paid to the assessmentof the environmental impact of the soil remediation processand on the way this environmental impact is quantied bymeans of LCA methodology. The objective of this paperis twofold: rst, we want two quantify and compare theenvironmental impact of two soil remediation options. Sec-ondly, two LCA-based methods that can be used to assessthe environmental performance of processes and productswill be compared. The evaluation of the environmentalimpact of soil remediation activities is still a relativelynew aspect in soil remediation projects, but the interestin this eld, as well as the demand for practical tools toperform such an evaluation is growing. In this study, anLCA-based method that is specically designed to evaluatesoil remediation options was compared with a more generalLCA-based method in order to select the most appropriatemethod that can be used in the (routinely) evaluation ofsoil remediation. Therefore, a case study is used in whichdierent remediation scenarios are worked out for a con-taminated site, by using two dierent life cycle approaches,namely, the environmental merit approach as is included

    in the REC methodology and an LCA approach using theReCiPe method for impact assessment. ReCiPe representsthe initials of the institutes thatwere themain contributors tothis p...

Recommended

View more >